This is page 1
Printer: Opaque this

Implementation of a
Clifford Algebra
Co-Processor Design on a
Field Programmable
Gate Array

Christian Perwass
Christian Gebken

Gerald Sommer

ABSTRACT We present the design of a Clifford algebra co-processor and its
implementation on a Field Programmable Gate Array (FPGA). To the best of our
knowledge this is the first such design developed. The design is scalable in both
the Clifford algebra dimension and the bit width of the numerical factors. Both
aspects are only limited by the hardware resources. Furthermore, the signature
of the underlying vector space can be changed without reconfiguring the FPGA.
High calculation speeds are achieved through a pipeline architecture.
Keywords: Clifford co-processor, FPGA.

1 Introduction

Clifford algebra has been applied to many different fields of research, as
for example quantum mechanics, theories of gravity, automated geomet-
ric reasoning, computer vision and robotics. Clifford algebra is a powerful
mathematical tool for symbolic calculations. In order to perform numerical
calculations with Clifford algebra, multivectors in C?,, have in general to
be treated as 2™ dimensional vectors. Therefore, to evaluate the geometric
product of two multivectors, 22" product operations and 27(2" — 1) ad-
ditions have to be performed with the multivector elements in the worst
case.

Matrix multiplication has a similar computational complexity. Due to
the need for very fast matrix multiplications, as for example in computer
graphics, hardware implementations of the matrix product were developed.
Since Clifford algebra is increasingly used in applied fields where computa-



2 Christian Perwass, Gerald Sommer

tional speed is of importance, a hardware implementation of the geometric
product and associated operations is of great interest.

We present the design of a Clifford algebra co-processor and its imple-
mentation on a Field Programmable Gate Array (FPGA). To the best of
our knowledge this is the first such design developed. The design is scalable
in both the Clifford algebra dimension and the bit width of the numerical
factors. Both aspects are only limited by the hardware resources. Further-
more, the signature of the underlying vector space can be changed without
reconfiguring the FPGA. High calculation speeds are achieved through a
pipeline architecture.

The difference between the symbolic power of Clifford algebra (CA) and
its high computational complexity has long been noted by researchers in
this field. In order to numerically evaluate, or solve, symbolically powerful
CA equations on a computer, one can often translate them into matrix
equations which may then be solved or evaluated with standard matrix
libraries. This has the advantage that one can use readily available matrix
software packages and specialized matrix processing hardware. However,
it may not always be obvious how to express a CA equation as a matrix
equation. Furthermore, if one always has to translate CA equations into
matrix equations, then the symbolic advantage we have gained by using
CA is somewhat lost.

Therefore, many software packages have been developed recently, to eval-
uate and solve CA equations directly. There are packages for the symbolic
computer algebra systems Maple [1, 2] and Mathematica [3], a package for
the numerical mathematics program MatLab called GABLE [5], the C++
software libraries CLU [14], GluCat [9], the C++ software library generator
Gaigen [6], a Java library [4] and stand alone programs CLUCalc, CLUIit
[14] and CLICAL [11], to name just a few. For researchers who are inter-
ested in the geometric aspects of CA, GABLE, CLUCalc and CLUit also
visualize the geometric interpretation of multivectors in particular spaces.

When working with matrices one can take advantage of hardware acceler-
ated matrix multiplications. Our goal was to see to what extend a hardware
implementation of CA operations is indeed feasible and will speed up the
evaluation process.

In this paper we can only give an overview of the design of the co-
processor. Only some aspects are discussed in more detail. For a complete,
detailed report (in German) see the Diploma thesis of Christian Gebken
[15].

We will not give an introduction to Clifford algebra here. Introductory
material can be found for example in [7, 10, 12, 16]. However, we give a
short introduction to the geometric product, since this is the main Clifford
algebra operation to be implemented by the co-processor. Let the basis of
a universal Clifford algebra C¢, be given by the set B, = {F;}, which
consists of 2" basis blades. A multivector A € C¥¢,, is then given by A =



Implementation of a Clifford Algebra Co-processor Design 3

Zle o' E;, with o' € R, Vi € {1,...,2"}. If we agree on a particular
basis B, of C{,, we can therefore represent the multivector A by the
vector (a',a?,...,a?").

The geometric product of two elements of B, results again in an ele-
ment of B, , up to a sign. The relationship can be expressed with a tensor
as follows: F;F; = Ziil gijk FE. , where the entries of gijk can be 1, —1
or zero. If B, is the basis of a universal Clifford algebra, which we as-
sumed, then the geometric product of basis blades is invertible. Let the
three multivectors A = 222:1 o'E;, B= Zle B'E; and C = Zle ~ B
be related by the geometric product AB = C'. Then the relationship be-
tween their scalar components is given by ¥ = 212:1 Z?:l ot gijk.
This relationship can be used to solve multivector equations [13]. Many
software packages use pre-calculated multiplication tables, i.e. the gijk , to
implement the geometric, inner and outer product. As will be discussed
later, the co-processor represents multivectors as lists of basis blades with
associated scalar factors. The geometric product of basis blades will be
evaluated explicitly, without a multiplication table, which is more effective
in this case.

An explicit evaluation of the geometric product of two blades is done
as follows. Given an orthonormal basis {ej,eq,...,e,} of a vector space
R™, two blades of the Clifford algebra C¢,, over R™ may, for example, be
given by a = aejesey and b = Bejezeq, with a, 3 € R. Their geometric
product may then be evaluated as follows. First of all, the scalar factors of
the blades can be multiplied separately, i.e. ab = (af3) (e1eaeqerezey). The
resultant blade component can be evaluated by applying the associativity
of the geometric product and the rules e;e; =1 and e;e; = —ejer . Note
that e;e; = —1 is also possible, depending on the signature of the vector
space. The resultant blade component therefore is —eses, and thus ab =

—(af) eges .

2 Hardware Designs

The goal is to numerically evaluate CA operations like the geometric prod-
uct with a digital circuit design. Before we discuss the evaluation of a CA
product itself, we have to decide on what the Clifford co-processor should
be able to do. This, of course, influences the design of the whole chip.
Since we want to build a co-processor on an FPGA which is external to
the CPU, we do not want to constantly transfer data between the CPU
and the FPGA. Therefore, the co-processor should have a list of opera-
tions and multivectors which it can evaluate independently from the CPU.
The possible operations should allow us to evaluate most CA expressions.
Therefore, we want the processor to have the following features. 1. Evalu-
ation of the geometric, inner and outer product, addition and subtraction.



4 Christian Perwass, Gerald Sommer

2. Operations between given multivector and previous result. 3. Opera-
tions between two previous results. 4. Choice of order of mutlivectors in
operation.

This list of features makes certain demands on the arithmetic logic unit
(ALU) of the co-processor. Before we discuss possible ALU designs, we will
give a short overview of how a FPGA actually works.

The FPGA we used was a Xilinx XC4085XLA-0.9. This FPGA contains
3136 configurable logic blocks (CLBs) which are connected in a configurable
array. Each CLB contains two delay flip-flops (DFF), two look up tables
(LUT) and a fast carry logic for arithmetic operations. A DFF can be used
as a register to store information and a LUT allows logic functions up to
4 bit to be implemented, like AND, OR, XOR, etc. and combinations of
these. Using the CLBs and the configurable connection array, any digital
circuit design can be implemented.

Note that this FPGA does not contain any predefined arithmetic units
for multiplication or addition. These have to be implemented by a designer.
A single 32 x 32 bit floating point multiplier would already use up most,
if not all, available CLBs of this FPGA.

Although the internal clock of the FPGA can run at more than 100 MHz,
the maximal achievable frequency for a particular design may be much
lower. In our case there was an additional problem due to the FPGA’s exter-
nal RAM on the FPGA board, which only allowed simultaneous read /write
access at 20 MHz.

We programmed the FPGA design using the C++ hardware description
language (CHDL) [8]. CHDL is a C++4 software library which allows the
programmer to define a digital circuit using C++ objects and operators.
This simplifies the design process compared to the standard hardware de-
scription language VHDL.

In general the clock frequencies of FPGAs cannot be as high as those of
non-configurable ICs, due to the FPGA’s configurable connections between
CLBs.

Despite these problems, FPGAs are certainly a good choice to build
and test a Clifford co-processor prototype. Furthermore, in certain appli-
cations we might want to use different digital circuit designs on the same
FPGA consecutively, to solve different aspects of a problem. Here the Clif-
ford co-processor may be a design which could follow some pre-processing
operations.

We will now discuss two possible ALU designs.

2.1 Direct Computation

This design expects as input two complete mutlivectors. Each operation
between basis blades is hardwired, so that all necessary operators exist on
the chip simultaneously. This allows for pipelined, parallel processing, but
it also needs a large amount of resources.



Implementation of a Clifford Algebra Co-processor Design 5

As an example take the geometric product. For each multiplication be-
tween basis blades there exists a separate multiplier which is hardwired to
the appropriate multivector elements. Its output is connected to an adder
which collects all blade multiplications which result in the same blade. In
CY,, we would need 22" multipliers. Since there are 2" different basis blade
combinations whose products result in the same basis blade, each of the
2" resultant basis blades is the sum of 2™ values. These have to be added
in a cascade of 327" 2% adders. Therefore, we have a total of 2 7' 2
adders. For 3d-space this gives 64 multipliers and 48 adders. For 5d-space
we already have 1024 multipliers and 960 adders. Even the most advanced
FPGAs available today do not have enough capacity to deal with the 5d
case. Furthermore, a change of signature or dimension would mean that we
have to reconfigure the chip.

Although this would be the simplest and fastest implementation, we did
not follow this approach due to its enormous need of resources and its
inflexibility.

2.2 Basis Blade Pipeline Design

A much more flexible design is that of basis blade pipelines. Here we have
a number of pipelines which each deal with an operation between two basis
blades. The number of pipelines per operation depends on the amount
of resources available. Of course, there has to be additional logic which
distributes the different combinations of basis blades between the different
pipelines and collects the results appropriately. This does in fact cause some
non-trivial problems, which will be discussed later on. Note that at each
clock tick (the moment when the clock changes from low to high) we can
push a new basis blade combination into every pipeline. This means that
if a basis blade pair needs n clock cycles to be processed by a pipeline, we
initially have to wait n clock cycles for the first result to appear. However,
after this time we obtain a new result after each clock cycle.

In this setup, the geometric product could be evaluated using two differ-
ent methods: a multiplication table or an explicit calculation. For software
packages a multiplication table is the easiest and also a very efficient solu-
tion. Here this is not the case, since a multiplication table would have to
be stored in memory. On the FPGA we used the memory could only be
accessed serially, which would not allow any parallel processing. Further-
more, other parts of the design need to access the memory at the same time,
which would have slowed down the processing even further. Therefore, we
decided on evaluating the geometric product explicitly. This is discussed in
some detail later on.

For example, to evaluate the geometric product each pipeline only needs
a single pipelined multiplier and a single adder to add the result to the
appropriate result blade. Depending on the amount of resources available
we can vary the number of pipelines working in parallel. In fact, we could



6 Christian Perwass, Gerald Sommer

even have a number of ALUs working in parallel, although then we might
run into additional trouble due to interdependencies of the operations.

Due to its flexibility and extensibility we chose this ALU design for the
Clifford co-processor.

2.3 Co-processor Design

RAM
ALU Central Instructions
ithmetio (<"} Control \
Logic Unit .
ogic Uni Unit
Geometric
Product ﬁ
Inner
Product
Quter RAM Result 2
Product |:> Access <:>
Controller
Etc. Result 1
PCI-Bus

FIGURE 1. General data flow in CA co-processor.

Figure 1 shows the overall data flow of the co-processor. We assume here
that the FPGA which implements the co-processor sits on a PCI card with
its own memory and is accessible through the PCI bus. The RAM Access
Controller (RAM-AC) has two main objectives. First of all it is used to
transfer data from the main board memory to the FPGA memory and vice
versa. Secondly, it allows the Central Control Unit (CCU) to access the
instructions and previous results. Furthermore, it allows the ALU to write
evaluation results to the appropriate addresses of the on-board RAM.

The CCU takes an instruction from the RAM, and feeds the appropriate
evaluation pipelines of the ALU with basis blade pairs. The ALU accumu-
lates the evaluation results in a result area in the RAM. More details are
given in the next section.



Implementation of a Clifford Algebra Co-processor Design 7
3 Implementation

The FPGA available for the design implementation was rather small, which
meant that we had to make some restrictions.

1. We could only implement a single basis blade pipeline,
2. scalar factors of basis blades are 24 bit integer numbers,
3. Clifford algebras of up to 8d-vector spaces can be used,

4. only the geometric product has been implemented.

3.1 Basis Blades and Instructions

31 30 8 7 0
Sign Scalar Blade Index
1 bit 23 bit 8 bit

FIGURE 2. Structure of a basis blade.

Each basis blade consists of a scalar factor and an algebra component.
This is shown in figure 2. The scalar component is a 23 bit integer value plus
a sign bit. The blade index follows a well known method used to express
basis blades in binary code. Each bit in the blade index stands for a basis
vector. If a bit is high, the corresponding basis vector exists in the blade,
otherwise it does not. In this way all basis blades of a Clifford algebra can
be represented. For example, in Cfg the basis blade ejezes is represented
by the binary code 10000101 . Each blade has a unique blade index, so that
the latter can be used as a memory offset address.

IWO | IW1 | IW2 | Multivector A Multivector B

32 bit 32 bit 32 bit n x 32 bit m x 32 bit

FIGURE 3. Structure of an instruction

Each operation instruction consists of three instruction words (32 bit
each) and the corresponding multivectors, as show in figure 3. Each mul-
tivector consists of a collection of basis blades as shown in figure 2. The
number of elements within the multivectors is contained in the instruction
words IW1 and ITW2, respectively. Furthermore, the operand multivectors
do not have to follow the instruction words. The operands can also be re-
sult multivectors from previous operations. The structure of the instruction
words is as follows.



8 Christian Perwass, Gerald Sommer

IWO0 Bit  Description
0-9 Offset to the start of the next instruction
11-14 ID of operation type
15-18 Flags
19-31 Reserved

IW1 Bit  Description
0-22  Address of A-operand (first multivector)
13-31  Number of basis blades in A-operand

IW2 Bit  Description
0-22  Address of B-operand (second multivector)
13-31 Number of basis blades in B-operand

The elements of IW0 are fairly self explanatory. The first 10 bit contain
the offset to the next instruction. This can be variable, since the number
of elements in the multivectors passed with the instructions is variable.
There are four bit for the operation type ID, which allows for 16 different
operations. Currently only the geometric product has been implemented.
The next four bits contain flags which indicate whether this is a proper
instruction or the end of the instruction list. Furthermore, there is a flag
which tells the CCU whether each element of operand A is multiplied with
all elements of operand B or vice versa. That is, the roles of A and B
can be switched.

Note that the addresses of the A and B operands are not given as rela-
tive address offsets but as absolute values. This has been done to simplify
the design somewhat. However, it also means that the multivectors passed
with the instructions and the result multivectors have to be at previously
known addresses. This can be achieved as follows.

When preparing an instruction list, we know how many result multivec-
tors we will obtain. Since each result multivector can have at most 28 = 256
basis blades, we know how much memory we have to reserve for each (256-4
bytes = 1024 bytes). By placing the n'* result multivector memory block
at the highest memory address minus n-1024 bytes, we have a simple way
of knowing the address of a result multivector when preparing the instruc-
tion list. Note that the instruction list itself starts at the lowest memory
address, as indicated in figure 1.

3.2 The Geometric Product Pipeline

Due to size restrictions of the FPGA we used, only one geometric product
pipeline could be implemented. At this point we assume that the CCU has
fed the pipeline with an appropriate pair of basis blades and the resultant
basis blade will be added to the correct result multivector.



Implementation of a Clifford Algebra Co-processor Design 9

Resultcomputation

(4] 4]
3 | 3
2 —— 2 |
[ — 1
o—— 1 hT
InputPins A InputPins B
Stage 1
[4]3]2[1]0] _
Intermediate
Stage 2 result
registers
[4]3]2]1]0]
Stage 3

|4|3|2|1|o‘ OutputPins

FIGURE 4. Geometric product without sign contributions.

In order to evaluate the geometric product of two basis blades, we have to
perform two main operations: the scalar parts of the two basis blades have
to be multiplied with a standard multiplier and the blade parts (the blade
indices) have to be multiplied with the geometric product operation. If we
disregard the sign for a moment, the geometric product of blade indices is
simply a XOR operation: if both basis blades contain the same basis vector
(e.g. e1ea and ejes both contain e; ), then this basis vector (e; in this
case) squares to unity, otherwise the basis vector remains (ez and ez in
this case). This is shown in figure 4.

For clarity, we have only drawn the digital circuit for the lower 5 bit of
a basis blade index. Empty half circles closed by a straight line symbolize
AND gates and if they contain an encircled plus they represent XOR gates.
The square boxes represent registers. Registers basically load the value at
their input at a each clock tick and store it until the next. In this way one
can realize a pipeline design.

Due to hardware restrictions, only a limited number of logic gates can
be evaluated consecutively within a clock cycle. In order to have a synchro-
nized, pipelined design, registers have to be inserted after a certain number
of consecutive logic gates.

In figure 4 we have shown a design with three stages. That is, we need
three clock cycles to process the data applied at the input pins. However,



10 Christian Perwass, Gerald Sommer

at each clock tick a new set of data can be applied to the input pins since
the intermediate results of the previous data sets are stored in the registers.

Evaluating the appropriate sign is what makes the geometric product
somewhat more complicated. There are three contributions to the sign: the
sign of the scalar factors, the sign due to the signature of the basis vectors
and the sign due to the swapping of basis vectors. The sign due to the
scalar factors is taken care of by the scalar multiplier, which we will not
discuss.

Signature

Signature|4|3 |2|1 |0|

InputPins A

InputPins B
4

3
2
1

Stage 1

Stage 2

Stage 3

FIGURE 5. Evaluation of sign due to signature.

The sign due to the signature of two multivectors is evaluated as shown in
figure 5. The co-processor has an 8 bit register which stores the signature
of the basis vectors, and which can be set before an instruction set is
executed. If a bit in the sign register is high, then the corresponding basis
blade squares to minus one. Otherwise it squares to plus one. Hence, the
circuit in figure 5. If both basis indices have a common basis vector, i.e.
a common high bit, then the squaring of these basis vectors contributes a
minus if the corresponding signature bit is high. This is achieved through
the AND gates. The XOR gates combine all the separate minus signs. They
return low (plus) if there is an even number of minus signs and otherwise
high (minus).



Implementation of a Clifford Algebra Co-processor Design 11
Swapping

Signcomputation due to swaps

InputPins A InputPins B
L[0T LT

Stage 1

Stage 2

Stage 3

FIGURE 6. Sign evaluation due to basis vector swaps.

The digital circuit evaluating the sign due to the swapping of basis vectors
is shown in figure 6. For example, if we want to evaluate (ejez)(e1) we
write ejeqe; = —eseje; = —es, where we have made one swap, exchanging
e1 and es. The number of swaps necessary can be evaluated by a XOR
cascade. Input pin 0 stands for e, input pin 1 for es, and so on. If in both
operands input pin 4 is high then both operands have an e; component.
Before we can square these we potentially have to swap es; of operand A
with e, ey, e3 and es of operand B. If an odd number of these are
actually present in operand B then a minus is introduced, otherwise not.
This is achieved by the cascade of XORs. The combination of the different
swap signs is done in stages 2 and 3.

Sign combination

The different sign contributions due to the geometric product are finally
combined in stage 3 as shown in figure 7. This circuit shows the final stage
of the circuits drawn in figures 5 and 6. Of course, this resultant sign has
to be XORed again with the resultant sign of the scalar multiplication.

3.3 Inner and Outer Product

The inner and outer product can be evaluated in a very similar manner
to the geometric product. In fact, they become the geometric product if
certain conditions are satisfied. An implementation of these products would
therefore only introduce an additional step, where these conditions are



12 Christian Perwass, Gerald Sommer

Swap Signature
contribution contribution
Stage 2
Stage 3
Final
sign
pin

FIGURE 7. Combination of signs due to geometric product.

checked and then either zero is returned directly or the geometric product
is evaluated.

The inner product of two basis blades is only non-zero if one basis blade
is completely contained within the other. We can check this by evaluating
operand A AND operand B, which has to be equal either to operand A
or to operand B. If this is the case then the inner product of the two
operands is simply the geometric product.

The outer product of two basis blades is only non-zero if they have no
basis vector in common. We can check this with a simple AND operation.
Again the outer product becomes the geometric product if the two operands
have no element in common.

Currently, we have not implemented the inner and outer product.

3.4 Geometric Product Evaluation

In the following we discuss how the geometric product of two multivectors
is evaluated by the co-processor. The three main steps are:

1. The CCU takes the current set of instruction words and initializes
counters with the number of A and B operands (basis blades).

2. For each A operand the CCU loops through all B operands and
passes each pair to the ALU. If an operand is zero the A and B
operands are still passed to the ALU but they are marked as invalid,
which means that they will not be added to the result multivector.

3. The blade indices of the resultant basis blades that exit the ALU
pipeline are used to load the appropriate basis blade from the result
multivector memory block. The two basis blades are then added and
written back to memory.

Steps 2 and 3 are executed pipelined. That is, at each clock tick a new
pair of basis blades is passed to the ALU. If a valid result is available at the



Implementation of a Clifford Algebra Co-processor Design 13

ALU output it is added to the result multivector memory block in parallel
to the ALU execution.

There are a number of difficulties which mainly have to do with the
pipeline synchronization, which we cannot discuss here in detail. However,
there is one issue which should be mentioned. For a fixed A operand the
geometric product with each B operand will create a different basis blade.
Although loading and writing basis blades from and to the result multi-
vector memory block takes a couple of clock cycles, this only introduces a
constant delay. That is, we have to store the results of the ALU in a FIFO
until the corresponding basis blades from the result multivector memory
block arrive. They are then added and written back to memory.

However, if we are at the end of the B operand loop, the A operand
changes. This means that, by chance, the new combination of A and B
operands might result in the same basis blade as the last combination of
operands from the previous B operand loop. Therefore, the CCU would
load the same basis blade from the result multivector memory block a
second time, before the first basis blade could have been added to it and
written back. This is a so called read after write conflict: we read obsolete
data before it has been updated.

The design we implemented recognizes such conflicts. Any blade pair
that causes a conflict is stored in a FIFO and is executed at the end of the
B operand loop.

4 Evaluation and Conclusions

In order to test the evaluation speed of the co-processor and the software
packages CLU and Gaigen, we evaluated the geometric product of multi-
vectors that contained all basis blades of the respective Clifford algebra. Of
course, this does not test how the skipping of zero basis blades in multivec-
tors is handled by the co-processor and the software packages. However, if
we wanted to test this, the question would be what a realistic distribution
of basis blades in multivectors is. The benchmark we used is nonetheless
one indicator of the performance of the different packages.

Due to hardware restrictions we could only run the FPGA at 20MHz.
CLU and Gaigen were tested on 1.5 GHz machines. In real terms, both
software packages were much faster than our implementation of the co-
processor. However, in order to see whether the hardware implementation
does offer an advantage in principle, we have to compare the results at
the same frequency. The results are shown in figure 8, where the z-axis
gives the dimension of the vector space over which the Clifford algebra is
formed and the y-axis gives the number of geometric operations per sec-
ond (GOPS), i.e. the number of geometric products between multivectors.
It can be seen that the optimized code generated by Gaigen is nearly as



14 Christian Perwass, Gerald Sommer

fast as the co-processor. The co-processor is about 1.5 times faster than
Gaigen. Since, so far, the co-processor does not make any use of paral-
lel pipelines, and modern CPUs also use pipeline processing, this shows
that programming a modern CPU can be about as efficient as a pipelined
hardware implementation.

*
»
8 .
[ ] .
u
.
[ ]
& FPGA
mCLU
GAIGEN
1 2 3 4 5 6 7
Dimension

FIGURE 8. Evaluation speed benchmarks. GOPS stands for Geometric Opera-
tions Per Second.

The main advantages of a hardware implementation of Clifford opera-
tions are the following.

e If the co-processor is implemented on an application specific inte-
grated circuit (ASIC) or FPGA, it can run in parallel to the main
CPU. That is, the CPU can deal with other things, while the Clifford
operations are evaluated.

e If enough resources are available, a number of evaluation pipelines can
work in parallel. There could even be a number of parallel instruction
pipelines. This could offset the low FPGA clock frequencies.

e A Clifford co-processor could be integrated into the main CPU, just
as multimedia operations have been (e.g. MMX).

In conclusion we can say that a Clifford co-processor implementation on
even the most modern FPGAs might only be about as fast as an optimized
software implementation of Clifford operations. This is mainly due to the
comparatively low clock frequencies and a lack of direct support of basic
arithmetic operations like floating point multiplication and addition, which
are essential for many applications.



Implementation of a Clifford Algebra Co-processor Design 15

Of course, it would be most desirable to have Clifford operations avail-
able as part of a standard CPU. However, this will only occur if Clifford
operations offer a functionality that is needed by many (profitable) appli-
cations, which cannot easily be provided through other mathematical tools,
like matrices.

REFERENCES

1]

2]

[14]

[15]

[16]

R. Ablamowicz, Clifford algebra computations with Maple, Clifford (Ge-
ometric) Algebras, Banff, Alberta Canada, 1995, Ed. W. E. Baylis,
Birkh&user, Boston, 1996, 463-501.

R. Ablamowicz, B. Fauser, The CLIFFORD Home Page,
math.tntech.edu/rafal/cliff5/index.html, last visited 15. Sept. 2003.
J. Browne, The GrassmannAlgebra Book Home Page,
www.ses.swin.edu.au/homes/browne/grassmannalgebra/book/, last vis-
ited 15. Sept. 2003.

A. Differ, The Clados Home Page,

sourceforge.net/projects/clados/, last visited 15. Sept. 2003.

L. Dorst, The GABLE Home Page,

carol.wins.uva.nl/"leo/GABLE/, last visited 15. Sept. 2003.

D. Fontijne, The Gaigen Home Page,
carol.wins.uva.nl/~“fontijne/gaigen/, last visited 15. Sept. 2003.

D. Hestenes, G. Sobczyk. Clifford Algebra to Geometric Calculus: A Unified
Language for Mathematics and Physics. Dordrecht, 1984.

K. Kornmesser. The CHDL Home Page,
www-1i5.ti.uni-mannheim.de/fpga/?chdl/, last visited 15. Sept. 2003.

P. Leopardi, The GluCat Home Page,

glucat.sourceforge.net/, last visited 15. Sept. 2003.

P. Lounesto. Clifford Algebra and Spinors. Cambridge University Press,
1997.

P. Lounesto, The CLICAL Home Page,
www.helsinki.fi/~lounesto/CLICAL.htm, last visited 15. Sept. 2003.
C.B.U. Perwass, Applications of Geometric Algebra in Computer Vision.
PhD thesis, Cambridge University, 2000.

C.B.U. Perwass, G. Sommer, Numerical evaluation of Versors with Clifford
Algebra, in Applications of Geometric Algebra in Computer Science and
Engineering, Eds. Leo Dorst, Chris Doran, Joan Lasenby, Birkh&user, 2002,
pages 341-349.

C.B.U. Perwass, The CLU Home Page,

www.perwass.de/cbup/clu.html, last visited 15. Sept. 2003.

C. Gebken, Implementierung eines Koprozessors fiir geometrische Alge-
bra auf einem FPGA, Diploma thesis, Christian-Albrechts-University Kiel,
2003.

G. Sommer, editor. Geometric Computing with Clifford Algebra. Springer
Verlag, 2001.



5 Information about the Authors

Christian Perwass

Institut fir Informatik
Christian-Albrechts-Unversitat Kiel
24105 Kiel, Germany

E-mail: chp@ks.informatik.uni-kiel.de

Christian Gebken

Institut fir Informatik

Christian- Albrechts-Unversitat Kiel
24105 Kiel, Germany

E-mail: chg@ks.informatik.uni-kiel.de

Gerald Sommer

Institut fir Informatik

Christian- Albrechts-Unversitat Kiel
24105 Kiel, Germany

E-mail: gs@ks.informatik.uni-kiel.de

Submitted: August 31, 2002.

This is page 16
Printer: Opaque this



This is page 17
Printer: Opaque this

Index

Clifford algebra
co-processor, 1
Software Packages, 2
visualization, 2

FPGA
description, 4
programming, 4



