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Abstract

We present a conceptually simple algorithm for dense image point matching be-
tween two multi-modal (e.g. color) images. The algorithm is based on the as-
sumption that correct image point matches satisfy locally a particular statistical
distribution. Through an iterative evaluation of a local probability measure, global
constraints are taken into account and the most likely set of image point matches
is found. An advantage of this approach is that no information about the cam-
era geometries, as for example the epipoles, has to be known. Therefore, the
algorithm can be used for stereo matching and optic flow.

1 Introduction

The basic idea behind all optic flow and stereo matching algorithms is, that if
two images are projections of the same 3D-scene taken from slightly different
positions or at slightly different times, then certain properties of corresponding
pixels are invariant. However, it is not necessarily the case that a pixel in one
image can be identified with exactly one pixel in the other, since rigid objects
may appear shrunk or grown in different projections. Furthermore, parts of a
3D-scene that can be seen in one projection may be occluded in the other. The
transformation between two images related by optic flow or stereo, is therefore
more like a homotopy, as Florack et al. [1] point out, than a vector field. Never-
theless, a vector field is what we need in most applications. Therefore, in general
an assumption is made about the invariant properties of corresponding pixel,
which approximates nearly invariant properties of the underlying homotopy.

The invariant properties which are typically identified are those of pixel color
and pixel neighborhood structure. Algorithms differ in how they model these
invariances and the method employed in identifying corresponding pixels using
the assumed invariant properties.

Some different types of approaches are for example: feature based methods
(e.g. [2]), pixel labelling methods (e.g. [3, 4, 5]) and Bayesian methods (e.g.
[6, 7, 8, 9]).



Bayesian methods have the advantage of clearly stating the invariance as-
sumptions made about corresponding pixels by defining priors on the parame-
ters of the system. Markov random field (MRF) approaches as described in [10]
play an important role in this context [11]. The details of the different Bayesian
approaches to dense image point matching are quite varied. However, typically
they do not assign a single disparity label to a pixel but a discrete probabil-
ity distribution function (pdf) over a set of disparities. Although this might, at
first, seem to violate the often used uniqueness assumption as stated by Marr
and Poggio [12], one can always define the final disparity to be the expectation
value of the pdf. The advantage of defining a discrete pdf is that, in effect, we
can test a number of hypotheses concurrently and eventually extract the most
likely one. Finding the set of disparities which maximizes an appropriately de-
fined probability measure then gives the answer to the correspondence problem.
Such a maximization may be done iteratively or through a global maximization
scheme.

In this paper we also follow a Bayesian approach which is based on an idea we
published previously [13] using different mathematical tools. A detailed discus-
sion of our approach, including a number of experiments, can be found in [14].
Our approach is similar to [15] but differs in the implementation of the pixel
invariance properties. Where they use a MRF approach to enforce a smooth
disparity space, we follow the idea that the distribution of correct pixel matches
can locally be described by a particular pdf, whereas wrong match candidates
are uniformly distributed. Through an iterative evaluation of a local probability
measure, local matching constraints are propagated through the image, such that
global constraints are taken into account. Although, occlusion is not modelled
explicitly, half-occluded pixels are either given two different disparities simul-
taneously, or they are matched onto the nearest matchable pixel. That is, the
algorithm does not break down in the presence of occlusion.

2 Theory

In the model we develop, we are not interested in the exact camera geometry. We
simply assume that we are given two images A and B whose pixel are correlated
in as far as they represent the same scene, albeit from a different point of view
(stereo matching) or at a different time (optical flow). The only constraints we
can invoke then are pixel similarity and an ordering constraint.

We assume that correct image point matches satisfy a particular statistical
distribution whereas incorrect matches are equivalent to noise and are uniformly
distributed. We are looking for an iterative procedure that amplifies those pixel
that satisfy the appropriate distribution and subdues the others. We can only
give a short overview of the algorithm’s derivation here. For a detailed account
see [14].

First of all we need a measure for pixel similarity. This measure has to express
the likelihood that two pixels were created by the same element in a scene,
without taking into account any neighboring pixels. Such a measure therefore



will be based on a pixel’s color, but may also include any other local property
like the local scale or local phase. We will denote this measure by s(xA,xB),
where xA denotes a pixel position in image A and xB a pixel position in image
B.

Using s(xA,xB), we can evaluate for each pixel in image A its similarity to
the pixels within an area of image B where we expect the correct match to lie. We
will also call this a test patch. That is, each pixel in image A has associated with
it a probability distribution giving its matching likelihood to a set of pixels in
image B. Our goal is to minimize the entropy of these probability distributions,
i.e. to minimize the match uncertainty.

In order to do this, the pixel similarity measure alone is not enough. We
also have to take into account a structural constraint. We do this by assuming
that the local distribution of pixel matches takes on a particular form. This
becomes the prior distribution in our derivation, denoted by h(xA,xB ,yA,yB).
That is, given an assumed pixel match (xA,xB) and a particular neighbor yA

of xA, h(xA,xB ,yA,yB) gives the a priori probability distribution for yB being
a correct match of yA.

It can be shown that the probability of (xA,xB) and (yA,yB) being two
neighboring pixel matches is then given by

P (XB = xB ,YB = yB |A,B,XA = xA,Ya = yA)

= s(xA,xB)s(yA,yB)h(xA,xB ,yA,yB).
(1)

The probability measure on which we base our match decision is the following.
Assuming (xA,xB) are a correct match, then for a given neighbor yA of xA we
say that the most likely match yB of yA is the one where the data best satisfies
the prior distribution of neighboring matches. That is we are looking for the
estimator ŷB given by

ŷB = arg max
yB

(
P (XB ,YB = yB |A,B,XA,YA)
maxy P (XB ,YB = y|XA,YA)

)
. (2)

The effect of this is that if for a particular set (xA,xB ,yA) the corresponding
ŷB maximizes the prior, then

P (XB = xB ,YB = ŷB |A,B,XA = xA,YA = yA) = s(xA,xB)s(yA,yB). (3)

That is, the match probability depends solely on the pixel similarities.
What we really need to estimate is the probability of (xA,xB) being a correct

match. However, for each neighbor yA of xA we obtain a match probability es-
timate from P (XB ,YB = ŷB |A,B,XA,YA). We therefore take the final match
probability estimate of a pixel pair (xA,xB) to be the expectation value of the
set of probability estimates for all eight neighbors of xA.

P (XB = xB |A,B,XA = xA)

= ρ s(xA,xB) 1
8

∑
yA

maxyB
s(yA,yB)

h(xA,xB ,yA,yB)
maxy h(xA,xB ,yA,y)

,
(4)



where ρ is a normalization constant and the sum over yA goes over all eight
neighbors of xA.

Evaluating the probability measure from equation (4) only once, will not give
us a final match result. In order to minimize the entropy of the match probability
distributions, we have to apply this measure iteratively. This distributes local
match information throughout the image. It also means that homogeneous areas
are matched according to the match constraints contained in their surroundings.
In [14] we have shown that such an iteration converges. Note that this iterative
procedure can be regarded as a recurrent neural network, whose equilibrium
state gives the match result.

Half-occluded pixels, i.e. pixels that appear in one image but not in the other,
have not been treated explicitly. However, by using a bidirectional matching
scheme, the matching process is stabilized in the presence of half-occluded pixels.

3 Experimental Results and Conclusions

Fig. 1. Left image Pentagon example with evaluated disparity map.

In order to run the algorithm we have to set five parameters: the number
of iterations to perform, the test patch size, the mean pixel displacement, the
standard deviation of the ordering constraint σh and the standard deviation of
the pixel similarity function σs. The mean displacement is basically an approx-
imate pixel match. This is easy to find for optical flow, since we assume that
corresponding pixel are almost at the same position. For stereo correspondence
this initial match will have to be set by some other means. Finding the best
number of iterations could be automated by stopping the algorithm once it has
converged. The test patch size has to be set such that the correct match is always
included. Here we have to make an assumption about how much we expect the
pixels to have moved. The parameters σh and σs only change details of the final
match result. They do not have to be changed for different images.



The Pentagon stereo pair was provided by CMU/VASC. Here we matched
an area of 500×500 pixels with a test area size of 21×1. Figure 1 shows the first
of the two Pentagon images together with the evaluated disparity map after 20
iterations. It can be seen that the algorithm works quite well for stereo matching
on rectified images.

We used the Yosemite sequence cre-

Fig. 2. Initial image of Yosemite se-
quence.

ated by Lynn Quann at SRI to test
the algorithm in an optic flow setting.
We matched the lower part of the first
two images of the sequence, since no
ground truth is available for the cloud
region. The image dimensions were 315×
177 pixels, the test patch size was 7×7
pixels. The parameters σs and σh had
the same values as in the Pentagon
example. We performed 20 iterations
which took approximately 150 seconds
on an AMD Athlon XP 1800+ (1.53
GHz) running Windows XP. The al-
gorithm runs about twice as fast if we do not perform bidirectional matching,
which stabilizes the algorithm in the presence of occlusion. Note that the imple-
mentation of the algorithm was experimental and not optimized for speed.

We evaluated the Euclidean dis-

Fig. 3. Distribution of matching errors.

tance between our match results and
ground truth. Figure 3 shows the dis-
tribution of the pixel match errors over
the image. White regions indicate that
the pixel match errors are below half a
pixel. The next darker level indicates
pixel errors of between half and one
pixel. The meaning of the other shades
of gray are given in the legend of fig-
ure 3. Note that since we try to match
pixel onto pixel, half a pixel error is
as good as we can statistically expect
the result to be. Large areas have been
matched very well, whereas there are problems in the area of the mountain on
the left. Nevertheless, problematic areas are locally confined, which shows the
robustness of the algorithm. Recall that we only used two images to evaluate
the optic flow. By extending the algorithm to incorporate more images of a flow
sequence we hope to improve the matching quality further.

Although the algorithm has a simple mathematical structure, its computa-
tional complexity is high. Nevertheless, in principle the match likelihood estima-
tion of all pixels can be done in parallel. In fact, each element of the pixel match
probability distributions can be regarded as a single neuron which performs a



simple calculation. Evaluating each neuron is all that has to be done per itera-
tion. We have implemented a similar structure on an FPGA which shows good
preliminary results.

Of course, there are still a number of problems that have to be addressed by
future research. Nevertheless, the results obtained with the algorithm show that
despite its simple structure, it is a good dense image point matcher. Note that a
program called Acre to test the algorithm on arbitrary images, is available from
the web page of the first author (www.perwass.de).
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