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Fredrik Vikstén∗, Robert Söderberg∗, Klas Nordberg∗ and Christian Perwass†

∗Computer Vision Laboratory

Department of Electrical Engineering
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Abstract— We have developed a system which integrates the
information output from several pose estimation algorithms and
from several views of the scene. It is tested in a real setup with a
robotic manipulator. It is shown that integrating pose estimates
from several algorithms increases the overall performance of the
pose estimation accuracy as well as the robustness as compared
to using only a single algorithm. It is shown that increased
robustness can be achieved by using pose estimation algorithms
based on complementary features, so called algorithmic multi-cue
integration (AMC). Furthermore it is also shown that increased
accuracy can be achieved by integrating pose estimation results
from different views of the scene, so-called temporal multi-cue
integration (TMC). Temporal multi-cue integration is the most
interesting aspect of this paper.

I. INTRODUCTION

One problem that computer vision research has been trying

to solve for a long time is to estimate the physical state

of an object in an image. Applications that would benefit

from a robust pose estimation system include bin picking and

augmented reality systems as well as navigation or warning

systems in cars or autonomous fork lifts etc. Estimation of

position and orientation in space is called pose estimation.

For a pose estimation algorithm to be robust for varying types

of objects and lighting conditions, it needs to be based on

descriptive and robust local features [1], [2], [3], [4]. It

is hard or even impossible to do this with only one pose

estimation algorithm that uses only a single type of local

feature. This is due to the fact that a typical local image feature

is only able to robustly describe a subset of possible objects

and images thereof. If several algorithms are used, there is a

higher probability that at least one succeeds in estimating the

object state parameters under the current conditions. However

if several algorithms are running, we have to solve the problem

of how to integrate the cues from the different algorithms. Best

performance of a multi-cue integration system is reached if the

local features produced by the different algorithms are comple-

mentary, e.g. different features such as lines, corners, ellipses

or model free patches. In section III a framework for multi-cue

integration for increasing the robustness is discussed.

Most of the multi-cue integration systems found in the

literature [5], [6], [7], including the one described in sec-

tion III, perform integration of cues coming from a single

image. This type of system seems to improve the robustness

rather than increasing the accuracy. Several visual servoing

systems use an eye-in-hand setup [8], [9], where the camera

is mounted on the manipulator. If the camera is moved such

that the object is seen from different views and the movements

are recorded with high accuracy, it is possible to perform a

multi-cue integration over time to improve the accuracy of the

object state estimate. In section IV, a system for improving

the accuracy is discussed, which is based on the framework

used in section III.

II. POSE ESTIMATION ALGORITHMS

Any algorithm that outputs object state parameters together

with a confidence value can be used in this cue integration

framework. A higher dimensionality of the voting space gives

a higher chance of object state estimates not interfering with

each other so it is preferable to use algorithms that output as

full a 3D object state description as possible. Algorithms that

are suitable to use in this framework include [1], [2], [3], [4],

where the last two are the ones used in the experiments.

III. MULTI-CUE INTEGRATION FOR ROBUSTNESS

Several systems for multi-cue integration are based on the

integration of different local features as cues for getting a

more robust system. The integration presented here is different

since the cues are results from a number of pose estimation

algorithms instead of local features. The algorithmic multi-

cue integration (AMC) is illustrated in Fig. 1, where votes on

object state parameters from each pose estimation algorithm

are put into a voting space with corresponding confidence

value and the integration is implemented by using a clustering

algorithm. The center of each cluster forms a new result with

a new confidence value. This confidence value is based on the

confidence values of the votes in the cluster and how dense the

cluster is. Observe that each pose estimation algorithm should

generate several object state estimates, where the additional

estimates could come from several objects or from noise.
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Fig. 1. Ordinary case for multi-cue integration between algorithms.
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Fig. 2. Multi-cue integration increasing robustness.

The clustering algorithm used in this type of integration has

to be efficient on multi-dimensional vectors and has to take

the corresponding confidence value into account. One such

algorithm is the mean-shift clustering algorithm [10], [11],

[12], which is used here.

It is important that the resulting object state vectors from

the pose estimation algorithms are unambiguous in the sense

of comparing different object states. For example the Euler-

angle representation is ambiguous in that sense, but rotation

matrices and quaternions are not. We have chosen to work

with quaternions because they are a more compact represen-

tation and will therefore reduce the computation time of the

clustering.

When AMC is implemented as a clustering of pose estimate

results it can behave in a number of different ways,

• Single algorithm result.

• Robust mean between two or more algorithms.

• Algorithmic voting.

The single algorithm result will occur when all algorithms

but one have failed to estimate the object state parameters.

Algorithms that fail output mostly noise. It is unlikely that

such output will form clusters in the voting space. Therefore,

the result from the algorithmic multi-cue integration will be the

algorithm with the highest confidence. The confidence values

should be relative to the quality of the object state estimate

and the successful algorithm will therefore have the highest

confidence. Of course, the robustness is highly dependent on

the confidence measurements for this type of situation.

In the case where two or more algorithms succeed in

estimating the object state parameters, the votes from these

algorithms will normally cluster in the voting space. For this

type of situation the result from AMC will be a robust mean

of the votes contained in the cluster.

In case of occluded objects or when only a very small part of

the object is visible in the image we may have the case that one

of the correct pose estimates is ranked only as second or third

choice by the confidence of the algorithms. One goal of AMC

is to make the system more robust to this type of problem.

Therefore the system is designed such that two or more votes

that do not necessarily have the highest confidence for their

algorithms, but which are similar should be chosen before a

single vote that by itself has a higher confidence. We call this

algorithmic voting. The mean-shift clustering implementation

uses the confidence of each guess as a weight and therefore

gives us exactly this kind of behavior. This case is illustrated

in Fig. 2 where the size of the shape signifies confidence.

IV. MULTI-CUE INTEGRATION FOR ACCURACY

Although the cameras of today have good image quality,

there is still some noise in the images. The amount of noise

is of course dependent on the camera quality, but also on

the camera settings such as gain and exposure time. To

analyze how this noise influences the quality of the two pose

estimation algorithms, 40 images of an object were captured

from the same camera position. The orientation part of the

pose estimates from these images were then compared with the

ground truth. The angular error for the 40 images is plotted in

Fig. 3, where the error is the angle β between the quaternions

that represent the ground truth qg and the pose estimate qp.

The error is given by

β = 2arccos

(

qgqp
∣

∣qg

∣

∣

∣

∣qp

∣

∣

)

. (1)

Since neither the camera nor object were moved during the

experiment, the variations in the pose estimates must be due to

the image noise. The algorithms were evaluated on low-pass

filtered 8-bit gray images with pixel-noise having a variance

of just below 1 pixel-level1.

It is clear that this noise is approximately unbiased, and it is

therefore possible to decrease the noise by calculating a mean

of a subset of the pose estimates. In Fig. 4 the pose estimate

result from multi-cue integration between the algorithms is

plotted together with the result from using both multi-cue

integration between algorithms and with previous estimates.

The dashed curve is the result when the mean is calculated

1Images in range 0-255 with usual values for black around 30 and the
lighter areas of objects around 240.
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Fig. 3. Variation in degrees in pose estimate due to pixel noise.
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Fig. 4. Variation in pose estimate when previous estimates are integrated.

over three pose estimates and the solid curve is the result

when the mean is calculated over five pose estimates. It is

clear that both the mean and the standard deviation is de-

creased compared to only using multi-cue integration between

algorithms. For example, the mean error has decreased by

42 percent and the standard deviation has decreased by 87

percent when averaging is made over five pose estimates (the

solid curve) as compared to only using multi-cue integration

between algorithms (dotted curve).

In a robotic system you usually don’t have a number of

images from the same camera position, but during movement

a number of images can be captured on the way toward the

target view. The problem is that the camera will have different

positions for the different images and the pose estimates will

therefore be different. In Fig. 5 two camera positions are

shown; one where the object is close to the border of the

Camera position 1 Camera position 2

Pose estimate 1

Pose estimate 2

Robot movement

Image 1 Image 2

Fig. 5. The setup for multi-cue integration between several views.
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Fig. 6. The different coordinate systems for the setup used in multi-cue
integration between several views.

camera image and one where the camera is centered over the

object. In this case the position estimate of the object will

be completely different and it is not possible to calculate a

mean between the two different pose estimates. This problem

is of course also present in the more general case when the

movement is not constrained to translation in a plane. To work

around this problem we need to transform the pose estimates

to the same coordinate system before we can calculate a mean

of the pose estimates.

In Fig. 6 an illustration of the different coordinate systems

is seen; the world coordinate system, the camera coordinate

system for two different camera positions and the object

coordinate system. In Fig. 6 we have used the notation W TC1
,

where W stands for the world coordinate system, C1 stands for

camera position number one and the full expression stands for

camera position number one relative to the world coordinate

system.

From the robot controller and the hand-eye calibration we

get the transformations W TC1
and W TC2

. The pose estimate
C1TObj can then be transformed to camera position two by

C2T
′

Obj =
[

W TC2

]

−1 W TC1

C1TObj . (2)

If the pose estimate is stored together with the current camera



Fig. 7. Differences in seen pose due to relative camera-object position.

position for each step during movement toward the target view

it is possible to perform multi-cue integration with previous

estimates since we can transform them into the new coordinate

system. We call this kind of integration temporal multi-cue

integration (TMC).

Ordinary coordinate transformations are not enough to de-

scribe a system with a moving camera the resulting changes

in estimated pose. This is due to the perspective projection

and an example of this effect can be seen in Fig. 7. In Fig. 7

the camera is translated relative to the object but it appears

as if the object is also rotated. The algorithms will detect this

rotation and before we can do anything else we have to correct

the pose estimates for this effect. The correction in θ and φ

angles is visualized in Fig. 8 and is calculated as

θcorr = arg(xmm − iymm) and (3)

φcorr = arg(zstd + i
√

x2
mm + y2

mm) , (4)

where xmm and ymm are the position estimates relative to

the camera described in millimeters and zstd is the distance

in millimeters to the plane through the object and parallel to

θcorr

φcorr

Fig. 8. Errors in pose estimates due to relative camera-object position. In
the right part of the figure the camera should be thought of as being in the
center of the circle, looking down on the object.

B

A

Fig. 9. Schematic of experimental setup.

the image plane. The pose estimates from each algorithm are

corrected with these values by a transformation matrix.

The process of TMC can then be divided into the following

steps. For a certain camera position all previous pose estimates

are first corrected using (3) and (4) and finally transformed us-

ing (2). The confidence measurement for these pose estimates

are then weighted with the weight wi

wi = f (n−i), (5)

where i is the step number for the previous pose estimate, n is

the current step number and f is the forget factor. All previous

pose estimates are then used as cues in the same manner as

described in section III.

V. EXPERIMENTS

A. Evaluation platform

A schematic of the experimental setup can be seen in

Fig. 9. The lights marked A and B in Fig. 9 were covered

with a plastic cover for making the light more diffuse. The

lights were placed very low to give a low-angle lighting.

This combined with having a number of small spotlights in

the ceiling, not visible in Fig. 9, produce a somewhat harsh

lighting environment since it casts shadows etc. The object

was placed on the table between the lights and then the robot



hand and camera was positioned at a random position 450 mm

above the table looking down. The robot was made to move

in such a way to first center on the object and then move on

a sphere to reach a reference position. The number of steps

for each part of the movement was set to 7 for movement in

a plane and to 6 for the movement on the half-sphere. This

enables us to evaluate if the system converges or if it oscillates.

In a real system a termination condition based on the predicted

level of accuracy should be used instead.

B. Variables

The properties of the test setup that have been varied during

the testing phase include the object, lighting, background,

number and type of other objects present, level of occlusion

of the object to be detected as well as active pose estimation

algorithm and state of multi-cue integration.

The objects that have been tested for are a plastic power

socket with two outlets, referred to as socket, and a cast

metal piece of an electrical motor, referred to as bug. It

should be noted that the two objects are different in size as

well as different in the type of internal structure. Even more

important is perhaps the differences in surface properties such

as reflectiveness and color. This suggest that the results will

generalize to a large set of object types.

The lighting conditions used during the tests includes the

situation where both light A and B are turned on, referred to

as light 1, and only light A turned on, referred to as light 2.

Light 1 is used during training. It should be emphasized that

due to the low-angle property of the light, the second light

condition is a significant change in lighting.

During the tests we have used a black background, but for

several experiments a large part of the background was covered

with other objects and we believe this is comparable to a real

situation. The reason for not changing the background is that

the objects can not be moved if we want to keep ground-truth.

The combinations of pose estimation algorithms and multi-

cue integration used during the test were: each algorithm by

itself, both of the algorithms with cue integration between

them active as well as both of the algorithms with temporal

multi-cue integration active.

It should be emphasized that not all combinations of the

above mentioned properties have been varied during the tests.

A few examples of typical images can be seen in Fig. 10.

C. Parameters and training

The pose estimation algorithms were trained by using 94

images for the socket and 177 for the bug.

All algorithm-specific parameters were kept at the same

values throughout all experiments. The settings for the multi-

cue integration were also kept constant throughout the exper-

iments. These two statements are very important since they

indicate how stable the algorithms really are. It is always easier

to get things to work well on a subset of the problem if we

are allowed to tune the parameters of the algorithms and this

was something we wanted to avoid doing.

Fig. 10. Example images of changes in scene, lighting and occlusion. The
images in the top row are from experiments with the socket. The images in
the bottom row are from experiments with the bug.

In the forth-coming presentation of results we will use the

following error measures as for the Cartesian position

ǫpos = 3

√

(xt − xc)2 + (yt − yc)2 + (zt − zc)2, (6)

and for angular position

ǫang = 2 cos−1(qT
t qc), (7)

where we used subscript t for training, which is also the

reference, position, subscript c for current position and q is a

quaternion of the rotation in column vector format.

VI. RESULTS AND CONCLUSIONS

A. Conclusions for temporal multi-cue integration (TMC)

As stated in section IV, a system should be able to generate

more accurate pose estimates if cues from several views

of the observed object are used. In Fig. 11 a testrun is

illustrated, where the cartesian and angular distance between

robot position and the reference position are plotted for each

iteration. We have plotted the result for AMC between two

algorithms together with the result for AMC between the same

algorithms while also using TMC. Both the mean accuracy and

the standard deviation is better with TMC than without TMC

for this situation.

For a more complete test of the performace of TMC we

made 67 runs for the socket without using TMC and 22

runs using TMC. During the tests the lighting as well as

the presence of other objects were varied. The mean error

and variance can be seen in table I, where TMC significantly

improves the performance. These values are comparable to

those found in section IV.

One of the main points of TMC is that it stabilizes the

results and reduces the variations in the taken trajectories. How

much of a low-pass character TMC has depends on the forget

factor γ, which is a temporal weight that adjust the influence
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Fig. 11. A comparison between using and not using TMC with AMC
(i.e. Algorithm 1+Algorithm 2). The result is for the socket with lighting
2 and no other objects in the scene.

No TMC TMC

Position mean error 1.28 0.85
Position error variance 0.93 0.17
Angular mean error 1.84 0.98
Angular error variance 1.47 0.10

TABLE I

MEASURED ERRORS AND VARIANCE.

of older pose estimates. In initial tests we varied the forget

factor and found γ = 0.7 to be a quite good choice.

Although the results for TMC is very good it is important

to understand that the performance of this algorithm is highly

dependent on the 3D position estimate of the object. In these

tests, the distance to the object (z-coordinate) is fixed and

known by the system. There is therefore no error in the z-

coordinate, which definitely improves the result.

One point that could be a problem is if one pose estimate

during the purposeful movement toward the target view has

large errors. When not using TMC this is either no problem

or a very severe one, i.e. the system will either have a second
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Fig. 12. The result for the socket with lighting 1 and other objects present
in the scene. Algorithm 1 has slightly better result than AMC.

chance in the next iteration assuming that the object is still

in the image or it will fail completely if the robot moves

such that the object is no longer in the next image. When

using TMC the situation is somewhat different. The large pose

estimation error will remain in memory and affect intermediate

results and possibly also the end result. The effect of this error

is reduced by the forget factor, since the influence of older

pose estimates is reduced. However, most of the time such

an incorrect estimate will not be part of the most prominent

cluster once a few correct pose estimates have been obtained.

The results presented above are very typical and convincing,

we therefore draw the conclusion that using votes from several

views will both increase the accuracy of the system and

improve the repeatability of the system, i.e. give a lower

standard deviation for the different test runs.

B. Conclusions for algorithmic multi-cue integration (AMC)

In section III it is stated that a system using algorithmic

multi-cue integration should be more stable to changes in

light, background and target object, since cues from several

algorithms are used and integrated. One thing that we took
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Fig. 13. The result for the socket with lighting 2 and other objects present
in the scene. For this situation AMC still works even though algorithm 1 has
failed, which is why it is missing.

extra care to monitor during the experiments was that the

confidence measures for the different algorithms had the same

scale. This is important since it can make all assumptions on

the properties of AMC totally wrong due to an imbalance

between the algorithms.

We have performed tests for several different situations for

the purpose of investigating the benefit of AMC. The following

observations have been made:

The first observation is for the socket with other objects in

the scene. The lighting condition is varied and the result is

illustrated in Fig. 12 and Fig. 13. For those two situations we

can see that AMC introduces robustness to the system. For

instance, when algorithm 2 has a quite bad Cartesian error for

light 1 the AMC result is still very good. Moreover, algorithm

1 fails for light 2 but still the AMC result is stable. Thus we

conclude that AMC makes the system more robust to failures

by single algorithms, as stated in section III.

We have also observed situations where AMC significantly

improves both the angular error and the Cartesian error com-

pared to the single algorithm result, Fig. 14. This could be the

case, when the pose vote with the second highest confidence
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Fig. 14. An illustation where both single algorithms fails and the AMC
between the algorithms significantly improves the result. The result is for the
bug with lighting 2 and other objects present in the scene.

for each algorithm is the “correct” one and for the case of

AMC these will cluster and be the end result. This behavior

of AMC is referred to algorithmic voting in section III.

Several other tests have been performed to investigate the

performance of AMC, but these tests could not be included

in this paper due to lack of space. The interested reader is

referred to [13], [14]. The conclusion from all these tests is

that AMC makes the system more robust to different objects,

lighting conditions and other objects in the scene. We have

cases where one algorithm fails and AMC still works. There

are situations where both algorithms work, but still it seems

like AMC improves the result or at least is close to the “best”

algorithm.

ACKNOWLEDGMENT

The authors would like to thank the European Commission

for sponsoring the VISATEC project, [15], within which all

research presented in this paper has been made.

REFERENCES

[1] D. G. Lowe, “Object recognition from local scale-invariant features,” in
Proc. ICCV’99, 1999.



[2] B. Johansson and A. Moe, “Patch-duplets for object recognition and
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