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AbstratReonstrution of 3D-objets from a number of images is a entral subjet of Com-puter Vision. In this paper we investigate the geometrial struture of the trifoal tensorusing Geometri Algebra. Furthermore, we will give a novel expression for the trifoaltensor, derive onstraints on its geometrial struture and investigate its reonstrutionability omputationally. We will show that the reonstrution quality is not diretlyrelated to the self-onsisteny of the trifoal tensor.Categories: Trifoal Tensor, Geometri Algebra, Grassmann-Cayley Algebra, ReiproalFrames, Reonstrution
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1 IntrodutionReently there has been muh interest in deriving and haraterising the trifoal tensor.The trifoal tensor is used to obtain a projetive reonstrution from three images, takenwith unalibrated ameras from unknown positions of the same 3D-sene. It an also beused to transfer lines or points from one image to another. [1℄ and [2℄ give a disussion ofthe struture of the trifoal tensor and present examples of its use.In e�et the trifoal tensor enodes the relative positions and orientations of the am-eras. It an be alulated if at least 7 point mathes over the three images are available.One the trifoal tensor has been alulated, the epipoles, amera matries and funda-mental matries an be extrated from it. The quality of the initial point mathes isruial for obtaining good estimates of these values, however. Therefore, a lot of researhhas gone into obtaining a good estimate of the trifoal tensor from not so good pointmathes. The main problem being how to deide what estimate of a trifoal tensor is\good" if only point mathes and nothing else are known.The trifoal tensor has also been studied in terms of Grassmann-Cayley (GC) algebra([3℄, [4℄, [5℄). A derivation and analysis in terms of Geometri Algebra (GA) an be foundin [6℄ and [7℄.In this paper the derivation and analysis of the trifoal tensor in terms of GeometriAlgebra will be extended. Although GA is similar to GC algebra, it will be shown thatgeometri algebra has some distint advantages due to its use of the inner produt. This isespeially apparent in a novel interpretation of amera matries and the trifoal tensor. Inpartiular, a onise expression for the trifoal tensor is given, whih allows a better insightinto its geometrial meaning. Also, a set of onstraints on the internal struture of thetrifoal tensor will be derived. These onstraints form a superset of onstraints previouslyderived in [3℄ and [5℄. However, here the derivation is done purely geometrially and notthrough the investigation of polynomials as in [3℄. The e�et of the newly found onstraintson the reonstrution ability of the trifoal tensor will be investigated omputationally.2 Geometri AlgebraSine all the analysis in this paper is arried out in terms of GA, a short introdutionwill be given here. All the alulation rules and identities needed to follow this reportare presented. However, proofs and derivations will be omitted. The interested readermay refer to [8℄ and [9℄ for a thorough treatment of GA. A shorter derivation of the mostimportant results an be found in [6℄ and [7℄.The easiest way to understand GA is to show how it extends the funtionality ofstandard vetor alulus (SVC), whih we assume all readers are familiar with. In SVCthe starting point is to de�ne a frame. Here all alulations are performed in a artesianframe, so we an start by de�ning an orthonormal basis of E3, fe1; e2; e3g with signaturef+++g. A vetor a in this basis may then be de�ned asa = �iei3



Here, as throughout the rest of the text, greek indies will be assumed to ount from 1 to4 and latin indies to ount from 1 to 3. Also, a supersript index repeated as a subsript(or vie versa) implies a summation over the range of that index, unless spei�ally statedotherwise. Now, SVC de�nes a salar produt of two vetors whih results in a salar.For example, the salar produt of two vetors a and b is written as s = a�b, where s isa salar. The salar s gives some information about the relative orientation of vetors aand b. That is, the salar produt is a metri operation, sine it is only de�ned in relationto a frame.GA extends the salar produt to an inner produt. The inner produt of two vetorsa and b is still written as a�b and it has the same metri meaning. However, the innerprodut an also be applied in a non-metri sense. In order to see this, we will �rst haveto introdue the outer produt.The outer produt of two vetors a and b is written as a^b and is alled a 2-blade.A 2-blade may be regarded as an oriented area. Analogously, the outer produt of threevetors, a 3-blade, a b̂̂  an be interpreted as an oriented volume. However, in projetivegeometry, whih will be treated later on, the geometri meaning of 2-blades and 3-bladesis quite di�erent. A more general interpretation of k-blades will be given at the end ofthis setion.The outer and inner produt are also de�ned in the absene of a basis frame. This iswhere the power of GA lies. Let a; b;  2 En, then the following rules apply to the innerprodut:1. If a�b = 0 then a and b are said to be orthogonal.2. a�b = b�a = s where s is a salar. That is, the inner produt is ommutative.3. a�(b+ ) = a�b+ a�. Distributive law.For the outer produt we have1. If a^b = 0 then a and b are said to be parallel or linearly dependent.2. a^b = �b^a. That is, the outer produt is anti-ommutative.3. a^(b+ ) = a^b+ a^. Distributive law.4. a^(b^) = (a^b)^. Assoiative law.From the �rst rule for the outer produt it follows diretly that the highest gradeobjet in En is of grade n, simply beause in En at most n mutually linearly independentvetors an be formed. The objet of highest grade is alled the pseudosalar of that spae.Obviously the pseudosalars of some vetor spae an only di�er by a salar fator.A 1-vetor, or simply vetor, in GA is the same as a vetor in SVC. In that sense itis also equivalent to a 1-blade. However, in GA we an have vetors of higher grade, aswell. A k-vetor is de�ned to be the sum of a number of k-blades. Note that a k-vetorannot neessarily be expressed as a k-blade, but every k-blade is also a k-vetor. Someexamples may help to larify this idea. A 2-vetor , or bivetor, w 2 E3 may be given byw = 2(e1^e2) + 3(e1^e3)4



This partiular bivetor an also be written as a 2-blade;w = e1^(2e2 + 3e3)In fat, in E3 any 2-vetor an be expressed as a 2-blade. However, in higher dimensionalspaes this is not neessarily the ase. Consider the following bivetor in E4 with basisfe1; e2; e3; e4g. w = �(e1^e2) + �(e3^e4)where � and � are some salar fators. This bivetor annot be written as a 2-blade.Just as a k-vetor is the sum of a number of k-blades, GA also de�nes a multivetorwhih is the sum of a number of blades that are not neessarily of the same grade1.Working with multivetors is onsiderably more ompliated than working with k-vetors.Sine they are also not needed in this report multivetors will not be disussed here. Werefer the interested reader to [8℄ and [9℄.There is also a distributive law for the inner produt with respet to the outer produt.The following is an important general result. Let Bs be an s-blade and let the farg forma set of unique vetors suh that for no two ai;aj 2 farg ai^aj = 0. Then,Bs �(a1^a2^: : :^ar) = Xfjig �j1j2���jrhBs �(aj1^aj2^: : :^ajs)iajs+1^: : :^ajr (1)where �j1j2���jr is +1 if the fjig form an even permutation of f1; 2; : : : ; rg, �1 if they forman odd permutation and 0 if any two indies are idential. Admittedly this equation looksrather onfusing. A few examples, however, should larify the situation.a�(b1^b2) = (a�b1)b2 � (a�b2)b1 (2-1)a�(b1^b2^b3) = (a�b1)(b2^b3)� (a�b2)(b1^b3) + (a�b3)(b1^b2) (2-2)Furthermore, (a1^a2)�(b1^b2) = a1 ��a2 �(b1^b2)�= a2 �b1 a1 �b2 � a2 �b2 a1 �b1 (3-1)(a1^a2)�(b1^b2^b3) = h(a1^a2)�(b1^b2)ib3�h(a1^a2)�(b1^b3)ib2+h(a1^a2)�(b2^b3)ib1 (3-2)
Equations (2) and (3) learly show the non-metri side of the inner produt. Forexample, in equation (2-1) the inner produt of a vetor with a bivetor results in avetor. In equation (2-2) the inner produt of a vetor with a trivetor 2 gives a 2-vetor.Similarly for equations (3).1In more general texts on GA a k-vetor as de�ned here is alled a homogeneous multivetor of grade k.We have hosen not to follow this naming onvention sine in projetive geometry the term \homogeneousvetor" is already used to desribe something quite di�erent.2A \trivetor" is a 3-vetor. Note that for vetors higher than grade 3 there are no speial names.5



That is, the inner produt redues the grade of a k-vetor whereas the outer produtinreases it.Following this interpretation of inner and outer produt onsequently leads to thenotion that a salar is a 0-vetor, beause the inner produt of two vetors results in asalar. However, then we must also assert that the inner produt of a salar with a vetoris identially zero.In Setion 3 it will be shown that intersetions as well as the dual operation an beexpressed in terms of the inner produt. GC algebra laks suh a universal operator andtherefore has to resort to de�ning a number of di�erent inner-produt-like strutures.Now we are in a position to see what the algebrai meaning of a bivetor is. Let avetor x 2 E3 be de�ned as x = a�(b1^b2)We an get some information about the orientation of x by alulatinga�x = a�ha�(b1^b2)i= (a^a)�(b1^b2) from equation (3-1)= 0 (4)This shows that x and a are orthogonal. Furthermore, we havex = a�(b1^b2)= (a�b1)b2 � (a�b2)b1 (5)and hene x lies in the plane given by b1 and b2. Therefore, we an interpret the bivetorb1^b2 as the ombination of the linear dependenies given by b1 and b2. Taking the innerprodut of a with this bivetor then \takes out" the linear dependene represented by a.What we are left with therefore has to be orthogonal to a.By de�nition the inner produt is ommutative and the outer produt anti-ommutative.GA de�nes another produt whih ombines these two properties and is aordingly alledthe geometri produt. In fat, it is the most fundamental operation in GA3. The geometriprodut of two vetors is written as ab and de�ned byab � a�b + a^b3 Projetive Geometry3.1 FundamentalsProjetive geometry an be expressed in terms of GA by de�ning a set of 4 basis vetorsfe1; e2; e3; e4g with signature f� � �+g, ie. e� �e� = 2Æ�4Æ�4 � Æ�� . The pseudosalar ofthis spae is de�ned as, I = e1^e2^e3^e4:3Had an axiomati approah been followed here, the geometri produt would have been the �rstprodut to be de�ned. The inner and outer produt an then be derived from that. However, here wepresent a more \intuitive" introdution to GA. 6



The inverse pseudosalar I�1 is de�ned suh that II�1 = 1. From the metri given aboveit follows that II = I�1I�1 = �1. Furthermore,I = �I�1 (6)A vetor in this 4D-spae (P 3), whih will be alled a homogeneous vetor4, an thenbe regarded as a projetive line whih desribes a point in the orresponding 3D-spae(E3). Also, a line in E3 is represented in P 3 by the outer produt of two homogeneousvetors, and a plane in E3 is given by the outer produt of three homogeneous vetors inP 3. In the following, homogeneous vetors in P 3 will be written as apital letters, andtheir orresponding 3D-vetors in E3 as lower ase letters in bold fae.Let A be a homogeneous vetor, i.e. A = ��e�, where the f��g are some salaromponents. The projetion of A into E3 is given by,a = A^e4A�e4This is alled the projetive split. Note that a homogeneous vetor with no e4 omponentwill be projeted onto the plane at in�nity. Also, an overall salar fator of A anels whenA is projeted down to 3D-spae via the projetive split. Therefore, if two homogeneousvetors of any grade are equal up to a salar fator, they are idential when projeteddown to 3D-spae. Sine we are ultimately only interested in 3D-spae vetors, equalityup to a salar fator is often suÆient. For that purpose we use the symbol '. Forexample, A ' �A, where � is a salar onstant.The following gives an example of the projetive split. Let A = ���e�, where the f��gand � are some salar values. Thena = A^e4A�e4= ��1 e1^e4 + ��2 e2^e4 + ��3 e3^e4��4 (7)If we de�ne a new basis fgig as gi � ei^e4then the vetor a may be written as a = �i�4 giThe basis fgig has signature f+++g, as required. This may be shown quite easily;gi �gi = (ei^e4)�(ei^e4)= � ei �ei e4 �e4 from equation (3-1)= +1 from previously de�ned metri (8)Similarly it may be shown that gi �gj = 0 if i 6= j. Now it is lear why the signatureof the basis fe�g had to be de�ned as f� � �+g.4This de�nition of homogeneous di�ers from its onventional use in GA but is here hosen to tie inwith the Computer Vision onvention. 7



A set fA�g of four homogeneous vetors forms a basis or frame of P 3 if and only if(A1^A2^A3^A4) 6= 0. The harateristi pseudosalar of this frame for 4 suh vetors isde�ned as Ia = A1^A2^A3^A4Sine Ia and I are both pseudosalars of the same spae, they an only di�er by a salarfator. That is, Ia = �aI (9)where �a is the sale of the A-frame, given by�a = (A1^A2^A3^A4)I�1The inverses of these two pseudosalars are related byI�1a = ��1a I�1 (10)From equations (6), (9) and (10) it follows thatI�1a = ���2a Ia (11)The outer produt of a vetor with a pseudosalar is always zero. Hene, the geometriprodut of a vetor with a pseudosalar redues to the inner produt of the two. Fromthis fat and with help of equation (1) the following important result follows;A�Ia = A� �(A1^A2^A3^A4)= 4X�1=1(A� �A�1)(A�2^A�3^A�4) (12)Here, and throughout the rest of the text the f�1; �2; �3; �4g are assumed to be an evenpermutation of f1; 2; 3; 4g, unless otherwise stated. Sine the inner produt of two ve-tors is a salar, the result of this alulation is a multivetor of grade 3. Similarly, thegeometri produt of a bivetor with a pseudosalar gives a bivetor and the geometriprodut of a trivetor with a pseudosalar gives a vetor. This introdues the onept ofthe dual.The dual of a multivetor X, written X�, is de�ned asX� = XI�1Therefore, if X is of grade r � 4 then X� is of grade 4 � r. It will be extremely usefulto introdue the dual braket and the inverse dual braket. To a ertain extent they arerelated to the braket notation as used in GC algebra and GA5. There the braket of apseudosalar P , say, is a salar, de�ned as the dual of P in GA. That is, [P ℄ = PI�1; herehowever the dual braket onept an produe something other than a salar.The dual braket is de�ned as[[A�1A�2 � � � A�n ℄℄a � (A�1^A�2^: : :^A�n)I�1a (13-1)[[A�1A�2 � � �A�n ℄℄ � (A�1^A�2^: : :^A�n)I�1 (13-2)5See, for example [6℄ 8



The inverse dual braket is de�ned ashhA�1A�2 � � � A�niia � (A�1^A�2^: : :^A�n)Ia (14-1)hhA�1A�2 � � �A�nii � (A�1^A�2^: : :^A�n)I (14-2)with n 2 f0; 1; 2; 3; 4g. The range given here for n means that in P 3 none, one, two,three or four homogeneous vetors an be braketed with a dual or inverse dual braket.For example, if P = A1^A2^A3^A4, then [[A1A2A3A4℄℄ = [[P ℄℄ = [P ℄ = �a. Furthermore,the following identities hold: hhXii = �[[X℄℄ (15-1)[[X℄℄ = �a[[X℄℄a (15-2)hhXii = ��1a hhXiia (15-3)[[X℄℄a = ���2a hhXiia (15-4)hh[[X℄℄ii = [[hhXii℄℄ = X (15-5)[[[[X℄℄℄℄ = hhhhXiiii = �X (15-6)There is another useful identity;[[A�1A�2A�3A�4 ℄℄ = (A�1^A�2^A�3^A�4)�I�1= A�1 ��(A�2^A�3^A�4)�I�1�= A�1 �[[A�2A�3A�4 ℄℄ (16)Similarly it may be shown that[[A�1A�2A�3A�4 ℄℄ = (A�1^A�2)�[[A�3A�4 ℄℄= (A�1^A�2^A�3)�[[A�4℄℄= (A�1^A�2^A�3^A�4)�[[1℄℄ (17)Note that [[1℄℄ = I�1. The same identities also apply for the [[� � �℄℄a type brakets. Putsimply, vetors may be \pulled" out of a dual braket (or inverse dual braket) by takingthe inner produt of them with the remainder of the braket.
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3.2 Reiproal Vetor FramesIt is now straightforward to de�ne reiproal frames. From equation (16) it follows that[[hh1iia℄℄a = 1) [[A1A2A3A4℄℄a = 1() A�1 �[[A�2A�3A�4 ℄℄a = 1() A�1 �A�1a = 1 (18)with no impliit summation over the range of �1. This de�nes the normalized reiproalA-frame, written fA�ag, as A�1a = [[A�2A�3A�4 ℄℄aIt is also useful to de�ne a standard reiproal A-frame.A�1 = [[A�2A�3A�4 ℄℄The relation between A�1a and A�1 is A�1a = ��1a A�1 (19)From these de�nitions of reiproal frame vetors it follows thatA� �A�a = Æ�� (20-1)A� �A� = �aÆ�� (20-2)where Æ�� is the Kroneker delta. That is, a reiproal frame vetor is nothing else but thedual of a plane. It may therefore also be regarded as the normal of the plane that is itsdual.In GC algebra these reiproal vetors would be de�ned as elements of a dual spae,whih is indeed what is done in [3℄. However, beause GC algebra does not de�ne aninner produt expliitly as in GA, elements of this dual spae annot operate on elementsof the \normal" spae. Hene, the onept of reiproal frames annot be de�ned in GCalgebra.A reiproal frame an be used to transform a vetor from one frame into another.That is, X = (X �A�a )A� = (X �A� )A�a (21)To show the �rst part of this equation we an say that sine the fA�g form a basis of P 3,X an be given in terms of that frame as X = ��A�, where the f��g are some salars.Then, with use of equation (20-1)X �A�a = ��(A� �A�a) = ��Æ�� = ��from whih the �rst part of equation (21) follows.Note that the fA�ag also form a basis of P 3 sine A1a^A2a^A3a^A4a 6= 0. Therefore, Xan also be given as X = ��A�a , where the f��g are a set of salars di�erent to the f��g.Then, using again equation (20-1)X �A� = ��(A�a �A�) = ��Æ�� = ��and hene the seond part of equation (21).10



3.3 Reiproal Line FramesIt will be important later not only to onsider vetor frames but also line frames. TheA-line frame fLiag is de�ned as Li1a = Ai2^Ai3 . One again, the fi1; i2; i3g are assumedto be an even permutation of f1; 2; 3g. A reiproal line frame an then be de�ned asfollows, again by using the identities in equation (17)[[hh1iia℄℄a = 1) [[A1A2A3A4℄℄a = 1() (Ai1^Ai2)�[[Ai3A4℄℄a = 1() Li3a � �Lai3 = 1 (22)This6 de�nes the normalised reiproal A-line frame f�Lai g and the standard reiproalA-line frame fLai g as �Lai = [[AiA4℄℄a (23-1)Lai = [[AiA4℄℄ (23-2)Hene, Lia � �Laj = Æij (24-1)Lia �Laj = �aÆij (24-2)Again, this shows the universality of the inner produt: bivetors an be treated in thesame fashion as vetors.Note that Lia an also be expressed in the following way,Li1a = Ai2^Ai3= (Ai2^Ai3)I�1a Ia sine I�1a Ia = 1= h(Ai2^Ai3)�(A4a^A3a^A2a^A1a)iIa= �(Ai1a ^A4a)Ia= �hhAi1a A4aiia' hhAi1a A4aii (25)
This partiular form of Lia will beome useful later on.3.4 Meet and JoinThe meet and join are the two operations needed to alulate intersetions between twolines, two planes or a line and a plane. In general terms the join is the sum and the meetis the intersetion of two spaes. In GA any blade an be treated as a pseudosalar of apartiular subspae.6Note how similar this derivation is to that of reiproal vetor frames (equation (18)).11



The join of two blades A and B, written as A4B an be de�ned in general as thepseudosalar of the spae given by the sum of the spaes spanned by A and B. Forexample, if A = e1^e2 and B = e2^e3 then A4B = e1^e2^e3.The meet of A and B, written as A_B, is de�ned to give the spae that A and B havein ommon. Using the de�nitions of A and B from the previous example A _B ' e2. Ingeneral, the following expression for the meet an be given. Let A and B be two arbitrarymultivetors, and let J = A4B, thenA _ B = h(AJ�1)^(BJ�1)iJ (26)For the intersetion of two planes or a plane and a line in P 3, the join will always be thepseudosalar I, unless the line lies on the plane or the two planes are the same. In thefollowing we will assume that this is not the ase. Then, for intersetions between twoplanes or a plane and a line equation (26) may be written asA _B = hh[[A℄℄[[B℄℄ii= [[A℄℄�hh[[B℄℄ii from equation (17)= [[A℄℄�B from equation (15-5) (27)More details about meet and join may be found in [8℄ and [6℄.There is a partiularly nie feature of the meet operation whih is worth mentioninghere: a vetor is transformed into a partiular frame by \meeting" it with the pseudosalarof that frame. The proof of this statement relies on the fat that the operation X _ Iaan be expanded in three di�erent ways. First of allX _ Ia = �(XI�1)^(IaI�1)| {z }salar �I= XI�1IaI�1I= �aX (28)It may be shown with an analysis similar to the one used in equations (2) that XI = �IXand simlilarly XI�1 = �I�1X. Also, IaI�1 = I�1Ia. Using these fats X _ Ia an also beexpanded as X _ Ia = XI�1Ia= �IaXI�1= �(A1^A2^A3^A4)�[[X℄℄= �A1[[A2A3A4X℄℄ + A2[[A1A3A4X℄℄�A3[[A1A2A4X℄℄ + A4[[A1A2A3X℄℄ (29)Writing this as the sum over an index givesX _ Ia = X�1 [[XA�2A�3A�4 ℄℄A�1= X�1 hX �[[A�2A�3A�4 ℄℄iA�1= X �A�1 A�1 (30)
12



Similarly X _ Ia = �I�1XIa= �I�1(X �Ia)= X�1 �I�1X �A�1 (A�2^A�3^A�4)= X �A�1 A�1 (31)Equating equations (28), (30) and (31) givesX = (X �A�a )A� = (X �A� )A�awhih is the same as equation (21).3.5 Cameras and ProjetionsA pinhole amera an be de�ned by 4 homogeneous vetors in P 3: one vetor gives theoptial entre and the other three de�ne the image plane [6℄, [7℄. Thus, the vetors neededto de�ne a pinhole amera also de�ne a frame for P 3. Conventionally the fourth vetorof a frame, eg. A4, de�nes the optial entre, and the outer produt of the other threede�nes the image plane.Projetion of some point X onto the image plane is done by interseting the line on-neting the optial entre with X, with the image plane. Intersetions are alulated withthe meet operation. As an example, onsider a amera de�ned by the A-frame. The lineonneting some point X with the optial entre is then given by X^A4, and the imageplane of the amera is given by (A1^A2^A3). Therefore, the projetion of X onto theimage plane is given using equations (17) and (27) by(X^A4) _ (A1^A2^A3) = [[XA4℄℄�(A1^A2^A3)= Xi3 [[XAi1Ai2A4℄℄Ai3= Xi3 hX �[[Ai1Ai2A4℄℄iAi3= (X �Ai )Ai (32)
Suppose that X is given in some frame fZ�g as X = ��Z�. Then the projetion Xaof X onto the A-image plane an be written asXa = (X �Ai )Ai= (��Z� �Ai )Ai= ��Ki�Ai ; Ki� � Z� �Ai (33)The matrix Ki� is the amera matrix 7 of amera A, for projeting points given in theZ-frame onto the A-image plane.7Note that the indies of K are not given as super- and subsripts of K but are raised (or lowered)relative to eah other. This notation was adopted sine it leaves the supersript position of K free forother usages. 13



In [3℄ the derivations begin with the amera matries by noting that the row vetorsrefer to planes. As was shown here, the row vetors of a amera matrix are the reiproalframe vetors fAig, whose dual is a plane.With the same method, lines an be projeted onto an image plane. For example, letL be some line in P 3. Then its projetion onto the A-image plane is(L^A4) _ (A1^A2^A3) = (L�Lai )Lia (34)4 The Trifoal Tensor
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Figure 1: Line projeted onto three image planes. Note that although the �gureis drawn in E3, lines and points are denoted by their orresponding vetors in P 3.Let the frames fA�g, fB�g and fC�g de�ne three distint ameras. Also, let L = X^Ybe some line in P 3. The plane L^B4 is then the same as the plane �biLib^B4, up to asalar fator, where �bi = L�Lbi . But,Li1b ^B4 = Bi2^Bi3^B4 = hhBi1iiInterseting planes L^B4 and L^C4 has to give L. Therefore, (�bihhBiii) _ (�jhhCjii) hasto give L up to a salar fator. Now, if two lines interset, their outer produt is zero.Thus, the outer produt of lines X^A4 (or Y^A4) and L has to be zero. Note that X^A4de�nes the same line as (�iAi)^A4, up to a salar fator, where �i = X �Ai . Figure 1shows this onstrution. Combining all these expressions gives0 = (X^A4^L)I�1= �i�bj�khh(Ai^A4)(hhBjii _ hhCkii)ii= �i�bj�khh(Ai^A4)hhBjCkiiii (35)
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where the following identity was used whih an be derived with the help of equation(27); hhBjii _ hhCkii = DD[[hhBjii℄℄[[hhCkii℄℄EE= hhBjCkii (36)If the trifoal tensor Tijk is de�ned asTijk = hh(Ai^A4)hhBjCkiiii (37)then, from equation (35) it follows that it has to satisfy �i�bj�kTijk = 0. This expressionfor the trifoal tensor an be expanded in two di�erent, but equivalent ways. The �rstway yields, Tijk = (Ai^A4)�[[hhBjCkii℄℄= (Ai^A4)�(Bj^Ck)= (A4 �Bj)(Ai �Ck)� (A4 �Ck)(Ai �Bj)= Kbj4Kki �Kk4Kbji (38)where Kbji � Ai �Bj and Kki � Ai �Ck are the amera matries for ameras B and C,respetively, relative to amera A. This is the expression for the trifoal tensor givenby Hartley in [1℄. Note that the amera matrix for the A-plane would be written asKaj� � A� �Aj ' Æji . That is, Ka = [Ij0℄ in standard matrix notation. In many otherderivations of the trifoal tensor (eg. [1℄) this form of the amera matries is assumedat the beginning. Here, however, the trifoal tensor is de�ned �rst geometrially and wethen �nd that it implies this partiular form for the amera matries.On the other hand, equation (37) an also be expanded toTijk = [[AiA4℄℄�hhBjCkii= Lai �hhBjCkii from equation (23-2) (39)This expression for the trifoal tensor is somewhat more instrutive than the previousone. Reall that �bj�khhBjCkii gives line L up to a salar fator. From equation (34) itthen beomes lear that �bj�kTijk gives the omponents of the projetion of line L onto im-age plane A, up to a salar fator. Alternatively, let T jk = hhBjCkii. Then the projetionof line T jk onto image plane A (from equation (34)), denoted by T jka isT jka = TijkLia (40)Sine epipoles are not essential in this report only a short de�nition will be given here.More details may be found in [6℄.An epipole is the projetion of the optial entre of one amera onto the image planeof another. For example, the epipole Eba is the projetion of the optial entre of ameraA (A4) onto the image plane of amera B (B1^B2^B3). That is, from equation (32)Eba = (A4^B4) _ (B1^B2^B3)= (A4 �Bi )Bi (41)15



From the de�nition of the amera matries as given in equation (33) and equation (38) itthen follows that Eba = Kbi4BiIn other words, the fourth olumn of the amera matrix gives the oordinates of an epipole.5 Constraints on the Trifoal TensorBy transforming the trifoal tensor into an epipolar basis, it an be shown quite easily(see [7℄) that the trifoal tensor only has 18 degrees of freedom (DOF). This also yieldsa minimal parameterisation of the trifoal tensor in term of its epipoles. Nevertheless,this approah has two big problems. Firstly, the epipoles are only known one the tri-foal tensor has been alulated. Seondly, preliminary attempts have shown that thisparameterisation is very non-linear. That is, a tiny hange in the value of one epipoleappears to result in a large hange in the omponents of the full trifoal tensor. There-fore, an iterative minimisation routine that tries to �nd the orret epipolar values, wouldhave to searh over a very non-linear surfae in 18 dimensions. Nonetheless, the epipolarparameterisation is an easy way to prove that the trifoal tensor has indeed only 18 DOF.A potentially better approah for alulating the trifoal tensor is to use all 27 om-ponents as free variables, but to restrain the whole system through some additional on-straints. These onstraints have to de�ne the struture of the trifoal tensor withoutdepending on any values other than its omponents.Suh onstraints are derived here following the approah given in [3℄. However, notonly has this approah been generalized but the arguments used are also of purely ge-ometrial origin. In partiular, the derivation given here does not involve working withany polynomials.The underlying idea is to �nd relations between the lines T jk whih also hold for theirprojetions T jka . Relations between the T jka an in turn be diretly related to the omponentsof the trifoal tensor. There are two types of onstraints.5.1 Constraint Type 1In the following, the fi1; i2; i3g, et. are no longer assumed to be any partiular kind ofpermutation.The onstraints we are looking for somehow have to relate the lines fT ijg. Findingrelations between the intersetion points of these lines seems to be a promising idea.However, there is no guarantee that any two lines of the set fT ijg do interset, i.e. areo-planar. Therefore, it is better to �nd the intersetion between a plane A4^T i1j1 and aline T i2j2 whih is always well de�ned, as long as A4 does not lie on the line T i1j1. In thefollowing we will assume that A4^T i1j1 6= 0.To simplify the notation, the intersetion between A4^T i1j1 and T i2j2 is written asp(i1j1; i2j2) and given by
16



p(i1j1; i2j2) � (A4^hhBi1Cj1ii) _ hhBi2Cj2ii= DDhhA4hhBi1Cj1iiiihhhhBi2Cj2iiiiEE= DD�A4 �hhhhBi1Cj1iiii�Bi2Cj2EE= DD�A4 �(Bi1^Cj1)�Bi2Cj2EE= DD(A4 �Bi1)Cj1Bi2Cj2 � (A4 �Cj1)Bi1Bi2Cj2EE= "i1bahhCj1Bi2Cj2ii+ "j1ahhBi1Cj2Bi2ii (42)
where "iba � A4 �Bi and "ia � A4 �Ci are the image point oordinates for epipolesEba and Ea, respetively.Consider the following types of intersetion points.p(i1j; i2j) = "jahhBi1CjBi2ii (43-1)p(ij1; ij2) = "ibahhCj1BiCj2ii (43-2)Using just this type of intersetion point a very simple onstraint an be found. First ofall onsiderp(i1j1; i2j1)^p(i1j2; i2j2) = "j1a"j2a hhBi1Cj1Bi2ii| {z }grade 1 vetor^hhBi1Cj2Bi2ii| {z }grade 1 vetor= "j1a"j2a�hhBi1Cj1Bi2ii^hhBi1Cj2Bi2ii�I�1I= "j1a"j2a� hhBi1Cj1Bi2ii| {z }grade 1 vetor�(Bi1^Cj2^Bi2)| {z }grade 3 vetor �I (44)Using equation (16) we getp(i1j1; i2j1)^p(i1j2; i2j2) = "j1a"j2a� Bi1 �hhBi1Cj1Bi2ii (Cj2^Bi2)� Cj2 �hhBi1Cj1Bi2ii (Bi1^Bi2)+ Bi2 �hhBi1Cj1Bi2ii (Bi1^Cj2)�I= "j1a"j2a� hhBi1Bi1Cj1Bi2ii| {z }=0 hhCj2Bi2ii� hhCj2Bi1Cj1Bi2iihhBi1Bi2ii+ hhBi2Bi1Cj1Bi2ii| {z }=0 hhBi1Cj2ii�= �"j1a"j2a hhBi1Bi2Cj1Cj2ii| {z }salar hhBi1Bi2ii

(45)
Note that only the term hhBi1Bi2ii is not a salar. Following a similar analysis it anbe shown that hhBi1Bi2ii^p(i1j3; i2j3) = "j3ahhBi1Bi2ii^hhBi1Cj3Bi2ii = 0 (46)
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Therefore, p(i1j1; i2j1)^p(i1j2; i2j2)^p(i1j3; i2j3) = 0 (47)and similarly p(i1j1; i1j2)^p(i2j1; i2j2)^p(i3j1; i3j2) = 0 (48)These two onstraints simply express the fat that all three intersetion points (all thep's) lie on the same line. It is fairly simple to see whih line that is. Just as hhBi1Bi2ii isthe intersetion between planes hhBi1ii and hhBi2ii, hhBi1Cj1Bi2ii is the intersetion betweenthe three planes hhBi1ii, hhBi2ii and hhCj1ii. Therefore, equation (47) an also be written as�hhBi1Bi2ii _ hhCj1ii�^�hhBi1Bi2ii _ hhCj2ii�^�hhBi1Bi2ii _ hhCj3ii� = 0 (49)That is, we take the outer produt of the intersetion points of line hhBi1Bi2ii with theplanes hhCj1ii, hhCj2ii and hhCj3ii. Obviously all three intersetion points have to lie on linehhBi1Bi2ii, hene their outer produt is zero. This onstrution is shown in �gure 2.
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Figure 2: This demonstrates the onstraint type 1 for i1 = 1, i2 = 2 and j1 = 1, j2 = 2,j3 = 3. For example, p(12; 22) ' hhB1C2B2ii ' hhB1B2ii _ hhC2ii.These onstraints also have to hold for the intersetion points of the projeted linesT jka . Let the intersetion between lines T j1k1a and T j2k2a be written as pa(j1k1; j2k2). Thisintersetion point lies on the A-image plane by de�nition, and an therefore be given inthe A-line basis (equation (40)). With the help of equation (25) we get
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pa(j1k1; j2k2) � Ti1j1k1Ti2j2k2(A4^Li1a ) _ Li2a= Ti1j1k1Ti2j2k2(A4^hhAi1a A4aii) _ hhAi2a A4aii= Ti1j1k1Ti2j2k2DD�A4 �(Ai1a ^A4a)�Ai2a A4aEE' Ti1j1k1Ti2j2k2hhAi1a Ai2a A4aii (50)following a similar analysis as in equation (45) it is possible to show thatpa(j1k1; j2k2)^pa(j3k3; j4k4) ' Ti1j1k1Ti2j2k2Ti3j3k3hhAi1a Ai2a Ai3a A4aiiTi4j4k4hhAi4a A4aii�Ti1j1k1Ti2j2k2Ti4j4k4hhAi1a Ai2a Ai4a A4aiiTi3j3k3hhAi3a A4aii(51)From the de�nition of the angle braket it follows that for any salar omponents f�ig,f�jg and f�kg �i�j�khhAiaAjaAkaA4aiia = �i�j�k�ijk= det(�i; �j; �k)ijk (52)where �ijk is +1 if fijkg form an even permutation of f1; 2; 3g, �1 if they form an oddpermutation, and 0 if any two indies are equal. det(�i; �j; �k)ijk denotes the determinantof a matrix with rows given by f�ig, f�jg and f�kg in exatly that order from top tobottom. The subsript gives the indies that are used to form the matrix rows. If thef�ig, f�jg and f�kg are written as vetors a = �iei, b = �jej and  = �kek then we de�nedet(�i; �j; �k)ijk � det(a; b; )� jabj (53)Therefore,Ti1j1k1Ti2j2k2Ti3j3k3hhAi1a Ai2a Ai3a A4aiia = det(Ti1j1k1Ti2j2k2Ti3j3k3)i1i2i3� jT j1k1a T j2k2a T j3k3a j (54)Using this notation, equation (51) may be written more onisely as,pa(j1k1; j2k2)^pa(j3k3; j4k4) ' jT j1k1a T j2k2a T j3k3a jTi4j4k4Li4a� jT j1k1a T j2k2a T j4k4a jTi3j3k3Li3a (55)Therefore, expressing equation (47) in terms of the pa gives,0 = pa(j1k1; j2k1)^pa(j1k2; j2k2)^pa(j1k3; j2k3)= jT j1k1a T j2k1a T j1k2a j jT j2k2a T j1k3a T j2k3a j� jT j1k1a T j2k1a T j2k2a j jT j1k2a T j1k3a T j2k3a j (56)and the onstraint in equation (48) beomes,
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0 = pa(j1k1; j1k2)^pa(j2k1; j2k2)^pa(j3k1; j3k2)= jT j1k1a T j1k2a T j2k1a j jT j2k2a T j3k1a T j3k2a j� jT j1k1a T j1k2a T j2k2a j jT j2k1a T j3k1a T j3k2a j (57)
5.2 Constraint Type 2The seond type of onstraint is slightly more ompliated. Here, the following type ofintersetion point is neededp(i1j1; i2j2) = "i1bahhCj1Bi2Cj2ii+ "j1ahhBi1Cj2Bi2iip(i1j2; i2j1) = "i1bahhCj2Bi2Cj1ii+ "j2ahhBi1Cj1Bi2iiTherefore, p(i1j1; i2j2) + p(i1j2; i2j1) = "j1ahhBi1Cj2Bi2ii+ "j2ahhBi1Cj1Bi2ii (59)Comparing this with equation (45) it an be seen right away that as in equation (46) thefollowing has to be truep(i1j1; i2j1)^p(i1j2; i2j2)^�p(i1j1; i2j2) + p(i1j2; i2j1)� = 0 (60)This onstraint simply states that the point (p(i1j1; i2j2) + p(i1j2; i2j1)) lies on the linep(i1j1; i2j1)^p(i1j2; i2j2). Or, writing equation (60) in terms of intersetions of lines andplanes�hhBi1Bi2ii_hhCj1ii�̂ �hhBi1Bi2ii_hhCj2ii�̂ �hhBi1Bi2ii_hhCj1ii+hhBi1Bi2ii_hhCj2ii� = 0 (61)whih is even more trivial than equation (49).Translating this into relations between the omponents of the trifoal tensor gives,jT i1j1a T i2j1a T i1j2a j jT i2j2a T i1j2a T i2j3a j � jT i1j1a T i2j1a T i2j2a j jT i1j2a T i1j3a T i2j2a j = 0 (62)The onstraints found here were inspired by work done by O.Faugeras and B.Mourrainin [3℄. However, the onstraints given in [3℄ form a subset of those given here. Furthermore,here the onstraints were derived through mainly geometrial arguments, rather thanthrough the investigation of polynomials as in [3℄.The onstraint equations (56) and (57) are not given in determinant form8 in [3℄. Theonstraints given in [3℄ as equations (12) through (15) are a subset of equation (62) asgiven here.8These onstraints are basially the same as the relations between lines detailed on page 26 of [3℄.20



6 ComputationsIt is interesting to see what e�et the determinant onstraints have on the \quality" ofa trifoal tensor. That is, a trifoal tensor alulated only from point mathes has tobe ompared with a trifoal tensor alulated form point mathes while enforing thedeterminant onstraints.For the alulation of the former a simple linear algorithm is used that employs thetrilinearity relationships, as, for example, given by Hartley in [1℄. In the following thisalgorithm will be alled the \7pt algorithm".To enfore all the determinant onstraints, an estimate of the trifoal tensor is �rstfound using the 7pt algorithm. From this tensor the epipoles are estimated. Using theseepipoles the image points are transformed into the epipolar frame. With these transformedpoint mathes the trifoal tensor an then be found in the epipolar basis.It an be shown [7℄ that the trifoal tensor in the epipolar basis has only 7 non-zeroomponents9. Using the image point mathes in the epipolar frame these 7 omponentsan be found linearly. The trifoal tensor in the \normal" basis is then reovered bytranforming the trifoal tensor in the epipolar basis bak with the initial estimates ofthe epipoles. The trifoal tensor found in this way has to be fully self-onsistent sineit was alulated from the minimal number of parameters. That also means that thedeterminant onstraints have to be fully satis�ed. This algorithm will be alled the\MinFat" algorithm.The main problem with the MinFat algorithm is that it depends ruially on thequality of the initial epipole estimates. If these are bad, the trifoal tensor will still beperfetly self-onsistent but will not represent the true amera struture partiularly well.This is reeted in the fat that typially a trifoal tensor alulated with the MinFatalgorithm does not satisfy the trilinearity relationships as well as a trifoal tensor alu-lated with the 7pt algorithm, whih is of ourse alulated to satisfy these relationshipsas well as possible.Unfortunately, there does not seem to be a way to �nd the epipoles and the trifoaltensor in the epipolar basis simultaneously with a linear method. In fat, the trifoaltensor in a \normal" basis is a non-linear ombination of the epipoles and the 7 non-zeroomponents of the trifoal tensor in the epipolar basis.Nevertheless, sine the MinFat algorithm produes a fully self-onsistent tensor, theamera matries extrated from it also have to form a self-onsistent set. Reonstrutionusing suh a set of amera matries may be expeted to be better than reonstrutionusing an inonsistent set of amera matries, as typially found from an inonsistenttrifoal tensor. The fat that the trifoal tensor found with the MinFat algorithm maynot resemble the true amera struture very losely, might not matter too muh, sinereonstrution is only exat up to a projetive transformation.The question is, of ourse, how to measure the quality of the trifoal tensor. Here thequality is measured by how good a reonstrution an be ahieved with the trifoal tensorin a geometri sense. This is done as follows:9From this it follows diretly that the trifoal tensor has 18 DOF: 12 epipolar omponents plus 7non-zero omponents of the trifoal tensor in the epipolar basis minus 1 for an overall sale.21



1. A 3D-objet is projeted onto the image planes of the three ameras, whih subse-quently introdue some Gaussian noise into the projeted point oordinates. Theseoordinates are then quantised aording to the simulated amera resolution. Themagnitude of the applied noise is measured in terms of the mean Gaussian deviationin pixels.2. The trifoal tensor is alulated in one of two ways from the available point mathes:(a) using the 7pt algorithm, or(b) using the MinFat algorithm.3. The epipoles and the amera matries are extrated from the trifoal tensor. Theamera matries are evaluated using Hartleys reomputation method [1℄.4. The points are reonstruted using a version of what is alled \Method 3" in [10℄and [11℄ adapted for three views. This uses a SVD to solve for the homogeneousreonstruted point algebraially using a set of amera matries. In [10℄ and [11℄this algorithm was found to perform best of a number of reonstrution algorithms.5. This reonstrution still ontains an unknown projetive transformation. There-fore it annot be ompared diretly with the original objet. However, sine onlysyntheti data is used here, the 3D-points of the original objet are known ex-atly. Therefore, a projetive transformation matrix that best transforms the re-onstruted points into the true points an be alulated. Then the reonstrutionan be ompared with the original 3D-objet geometrially.6. The �nal measure of \quality" is arrived at by alulating the mean distane in3D-spae between the reonstruted and the true points.These quality values are evaluated for a number of di�erent noise magnitudes. For eahpartiular noise magnitude the above proedure is performed 100 times. The �nal qualityvalue for a partiular noise magnitude is then taken as the average of the 100 trials.Figure 3 shows the mean distane between the original points and the reonstrutedpoints in 3D-spae in some arbitrary units10, as a funtion of the noise magnitude. Theamera resolution was 600 by 600 pixels.This �gure shows that for a noise magnitude of up to approximately 10 pixels bothtrifoal tensors seem to produe equally good reonstrutions. Note that for zero addednoise the reonstrution quality is not perfet. This is due to the quantisation noise ofthe ameras. The small inrease in quality for low added noise ompared to zero addednoise is probably due to the anellation of the quantisation and the added noise.Apart from looking at the reonstrution quality it is also interesting to see how losethe omponents of the alulated trifoal tensors are to those of the true trifoal tensor.Figures 4 and 5 both show the mean of the perentage di�erenes between the omponentsof the true and the alulated trifoal tensors as a funtion of added noise in pixels. Figure4 ompares the trifoal tensors found with the 7pt and the MinFat algorithms. This shows10The partiular objet used was 2 units wide, 1 unit deep and 1.5 units high in 3D-spae. The Y-axismeasures in the same units. 22
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7 ConlusionIt was shown here how the GA approah to the trifoal tensor problem leads to a leargeometrial understanding of the same. In partiular, onstraints on the internal strutureof the trifoal tensor ould be derived through mainly geometrial arguments. The use ofreiproal frames and espeially their extension to line frames learly showed the advantageof the GA approah over a GC algebra approah, due to GA's inner produt.The data presented in setion 6 seems to indiate that a tensor that obeys the determi-nant onstraints, i.e. is self-onsistent, but does not satis�es the trilinearity relationshipspartiularly well is equally as good, in terms of reonstrution ability, as an inonsistenttrifoal tensor that satis�es the trilinearity relationships quite well. In partiular the fatthat the trifoal tensor alulated with the MinFat algorithm is so very muh di�erentto the true trifoal tensor (see �gure 4) does not seem to have a big impat on the �nalreomputation quality.One possible explanation for this is that all the di�erenes between the reonstrutionsare evened out when the �nal projetive transformation is applied. That would meanthat to strive for a very good estimate of the trifoal tensor is not atually neessary sineany reonstrution will always inlude a projetive transformation that an be hosenarbitrarily11.

11In fat it was found by the authors that an initial reonstrution is almost always at and loatedat one of the amera image planes. A projetive transformation was then neessary to \unfold" thereonstrution. 25
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