Spherical Decision Surfaces Using Conformal
Modelling

Christian Perwass, Vladimir Banarer, Gerald Sommer

Institut fiir Informatik und Praktische Mathematik
Christian-Albrechts-Universitat zu Kiel
Christian-Albrechts-Platz 4, 24118 Kiel, Germany
{chp,vlb,gs}@ks.informatik.uni-kiel.de

Abstract. In this paper a special higher order neuron, the hypersphere
neuron, is introduced. By embedding Euclidean space in a conformal
space, hyperspheres can be expressed as vectors. The scalar product of
points and spheres in conformal space, gives a measure for how far a
point lies inside or outside a hypersphere. It will be shown that a hyper-
sphere neuron may be implemented as a perceptron with two bias inputs.
By using hyperspheres instead of hyperplanes as decision surfaces, a re-
duction in computational complexity can be achieved for certain types
of problems. Furthermore, it will be shown that Multi-Layer Percerp-
trons (MLP) based on such neurons are similar to Radial Basis Function
(RBF) networks. It is also found that such MLPs can give better results
than RBF networks of the same complexity. The abilities of the proposed
MLPs are demonstrated on some classical data for neural computing, as
well as on real data from a particular computer vision problem.

1 Introduction

The basic idea behind a single standard perceptron is that it separates its input
space into two classes by a hyperplane [13]. For most practical purposes such a
linear separation is, of course, not sufficient. In general, data is to be separated
into a number of classes, where each class covers a particular region in the input
space. The basic idea behind classifying using a multi-layer perceptron (MLP),
is to use a number of perceptrons and to combine their linear decision planes, to
approximate the surfaces of the different class regions. In principle, a MLP can
approximate any type of class configuration, which implies that it is an universal
approximator [4, 7].

However, being an universal approximator alone says nothing about the com-
plexity a MLP would need to have in order to approximate a particular surface.
In fact, depending on the structure of the data it may be advantageous to not use
perceptrons but instead another type of neuron which uses a non-linear ’decision
surface’ to separate classes. Such neurons are called higher-order neurons. There
has been a lot of effort to design higher-order neurons for different applications.
For example, there are hyperbolic neurons [3], tensor neurons [12] and hyper-
bolic SOMs [14]. Typically, the more complex the decision surface a neuron has
is, the higher its computational complexity. It is hoped that a complex decision

surface will allow to solve a task with fewer neurons. However, the computational
complexity of each neuron should not offset this advantage.

In this paper we present a simple extension of a perceptron, such that its
decision surface is not a hyperplane but a hypersphere. The representation used
is taken from a conformal space representation introduced in the context of
Clifford algebra [11]. The advantage of this representation is that only a standard
scalar product has to be evaluated in order to decide whether an input vector
is inside or outside a hypersphere. That is, the computational complexity stays
low, while a non-linear decision plane is obtained. Furthermore, a hypersphere
neuron with sigmoidal activation function can be regarded as a generalization of
a classical RBF neuron. Multi-layer networks based on hypersphere neurons are
therefore similar to RBF networks of the same complexity. This will be explained
in some detail later on. The main advantages of such a hypersphere neuron over
a standard perceptron are the following:

— A hypersphere with infinite radius becomes a hyperplane. Since the hyper-
sphere representation used is homogeneous, hyperspheres with infinite radius
can be represented through finite vectors. Therefore, a standard perceptron
is just a special case of a hypersphere neuron.

— The VC-dimension [1] of a hypersphere neuron for a 1-dimensional input
space is three and not two, as it is for a standard perceptron. However, for
higher input dimensions, the VC-dimensions of a hypersphere neuron and a
standard perceptron are the same.

Although the VC-dimensions of a hypersphere neuron and a standard per-
ceptron are the same for input dimensions higher than one, it is advantageous
to use a hypersphere neuron, if the classification of the data is isotropic about
some point in the input space. See [2] for more details.

The remainder of this paper is structured as follows. First the representation
of hyperspheres used is described in some more detail. Then some important as-
pects concerning the actual implementation of a hypersphere neuron in a single-
and multi-layer network are discussed. The comparison to classical RBF neurons
is made. Afterwards some experiments with the Iris data set and the two spirals
benchmark are presented. In a further experiment the abilities of a hypersphere
multi-layer perceptron as classifier are tested on some real data taken from a
particular computer vision problem. Finally, some conclusions are drawn from
this work.

2 The Representation of Hyperspheres

There is not enough space here to give a full treatment of the mathematics
involved. Therefore, only the most important aspects will be discussed. For a
more detailed introduction see [10, 11].

Consider the Minkowski space R'! with basis {e,e_}, where e3 = +1 and
€2 = —1. The following two null-vectors can be constructed from this basis,
0o = e_ + ey and eg 1= 3 (e— — e), such that €2, = e = 0 and e - €9 = —1.

Given a n-dimensional Euclidean vector space R”, the conformal space R* 11 =
R" ® RY! can be constructed. Such a conformal space will also be denoted as
ME" = R**1:1, A vector x € R” may be embedded in conformal space as

X:x—i—%xQem—Feo, (1)

such that X? = 0. It may be shown that this embedding represents the stere-
ographic projection of x € R™ onto an appropriately defined projection sphere
in MEE". Note that the embedding is also homogeneous, i.e. «X, with a € R,
represents the same vector x as X. In other words, any vector A € ME" that
lies in the null space of X, i.e. satisfies A- X = 0, represents the same vector x.

The nomenclature ey and e, is motivated by the fact that the origin of R
maps to ep when using equation (1). Furthermore, as |x| with x € R™ tends to
infinity, the dominant term of the mapping of x into MIE" is e..

A null-vector in MIE"™ whose ey component is unity, is called normalized.
Given the normalized null-vector X from equation (1) and Y = y+ £ y? ec +€o,
it can be shown that X -V = —1(x —y)2. That is, the scalar product of two
null-vectors in conformal space, gives a distance measure of the corresponding
Euclidean vectors. This forms the foundation for the representation of hyper-
spheres. A normalized hypersphere S € MEE" with center Y € ME" and radius
reRisgiven by S=Y — %rz €0, Since then

X-S=XY-3irX ex=-3(x-y)?+1ir2 2)

and thus X - S = 0 iff |x —y| = |r|. That is, the null space of S consists of all
those vectors X € ME™ that represent vectors in R™ that lie on a hypersphere.
It can also be seen that the scalar product of a null-vector X with a normalized
hypersphere S is negative, zero or positive, if X is outside, on or inside the
hypersphere. Scaling the normalized hypersphere vector S with a scalar does not
change the hypersphere it represents. However, scaling S with a negative scalar
interchanges the signs that indicate inside and outside of the hypersphere.

The change in sign of X - S between X being inside and outside the hyper-
sphere, may be used to classify a data vector x € R" embedded in MIE™. That is,
by interpreting the components of S as the weights of a perceptron, and embed-
ding the data points into MIE", a perceptron can be constructed whose decision
plane is a hypersphere.

From the definition of a hypersphere in ME" it follows that a null-vector
X € ME" may be interpreted as a sphere with zero radius. Similarly, a vector
in ME™ with no eg component represents a hypersphere with infinite radius, i.e.
a hyperplane.

3 Implementation

The propagation function of a hypersphere neuron may actually be implemented
as a standard scalar product, by representing the input data as follows. Let a
data vector x = (z1,%2,...,2,) € R" be embedded in R"*? (not ME") as

X = (21,...,20,—1, 7%X2) € R™*2. Then, representing a hypersphere S =
c+ 1(c?—r?)es +eg € ME” in R""2 as S = (c1,...,¢n, 5(c? —1?),1), one
finds that X - S = X - S. During the training phase of a hypersphere neuron,
the components of S are regarded as independent, such that S may simply be
written as S = (s1,..., Snt2).

Therefore, a hypersphere neuron may be regarded as a standard perceptron
with a second ’bias’ component. Of course, the input data must be of a particular
form. That is, after embedding the input data in R™*2 appropriately, a decision
plane in R"*2 represents a decision hypersphere in R™. In this respect, it is
similar to a kernel method, where the embedding of the data in a different space
is implicit in the scalar product.

The computational complexity of a hypersphere neuron is as follows. Apart
from the standard bias, which is simply set to unity, the magnitude of the input
data vector has to be evaluated. However, for a multi-layer hypersphere net-
work, this magnitude only has to be evaluated once for each layer. In terms of
complexity this compares to adding an additional perceptron to each layer in a
MLP.

The multi-layer perceptron based on hypersphere neurons (MLHP) can be
interpreted as an extended RBF network with an equal number of neurons.

Let the activation function of the hypersphere neuron be the sigmoidal func-
tion (), z) = (1 + exp(—Xz))~!. In general a hypersphere neuron represents a
non-normalized hypersphere. Therefore the propagation function becomes X -x.5,
k € R (cf. equation (2)), see [2] for more details. Thus the output y of the neuron
can be written as

y =0, (X-KS))=0(A, 7%”(”)(- CH% - T2)) = 1+exp(%/\n(1|\x—c||§—r2) (3)
This equation shows, that the output is an isotropic function similar to a Gauss
with extremum at x = ¢ and asymptotical behavior for ||x — ¢||s — oo.

For positive values of k, y is positive for points lying within the hypersphere
and negative for points lying outside the hypersphere. For negative values of x
we obtain the inverse behavior.

Not only the position of the extremum of this functions (center of hyper-
sphere) but also the size of the support area (radius of hypersphere) can be
learned.

4 Experiments

In an initial experiment, the simplest form of a multi-layer hypersphere per-
ceptron, a single-layer perceptron, was tested on Fisher’s Iris data set [6]. This
set consists of 150 four-dimensional data vectors, which are classified into three
classes. Visualizing the data [8] shows that one class can be separated linearly
from the other two. The two remaining classes are, however, somewhat entan-
gled. The data set was separated into a training data set of 39 randomly chosen
data vectors and a test data set of the remaining 111 data vectors. A standard

single-layer perceptron (SLP) and a single-layer hypersphere perceptron (SLHP)
were then trained on the training data set in two different configurations. In the
first configuration (C1) the network consisted of one layer with three neurons,
each representing one class. The classes were coded by 3 three-dimensional vec-
tors (1,0,0), (0,1,0) and (0,0, 1), respectively. In the second configuration (C2)
there was a single layer with only two neurons, whereby the three classes were
coded in a binary code. That is, the output of the two neurons had to be (1,0),
(0,1) and (1, 1), respectively, to indicate the three classes.

Table 1 shows the number of incorrectly classified data vectors after training
in configuration C1 and C2, respectively, for the training and the test data set
using the SLP, the SLHP and RBF networks.

[Network|C1 Train. Data|C1 Test Data||Network|C2 Train. Data|C2 Test Data

SLHP 0 7 SLHP 0 7
SLP 0 2 SLP 9 31
RBF 2 11 RBF 10 20

Table 1. Comparison of classification results for SLHP, SLP and RBF on IRIS data.

It can be seen that both the SLP and the SLHP in C1, classify the training
data perfectly. However, the SLP is somewhat better in the classification of the
test data set. For C2, where only two neurons were used, the SLP cannot give an
error free classification of the training data set. This is in contrast to the SLHP
where an error free classification is still possible. Also for the test data set the
SLHP gives much better results than the SLP. In fact, the SLHP does equally
well with two and with three neurons. The results in C2 basically show that the
data set cannot be separated into three classes by two hyperplanes. However,
such a separation is possible with two hyperspheres. Although RBF networks
contain two layers in contrast to the tested single layered models, they classify
worse with the same amount of neurons in the hidden layer. In this experiment
one needs at least ten neurons in the hidden layer of a RBF network to achieve
similar results as with the SLHP.

In the second experiment the two spirals benchmark [5] was used, to compare
a MLHP with a classical MLP and a RBF network. The task of this benchmark
is to learn to discriminate between two sets of training points, which lie on two
distinct spirals in the 2D plane. These spirals coil three times around the origin
and around one another. This can be a very difficult task for back-propagation
networks and comparable networks [9, 15].

Figure 1 shows the results of training for two-layer networks (i.e. one hidden
layer) with classical perceptrons (MLP), hypersphere neurons (MLHP) and a
RBF network. MLP and MLHP were trained with a backpropagation-algorithm.
For each kind of network the minimal amount of neurons needed for almost
perfect classification is taken for the visualization. The MLHP with 10 neurons

[A

Fig. 1. Two spirals benchmark. Visualization of nearly perfect classification for differ-
ent network types. White and black colors represent the two classes, that are to be
learned. Gray color represents an area of unreliable decision. Left - MLHP with 10
neurons in hidden layer; Middle - MLP with 60 neurons in hidden layer; Right - RBF
with 80 neurons in hidden layer.

AV A9V]D | ANV>
dld’aaa’pIp BN Y

=N LT 7 AN LS

Fig. 2. Each object ist automatically detected, cropped and rescaled to a size of 35x35
pixels.

in the hidden layer can do perfect classification (100%). To achieve the same
result a RBF network with 80 neurons in the hidden layer is required. A SLP
with 60 neurons in the hidden layer can do nearly perfect classification (97%).

In the third experiment the classification abilities of MLHPs were tested on
real data. The goal of this experiment was to associate an object (top view) with
one of three given classes: screw, bridge or triangle. The data was coded in the
following way.

In a preprocessing stage for each object that was to be classified, the data was
generated from 360 top views of the object, whereby the object was rotated in
one degree steps. The object was automatically detected, cropped and rescaled
to a size of 35x35 pixels. Some views of the objects used are shown in figure 2.
For further processing the images were interpreted as vectors of length 1225.

For each set of 360 data vectors, a PCA was performed (figure 3). Then all
data vectors from all three classes were projected onto the first three principal
components of the bridge. The resulting three dimensional data is visualized in
figure 4. The associated classes were coded in a two-dimensional binary code
(1,0), (0,1) and (1,1). From 1080 data vectors, 360 were taken for training and
720 for testing. Different types of networks were tested.

The best results (in relation to number of neurons) were achieved by a MLHP
with two neurons in the hidden layer. For similar results a MLP with three

Fig. 3. Mean value and first ten principle components for triangle (top), bridge (middle)
and screw (bottom).

Fig.4. Left — 3D-visualization of the classification (crosses - triangle, diamonds -
bridge, crossed diamonds - screw). The two spheres represent the decision surfaces
of the hypersphere neurons. Right — Projecting the data onto two principle compo-
nents, demonstrates that each of the three classes builds a compact area in the input
space and can be easily separated by two hyperspheres.

neurons in the hidden layer or a RBF network with 8 neurons was necessary.
This result was expected due to the compactness of the classes, that had to be
separated.

5 Conclusions

In this paper a higher-order neuron was presented which has the effect of placing
a decision hypersphere in the input space, whereas a standard perceptron uses a
hyperplane to linearly separate the input data. It was shown that a hypersphere
neuron may also represent a hypersphere with infinite radius, i.e. a hyperplane,
and thus includes the case of a standard perceptron. Advantages that may be
gained by using hypersphere neurons, are the possibility to classify compact
regions with a single neuron in n-dimensions, while the computational complexity
is kept low. A single-layer hypersphere perceptron was tested and compared to a
standard single-layer perceptron on the Iris data of R.A. Fisher. The data could
be successfully classified with two hypersphere neurons. At least three standard

neurons or a RBF network with ten neurons in the hidden layer were necessary to
achieve similar results. Furthermore MLP, MLHP and RBF networks were tested
with the two spirals benchmark. Also in this case better results were achieved
with hypersphere neurons than with a classical MLP or RBF network. In a real
data scenario the advantages of a MLHP were also shown. This demonstrates
that using hypersphere neurons is advantageous for certain types of data.

Acknowledgment

This work has been supported by DFG Graduiertenkolleg No. 357 and by EC
Grant IST-2001-3422 (VISATEC).

References

1.

2.

10.

11.

12.

13.
14.

15.

Y. S. Abu-Mostafa. The Vapnik-Chervonenkis dimension: Information versus com-
plexity in learning. Neural Computation, 1(3):312-317, 1989.

V. Banarer, C. Perwass, and G. Sommer. The hypersphere neuron. In 11th Fu-
ropean Symposium on Artificial Neural Networks, ESANN 2003, Bruges, pages
469-474. d-side publications, Evere, Belgium, 2003.

S. Buchholz and G. Sommer. A hyperbolic multilayer perceptron. In S.-I. Amari,
C.L. Giles, M. Gori, and V. Piuri, editors, International Joint Conference on Neural
Networks, IJCNN 2000, Como, Italy, volume 2, pages 129-133. IEEE Computer
Society Press, 2000.

G. Cybenko. Approximation by superposition of a sigmoidal function. Mathematics
of Control, Signals and Systems, 2:303-314, 1989.

S. E. Fahlman and C. Lebiere. The cascade-correlation learning architecture. In
D. S. Touretzky, editor, Advances in Neural Information Processing Systems, vol-
ume 2, pages 524-532, Denver 1989, 1990. Morgan Kaufmann, San Mateo.

R. A. Fisher. The use of multiple measurements in axonomic problems. Annals of
FEugenics 7, pages 179-188, 1936.

K. Hornik. Approximation capabilities of multilayer feedforward neural networks.
Neural Networks, 4:251-257, 1990.

L. Hoyle. http://www.ku.edu/cwis/units/IPPBR /java/iris/irisglyph.html.

K.J. Lang and M.J. Witbrock. Learning to tell two spirals apart. In D.S. Touretzky,
G.E. Hinton, and T. Sejnowski, editors, Connectionist Models Summer School.
Morgan Kaufmann, 1988.

H. Li, D. Hestenes, and A. Rockwood. Generalized homogeneous coordinates for
computational geometry. In G. Sommer, editor, Geometric Computing with Clifford
Algebra, pages 27-52. Springer-Verlag, 2001.

H. Li, D. Hestenes, and A. Rockwood. A universal model for conformal geometries.
In G. Sommer, editor, Geometric Computing with Clifford Algebra, pages 77-118.
Springer-Verlag, 2001.

H. Lipson and H.T. Siegelmann. Clustering irregular shapes using high-order neu-
rons. Neural Computation, 12(10):2331-2353, 2000.

M. Minsky and S. Papert. Perceptrons. Cambridge: MIT Press, 1969.

H. Ritter. Self-organising maps in non-Euclidean spaces. In E. Oja and S. Kaski,
editors, Kohonen Maps, pages 97-108. Amer Elsevier, 1999.

A. Wieland and S. E. Fahlman. http://www.ibiblio.org/pub/academic/computer-
science/neural-networks/programs/bench/two-spirals, 1993.

