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Abstract

We present a conceptually simple algorithm for dense image point matching between two
multi-modal (e.g. color) images. The algorithm is based on the assumption that correct image
point matches satisfy locally a particular statistical distribution. Through an iterative evaluation
of a local probability measure, global constraints are taken into account and the most likely set
of image point matches is found. An advantage of this approach is that no information about the
camera geometries, as for example the epipoles, has to be known. Therefore, the algorithm may
be used for stereo matching and optic flow.
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Chapter 1

Introduction

The basic idea behind all optic flow and stereo matching algorithms is that if two im-
ages are projections of the same 3D-scene taken from slightly different positions or at
slightly different times, then certain properties of corresponding pixels are invariant.
However, it is not necessarily the case that a pixel in one image can be identified with
exactly one pixel in the other, since rigid objects may appear shrunk or grown in differ-
ent projections. Furthermore, parts of a 3D-scene that can be seen in one projection may
be occluded in the other. The transformation between two images related by optic flow
or stereo, is therefore more like a homotopy, as Florack et al. [1] point out, than a vector
field. Nevertheless, a vector field is what we need in most applications. Therefore, in
general an assumption is made about the invariant properties of corresponding pixel,
which approximates nearly invariant properties of the underlying homotopy.

The invariant properties which are typically identified are those of pixel color and
pixel neighborhood structure, although other types of invariances have also been dis-
cussed in the literature [2, 3]. Algorithms differ in how they model these invariances
and the method employed in identifying corresponding pixels using the assumed in-
variant properties.

Some different types of approaches are for example: feature based methods (e.g.
[4]), neural network methods (e.g. [5, 6]), genetic algorithms (e.g. [7]), pixel labelling
methods (e.g. [8, 9, 10]) and Bayesian methods (e.g. [11, 12, 13, 14]). Feature based
methods avoid the problem of pixel identification ambiguity to some extent by extract-
ing features from the images which are subsequently matched. This has the advantage
of typically low computational cost and it avoids the problem of matching homoge-
neous areas. However, flow or stereo information is only available at features, which
may or may not be a problem, depending on the application.

Neural network approaches also define a set of invariant properties which have to
be satisfied by corresponding pixels. Then a neural network is trained (supervised or
unsupervised) in order to detect the most likely matches. Genetic algorithms also de-
fine, in effect, an energy function which is to be minimized. That is, they define a fitness
function in order to identify the fittest individual chromosomes or genes, which survive.
Finding the fittest overall population gives the resultant pixel matches.

Pixel labelling methods are typically dense matching algorithms. They assign a label
to each pixel, for example disparity, and define an energy function in disparity space.
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2 CHAPTER 1. INTRODUCTION

Minimizing the total energy of the system then yields the solution to the correspondence
problem. Clearly, finding the correct energy function is essential and not trivial.

Bayesian methods have the advantage of clearly stating the invariance assumptions
made about corresponding pixels by defining priors on the parameters of the system.
Markov random field (MRF) approaches as described in [15] play an important role
in this context [16, 17], as they offer a method to find appropriate priors. The details
of the different Bayesian approaches to dense image point matching are quite varied.
However, typically they do not assign a single disparity label to a pixel but a discrete
probability distribution function (pdf) over a set of disparities. Although this might,
at first sight, seem to violate the often used uniqueness assumption as stated by Marr
and Poggio [18], one can always define the final disparity to be the expectation value
of the pdf. The advantage of defining a discrete pdf is that, in effect, we can test a
number of hypotheses concurrently and eventually extract the most likely one. Finding
the set of disparities which maximizes an appropriately defined probability measure
then gives the answer to the correspondence problem. Such a maximization may be
done iteratively or through a global maximization scheme.

In this paper we also follow a Bayesian approach which is based on an idea we
published previously [19] using different mathematical tools. Our approach is similar
to [16] but differs in the implementation of the pixel invariance properties. Where they
use a MRF approach to enforce a smooth disparity space, we follow the idea that the dis-
tribution of correct pixel matches can locally be described by a particular pdf, whereas
wrong match candidates are uniformly distributed. Through an iterative evaluation of
a local probability measure, local matching constraints are diffused through the image,
such that global constraints are taken into account. Although occlusion is not modelled
explicitly, half-occluded pixels, i.e. pixels in one image that have no match in the other,
are matched onto the nearest matchable position. That is, half-occluded pixels are not
matched correctly, because they cannot be, but they are matched such that they are con-
sistent with the matchable pixels surrounding them. Therefore, the algorithm does not
break down in the presence of occlusion.



Chapter 2

The Local Match Probability

Image point matching is a very important but also very intricate problem in computer
vision. One reason why it is so hard to solve is that it is difficult to model all the facets
of a real system accurately. Invariably we have to make some assumptions that ap-
proximate reality. In many algorithms such assumptions are implicit. Using a Bayesian
approach we try to make all our assumptions explicit and develop an algorithm which
is provably correct in this context.

In the model we develop, we are not interested in the exact camera geometry. We
simply assume that we are given two images whose pixels are correlated in as far as
they represent the same scene, albeit from a different point of view (stereo matching)
or at a different time (optic flow). The only constraints we can invoke then are pixel
similarity and an ordering constraint.

We assume that correct image point matches satisfy a particular statistical distribu-
tion whereas incorrect matches are equivalent to noise and are uniformly distributed.
We are looking for an iterative procedure that amplifies those pixel that satisfy the ap-
propriate distribution and subdues the others.

2.1 The Setting

We will now develop the setting for the matching procedure. Let A and B be two multi-
modal, discrete, two dimensional recording devices, where each discrete element is
called a pixel. Mathematically we can regard {A, B} as our sample space with parti-
tion

{Aν
i ∈ S, Bν

i ∈ S : ν ∈M, i ∈ I}.

Aν
i (Bν

i) is a random variable representing the pixel in image A (B) at position i in
mode ν. Note that we assume all elements in the partition of the sample space to be
statistically independent. This implies that we assume the point spread function (PSF)
of the imaging device to be a Dirac delta impulse.

The set M is defined as M := {1, . . . ,M}, where M ∈ N gives the number of modes
an image has. For example, for a standard RGB color image M would be 3. The set

3



4 CHAPTER 2. THE LOCAL MATCH PROBABILITY

S ⊂ Q is an even partitioning of the interval [0, 1]. That is,

S := {(r/(S − 1)) ∈ Q : r ∈ {0, . . . , S − 1}, S ∈ N, S > 1},

where S gives the number of discrete values a pixel in a given mode can take on. The
set I is the set of pixel positions in an image. That is,

I := {(x, y) : x ∈ {1, . . . , Imgx}, y ∈ {1, . . . , Imgy}},

where Imgx and Imgy give the number of pixels of the images in horizontal and vertical
direction, respectively .

There are two basic parts to the algorithm. First we evaluate a probability distribu-
tion of the correspondence likelihood for every pixel in image A within a correspond-
ing area of image B. Our assumption then is that within these probability distributions
correct matches satisfy locally a particular statistical distribution. We will therefore first
discuss how we evaluate the probability distributions of the correspondence likelihoods
and then elaborate on how the correct matches are extracted from these distributions.

2.2 Pixel Similarity

A first assumption we make is that a

Figure 2.1: Light reflected off a feature in a
scene.

single feature in a scene projected onto two
different image planes will give rise to sim-
ilar (multi-modal) pixel values. We there-
fore need to find a measure for the sim-
ilarity of pixel values. Such a similarity
measure can also be regarded as the prob-
ability that two pixel stem from the same
feature in a scene based solely on their multi-
modal values.

The imaging process of a scene is shown
in figure 2.1. Light is reflected off a feature
in a scene. The color of the reflected light
depends on the material of the feature and
the angle of reflection. We assume that
the color of the reflected light varies only
slightly over the angle θ (see figure). The
light rays that eventually project the fea-
ture onto cameras A and B are denoted by

”Ray A” and ”Ray B”, respectively. As the wavefront of the reflected light propagates
through the air, atmospheric variations introduce additional noise. Finally, the imaging
process of cameras A and B may differ slightly and introduce more noise.

We assume that the combination of all these influences has the effect that the mea-
sured pixel values of the projection of a particular feature over the angle θ satisfies a
Gaussian distribution. That is, given the mean Cν

Ai and the standard deviation σν of the
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imaging process related to the pixel at position i in mode ν of camera A, we can write
the probability distribution function (pdf) for Aν

i as

P (Aν
i = a |Cν

Ai = c) = g(a, c, σν), (2.1)

where the function on the RHS of the equation is a Gaussian with mean c and standard
deviation σν .

g(x, y, σ) := ρ exp

(
−(x− y)2

2 σ2

)
,

with ρ being a normalization constant.
We may also say that there exists a ”true” pixel value Cν

Ai from which the observed
pixel value varies. If pixels Ai and Bj, say, are created by the same feature then their
”true” pixel values are the same. Hence, if the pdf of Aν

i is given by equation (2.1), then
the pdf of Bν

j is given by

P (Bν
j = b |Cν

Bj = c) = g(b, c, σν).

We are interested in the likelihood that for two pixels Ai and Bj, their corresponding
”true” pixel values CAi and CBj are equal. We will write this for mode ν as P (Cν |Aν

i, Bν
j),

i.e. the likelihood that Cν is a common ”true” pixel value given pixel values Aν
i and Bν

j.
Using Bayes law we find that

P (Cν |Aν
i, Bν

j) ' P (Aν
i, Bν

j |Cν) P (Cν),

where ' denotes equality up to a scalar factor. Since there is no reason for an a priori
preference for certain values of Cν we assume it to be uniformly distributed. Further-
more, we assumed that Aν

i and Bν
j are not correlated a priori. Therefore, the combined

pdf for Aν
i and Bν

j given the same true pixel value is simply the product of the separate
pdfs. That is,

P (Cν |Aν
i, Bν

j) ' P (Aν
i |Cν) P (Bν

j |Cν).

We are interested in the maximum likelihood that two pixels are based on the same
”true” pixel. Therefore, we define our pixel similarity function as

sν(a, b) := max
c∈[0,1]

P (Cν = c |Aν
i = a, Bν

j = b), a, b ∈ S. (2.2)

By differentiating with respect to c we find that P (Cν = c |Aν
i = a, Bν

j = b) is maxi-
mized for c = 1

2
(a + b), i.e. this is the maximum likelihood estimator (MLE). By substi-

tuting this value for c into equation (2.2) we find

sν(a, b) ' g(a, b,
√

2σν). (2.3)

The total similarity of two pixels is then given by the product of the similarities over all
modes:

s(a,b) :=
∏
ν∈M

sν(aν , bν), (2.4)
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where a = (a1, . . . , aM) and b = (b1, . . . , bM). Effectively this is the exponential of the
negative sum of squared differences (SSD) of the pixel modes. Note that this pixel
similarity measure is similar to the one developed in [11].

At this point we have not said anything about the pixel modes equation (2.4) should
be evaluated over. Typically the pixel modes represent the different color channels.
For example, in a RGB image there are three modes: one for red, one for green and
one for blue. However, the similarity of pixels may be better represented in a different
color space. Since that is a whole field of research in itself, we will not discuss this any
further. See for example [20] for more information. In our experiments we have simply
used RGB space, which produces good results.

Note that the different modes in equation (2.4) do not necessarily have to be colors.
Any other pixel property may be used that is nearly invariant between corresponding
pixels.

2.3 Test Patches

Figure 2.2: Example of test patches.

Using equation (2.4) we can now evaluate the likelihood that a pixel pair (Ai, Bj) is
a correct match, solely based on the similarity of their pixel values. Clearly, this simple
constraint is a necessary but not a sufficient condition for pixel correspondence. We will
introduce two further constraints. Firstly, we constrain the area in image B where we
expect the correct match of some pixel Ai to lie. Secondly, we use an ordering constraint.

Let d ∈ Z2 be the mean displacement of pixel positions of correct matches between
images A and B. That is, we assume that for all i ∈ I the correct match of pixel Ai
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lies near Bi+d. By this we mean that the correct match of Ai lies within an area of finite
size centered on Bi+d. We will therefore only evaluate equation (2.4) within such a ”test
area”.

Mathematically we can express this constraint in the following way. Let XA,XB ∈ I
be two random variables that give the pixel positions in images A and B of a correct
pixel match, respectively. Their a priori joint pdf is given by

P (XA = xA, XB = xB) := UT (xB − xA − d),

UT (x) :=

{
1/|T | : x ∈ T

0 : x 6∈ T ,

T := {(x, y) ∈ Z2 : −Testx ≤ x ≤ Testx, −Testy ≤ y ≤ Testy},

(2.5)

where Testx, Testy ∈ N give the size of the test area. That is, UT (x) is a uniform distri-
bution over elements of the set T .

Figure 2.2 shows a set of test patches where it is assumed that the match for pixel
Ai with i = (x, y) is within a 3 × 3 neighborhood of pixel Bj with j = i + d = (u, v).
Hence, the test patch for pixel A(x,y) (the central patch) contains the pixel similarities
s(A(x,y), B(r,s)), s(A(x,y), B(r+1,s)), s(A(x,y), B(r+1,s+1)) and so on for each element of the test
patch. Accordingly, the test patch for pixel A(x+1,y), say, is centered on pixel B(u+1,v) and
the pixel similarities are evaluated appropriately. The test patches may therefore also
be regarded as discrete probability distributions for the matching likelihood of pixels in
image A to pixels in image B based on their (multi-modal) values. We will combine this
probability distribution with an ordering constraint to amplify those matches that have
a high pixel similarity and satisfy the ordering constraint.

2.4 The Ordering Constraint

The ordering constraint we want to imple-

Figure 2.3: Projection of a scene onto
two cameras.

ment is based on the following observation. Fig-
ure 2.3 shows schematically how three points
are projected onto two cameras placed at dif-
ferent positions. Points 1 and 2 are located such
that their projections onto cameras A and B pre-
serve their order. That is, point 1 is to the left
of point 2 in the scene and also in both projec-
tions. This ordering breaks down, if there is a
depth discontinuity in the scene. This is shown
in the projection of point 3. Its ordering is not
preserved.

Here we will assume that in general the or-
dering constraint is satisfied. Depth disconti-
nuities, which appear quite regularly in real images, are local violations of the ordering
constraint, which have only a local effect on the matching. Clearly, an explicit treatment
of half-occluded pixels would be desirable and is a subject of our current research. In
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[16] occlusion is accounted for by using a contaminated Gaussian model for the dispar-
ity smoothing term.

The ordering constraint we want to implement is the following. Let (xA,xB) give
the pixel positions of a correct pixel match between images A and B. Furthermore, let
yA be in the 8-neighborhood of xA, i.e. xA − yA ∈ N , with

N := {(u, v) : u ∈ {−1, 0, 1}, v ∈ {−1, 0, 1}, (u, v) 6= (0, 0)}.

The ordering constraint now says that if yA−xA = z then the correct match position yB

for yA satisfies yB − xB ≈ z. With respect to figure 2.2 this means that if (A(x,y), B(u,v)) is
a correct match (i.e. the central field of the central patch), then B(u+1,v) is the most likely
match for A(x+1,y) (i.e. the central field in the center-right patch).

To implement this ordering constraint we define the pdf h(xA,xB,yA,yB), which is
maximal if xA − yA = xB − yB. The exact form of h reflects our expectation about the
distribution of correct matches. A simple choice is

h(xA,xB,yA,yB) = g(yB − xB, yA − xA, σh). (2.6)

This is similar to a Gibbs potential as for example used in MRF approaches to describe
the preferences of a disparity surface [15]. However, h does not account for all cliques
on the disparity surface, as for example in [16]. The disparities of neighboring pixels
are only taken into account in the final equation (2.17).

We will now derive the probability measure that describes the ordering constraint.
Let C := {Xl

A, Xl
B} be the set of pixel correspondences between images A and B. Then

P (A, B | C) is the pdf for images A, B given the set of pixel correspondences. Since
separate pixels in the images are assumed to be (a priori) statistically independent, we
can write

P (A, B | C) =
∏

l

P (AXl
A
, BXl

B
|Xl

A, Xl
B). (2.7)

We take the pdf for a single pixel pair to be just our pixel similarity function from the
last section, i.e.

P (AxA
= a, BxB

= b |Xl
A = xA, Xl

B = xB) = s(a,b). (2.8)

What we strive to find is of course P (C |A, B), the set of pixel correspondences given
the images. As we have seen above the different pixel correspondences are in general
not statistically independent given the images (figure 2.3). More generally we can ex-
press the constraint on pixel correspondences as follows. Consider an opaque, rigid
object that is observed from slightly different positions by cameras A and B. Consider
some pixel Ai, say, and its 8 neighbors {Ai, Ai+x : x ∈ N}. These pixels correspond
to a certain observed area on the object. If this surface area also projects to a neigh-
borhood of nine pixels in camera B, then the pixel ordering is preserved. That is, if
(Ai, Bj), (Ai+x1 , Bj+y1), (Ai+x2 , Bj+y2), with x1,x2,y1,y2 ∈ N , are correct pixel matches,
then {Ai, Ai+x1 , Ai+x2} are mutual, direct neighbors, and so are {Bi, Bi+y1 , Bi+y2}.

In the following we assume that every pixel in image A has a correct match in image
B and that all pixel correspondences satisfy the aforementioned ordering constraint.
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For real data this is typically not true. However, there are usually many more pixel
that satisfy these assumptions than pixel that do not. The latter represent erroneous
constraints on the matching procedure. However, their effect should be small due to
the much larger number of matchable pixel. In other words, we allow those pixel that
cannot be matched, to be matched incorrectly, while assuming that this has only a small
effect on those pixel that can be matched. This implies that we will typically not be able
to distinguish correct matches from incorrect matches.

We implement the ordering constraint for neighboring pixels in the following way.
Let (XA,XB) and (YA,YB) be the random variables of two pixel correspondences. Then
their joint pdf is

P (XA = xA, XB = xB, YA = yA, YB = yB) = UI(xA) UN (yA − xA)

UT (xB − xA − d) UT (yB − yA − d) h(xA,xB,yA,yB),
(2.9)

where h(xA,xB,yA,yB) implements the assumed ordering constraint as described above.
UI(xA) expresses the fact that we have no preference over which pixel we choose from
image A. UN (yA − xA) says that there is also no preference for a particular neighbor
of xA. Furthermore, UT (xB − xA − d) and UT (yB − yA − d) implement the constraint,
that we only look for pixel matches within the test areas and that there is no a priori
preference for particular pixels in the test areas.

From equation (2.9) it follows that if xB−xA−d ∈ T , yB−yA−d ∈ T , yA−xA ∈ N
and xA ∈ I, then

P (XB = xB, YB = yB |XA = xA, YA = yA) = 1
|T |h(xA,xB,yA,yB). (2.10)

This equation states that given two neighboring pixel positions xA and yA in image
A, the joint pdf that xB and yB are their respective pixel correspondence positions is
proportional to h(xA,xB,yA,yB).

2.5 The Pixel-Match PDF

So far we have found a probability measure based on the pixel similarity and one based
on the pixel match distribution in a local pixel neighborhood. We now have to combine
these two measures to obtain a pdf based on pixel similarity and neighborhood.

As before, let (XA,XB) and (YA,YB) be the random variables of two neighboring
pixel correspondences, i.e. (XA −YA) ∈ N . Using Bayes’ formula we can write

P (XA,YA,XB,YB |A, B) ' P (A, B |XA,YA,XB,YB) P (XA,YA,XB,YB). (2.11)

For three general random variables X, Y, Z it can be shown that P (X,Y |Z) = P (X|Y, Z)P (Y )
iff P (Y, Z) = P (Y )P (Z). Since XA and YA alone are statistically independent of the im-
ages A and B, we can write equation (2.11) as

P (XB,YB |A, B,XA,YA)

' P (A, B |XB,YB,XA,YA) P (XB,YB |XA,YA)

= P (AXA
, BXB

|XA,XB) P (AYA
, BYB

|YA,YB) P (XB,YB |XA,YA).

(2.12)
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Substituting equations (2.8) and (2.10) into equation (2.12) we get

P (XB,YB |A, B,XA,YA)

' s(AXA
, BXB

) s(AYA
, BYB

) h(XB,YB,XA,YA).
(2.13)

The function h defines the prior distribution that we assume neighboring pairs of correct
matches to have. The values of the s-functions depend on the measured data, i.e. the
observed images.

What we want to find out is which pair of neighboring matches best satisfies the
assumed prior distribution. For this purpose we evaluate the following ratio.

P̂ (XB |A, B,XA,YA) := ρ
maxy P (XB,YB = y |A, B,XA,YA)

maxy P (XB,YB = y |XA,YA)
, (2.14)

where ρ is a normalization factor. The effect of this ratio can be best understood if we
consider for a moment a correct pixel match (XA = xA,XB = xB). Then, for a pixel
YA = yA in the neighborhood of XA = xA, the enumerator will be maximized at just
the same position y as the denominator, if and only if the data in the images satisfies the
assumed prior distribution of pixel correspondences. Hence, the ratio in equation (2.14)
gives a measure of how well the image data satisfies the assumed prior distribution.

Equation (2.14) can be evaluated for each of the |N | neighbors of XA. However, we
do not want this equation to depend on a particular neighbor YA of XA. For each YA

equation (2.14) evaluates how well the image data satisfies the prior distribution. The
final likelihood that a particular value of XB is a correct match for some XA should
therefore be the expectation value of equation (2.14) over all values of YA given XA:

P̂ (XB |A, B,XA) := ρ EYA

[
P̂ (XB |A, B,XA,YA) |XA

]
, (2.15)

where ρ is again a normalization constant. We find that

EYA

[
P̂ (XB |A, B,XA,YA) |XA = x

]
=

∑
{y : (y−x)∈N}

P̂ (XB |A, B,XA = x,YA = y) P (YA = y |XA = x)

= 1
|N |

∑
{y : (y−x)∈N}

P̂ (XB |A, B,XA = x,YA = y),

(2.16)

since P (YA = y |XA = x) = UN (x − y) = 1/|N | if (x − y) ∈ N . Using equation (2.13),
we can express P̂ (XB |A, B,XA) in terms of the h- and s-functions.

P̂ (XB = xB |A, B,XA = xA)

' s(AxA
, BxB

) 1
|N |

∑
{yA : (yA−xA)∈N}

maxyB
s(AyA

, ByB
) ĥ(xA,xB,yA,yB), (2.17)

where ĥ is defined as

ĥ(xA,xB,yA,yB) :=
h(xA,xB,yA,yB)

maxy h(xA,xB,yA,y)
. (2.18)
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Equation (2.17) can be best understood with reference to figure 2.1. The equation
evaluates the likelihood that a pixel pair (xA,xB) is a correct match. Each pixel pair be-
tween images A and B also corresponds to a field in a test patch. Recall that each field of
a test patch contains the corresponding pixel similarity value. To evaluate the likelihood
that, for example, the central field of the central test patch in figure 2.1 corresponds to a
correct match, equation (2.17) first evaluates the matching likelihood of the best fitting
pixel in each neighboring test patch. Then the expectation value of these likelihoods is
multiplied with the pixel similarity of the central field in the central patch. Therefore,
a pixel match is likely to be correct if it has a high pixel similarity and if neighboring
pixel matches exist that satisfy the local ordering constraint.

2.6 Bidirectional Matching

The pdf in equation (2.17) gives the probability that (XA,XB) is a correct pixel match,
taking into account the distribution of possible pixel matches for pixels in the neighbor-
hood of XA. Basically we match pixels from image A to image B. We could also match
in the opposite direction and evaluate P̂ (XA |A, B,XB).

Let P̂ (XA,XB |A, B) denote the joint pdf that (XA,XB) are a correct pixel match.
Then, if the images satisfy the assumed ordering constraint,

P̂ (XA,XB |A, B) ' P̂ (XB |A, B,XA),

P̂ (XA,XB |A, B) ' P̂ (XA |A, B,XB),

and thus also

P̂ (XA,XB |A, B) '
√

P̂ (XB |A, B,XA) P̂ (XA |A, B,XB). (2.19)

Let AxA
be a pixel in image A that has no match because the corresponding feature

is occluded in image B. In that case P̂ (XB |A, B,XA = xA) might still give a high value
for some XB = xB. However, if pixel BxB

has a correct match Az, say, then z 6= xA, since
AxA

has no match in image B by definition. Therefore, P̂ (XA = xA |A, B,XB = xB) will
have a low value. This shows that equation (2.19) suppresses half-occluded pixel, i.e.
pixel in one image which have no match in the other. It may also be possible to use the
ratio of

P̂ (XB |A, B,XA) / P̂ (XA |A, B,XB)

to find half-occluded pixels explicitly, but we have not investigated this possibility, so
far.

Note that the bidirectionality constraint is applied at each iteration. That is, we do
not match the images completely in one direction and then in the other, and then consol-
idate the results. Instead, the bidirectionality constraint affects the matching procedure
at each iteration, which gives better constrained results.
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Chapter 3

Diffusion of Local Constraints

In the previous section we found a probability measure for the likelihood that a partic-
ular pixel pair is a correct image point match. This probability measure was based on
local constraints alone. Clearly, this is not sufficient in order to find image point matches
throughout the images. We therefore use an iterative method to diffuse local matching
constraints through the images. In this section we discuss this iterative procedure, give
a proof of convergence and talk about implementation details of the algorithm.

3.1 The Iterative Process

Equation (2.19) is the formula which we use to evaluate the likelihood that a particular
pixel pair (AXA

, BXB
) is a correct pixel match. This likelihood measure is based on the

pixel similarity and on the possible distribution of pixel matches in the neighborhood
of AXA

. The latter is based on the assumption that the pixel matches in the neighbor-
hood of a correct pixel match have to satisfy a particular distribution. In general it will
however not be possible to identify the correct pixel matches after evaluating equation
(2.19) for all pixels in image A. This is mainly due to the fact that a pixel in image A can
be similar to a number of pixel in its test area in image B. Furthermore, many of these
match candidates may also have an appropriate match distribution in their neighbor-
hood.

Equation (2.19) will only give the correct match after a single evaluation if the correct
pixel match is fully constrained by its direct neighborhood. Typically this will not be
the case. Therefore a larger neighborhood has to be considered for each pixel. Simply
applying the ordering constraint to a larger neighborhood is not a good choice, since
it makes too rigid an assumption. However, if we evaluate P̂ (XB |A, B,XA = xa), we
obtain a probability value for each pixel XB = xB in the test area corresponding to
pixel xA. This probability distribution already contains the constraints due to the direct
neighborhood of xA. If we evaluate these probability distributions for every pixel in
image A, use them instead of the s-functions and then evaluate equation (2.19) again,
we implicitly take into account a neighborhood of two pixel radius. However, this does
not imply that those pixel which are two pixel away from a central pixel have to satisfy
the ordering constraint with respect to the central pixel.

13
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Mathematically we can express this method in the following way. Let f t(x,y) denote
the match probability of pixel Ax with pixel By at iteration step t. For a given x we
evaluate f t(x,y) for all y in the appropriate test area. This is the test patch of pixel x.
The initial values of f t are given by f 0(x,y) = s(Ax, By). Let F t denote the set of values
of f t(x,y), i.e.

F t := {f t(x,y) : x ∈ I, (y − x− d) ∈ T }. (3.1)

Then we can also write equation (2.17) as

P̂ (XB = xB | F t, XA = xA)

' f t(xA,xB) 1
|N |

∑
{yA:(yA−xA)∈N}

maxyB
f t(yA,yB) ĥ(xA,xB,yA,yB), (3.2)

which is equal to equation (2.17) for t = 0. Equation (2.19) gives the iteration formula.

f t+1(xA,xB) = P̂ (XA = xA,XB = xB | F t)

'
√

P̂ (XB = xB | F t,XA = xA) P̂ (XA = xA | F t,XB = xB).
(3.3)

This defines an inhomogeneous Markov chain since the transition probabilities from f t to
f t+1 depend on f t and thus on t. Note that equation (3.3) can also be interpreted as a
recurrent neural network.

Figure 3.1: Development of patches in synthetic ex-
periment for the first five iterations from top left to
bottom right.

Figure 3.1 shows the effect of the iterative process in a simple synthetic example. To
create the test patches shown at top left, we matched a simple image onto itself. The
image was uniformly blue with a single red pixel in its center. Therefore, the central
test patch is black everywhere apart from its central pixel. The red pixel is only similar
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to itself and not to the blue pixels surrounding it. For the surrounding test patches we
see an inverted pattern. They are white everywhere apart from the position where the
red pixel is. The red pixel is the only information available as to how the pixels should
be matched. The uniform background contains no such information. Figure 3.1 shows
that the iterative procedure we apply does not affect the test patches where no matching
information is available. Also the image border has no effect on the test patches. How-
ever, the matching information represented by the central red pixel propagates through
the test patches. The procedure converges on the most likely, consistent set of image
matches.

3.2 Proof of Convergence

In this section we will show that if the image data does indeed satisfy the assumed
ordering constraint, then iterating equation (3.3) does indeed extract the correct image
point matches. In order to give this proof we need to have a model of the data we expect
to encounter.

We expect features that can be matched between two images not to be point like,
i.e. not to be constrained to a single pixel. Instead there will be a peaked distribution
of pixel similarities centered on the correct match. Note that the correct match position
may lie between pixels. Nevertheless, we will make the approximation that we can
identify a single pixel with the correct match position. This introduces an error of at
most half a pixel.

We assume that a test patch can be approximated by a linear combination of Gaus-
sians, whereby one Gaussian represents the correct match and the rest represent spuri-
ous matches. That is,

f 0(x,y) = ρx

Rx∑
r=0

τ r
x g(y, zr

x, σr
x), (3.4)

where ρx is a normalization factor. As before x ∈ I is a pixel position in image A and y
is a position in the corresponding test area in image B (y − x− d ∈ T ). Each candidate
match is defined through a triplet (τ r

x, zr
x, σr

x), which gives its peak amplitude, its mean
position and its standard deviation. Let r = 0 be the index of the correct match. That is,
(x, z0

x) is a correct pixel match. Then Rx gives the number of spurious matches in test
patch F0

x with
F0

x := {f 0(x,y) : (y − x− d) ∈ T }.
Let (xA,yA) be two neighboring pixel in image A, i.e. (yA−xA) ∈ N . Also let z0

xA
and

z0
yA

denote the correct pixel matches for xA and yA, respectively. Then our assumption
is that the a priori combined pdf of the correct matches z0

xA
and z0

yA
is given by

P (YB = z0
yA

, XB = z0
xA
|YA = yA,XA = xA) =

1

|T |
h(xA, z0

xA
,yA, z0

yA
). (3.5)

For a given correct match (xA, z0
xA

) the pdf of z0
yA

is therefore given by

P (YB = z0
yA
|YA = yA,XA = xA, XB = z0

xA
) = h(xA, z0

xA
,yA, z0

yA
). (3.6)
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However, any zp
xA

and zq
yA

alone has a uniform pdf.

P (XB = zp
xA
|XA = xA) =

1

|T |
; P (YB = zq

yA
|YA = yA) =

1

|T |
.

Furthermore, given an incorrect match (xA,xB), the pdf for z0
yA

is a uniform distribu-
tion. Also, given a correct match (xA, z0

xA
), the pdf for an incorrect match zq

yA
, q > 0 is a

uniform distribution. That is, if (p, q) 6= (0, 0) then

P (YB = zp
yA
|YA = yA,XA = xA, XB = zq

xA
) =

1

|T |
. (3.7)

In order to show that the algorithm converges we have to show that the expectation
value of P̂ (XB | F t, XA) as given in equation (3.2) is maximized for a correct match
(xA, z0

xA
). Note that we can write equation (3.2) as follows.

P̂ (XB = xB | F t, XA = xA)

' 1

|N |
∑

{yA:(yA−xA)∈N}

maxyB
f t(xA,xB) f t(yA,yB) ĥ(xA,xB,yA,yB),

(3.8)

We will now consider the expectation value Es for a single pair of correspondences
(xA,xB) and (yA,yB), where xA, xB and yA are fixed.

Es := E
[
f 0(xA, xB) f 0(yA, yB) ĥ(xA, xB, yA, yB)

]
.

First we substitute for the f 0 functions using equation (3.4).

Es = E

[
ρxA

ρyA

(RxA∑
p=0

τ p
xA

g(xB, zp
xA

, σp
xA

)

) (RyA∑
q=0

τ q
yA

g(yB, zq
yA

, σq
yA

)

)]
× ĥ(xA, xB, yA, yB).

Now we write the expectation value as the sum over the function values multiplied
with the corresponding probability that this function value occurs.

Es = ρxA
ρyA

ĥ(xA, xB, yA, yB)
∑
wyA[

τ 0
xA

τ 0
yA

g(xB, z0
xA

, σ0
xA

) g(yB,wyA
, σ0

yA
) h(xA, z0

xA
, yA, wyA

)

+
1

|T |

RxA∑
p=1

τ p
xA

τ 0
yA

g(xB, zp
xA

, σp
xA

) g(yB,wyA
, σ0

yA
)

+
1

|T |

RyA∑
q=1

τ 0
xA

τ q
yA

g(xB, z0
xA

, σ0
xA

) g(yB,wyA
, σq

yA
)

+
1

|T |

RxA∑
p=1

RyA∑
q=1

τ p
xA

τ q
yA

g(xB, zp
xA

, σp
xA

) g(yB,wyA
, σq

yA
)

]
.
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The Gaussians we use are normalized such that∑
wyA

g(yB,wyA
, σq

yA
) = 1.

Therefore it follows that

Es = ρxA
ρyA

ĥ(xA, xB, yA, yB)

×
[

τ 0
xA

τ 0
yA

∑
wyA

(
g(xB, z0

xA
, σ0

xA
) g(yB,wyA

, σ0
yA

)

× h(xA, z0
xA

,yA,wyA
)

)
︸ ︷︷ ︸

Term 1

+ KxA,yA︸ ︷︷ ︸
Term 2

]
(3.9)

The constant KxA,yA
only depends on xA and yA. It is a sum over the amplitudes

of spurious match candidates. This value is large if there are many spurious match
candidates present. This is usually the case in areas of low contrast of an image. In
areas of high contrast of an image KxA,yA

has typically a low value.
It can be seen quite easily that term 1 is maximal whenever h(xA,xB,yA,yB) is maxi-

mal, that is if the pixel pairs (xA,xB) and (yA,yB) satisfy the a priori distribution for true
pixel matches. In this case also the factor ĥ(xA,xB,yA,yB) of equation (3.9) is maximal.

The expectation value Ec of the probability that a pixel pair (xA,xB) is a correct
match (cf. equation (3.2)) is now given by

Ec(xA,xB) = E
[
P̂ (XB = xB | F0, XA = xA)

]
=

1

|N |
∑
yA

max
yB

Es(xA,xB,yA,yB).
(3.10)

We have seen in equation (3.9) that Es(xA,xB,yA,yB) is maximal if (xA,xB) is a
correct match and if yB is chosen such that h(xA,xB,yA,yB) is maximized. Therefore
Ec is maximal if (xA,xB) is a correct match. For all other, incorrect pairs Ec has a lower
value which depends on KxA,yA

from equation (3.9). That is, within a homogeneous
region of an image, the expectation value for a correct match is only slightly higher
than those for incorrect matches. In an area of high contrast, on the other hand, the
maximum of Ec is strongly peaked.

The extreme case of this behavior can be seen in figure 3.1. Within the (perfectly) ho-
mogeneous part of the initial images, the test patches are uniformly white and applying
the algorithm to those areas further away from the image center, does not change them,
since all pixel matches are equally likely. Towards the center, however, the most likely
pixel matches are strongly peaked.

Figure 3.1 also demonstrates that a single evaluation of equation (3.2) is not sufficient
to find the correct matches throughout the image. A number of iterations are necessary
to distribute constraints on the pixel matches through the image.
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Since Ec is peaked for correct matches, an iterative application of equation (3.2) will
amplify these peaks while attenuating spurious matches. Nevertheless, due to noise in
the images, spurious matches may satisfy the a priori distribution of correct matches
better than the correct matches. However, this does not change the fact that the algo-
rithm will converge to a single match position.

3.3 The Parameters

In order to run the algorithm we have to set five parameters:

• the number of iterations to perform,

• the test patch size,

• the mean pixel displacement,

• the standard deviation of the ordering constraint σh,

• the standard deviation of the pixel similarity function σs.

The mean displacement is basically an approximate pixel match. This is easy to
find for optical flow, since we assume that corresponding pixels are almost at the same
position. For stereo correspondence this initial match will have to be set by some other
means.

The test patch size has to be chosen such that the distance between a correct match
and the mean displacement is smaller than half the test patch size. Of course, this is
something we have to guess. For optical flow we typically expect pixels to move by one
or two pixels. Therefore, a test patch size of radius 5 would be sufficient. Note that if
Expectx and Expecty are our expectations of pixel movements in x- and y-direction, the
test patch sizes should be set to Testx ≥ Expectx + 1 and Testy ≥ Expecty + 1. Otherwise
we will get problems due to border effects.

We found that 10 to 15 iterations are usually sufficient for good match results. Once
all pixels are matched, more iterations will not change the result. That is, the algorithm
converges to a final match result. If we stop the algorithm too early, typically those
pixel in high contrast regions are already matched while those in low contrast regions
are still ”waiting” for information from outside. We could also keep on iterating until a
certain percentage of pixel has converged, which is easy to check. Then the number of
iterations would not have to be set externally.

The parameter σs controls by how much pixel values can differ to still be regarded
as similar. This value is related to the amount of noise we expect on the images. If σs is
too large also proper features in the images will be blurred.

The parameter σh basically reflects our expectation by how much features are dis-
torted between images A and B. The larger σh, the larger the transformations between
the images that we could match. However, a large σh makes it harder to match at all,
because the number of possible match candidates is large. Clearly, this puts a limit onto
how much the recording camera positions and orientations can differ between images
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A and B. That is, if the cameras are placed too far apart in the case of stereo matching,
or have moved too much in the case of optical flow, the ordering assumption we make
here breaks down.

Note that the algorithm is well behaved with regard to these parameters. Of course,
if the initial approximate match and the test patch sizes are set such that the correct
matches cannot be found, the algorithm breaks down. Also note that varying σh and σs

only changes details in the match result.

3.4 The Algorithm

When implementing this algorithm there are a number of issues that need to be ad-
dressed. The two most important ones are how to treat the image borders and to make
sure that the data is normalized appropriately. The basic steps performed by the algo-
rithm are the following.

Step 1 This step only has to be done once at the start of the algorithm. For
all pixel (or some region) in image A we evaluate the test patches and
normalize them to unity. If parts of a test patch lie outside image B,
we set those parts to unity. The algorithm will not attempt to match the
border pixels in image A. This is necessary to avoid unwanted border
effects. Furthermore, we will not obtain proper match results for those
pixels in image A whose test patches lie partly outside image B. Those
pixels will be disregarded when we check our results.

Step 2 We evaluate P̂ (XB | F t, XA) using equation (3.2), that is we match from
image A to image B.

Step 3 We reorder the test patches F t so that we can evaluate
P̂ (XA | F t, XB), i.e. we match from image B to image A.

Step 4 The two match results are combined using equation (3.3) to give the set
of test patches F t+1. These test patches are normalized to unity. This
implies that we assume that each pixel does have a correct match. If
there is no correct match, the next best match is found.

Step 5 We increase t by one, i.e. use F t+1 as new input test patches, and start
again at step 2. This is done for the specified number of iterations.

Step 1 is basically a preprocessing step. Here we might also adjust the color space
of the images or evaluate additional pixel similarity measures which influence the test
patches. If we only match unidirectionally, Steps two and three are omitted. This speeds
up the algorithm by a factor two.

The complexity of the algorithm is as follows. There are |I| × |T | × 84 products
and |I| × |T | × 10 additions per iteration for each matching direction. For bidirectional
matching there is another factor of two. Recall that |I| is the number of pixels in one
image and |T | is the number of elements in a test patch. Note that here we have not
accounted for the operations necessary to compute the test patches.
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The computational complexity of the algorithm therefore depends very much on the
image size and the test area size. Large test areas are necessary if we expect large dispar-
ities in the images. A multi-scale approach may speed up the algorithm considerably,
since at each scale the local disparity will be small and hence, also the respective test
areas.



Chapter 4

Experiments

In this section we will first consider synthetic and semi-synthetic experiments in or-
der to show the behavior of the algorithm in controlled circumstances. We will then
show the results we obtain with the algorithm on a standard optic flow sequence (the
Yosemite sequence) and a number of stereo image pairs.

So far, we have not compared the results obtained here with other stereo and op-
tic flow algorithms. This will be the subject of future work. Note that whereas the
comparison of our algorithm with other stereo matchers should be straight forward, it
more difficult to compare it with other flow algorithms. This is because, typically optic
flow algorithms evaluate the flow over a number of images (more than two) and return
the mean optic flow. Our algorithm, on the other hand, matches two images. So the
question is, how to compare our results and those of other optic flow algorithms.

4.1 Conflicting Match-Information

We have already shown in figure 3.1 how the algorithm distributes information from
areas where matching constraints are present, to areas where this is not the case. It is
also interesting to consider the case where inconsistent matching information is present
in an image. In order to do this we created an uniformly white image with one red pixel
and one blue pixel. In a second image we kept the red pixel at the same position but
moved the blue pixel by one pixel to the right and one pixel up. The resultant image
pair is shown in figure 4.1.

The test patches for the initial state and the first eight iterations are shown in figure
4.2. It can be seen that the conflicting information from the left pixel (no movement)
and the right pixel (movement one right and one up) meets at pixels half way between
the left and the right colored pixel. At these pixels the corresponding test patches do
not converge to a single pixel but to two. This still corresponds to a single location if we
simply take the expectation value of the test patch. In this case it means that the pixels
where the information from the two colored pixels collide, are moved half a pixel to the
right and half a pixel up. That is, they are matched to a sub-pixel position.

21



22 CHAPTER 4. EXPERIMENTS

Figure 4.1: Left: original image. Right: im-
age with blue (right) pixel moved by one
pixel to the right and up.

Figure 4.2: Test patches for the initial state and the first eight
iterations.

4.2 Matching in Presence of Rotation

We will now present an experiment which is somewhat more realistic. We took a color
image and rotated it by 5 degrees clockwise about its central pixel. There cannot be a
one-to-one pixel correspondence between the two images simply because the rotation
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Figure 4.3: Left: original image. Right: im-
age rotated clockwise about central pixel
by 5 degrees.

Figure 4.4: Pixel error vs. noise level.

moves pixel from the first image to sub-pixel positions. The two images are shown in
figure 4.3.

We applied the algorithm to the images in figure 4.3 at different levels of added
noise. We added Gaussian noise independently to every mode of every pixel in both
images. We applied noise with a standard deviation of 0%, 2%, 4%, 6% and 8% of the
dynamic range of the pixel modes. The effect of the added noise on the left image can
be seen in figure 4.5. The matching error was evaluated by measuring the Euclidean
distance between the matched pixel positions and the theoretically correct pixel match
positions, which may lie in between pixel. The images we matched were 61× 61 pixel.
We used test patches of 7 × 7 pixel and chose σs = 0.16 and σh = 1. The match re-
sults were obtained after 15 iterations which took approximately 7 seconds on an AMD
Athlon XP 1800+ (1.53 GHz) running Windows XP.

Figure 4.4 shows the mean pixel error, the standard mean deviation and the max-
imum pixel error at the different noise levels. First of all, we see that the mean pixel
error lies approximately at half a pixel for up to 4% noise. Statistically this means that
on average the algorithm matches with pixel accuracy for low noise. Note that also the
homogeneous areas were matched with this accuracy. Of course, this is a fairly simple
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Figure 4.5: Effect on left image for 0%, 2%, 4%,
6% and 8% of added noise.

example with no half occluded pixels.

It is also interesting to see how the mean pixel match error improves with respect
to the iteration. This is shown in figure 4.6, which also shows the development of the
standard mean deviation. Interestingly, the standard mean deviation starts to improve
much later than the mean. It can also be seen that the algorithm converges nicely and
we could have also stopped it after 10 iterations.

Figure 4.6: Pixel error vs. iteration.
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Figure 4.7: Test patches of lower right petal of flower
from figure 4.3 for iterations 0, 3, 5 and 8.

4.3 The Aperture Problem

We will now discuss the ”aperture problem” of optic flow with regard to our algorithm.
Many flow algorithms can only return the flow field in areas of high contrast in an im-
age. Typically, edges and corners are such places. However, along a uniformly colored
edge, locally one can only obtain the flow normal to the edge. Since the edge might also
have a movement component parallel to itself, one cannot retrieve the correct flow. This
is called the aperture problem.

Our algorithm is able to overcome the aperture problem if appropriate corners which
fix the movement of the edge are not too far away. This is possible because at each it-
eration the algorithm takes into account an ever larger area of the image. One might
say that the aperture is enlarged at each iteration, such that flow information at corners
may be taken into account when matching an edge.

Figure 4.3 gives an example of how the aperture problem may be overcome by the
algorithm. The figure shows the test patches of the lower right petal of the flower from
figure 4.3 for iterations 0, 3, 5 and 8. At iteration 3 it can be seen that the test patches at
the petal’s edge have been reduced to a line along the edge. That is, the flow has been
constrained perpendicular to the edge but not along the edge. Through the next couple
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of iterations, however, matching information from the corners propagates through the
image and constrains the flow also along the edges. At iteration 8 most test patches
already have a single, strongly peaked match candidate.

4.4 Matching with Half-Occluded Pixels

Figure 4.8: Left: original image. Right:
small flower moved two pixel right and
two pixel up.

Figure 4.8 shows a simple example with some half-occluded pixels. The initial image
is shown on the left. In the right image the small flower is moved by two pixels to the
right and two pixels up. The images are 91×67 pixel. We used again test patches of 7×7
pixel and chose σs = 0.16 and σh = 1. We tested the matching algorithm in the same
way as before. The mean pixel error and the standard mean deviation at the different
noise levels can be seen in figure 4.9. Note that half-occluded pixel were not included
in the error statistics, since they have no match in the images.

Figure 4.9: Pixel error vs. noise level.

Maybe surprisingly the mean pixel error is below or near half a pixel at all noise
levels. However, note that in this experiment pixel colors in the second image do not
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have to be interpolated from pixels in the first image. The background is static and the
small flower is moved by exactly two pixels right and up. The results of this experiment
therefore show that the algorithm is quite robust to noise under these circumstances. We
found that the pixels close to the small flower are matched as if they were moving with
the flower. These are the pixels that are mostly responsible for the measured pixel error.
This can be seen in figure 4.10 where the distribution of pixel match errors is shown for
all noise levels. For no added noise the only mismatched pixel are those at the border
of the flower. At larger noise levels, however, also the static background cannot be
matched error free. The legend of figure 4.10 gives the corresponding error in pixels.

Figure 4.10: Error distribution of pixel matches for
noise levels 0%, 2%, 4%, 6% and 8%.

4.5 The Yosemite Sequence

Figure 4.11 shows the first of two images we used from the Yosemite sequence created
by Lynn Quann at SRI. We only used the lower part of the sequence since no ground
truth is available for the cloud region. We matched the first two images of the sequence.
The image dimensions were 315 × 177 pixels, the test patch size was 7 × 7 pixels, σs =
0.16 and σh = 1. We performed 20 iterations which took approximately 150 seconds
on an AMD Athlon XP 1800+ (1.53 GHz) running Windows XP. The algorithm runs
about twice as fast, if we do not perform bidirectional matching, which stabilizes the
algorithm in the presence of occlusion. Note that the implementation of the algorithm
was experimental and not optimized for speed.

We evaluated the Euclidean distance between our match results and ground truth.
Figure 4.12 shows the distribution of the pixel match errors over the image. White
regions indicate that the pixel match errors are below half a pixel. The next darker level
indicates pixel errors of between half and one pixel. The meaning of the other shades of
gray are given in the legend of figure 4.12.
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Figure 4.11: Initial image of Yosemite sequence.

Figure 4.12: Distribution of matching errors for no added noise.

Large areas have been matched very well, whereas there are problems in the area of
the mountain on the left. The small patch of large error near the center of the image is
actually due to a rendering artifact of the Yosemite sequence. In this area a few pixel
appear to be moving upwards along a depth discontinuity. Since they are surrounded
by a fairly unstructured area, the algorithm matches a whole cluster of pixels as if they
were moving upwards. Nevertheless, the problematic area is locally confined, which
shows the robustness of the algorithm. Recall that we only used two images to eval-
uate the optic flow. By extending the algorithm to incorporate more images of a flow
sequence we hope to improve the matching quality further.

In order to test the behavior of the algorithm in the presence of noise we added
uniformly distributed Gaussian noise to the pixel values of both images in the same as
way as in the previous experiments. The noise level is given as the standard deviation
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Figure 4.13: Pixel error vs. noise level.

in percent of the dynamic range of the pixels. The results can be seen in figure 4.13
where the mean pixel error and the standard mean deviation are shown. It can be seen
that up to 4% noise the algorithm gives good match results, which is in accordance with
the previously observed behavior.

4.6 Stereo Image Pairs

So far, all the examples presented treated optic flow. We will now take a look at the
stereo matching quality of the algorithm. All stereo image pairs used here are rectified,
i.e. corresponding pixel in the two images lie in the same scan line. We can incorporate
this constraint into our algorithm, by setting the test areas to a height of one pixel. Note
that the parameters σh and σs were the same for all stereo and optic flow examples. The
matching results are presented in the form of disparity maps, where a brighter shade of
gray indicates larger disparities.

Figure 4.14: Left image of tree example with evaluated
disparity map.
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We tested the algorithm on three examples:

• The EPI sequence, provided by SRI. Here we used the first two frames of the se-
quence. We matched an area of 240×180 pixels with a test area size of 17×1 pixels.
The matching result after 20 iterations can be seen in figure 4.14.

• The Tsukuba stereo pair, provided by Dr. Y. Ohta and Dr. Y. Nakamura from the
University of Tsukuba. We matched an area of 350 × 260 pixels with a test area
size of 15 × 1. Figure 4.15 shows the two images together with the ground truth
disparity map and our evaluated disparity map after 15 iterations.

• The Pentagon stereo pair, provided by CMU/VASC. Here we matched an area
of 500 × 500 pixels with a test area size of 21 × 1. Figure 4.16 shows the first
of the two Pentagon images together with the evaluated disparity map after 20
iterations. Figure 4.17 shows a 3D-rendered version of the evaluated Pentagon
disparity map.

Figure 4.15: Left and right image of Tsukuba example
with ground truth and evaluated disparity map.

The evaluated disparity maps show that the algorithm works quite well for stereo
matching on rectified images. In the Tsukuba and the Pentagon examples a particular
type of matching error can be observed: there are sudden, locally confined, large devia-
tions from the surrounding disparity. This can most clearly be seen in the 3D-rendering
of the Pentagon disparity map (figure 4.17). There are a number of spikes and troughs.
They usually appear where half-occluded pixels are present, or in large homogeneous
areas, where pixels were matched due to noise. It may be possible to remove these
spikes and troughs in a post-processing step, by taking advantage of their very localized
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Figure 4.16: Left image Pentagon example with evalu-
ated disparity map.

Figure 4.17: 3D-visualization of Pentagon disparity
map.

nature. However, improving the algorithm, so that it accounts for occlusion explicitly,
may be more promising.
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Chapter 5

Conclusions

Although the derivation of the algorithm is somewhat complex, its final form is quite
simple. We do not have to evaluate any derivatives, or minimize an energy function
with a global minimization scheme. However, the algorithm is pretty slow when im-
plemented on a standard computer. The only remedy for that is specialized hardware
which makes full use of the parallel structure of the algorithm. In principle, each field
of a test patch can be regarded as a single neuron which performs a simple calculation.
Evaluating each neuron is all that has to be done per iteration. We have implemented a
similar structure on an FPGA which shows good preliminary results at high evaluation
speeds.

There are still a number of problems that have to be addressed by future research.
The algorithm is sensitive to the resolution of the images in relation to the size of the
structures that appear in the them. If the resolution is too high then it takes relatively
long for the match constraints to dissipate through the image. Therefore, pixels may
be matched with insufficient or incorrect information due to noise, which results in
erroneous matches. A multi-scale approach might solve this problem.

A similar problem is that of an object moving over a homogeneous background.
If the homogeneous background has no borders within the images then the algorithm
matches the background as if it was moving with the object. If the background has
borders within the images, then the background close to the moving object is matched
as if moving with the object. This problem might only be overcome by taking into
account more information about the images. Such information may, for example, be
obtained through an image sequence.

Half-occluded pixel present another problem which should be accounted for explic-
itly. The algorithm behaves fairly well in the presence of half-occluded pixel. However,
it is difficult to quantify this because it depends on the particular image pairs in ques-
tion. Stable match results over a wide range of image types are probably only possible
through a statistical combination of pixel matches from a time sequence of images. This
is what is usually done in optical flow.

An attractive feature of the algorithm is though, that in principle the same method
may be applied to optic flow and stereo matching. It is also not necessary to use rectified
images or to know the exact camera geometry. We have also shown that the algorithm
may overcome the aperture problem which is usually present in optic flow.

33
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In conclusion we can say that the results obtained with the algorithm show that
despite its simple structure it is a good dense image point matcher. Note that a program
(called Acre) to test the algorithm on arbitrary images is available from the web page of
the first author (www.perwass.de).
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