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Chapter 1

Numerical evaluation of
Versors with Clifford Algebra

Christian B. U. Perwass, Gerald Sommer1

ABSTRACT This paper has two main parts. In the first part we discuss
multivector null spaces with respect to the geometric product. In the second
part we apply this analysis to the numerical evaluation of versors in con-
formal space. The main result of this paper is an algorithm that evaluates
the best transformation between two sets of 3D-points. This transformation
may be pure translation or rotation, or any combination of them. This is,
of course, also possible using matrix methods. However, constraining the re-
sultant transformation matrix to a particular transformation is not always
easy. Using Clifford algebra it is straight forward to stay within the space
of the transformation we are looking for.

1.1 Introduction

Clifford algebra has enjoyed an increasing popularity over the past years
in the fields of computer vision and robotics. It is a particularly useful
tool in these fields, since geometric objects like points, lines and planes
can be expressed directly as algebraic entities. Furthermore, reflections,
rotations and translations can be expressed by versors, which may act on
any algebraic and hence geometric object. That is, if we denote a general
versor by V , it acts on a geometric entity X via V XṼ , where V can be
any combination of reflection, rotation and translation.

There exist many purely mathematical books on Clifford algebra, which,
building on two simple axioms, analyze the complex structure of general
Clifford algebras [1, 2, 3, 4]. The most useful Clifford algebras for our
purpose are universal Clifford algebras. A Clifford algebra Cln(Vn) is called
universal if it is build on an n-dimensional, non-degenerate vector space Vn

and has dimension 2n. A direct effect of this is, that a change of basis of Vn

does not change Cln up to an isomorphism. We will call a universal Clifford
Algebra also geometric algebra. This term is preferred by many authors in
the computer vision and robotics community [5, 6, 7, 8].
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A problem that turns up in robotics research is that given two sets of
3D-vectors {xi}, {yi}, related by a general rotation, we want to find that
general rotation. If the given data is noisy, or if there are outliers, we want
to find the best general rotation that relates the two 3D-point sets. Note
that by general rotation, we mean a rotation about an arbitrary axis. This
may also be represented by a rotation followed by a translation, or a twist.
By a pure rotation we mean a rotation about an axis that passes through
the origin of the space we are working in. We will refer to a pure rotation
also simply by rotation.

1.2 Theory

Independent of the particular geometric algebra we are in, the versor equa-
tion V AṼ = B may also be written as V A−BV = 0. We will show how this
equation can be solved for V using a singular value decomposition (SVD).
Before we describe the numerical algorithm, we should understand what
the solution space of V is. We will start by analyzing the simpler equation
AB = 0, where A,B ∈ Cln.

In order to perform our analysis it is convenient to look at Clifford algebra
from a slightly different angle. We will assume here that you are familiar
with the basic concepts of Clifford algebra. A standard way to construct
a Clifford algebra Cln(Vn) is to take an orthonormal basis of Vn and then
to combine these with the geometric product to obtain a 2n dimensional
basis of the Clifford algebra. It will be helpful to look at the properties of
such a basis without referring to the underlying vector space basis.

Let En be a basis of some universal Clifford Algebra Cln. Note that at this
point we are not interested in the concept of ”grade” of the basis elements.
Let Un := {1, 2, . . . , 2n}, i, j, k ∈ Un, gij

k ∈ {−1, 0,+1} and let {Ei} denote
the elements of En. The elements of En have the following properties. 1)
The 2n elements of En ⊂ Cln are linearly independent; 2) there exists
an identity element which we choose to denote by E1; 3) EiEi = gii

1E1;
4) EiEj = gij

kEk, with i 6= j. The tensor gij
k is the metric of Cln. If the

Clifford algebra is universal then, if two indices of gij
k are held fixed, there is

only exactly one value for the third index such that gij
k 6= 0. Furthermore,

gii
1 6= 0 for all i. Therefore, each element of {Ei} has a unique inverse with

respect to the geometric product (property 3). The tensor gij
k also encodes

whether two elements of En commute or anti-commute. From property 4
we find EiEj = λij EjEi, with λij ≡ gij

k/gji
k. We will use λij as a short

hand for gij
k/gji

k. Note that λij = λji. If {Ei} was constructed from a set
of anti-commuting elements, as for example the orthonormal basis of some
Vn, we could evaluate gij

k. Here we want to assume that the gij
k tensor is

known for a given Cln.
We can now write a general multivector A ∈ Cln as A = αiEi, with
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{αi} ⊂ R. We use here the Einstein summation convention: a superscript
index repeated as a subscript, or vice versa, within a product, implies a
summation over the index. That is, αiEi ≡

∑
i αiEi. The product of two

multivectors A,B ∈ Cln where A = αiEi, B = βiEi, can thus be written
as AB = αiβj gij

kEk.
The concept of duality will play an important role later on. Usually, the

dual of a multivector is defined as its product with the inverse pseudoscalar.
For our purposes it will be convenient to introduce a more general concept
of duality. It may be shown that for some Ep ∈ En there exists a subset
D ⊂ En with E1 ∈ D and Ep 6∈ D, such that the intersection of D with the
coset DEp is the empty set and their union gives En. In fact, D forms a
basis of some Cl(n−1). The coset DEp may be regarded as dual to D with
respect to Ep.

After these preliminaries we will now return to our initial problem. Let
A,B ∈ Cln be two multivectors such that AB = 0. What are the properties
of A and B? First of all note that neither A nor B can have an inverse.

Lemma 1.1. Let A, B ∈ Cln, A 6= 0, B 6= 0, satisfy the equation AB = 0.

Then neither A nor B have an inverse. Also, if some A ∈ Cln does have an

inverse, then there exists no non-zero X ∈ Cln such that AX = 0 or XA = 0.

Proof. Suppose A had an inverse denoted by A−1. Then

AB = 0 ⇐⇒ A−1AB = 0 ⇐⇒ E1B = 0 ⇐⇒ B = 0,

where E1 denotes the identity element of Cln as before. This contradicts the
assumption that B 6= 0. Hence, A does not have a left inverse. Furthermore,
if two elements X, Y ∈ Cln satisfy XY = 1, then all their components
have to mutually anti-commute. This anti-commutativity is independent of
whether we write XY or Y X. Therefore, it is clear that every left inverse
is also a right inverse and vice versa. Thus A does neither have a left nor a
right inverse element in Cln. It also follows that if A does have an inverse,
the equation AB = 0 is only satisfied for B = 0. All this may be shown in
a similar way for B.

The next thing we can observe is that if there exist two multivectors
A,B ∈ Cln that satisfy the equation AB = 0, then for every X ∈ Cln
the equation (AB)X = 0 is also satisfied. Due to the associativity of the
geometric product we can write this equation also as A(BX) = 0. Hence,
there exists a whole set of multivectors that right multiplied with A give
zero.

Definition 1.1. Denote the set of multivectors X ∈ Cln that satisfy the

equation AX = 0 for some A ∈ Cln by NA. Formally NA is defined as

NA := {X : AX = 0 , X ∈ Cln}.

Lemma 1.2. Some properties of NA. Let A ∈ Cln and let NA denote its set
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of right null-multivectors. NA has the following properties.

a) If A 6= 0 then NA does not contain the identity element of Cln;

b) any linear combination of elements of NA is an element of NA;

c) for any X ∈ NA and M ∈ Cln, (XM) ∈ NA.

Proof. Let X, Y ∈ NA and α, β ∈ R.
a) If the identity element E1 of Cln was an element of NA then AE1 = 0.
This is only possible if A = 0. Therefore, if A 6= 0, E1 6∈ NA.
b) From the distributivity of the geometric product it follows that A(αX +
βY ) = α(AX) + β(AY ) = 0. Hence, (αX + βY ) ∈ NA.
c) Since the geometric product is associative A(XM) = (AX)M = 0M = 0
and thus (XM) ∈ NA.

From this lemma it follows that NA is a subspace of Cln, albeit not a
subalgebra due to its lack of the identity element. The question now is,
what dimension NA has. If the dimension of NA was the same as that of
Cln, i.e. 2n, then E1 would have to be an element of NA. Since this is not
the case by lemma 1.2, dimNA < 2n.

Consider the set MAB := {BEi : B ∈ NA, B 6= 0, ∀ Ei ∈ En}. That is,
we take the product of all elements in En with some B ∈ NA not equal to
zero. Also note, that since we can write B = βiEi, BEj 6= 0 for all Ej ∈ En.
Hence, MAB has 2n non-zero elements, from which we can build the whole
space NA. Nevertheless, MAB is not a basis of NA, since dimNA < 2n.
This means that there has to be at least one element of MAB that is
linearly dependent on the others. Therefore, there exists a set {αi} ⊂ R
such that αi (BEi) = (BEk), with i ∈ Un\k, where i ∈ Un\k stands for
the set of integers from 1 to 2n without k. Note that this does not imply
that αiEi = Ek, since B has no inverse. Right-multiplying this equation
with gkk

1Ek gives gkk
1αi B(EiEk) = BE1. That is, there also exists a set

{βi} ⊂ R such that βi (BEi) = (BE1), with i ∈ Un\1. In general we will
call any element J ∈ Cln that satisfies BJ = λB, an eigen-multivector of
B with eigenvalue λ. Clearly, E1 is an eigen-multivector of any multivector
in Cln.

Suppose there exists only exactly one element J = βiEi with i ∈ Un\1,
such that BJ = B. We would like to show that JJ = E1. This is not
quite as trivial as it might seem, since BJJ = B does not necessarily
imply JJ = E1 because B has no inverse. Nevertheless, we know that
(JJ) is also an eigen-multivector of B. Since we assumed the only eigen-
multivectors of B to be E1 and J , (JJ) ∈ {E1, J}. We therefore have to
show that J cannot square to itself. We do this by first observing that
J has no scalar component (no E1 component), and then proving that a
multivector without a scalar component cannot be idempotent (square to
itself). Unfortunately, due to space constraints we cannot give this proof
here (but see www.perwass.de). In any case, J cannot be idempotent,
since it has no E1 component. Thus, J has to square to E1. We can write
J = αiEi with i ∈ UJ ⊂ Un\1. Since JJ = E1, all components of J must
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be mutually anti-commuting.
A standard construction of a universal Clifford algebra Cln shows that it

can be constructed from n mutually anti-commuting elements that square
to the identity [9, 10]. Such a set may be regarded as the basis of an n-
dimensional vector space Vn. J can therefore be seen as a basis vector of
some V ′n, which is the result of a change of basis of Vn. Since we assumed
Cln to be universal, it may also be constructed from V ′n.

We can therefore construct a new basis E ′n ≡ {E′
i} of Cln, with E′

1 = E1

and E′
2 = J . As we mentioned earlier, we can now construct a subset

D′ ⊂ E ′n with E′
1 ∈ D′ and E′

2 6∈ D′ such that D′ ∩ (D′E′
2) = ∅ and

D′ ∪ (D′E′
2) = E ′n. Our goal is now to see of what form B is. If we denote

the elements of D′ by {D′
i} we can parameterize B as B = βi

1D
′
i +βj

2D
′
jE

′
2.

It then follows that

BE′
1 = BE′

2 ⇐⇒ βi
1 D′

i + βj
2 D′

jE
′
2 = βi

1 D′
iE

′
2 + βj

2 D′
j ⇐⇒ βi

1 = βi
2.

(1.1)
Therefore, B can be written as B = βiD′

i (E′
1 + E′

2). To summarize, we
started with the equation AB = 0 and then showed that B has to have at
least one right eigen-multivector. Assuming that B has exactly one right
eigen-multivector, we could show that B is of the form given above. We
still have to show under what circumstances B is a possible solution to the
equation AB = 0. If we write A = αi

1D
′
i + αi

2D
′
iE

′
2 with {αi} ⊂ R we find

that AB = 0 if either of the following two conditions is satisfied.

A = αiD′
i(1− E′

2) and B = βjcD′
jc

(1 + E′
2), (1.2)

A = αiD′
i(1 + E′

2) and B = βjaD′
ja

(1 + E′
2), (1.3)

where i ∈ U(n−1), jc ∈ {j ∈ U(n−1) : D′
jE

′
2 = E′

2D
′
j} and ja ∈ {j ∈ U(n−1) :

D′
jE

′
2 = −E′

2D
′
j}. We can now answer the question regarding the dimension

of NA, the right null space of A. From BD′
jc

E′
2 = BE′

2D
′
jc

= BD′
jc

and
BD′

ja
E′

2 = −BE′
2D

′
ja

= −BD′
ja

it follows that B maps half the basis
of Cln onto the other half. Hence, {BDi : i ∈ U(n−1)} is a basis of NA

and dimNA = 2(n−1). We may conjecture that if B has k right eigen-
multivectors then dimNA = 2(n−k). A proof of this will not be given here.

We can draw some conclusions from this analysis. First of all, we saw
that if a multivector has a right null space, the dimension of the null space
is a power of 2. Furthermore, the existence of a right null space implies
the existence of at least one right eigen-multivector and vice versa. That
is, instead of looking for the null space of A, we could also try to evaluate
its eigen-multivectors.

We will not discuss the versor equation V AṼ = B in all its generality.
Note that we can write this equation also as V A = BV . In this form it is
similar to the eigen-multivector equation V A = λV where λ ∈ R. The form
we will consider the versor equation in is V A−BV = 0. If there exists a set
of multivectors JB := {J ∈ Cln : JB = BJ} then (JBV )A−B(JBV ) = 0.
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This shows that the solution space for V has dimension dimJB . Note that
if J1, J2 ∈ JB then (J1J2) ∈ JB . Therefore, the dimension of JB is a power
of 2.

Consider for example Cl3. Let a,b ∈ Cl3 be two unit vectors in a Eu-
clidean 3D-space. We are looking for the rotor R such that RaR̃ = b. We
know that the appropriate rotor is Rab = eUabθ/2, where Uab is the unit
bivector representing the rotation plane, and θ is the angle of rotation.
However, if we were trying to solve for R in Ra − bR = 0, we would find
the solution set to be JR := {Rab,bRab, UbRab, IRab}, where I is the pseu-
doscalar of Cl3 and Ub = bI−1, the plane normal to b. We cannot even
lift this ambiguity completely by introducing more vector pairs that are
related by the same rotor. If we introduce a second vector pair the solution
space becomes JR := {Rab, IRab}. That is, although the rotation is now
uniquely defined, the rotor is only given ”up to duality”, since I commutes
with all vectors. Therefore, we would have to enforce the solution space
JR to be an even subspace of Cl3, in order to reduce the solution space to
JR := {Rab}. This is what we will do in our numerical algorithm.

1.3 Implementation

In order to solve Clifford equations like AB = 0 or V AṼ = B in Cln numeri-
cally, we regard multivectors as 2n dimensional vectors with an appropriate
metric. Then we can use standard methods for solving sets simultaneous
linear equations, e.g. singular value decomposition (SVD). Nevertheless,
we always stay in the particular Clifford algebra. This means, for example,
that we can solve for a rotor linearly, while still remaining within the space
of rotors.

As described in the previous section we write a multivector A ∈ Cln as
A = αiEi, where the {Ei} ≡ En form a basis of Cln. We assume Cln to be
universal. Therefore, the metric gij

k satisfies the properties specified at the
beginning of the previous section. We assume that gij

k is known for the
particular Cln we use.

Let A,B,X ∈ Cln be defined as A := αiEi, B := βiEi and X := ξiEi.
To solve AX = 0 for X we write this equation as αiξjgij

k = ξj GA k
j = 0,

where GA k
j ≡ αigij

k is a matrix of dimensions 2n×2n. Now we simply have
to evaluate the null space of GA to obtain the set of multivectors X that
satisfy AX = 0. Similarly we can solve the equation AX = B for X. In this
case we write ξj GA k

j = βk, and then evaluate the inverse of GA. If B = 1
we obtain the inverse of A in this way, provided A does have an inverse.
The versor equation V AṼ = B can be solved analogously. Let V := ηiEi

and write the versor equation as V A−BV = 0. This becomes

ηiαjgij
k − βjηigji

k = ηi (αjgij
k − βjgji

k) = ηi GAB k
i = 0, (1.4)
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where GAB k
i ≡ (αjgij

k−βjgji
k). Note that the difference between left and

right multiplication with V is expressed by the transposition of the indices
i and j in gij

k. Again we only have to find the null space of GAB in order
to find V . If we know that V only has components ηiEi with i ∈ UV ⊂ Un,
we simply take out the appropriate columns of GAB to implement these
constraints. This enables us, for example, to reduce the solution space of
V to the even subalgebra of Cln, or even to a particular rotation plane.
Furthermore, if we know that two factors ηi have to be equal we can simply
add the appropriate columns of GAB .

The general rotation between two sets of 3D-points may be evaluated
in this way in a conformal space. The appropriate Clifford algebra for this
space is Cl4,1(V4,1), i.e. 4 basis vectors square to +1 and one to −1. We will
only give a very short introduction to the properties of this algebra. See [11]
for more details. Let the basis of V4,1 be given by {e1, e2, e3, e+, e−} where
e2
i = e2

+ = +1, i ∈ {1, 2, 3} and e2
− = −1. We define two composite elements

e ≡ e+ + e− and ē ≡ 1
2 (e− − e+), such that e2 = ē2 = 0 and e · ē = −1. A

vector in Euclidean space, x ∈ V3, is represented in this conformal space as
X = x+ 1

2x
2e+ē, such that X2 = 0. The advantage of working in this space

is that there exist versors for rotation and translation. The versor for a pure
rotation about the rotation axis given by the normalized vector b̂ and angle
θ is Rb = cos θ + sin θ Ûb, where Ûb ≡ b̂I−1

3 and I−1
3 ≡ e3e2e1. The versor

for a pure translation by a vector a is given by Ta = 1 − 1
2ae. Therefore,

the general rotation about an axis with orientation b̂ and offset a is given
by Wab ≡ TaRbT̃a = cos θ + sin θÛb + sin θ(Ûb · a)e. Therefore, Wab has 7
components: Wab = η0 + η1e2e3 + η2e3e1 + η3e1e2 + η1

ee1e + η2
ee2e + η3

ee3e.
However, recall that e is a composite element, which means that the three
elements {ηi

eeie} are really six elements {ηi
+ eie+, ηi

− eie−} when we solve
for Wab numerically. But as we mentioned above, the constraint ηi

+ = ηi
−

can be implemented quite easily. A much more serious problem is that
the seven parameters of Wab are not independent. This is because the
{ηi

e} not only depend on a but also on Ûb, the rotation plane. In fact,
a′ ≡ Ûb · a is the orthogonal complement of the projection of a onto Ûb [7].
When we evaluate Wab numerically as described above, i.e. regarding all
parameters as independent, there is no guarantee that the vector a′ does
indeed lie on Ûb. To obtain a proper versor we therefore adjust Wab after
evaluation such that this condition is satisfied. The adjusted a′ is then given
by a′adj = (a′ · Û−1

b ) · Ûb. This is of course quite an arbitrary adjustment
and may introduce an error. Nevertheless, we will investigate this method
of evaluation of Wab in the following.
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FIGURE 1.1.

1.4 Experiments

We performed two synthetic experiments, to test the evaluation quality of
the above described method for evaluating general rotations. In the first
experiment we evaluated a pure rotation and in the second experiment
a general rotation. In both experiments we used the following setup. A
random distribution of N = 100 points was created within a sphere of
radius 10 about the origin. Then this set of points was rotated by an angle
of π/4 radians about the rotation axis given by the vector (e1 +2e2 +3e3).
For the general rotation experiment the rotation axis was also translated by
the vector (e1− e2 + 2e3). Let the initial and transformed sets of points be
denoted by {ai} and {bi}, respectively. Then Gaussian noise was induced
into both sets to produce data sets {a′i} and {b′

i}, which in turn were
used to evaluate the appropriate versor (V eval). Even though we added
Gaussian noise evenly to all points, it is clear that this has a stronger effect
for points close to the rotation axis, than for points further away from it.
To obtain a statistically meaningful error measure we therefore evaluated
M = 100 versors {V eval

i } from different random sets of 3D-points at each
noise level. Two error measures were calculated at each noise level.

∆ :=
1
M

M∑
i

√√√√ N∑
j

(bj − beval
ij )2

N
, ∆′ :=

1
M

M∑
i

√√√√ N∑
j

(b′
j − beval

ij )2

N
,

(1.5)
where beval

ij := V eval
i aj Ṽ eval

i . Figure 1.1 shows the result of these evalua-
tions. The units on the x-axis refer to the Gaussian mean deviation of the
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radii of the error vectors added to the point sets {ai} and {bi} to give {a′i}
and {b′

i}. In the figure the values for ∆ are denoted by ”Compared with
True” and the values for ∆′ with ”Compared with Data”. The series with
pure rotation is indicated by ”(R)” and the series where a general rotation
was evaluated is indicated by ”(R&T)”. The line denoted ”Expected” in-
dicates the mean geometric error we might naively expect. That is, if we
induce noise with a Gaussian mean deviation of δ, we might also expect the
versor evaluated from this noisy data to produce a mean geometric error
of δ. However, what we see is quite different.

Maybe the most surprising result is that if we have pure rotation of a
rigid body about a known origin, the appropriate rotor can be evaluated
with fairly high accuracy, even for large noise (Compared with True (R)).
This shows that pure rotation is a very strong constraint if the origin is
known. Nevertheless, the figure also shows that if the origin is not known
(Compared with True (R&T)), i.e. we have to evaluate a general rotation,
the mean geometric error grows very quickly. This large error cannot be due
to our adjustment of the evaluated rotor, since we found that the geometric
product of the rotor with its reverse deviates only slightly from unity.

The two series that show the values of ∆′ indicate how close the evaluated
versors reproduce the data they were calculated from. In the case of pure
rotation the mean geometric error is as big as the induced noise. This shows
that the method of evaluation can only reproduce the noisy data up to its
noise level. However, when evaluating a general rotation, the evaluated
versor cannot even reproduce the noisy data up to its noise level.

1.5 Conclusion

As with most mathematical work, this paper was actually developed from
back to front. That is, after realizing how we could solve equations like
AB = 0 or AB = C numerically, while staying within the given Clifford
algebra, we were somewhat surprised by the results. Especially the ob-
servation that the null space of a multivector always seemed to have the
dimension of a power of 2, ”cried out” for some analytical justification.
The results of this analysis are presented in the first section of this paper.
As you will have realized, in this first section we deviated quite a bit from
our declared goal to investigate the numerical evaluation of versors. How-
ever, we found this analysis to be very interesting and informative, since
it taught us a number of things about universal Clifford algebras that we
had not seen discussed before. This analysis then helped us to understand
our numerical algorithms better.

Clifford algebra seemed an attractive tool to evaluate the general rotation
between two 3D-point sets, since rotation and translation can be expressed
as linear operators. That is, we can evaluate a general rotation through a
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set of simultaneous linear equations, while always staying within the space
of the appropriate operator. As we have seen, this is not quite true, since
the versor for a general rotation does not consist of six independent param-
eters. Nevertheless, one could easily implement a minimization routine that
evaluates such a versor from just six parameters, e.g. via a gradient descent
method. In any case, for small noise levels the algorithm we presented here
gives good results. It is also fairly fast, where its speed depends mainly on
the implementation of the SVD algorithm. In our case the evaluation of a
versor for a general rotation from 100 3D-point pairs took on average 0.08
seconds on an AMD-K6 III, 400 MHz running Windows Me. The algorithm
was implemented with Christian Perwass’ geometric algebra C++ library
(CLU library) and is available for download as part of this library from
www.perwass.com.
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