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Abstra
tRe
onstru
tion of 3D-obje
ts from a number of images is a 
entral subje
t of Com-puter Vision. In this paper we investigate the geometri
al stru
ture of the trifo
al tensorusing Geometri
 Algebra. Furthermore, we will give a novel expression for the trifo
altensor, derive 
onstraints on its geometri
al stru
ture and investigate its re
onstru
tionability 
omputationally. We will show that the re
onstru
tion quality is not dire
tlyrelated to the self-
onsisten
y of the trifo
al tensor.Categories: Trifo
al Tensor, Geometri
 Algebra, Grassmann-Cayley Algebra, Re
ipro
alFrames, Re
onstru
tion
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1 Introdu
tionRe
ently there has been mu
h interest in deriving and 
hara
terising the trifo
al tensor.The trifo
al tensor is used to obtain a proje
tive re
onstru
tion from three images, takenwith un
alibrated 
ameras from unknown positions of the same 3D-s
ene. It 
an also beused to transfer lines or points from one image to another. [1℄ and [2℄ give a dis
ussion ofthe stru
ture of the trifo
al tensor and present examples of its use.In e�e
t the trifo
al tensor en
odes the relative positions and orientations of the 
am-eras. It 
an be 
al
ulated if at least 7 point mat
hes over the three images are available.On
e the trifo
al tensor has been 
al
ulated, the epipoles, 
amera matri
es and funda-mental matri
es 
an be extra
ted from it. The quality of the initial point mat
hes is
ru
ial for obtaining good estimates of these values, however. Therefore, a lot of resear
hhas gone into obtaining a good estimate of the trifo
al tensor from not so good pointmat
hes. The main problem being how to de
ide what estimate of a trifo
al tensor is\good" if only point mat
hes and nothing else are known.The trifo
al tensor has also been studied in terms of Grassmann-Cayley (GC) algebra([3℄, [4℄, [5℄). A derivation and analysis in terms of Geometri
 Algebra (GA) 
an be foundin [6℄ and [7℄.In this paper the derivation and analysis of the trifo
al tensor in terms of Geometri
Algebra will be extended. Although GA is similar to GC algebra, it will be shown thatgeometri
 algebra has some distin
t advantages due to its use of the inner produ
t. This isespe
ially apparent in a novel interpretation of 
amera matri
es and the trifo
al tensor. Inparti
ular, a 
on
ise expression for the trifo
al tensor is given, whi
h allows a better insightinto its geometri
al meaning. Also, a set of 
onstraints on the internal stru
ture of thetrifo
al tensor will be derived. These 
onstraints form a superset of 
onstraints previouslyderived in [3℄ and [5℄. However, here the derivation is done purely geometri
ally and notthrough the investigation of polynomials as in [3℄. The e�e
t of the newly found 
onstraintson the re
onstru
tion ability of the trifo
al tensor will be investigated 
omputationally.2 Geometri
 AlgebraSin
e all the analysis in this paper is 
arried out in terms of GA, a short introdu
tionwill be given here. All the 
al
ulation rules and identities needed to follow this reportare presented. However, proofs and derivations will be omitted. The interested readermay refer to [8℄ and [9℄ for a thorough treatment of GA. A shorter derivation of the mostimportant results 
an be found in [6℄ and [7℄.The easiest way to understand GA is to show how it extends the fun
tionality ofstandard ve
tor 
al
ulus (SVC), whi
h we assume all readers are familiar with. In SVCthe starting point is to de�ne a frame. Here all 
al
ulations are performed in a 
artesianframe, so we 
an start by de�ning an orthonormal basis of E3, fe1; e2; e3g with signaturef+++g. A ve
tor a in this basis may then be de�ned asa = �iei3



Here, as throughout the rest of the text, greek indi
es will be assumed to 
ount from 1 to4 and latin indi
es to 
ount from 1 to 3. Also, a supers
ript index repeated as a subs
ript(or vi
e versa) implies a summation over the range of that index, unless spe
i�
ally statedotherwise. Now, SVC de�nes a s
alar produ
t of two ve
tors whi
h results in a s
alar.For example, the s
alar produ
t of two ve
tors a and b is written as s = a�b, where s isa s
alar. The s
alar s gives some information about the relative orientation of ve
tors aand b. That is, the s
alar produ
t is a metri
 operation, sin
e it is only de�ned in relationto a frame.GA extends the s
alar produ
t to an inner produ
t. The inner produ
t of two ve
torsa and b is still written as a�b and it has the same metri
 meaning. However, the innerprodu
t 
an also be applied in a non-metri
 sense. In order to see this, we will �rst haveto introdu
e the outer produ
t.The outer produ
t of two ve
tors a and b is written as a^b and is 
alled a 2-blade.A 2-blade may be regarded as an oriented area. Analogously, the outer produ
t of threeve
tors, a 3-blade, a b̂̂ 
 
an be interpreted as an oriented volume. However, in proje
tivegeometry, whi
h will be treated later on, the geometri
 meaning of 2-blades and 3-bladesis quite di�erent. A more general interpretation of k-blades will be given at the end ofthis se
tion.The outer and inner produ
t are also de�ned in the absen
e of a basis frame. This iswhere the power of GA lies. Let a; b; 
 2 En, then the following rules apply to the innerprodu
t:1. If a�b = 0 then a and b are said to be orthogonal.2. a�b = b�a = s where s is a s
alar. That is, the inner produ
t is 
ommutative.3. a�(b+ 
) = a�b+ a�
. Distributive law.For the outer produ
t we have1. If a^b = 0 then a and b are said to be parallel or linearly dependent.2. a^b = �b^a. That is, the outer produ
t is anti-
ommutative.3. a^(b+ 
) = a^b+ a^
. Distributive law.4. a^(b^
) = (a^b)^
. Asso
iative law.From the �rst rule for the outer produ
t it follows dire
tly that the highest gradeobje
t in En is of grade n, simply be
ause in En at most n mutually linearly independentve
tors 
an be formed. The obje
t of highest grade is 
alled the pseudos
alar of that spa
e.Obviously the pseudos
alars of some ve
tor spa
e 
an only di�er by a s
alar fa
tor.A 1-ve
tor, or simply ve
tor, in GA is the same as a ve
tor in SVC. In that sense itis also equivalent to a 1-blade. However, in GA we 
an have ve
tors of higher grade, aswell. A k-ve
tor is de�ned to be the sum of a number of k-blades. Note that a k-ve
tor
annot ne
essarily be expressed as a k-blade, but every k-blade is also a k-ve
tor. Someexamples may help to 
larify this idea. A 2-ve
tor , or bive
tor, w 2 E3 may be given byw = 2(e1^e2) + 3(e1^e3)4



This parti
ular bive
tor 
an also be written as a 2-blade;w = e1^(2e2 + 3e3)In fa
t, in E3 any 2-ve
tor 
an be expressed as a 2-blade. However, in higher dimensionalspa
es this is not ne
essarily the 
ase. Consider the following bive
tor in E4 with basisfe1; e2; e3; e4g. w = �(e1^e2) + �(e3^e4)where � and � are some s
alar fa
tors. This bive
tor 
annot be written as a 2-blade.Just as a k-ve
tor is the sum of a number of k-blades, GA also de�nes a multive
torwhi
h is the sum of a number of blades that are not ne
essarily of the same grade1.Working with multive
tors is 
onsiderably more 
ompli
ated than working with k-ve
tors.Sin
e they are also not needed in this report multive
tors will not be dis
ussed here. Werefer the interested reader to [8℄ and [9℄.There is also a distributive law for the inner produ
t with respe
t to the outer produ
t.The following is an important general result. Let Bs be an s-blade and let the farg forma set of unique ve
tors su
h that for no two ai;aj 2 farg ai^aj = 0. Then,Bs �(a1^a2^: : :^ar) = Xfjig �j1j2���jrhBs �(aj1^aj2^: : :^ajs)iajs+1^: : :^ajr (1)where �j1j2���jr is +1 if the fjig form an even permutation of f1; 2; : : : ; rg, �1 if they forman odd permutation and 0 if any two indi
es are identi
al. Admittedly this equation looksrather 
onfusing. A few examples, however, should 
larify the situation.a�(b1^b2) = (a�b1)b2 � (a�b2)b1 (2-1)a�(b1^b2^b3) = (a�b1)(b2^b3)� (a�b2)(b1^b3) + (a�b3)(b1^b2) (2-2)Furthermore, (a1^a2)�(b1^b2) = a1 ��a2 �(b1^b2)�= a2 �b1 a1 �b2 � a2 �b2 a1 �b1 (3-1)(a1^a2)�(b1^b2^b3) = h(a1^a2)�(b1^b2)ib3�h(a1^a2)�(b1^b3)ib2+h(a1^a2)�(b2^b3)ib1 (3-2)
Equations (2) and (3) 
learly show the non-metri
 side of the inner produ
t. Forexample, in equation (2-1) the inner produ
t of a ve
tor with a bive
tor results in ave
tor. In equation (2-2) the inner produ
t of a ve
tor with a trive
tor 2 gives a 2-ve
tor.Similarly for equations (3).1In more general texts on GA a k-ve
tor as de�ned here is 
alled a homogeneous multive
tor of grade k.We have 
hosen not to follow this naming 
onvention sin
e in proje
tive geometry the term \homogeneousve
tor" is already used to des
ribe something quite di�erent.2A \trive
tor" is a 3-ve
tor. Note that for ve
tors higher than grade 3 there are no spe
ial names.5



That is, the inner produ
t redu
es the grade of a k-ve
tor whereas the outer produ
tin
reases it.Following this interpretation of inner and outer produ
t 
onsequently leads to thenotion that a s
alar is a 0-ve
tor, be
ause the inner produ
t of two ve
tors results in as
alar. However, then we must also assert that the inner produ
t of a s
alar with a ve
toris identi
ally zero.In Se
tion 3 it will be shown that interse
tions as well as the dual operation 
an beexpressed in terms of the inner produ
t. GC algebra la
ks su
h a universal operator andtherefore has to resort to de�ning a number of di�erent inner-produ
t-like stru
tures.Now we are in a position to see what the algebrai
 meaning of a bive
tor is. Let ave
tor x 2 E3 be de�ned as x = a�(b1^b2)We 
an get some information about the orientation of x by 
al
ulatinga�x = a�ha�(b1^b2)i= (a^a)�(b1^b2) from equation (3-1)= 0 (4)This shows that x and a are orthogonal. Furthermore, we havex = a�(b1^b2)= (a�b1)b2 � (a�b2)b1 (5)and hen
e x lies in the plane given by b1 and b2. Therefore, we 
an interpret the bive
torb1^b2 as the 
ombination of the linear dependen
ies given by b1 and b2. Taking the innerprodu
t of a with this bive
tor then \takes out" the linear dependen
e represented by a.What we are left with therefore has to be orthogonal to a.By de�nition the inner produ
t is 
ommutative and the outer produ
t anti-
ommutative.GA de�nes another produ
t whi
h 
ombines these two properties and is a

ordingly 
alledthe geometri
 produ
t. In fa
t, it is the most fundamental operation in GA3. The geometri
produ
t of two ve
tors is written as ab and de�ned byab � a�b + a^b3 Proje
tive Geometry3.1 FundamentalsProje
tive geometry 
an be expressed in terms of GA by de�ning a set of 4 basis ve
torsfe1; e2; e3; e4g with signature f� � �+g, ie. e� �e� = 2Æ�4Æ�4 � Æ�� . The pseudos
alar ofthis spa
e is de�ned as, I = e1^e2^e3^e4:3Had an axiomati
 approa
h been followed here, the geometri
 produ
t would have been the �rstprodu
t to be de�ned. The inner and outer produ
t 
an then be derived from that. However, here wepresent a more \intuitive" introdu
tion to GA. 6



The inverse pseudos
alar I�1 is de�ned su
h that II�1 = 1. From the metri
 given aboveit follows that II = I�1I�1 = �1. Furthermore,I = �I�1 (6)A ve
tor in this 4D-spa
e (P 3), whi
h will be 
alled a homogeneous ve
tor4, 
an thenbe regarded as a proje
tive line whi
h des
ribes a point in the 
orresponding 3D-spa
e(E3). Also, a line in E3 is represented in P 3 by the outer produ
t of two homogeneousve
tors, and a plane in E3 is given by the outer produ
t of three homogeneous ve
tors inP 3. In the following, homogeneous ve
tors in P 3 will be written as 
apital letters, andtheir 
orresponding 3D-ve
tors in E3 as lower 
ase letters in bold fa
e.Let A be a homogeneous ve
tor, i.e. A = ��e�, where the f��g are some s
alar
omponents. The proje
tion of A into E3 is given by,a = A^e4A�e4This is 
alled the proje
tive split. Note that a homogeneous ve
tor with no e4 
omponentwill be proje
ted onto the plane at in�nity. Also, an overall s
alar fa
tor of A 
an
els whenA is proje
ted down to 3D-spa
e via the proje
tive split. Therefore, if two homogeneousve
tors of any grade are equal up to a s
alar fa
tor, they are identi
al when proje
teddown to 3D-spa
e. Sin
e we are ultimately only interested in 3D-spa
e ve
tors, equalityup to a s
alar fa
tor is often suÆ
ient. For that purpose we use the symbol '. Forexample, A ' �A, where � is a s
alar 
onstant.The following gives an example of the proje
tive split. Let A = ���e�, where the f��gand � are some s
alar values. Thena = A^e4A�e4= ��1 e1^e4 + ��2 e2^e4 + ��3 e3^e4��4 (7)If we de�ne a new basis fgig as gi � ei^e4then the ve
tor a may be written as a = �i�4 giThe basis fgig has signature f+++g, as required. This may be shown quite easily;gi �gi = (ei^e4)�(ei^e4)= � ei �ei e4 �e4 from equation (3-1)= +1 from previously de�ned metri
 (8)Similarly it may be shown that gi �gj = 0 if i 6= j. Now it is 
lear why the signatureof the basis fe�g had to be de�ned as f� � �+g.4This de�nition of homogeneous di�ers from its 
onventional use in GA but is here 
hosen to tie inwith the Computer Vision 
onvention. 7



A set fA�g of four homogeneous ve
tors forms a basis or frame of P 3 if and only if(A1^A2^A3^A4) 6= 0. The 
hara
teristi
 pseudos
alar of this frame for 4 su
h ve
tors isde�ned as Ia = A1^A2^A3^A4Sin
e Ia and I are both pseudos
alars of the same spa
e, they 
an only di�er by a s
alarfa
tor. That is, Ia = �aI (9)where �a is the s
ale of the A-frame, given by�a = (A1^A2^A3^A4)I�1The inverses of these two pseudos
alars are related byI�1a = ��1a I�1 (10)From equations (6), (9) and (10) it follows thatI�1a = ���2a Ia (11)The outer produ
t of a ve
tor with a pseudos
alar is always zero. Hen
e, the geometri
produ
t of a ve
tor with a pseudos
alar redu
es to the inner produ
t of the two. Fromthis fa
t and with help of equation (1) the following important result follows;A�Ia = A� �(A1^A2^A3^A4)= 4X�1=1(A� �A�1)(A�2^A�3^A�4) (12)Here, and throughout the rest of the text the f�1; �2; �3; �4g are assumed to be an evenpermutation of f1; 2; 3; 4g, unless otherwise stated. Sin
e the inner produ
t of two ve
-tors is a s
alar, the result of this 
al
ulation is a multive
tor of grade 3. Similarly, thegeometri
 produ
t of a bive
tor with a pseudos
alar gives a bive
tor and the geometri
produ
t of a trive
tor with a pseudos
alar gives a ve
tor. This introdu
es the 
on
ept ofthe dual.The dual of a multive
tor X, written X�, is de�ned asX� = XI�1Therefore, if X is of grade r � 4 then X� is of grade 4 � r. It will be extremely usefulto introdu
e the dual bra
ket and the inverse dual bra
ket. To a 
ertain extent they arerelated to the bra
ket notation as used in GC algebra and GA5. There the bra
ket of apseudos
alar P , say, is a s
alar, de�ned as the dual of P in GA. That is, [P ℄ = PI�1; herehowever the dual bra
ket 
on
ept 
an produ
e something other than a s
alar.The dual bra
ket is de�ned as[[A�1A�2 � � � A�n ℄℄a � (A�1^A�2^: : :^A�n)I�1a (13-1)[[A�1A�2 � � �A�n ℄℄ � (A�1^A�2^: : :^A�n)I�1 (13-2)5See, for example [6℄ 8



The inverse dual bra
ket is de�ned ashhA�1A�2 � � � A�niia � (A�1^A�2^: : :^A�n)Ia (14-1)hhA�1A�2 � � �A�nii � (A�1^A�2^: : :^A�n)I (14-2)with n 2 f0; 1; 2; 3; 4g. The range given here for n means that in P 3 none, one, two,three or four homogeneous ve
tors 
an be bra
keted with a dual or inverse dual bra
ket.For example, if P = A1^A2^A3^A4, then [[A1A2A3A4℄℄ = [[P ℄℄ = [P ℄ = �a. Furthermore,the following identities hold: hhXii = �[[X℄℄ (15-1)[[X℄℄ = �a[[X℄℄a (15-2)hhXii = ��1a hhXiia (15-3)[[X℄℄a = ���2a hhXiia (15-4)hh[[X℄℄ii = [[hhXii℄℄ = X (15-5)[[[[X℄℄℄℄ = hhhhXiiii = �X (15-6)There is another useful identity;[[A�1A�2A�3A�4 ℄℄ = (A�1^A�2^A�3^A�4)�I�1= A�1 ��(A�2^A�3^A�4)�I�1�= A�1 �[[A�2A�3A�4 ℄℄ (16)Similarly it may be shown that[[A�1A�2A�3A�4 ℄℄ = (A�1^A�2)�[[A�3A�4 ℄℄= (A�1^A�2^A�3)�[[A�4℄℄= (A�1^A�2^A�3^A�4)�[[1℄℄ (17)Note that [[1℄℄ = I�1. The same identities also apply for the [[� � �℄℄a type bra
kets. Putsimply, ve
tors may be \pulled" out of a dual bra
ket (or inverse dual bra
ket) by takingthe inner produ
t of them with the remainder of the bra
ket.
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3.2 Re
ipro
al Ve
tor FramesIt is now straightforward to de�ne re
ipro
al frames. From equation (16) it follows that[[hh1iia℄℄a = 1) [[A1A2A3A4℄℄a = 1() A�1 �[[A�2A�3A�4 ℄℄a = 1() A�1 �A�1a = 1 (18)with no impli
it summation over the range of �1. This de�nes the normalized re
ipro
alA-frame, written fA�ag, as A�1a = [[A�2A�3A�4 ℄℄aIt is also useful to de�ne a standard re
ipro
al A-frame.A�1 = [[A�2A�3A�4 ℄℄The relation between A�1a and A�1 is A�1a = ��1a A�1 (19)From these de�nitions of re
ipro
al frame ve
tors it follows thatA� �A�a = Æ�� (20-1)A� �A� = �aÆ�� (20-2)where Æ�� is the Krone
ker delta. That is, a re
ipro
al frame ve
tor is nothing else but thedual of a plane. It may therefore also be regarded as the normal of the plane that is itsdual.In GC algebra these re
ipro
al ve
tors would be de�ned as elements of a dual spa
e,whi
h is indeed what is done in [3℄. However, be
ause GC algebra does not de�ne aninner produ
t expli
itly as in GA, elements of this dual spa
e 
annot operate on elementsof the \normal" spa
e. Hen
e, the 
on
ept of re
ipro
al frames 
annot be de�ned in GCalgebra.A re
ipro
al frame 
an be used to transform a ve
tor from one frame into another.That is, X = (X �A�a )A� = (X �A� )A�a (21)To show the �rst part of this equation we 
an say that sin
e the fA�g form a basis of P 3,X 
an be given in terms of that frame as X = ��A�, where the f��g are some s
alars.Then, with use of equation (20-1)X �A�a = ��(A� �A�a) = ��Æ�� = ��from whi
h the �rst part of equation (21) follows.Note that the fA�ag also form a basis of P 3 sin
e A1a^A2a^A3a^A4a 6= 0. Therefore, X
an also be given as X = ��A�a , where the f��g are a set of s
alars di�erent to the f��g.Then, using again equation (20-1)X �A� = ��(A�a �A�) = ��Æ�� = ��and hen
e the se
ond part of equation (21).10



3.3 Re
ipro
al Line FramesIt will be important later not only to 
onsider ve
tor frames but also line frames. TheA-line frame fLiag is de�ned as Li1a = Ai2^Ai3 . On
e again, the fi1; i2; i3g are assumedto be an even permutation of f1; 2; 3g. A re
ipro
al line frame 
an then be de�ned asfollows, again by using the identities in equation (17)[[hh1iia℄℄a = 1) [[A1A2A3A4℄℄a = 1() (Ai1^Ai2)�[[Ai3A4℄℄a = 1() Li3a � �Lai3 = 1 (22)This6 de�nes the normalised re
ipro
al A-line frame f�Lai g and the standard re
ipro
alA-line frame fLai g as �Lai = [[AiA4℄℄a (23-1)Lai = [[AiA4℄℄ (23-2)Hen
e, Lia � �Laj = Æij (24-1)Lia �Laj = �aÆij (24-2)Again, this shows the universality of the inner produ
t: bive
tors 
an be treated in thesame fashion as ve
tors.Note that Lia 
an also be expressed in the following way,Li1a = Ai2^Ai3= (Ai2^Ai3)I�1a Ia sin
e I�1a Ia = 1= h(Ai2^Ai3)�(A4a^A3a^A2a^A1a)iIa= �(Ai1a ^A4a)Ia= �hhAi1a A4aiia' hhAi1a A4aii (25)
This parti
ular form of Lia will be
ome useful later on.3.4 Meet and JoinThe meet and join are the two operations needed to 
al
ulate interse
tions between twolines, two planes or a line and a plane. In general terms the join is the sum and the meetis the interse
tion of two spa
es. In GA any blade 
an be treated as a pseudos
alar of aparti
ular subspa
e.6Note how similar this derivation is to that of re
ipro
al ve
tor frames (equation (18)).11



The join of two blades A and B, written as A4B 
an be de�ned in general as thepseudos
alar of the spa
e given by the sum of the spa
es spanned by A and B. Forexample, if A = e1^e2 and B = e2^e3 then A4B = e1^e2^e3.The meet of A and B, written as A_B, is de�ned to give the spa
e that A and B havein 
ommon. Using the de�nitions of A and B from the previous example A _B ' e2. Ingeneral, the following expression for the meet 
an be given. Let A and B be two arbitrarymultive
tors, and let J = A4B, thenA _ B = h(AJ�1)^(BJ�1)iJ (26)For the interse
tion of two planes or a plane and a line in P 3, the join will always be thepseudos
alar I, unless the line lies on the plane or the two planes are the same. In thefollowing we will assume that this is not the 
ase. Then, for interse
tions between twoplanes or a plane and a line equation (26) may be written asA _B = hh[[A℄℄[[B℄℄ii= [[A℄℄�hh[[B℄℄ii from equation (17)= [[A℄℄�B from equation (15-5) (27)More details about meet and join may be found in [8℄ and [6℄.There is a parti
ularly ni
e feature of the meet operation whi
h is worth mentioninghere: a ve
tor is transformed into a parti
ular frame by \meeting" it with the pseudos
alarof that frame. The proof of this statement relies on the fa
t that the operation X _ Ia
an be expanded in three di�erent ways. First of allX _ Ia = �(XI�1)^(IaI�1)| {z }s
alar �I= XI�1IaI�1I= �aX (28)It may be shown with an analysis similar to the one used in equations (2) that XI = �IXand simlilarly XI�1 = �I�1X. Also, IaI�1 = I�1Ia. Using these fa
ts X _ Ia 
an also beexpanded as X _ Ia = XI�1Ia= �IaXI�1= �(A1^A2^A3^A4)�[[X℄℄= �A1[[A2A3A4X℄℄ + A2[[A1A3A4X℄℄�A3[[A1A2A4X℄℄ + A4[[A1A2A3X℄℄ (29)Writing this as the sum over an index givesX _ Ia = X�1 [[XA�2A�3A�4 ℄℄A�1= X�1 hX �[[A�2A�3A�4 ℄℄iA�1= X �A�1 A�1 (30)
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Similarly X _ Ia = �I�1XIa= �I�1(X �Ia)= X�1 �I�1X �A�1 (A�2^A�3^A�4)= X �A�1 A�1 (31)Equating equations (28), (30) and (31) givesX = (X �A�a )A� = (X �A� )A�awhi
h is the same as equation (21).3.5 Cameras and Proje
tionsA pinhole 
amera 
an be de�ned by 4 homogeneous ve
tors in P 3: one ve
tor gives theopti
al 
entre and the other three de�ne the image plane [6℄, [7℄. Thus, the ve
tors neededto de�ne a pinhole 
amera also de�ne a frame for P 3. Conventionally the fourth ve
torof a frame, eg. A4, de�nes the opti
al 
entre, and the outer produ
t of the other threede�nes the image plane.Proje
tion of some point X onto the image plane is done by interse
ting the line 
on-ne
ting the opti
al 
entre with X, with the image plane. Interse
tions are 
al
ulated withthe meet operation. As an example, 
onsider a 
amera de�ned by the A-frame. The line
onne
ting some point X with the opti
al 
entre is then given by X^A4, and the imageplane of the 
amera is given by (A1^A2^A3). Therefore, the proje
tion of X onto theimage plane is given using equations (17) and (27) by(X^A4) _ (A1^A2^A3) = [[XA4℄℄�(A1^A2^A3)= Xi3 [[XAi1Ai2A4℄℄Ai3= Xi3 hX �[[Ai1Ai2A4℄℄iAi3= (X �Ai )Ai (32)
Suppose that X is given in some frame fZ�g as X = ��Z�. Then the proje
tion Xaof X onto the A-image plane 
an be written asXa = (X �Ai )Ai= (��Z� �Ai )Ai= ��Ki�Ai ; Ki� � Z� �Ai (33)The matrix Ki� is the 
amera matrix 7 of 
amera A, for proje
ting points given in theZ-frame onto the A-image plane.7Note that the indi
es of K are not given as super- and subs
ripts of K but are raised (or lowered)relative to ea
h other. This notation was adopted sin
e it leaves the supers
ript position of K free forother usages. 13



In [3℄ the derivations begin with the 
amera matri
es by noting that the row ve
torsrefer to planes. As was shown here, the row ve
tors of a 
amera matrix are the re
ipro
alframe ve
tors fAig, whose dual is a plane.With the same method, lines 
an be proje
ted onto an image plane. For example, letL be some line in P 3. Then its proje
tion onto the A-image plane is(L^A4) _ (A1^A2^A3) = (L�Lai )Lia (34)4 The Trifo
al Tensor
B4Lb^

Lc C4^

4
ac

ab

ba
b bc

4

c

4
ca

cb

E

E

X

Y

L = X^Y

E E

E

E C

L

B

A

L

Figure 1: Line proje
ted onto three image planes. Note that although the �gureis drawn in E3, lines and points are denoted by their 
orresponding ve
tors in P 3.Let the frames fA�g, fB�g and fC�g de�ne three distin
t 
ameras. Also, let L = X^Ybe some line in P 3. The plane L^B4 is then the same as the plane �biLib^B4, up to as
alar fa
tor, where �bi = L�Lbi . But,Li1b ^B4 = Bi2^Bi3^B4 = hhBi1iiInterse
ting planes L^B4 and L^C4 has to give L. Therefore, (�bihhBiii) _ (�
jhhCjii) hasto give L up to a s
alar fa
tor. Now, if two lines interse
t, their outer produ
t is zero.Thus, the outer produ
t of lines X^A4 (or Y^A4) and L has to be zero. Note that X^A4de�nes the same line as (�iAi)^A4, up to a s
alar fa
tor, where �i = X �Ai . Figure 1shows this 
onstru
tion. Combining all these expressions gives0 = (X^A4^L)I�1= �i�bj�
khh(Ai^A4)(hhBjii _ hhCkii)ii= �i�bj�
khh(Ai^A4)hhBjCkiiii (35)
14



where the following identity was used whi
h 
an be derived with the help of equation(27); hhBjii _ hhCkii = DD[[hhBjii℄℄[[hhCkii℄℄EE= hhBjCkii (36)If the trifo
al tensor Tijk is de�ned asTijk = hh(Ai^A4)hhBjCkiiii (37)then, from equation (35) it follows that it has to satisfy �i�bj�
kTijk = 0. This expressionfor the trifo
al tensor 
an be expanded in two di�erent, but equivalent ways. The �rstway yields, Tijk = (Ai^A4)�[[hhBjCkii℄℄= (Ai^A4)�(Bj^Ck)= (A4 �Bj)(Ai �Ck)� (A4 �Ck)(Ai �Bj)= Kbj4K
ki �K
k4Kbji (38)where Kbji � Ai �Bj and K
ki � Ai �Ck are the 
amera matri
es for 
ameras B and C,respe
tively, relative to 
amera A. This is the expression for the trifo
al tensor givenby Hartley in [1℄. Note that the 
amera matrix for the A-plane would be written asKaj� � A� �Aj ' Æji . That is, Ka = [Ij0℄ in standard matrix notation. In many otherderivations of the trifo
al tensor (eg. [1℄) this form of the 
amera matri
es is assumedat the beginning. Here, however, the trifo
al tensor is de�ned �rst geometri
ally and wethen �nd that it implies this parti
ular form for the 
amera matri
es.On the other hand, equation (37) 
an also be expanded toTijk = [[AiA4℄℄�hhBjCkii= Lai �hhBjCkii from equation (23-2) (39)This expression for the trifo
al tensor is somewhat more instru
tive than the previousone. Re
all that �bj�
khhBjCkii gives line L up to a s
alar fa
tor. From equation (34) itthen be
omes 
lear that �bj�
kTijk gives the 
omponents of the proje
tion of line L onto im-age plane A, up to a s
alar fa
tor. Alternatively, let T jk = hhBjCkii. Then the proje
tionof line T jk onto image plane A (from equation (34)), denoted by T jka isT jka = TijkLia (40)Sin
e epipoles are not essential in this report only a short de�nition will be given here.More details may be found in [6℄.An epipole is the proje
tion of the opti
al 
entre of one 
amera onto the image planeof another. For example, the epipole Eba is the proje
tion of the opti
al 
entre of 
ameraA (A4) onto the image plane of 
amera B (B1^B2^B3). That is, from equation (32)Eba = (A4^B4) _ (B1^B2^B3)= (A4 �Bi )Bi (41)15



From the de�nition of the 
amera matri
es as given in equation (33) and equation (38) itthen follows that Eba = Kbi4BiIn other words, the fourth 
olumn of the 
amera matrix gives the 
oordinates of an epipole.5 Constraints on the Trifo
al TensorBy transforming the trifo
al tensor into an epipolar basis, it 
an be shown quite easily(see [7℄) that the trifo
al tensor only has 18 degrees of freedom (DOF). This also yieldsa minimal parameterisation of the trifo
al tensor in term of its epipoles. Nevertheless,this approa
h has two big problems. Firstly, the epipoles are only known on
e the tri-fo
al tensor has been 
al
ulated. Se
ondly, preliminary attempts have shown that thisparameterisation is very non-linear. That is, a tiny 
hange in the value of one epipoleappears to result in a large 
hange in the 
omponents of the full trifo
al tensor. There-fore, an iterative minimisation routine that tries to �nd the 
orre
t epipolar values, wouldhave to sear
h over a very non-linear surfa
e in 18 dimensions. Nonetheless, the epipolarparameterisation is an easy way to prove that the trifo
al tensor has indeed only 18 DOF.A potentially better approa
h for 
al
ulating the trifo
al tensor is to use all 27 
om-ponents as free variables, but to restrain the whole system through some additional 
on-straints. These 
onstraints have to de�ne the stru
ture of the trifo
al tensor withoutdepending on any values other than its 
omponents.Su
h 
onstraints are derived here following the approa
h given in [3℄. However, notonly has this approa
h been generalized but the arguments used are also of purely ge-ometri
al origin. In parti
ular, the derivation given here does not involve working withany polynomials.The underlying idea is to �nd relations between the lines T jk whi
h also hold for theirproje
tions T jka . Relations between the T jka 
an in turn be dire
tly related to the 
omponentsof the trifo
al tensor. There are two types of 
onstraints.5.1 Constraint Type 1In the following, the fi1; i2; i3g, et
. are no longer assumed to be any parti
ular kind ofpermutation.The 
onstraints we are looking for somehow have to relate the lines fT ijg. Findingrelations between the interse
tion points of these lines seems to be a promising idea.However, there is no guarantee that any two lines of the set fT ijg do interse
t, i.e. are
o-planar. Therefore, it is better to �nd the interse
tion between a plane A4^T i1j1 and aline T i2j2 whi
h is always well de�ned, as long as A4 does not lie on the line T i1j1. In thefollowing we will assume that A4^T i1j1 6= 0.To simplify the notation, the interse
tion between A4^T i1j1 and T i2j2 is written asp(i1j1; i2j2) and given by
16



p(i1j1; i2j2) � (A4^hhBi1Cj1ii) _ hhBi2Cj2ii= DDhhA4hhBi1Cj1iiiihhhhBi2Cj2iiiiEE= DD�A4 �hhhhBi1Cj1iiii�Bi2Cj2EE= DD�A4 �(Bi1^Cj1)�Bi2Cj2EE= DD(A4 �Bi1)Cj1Bi2Cj2 � (A4 �Cj1)Bi1Bi2Cj2EE= "i1bahhCj1Bi2Cj2ii+ "j1
ahhBi1Cj2Bi2ii (42)
where "iba � A4 �Bi and "i
a � A4 �Ci are the image point 
oordinates for epipolesEba and E
a, respe
tively.Consider the following types of interse
tion points.p(i1j; i2j) = "j
ahhBi1CjBi2ii (43-1)p(ij1; ij2) = "ibahhCj1BiCj2ii (43-2)Using just this type of interse
tion point a very simple 
onstraint 
an be found. First ofall 
onsiderp(i1j1; i2j1)^p(i1j2; i2j2) = "j1
a"j2
a hhBi1Cj1Bi2ii| {z }grade 1 ve
tor^hhBi1Cj2Bi2ii| {z }grade 1 ve
tor= "j1
a"j2
a�hhBi1Cj1Bi2ii^hhBi1Cj2Bi2ii�I�1I= "j1
a"j2
a� hhBi1Cj1Bi2ii| {z }grade 1 ve
tor�(Bi1^Cj2^Bi2)| {z }grade 3 ve
tor �I (44)Using equation (16) we getp(i1j1; i2j1)^p(i1j2; i2j2) = "j1
a"j2
a� Bi1 �hhBi1Cj1Bi2ii (Cj2^Bi2)� Cj2 �hhBi1Cj1Bi2ii (Bi1^Bi2)+ Bi2 �hhBi1Cj1Bi2ii (Bi1^Cj2)�I= "j1
a"j2
a� hhBi1Bi1Cj1Bi2ii| {z }=0 hhCj2Bi2ii� hhCj2Bi1Cj1Bi2iihhBi1Bi2ii+ hhBi2Bi1Cj1Bi2ii| {z }=0 hhBi1Cj2ii�= �"j1
a"j2
a hhBi1Bi2Cj1Cj2ii| {z }s
alar hhBi1Bi2ii

(45)
Note that only the term hhBi1Bi2ii is not a s
alar. Following a similar analysis it 
anbe shown that hhBi1Bi2ii^p(i1j3; i2j3) = "j3
ahhBi1Bi2ii^hhBi1Cj3Bi2ii = 0 (46)

17



Therefore, p(i1j1; i2j1)^p(i1j2; i2j2)^p(i1j3; i2j3) = 0 (47)and similarly p(i1j1; i1j2)^p(i2j1; i2j2)^p(i3j1; i3j2) = 0 (48)These two 
onstraints simply express the fa
t that all three interse
tion points (all thep's) lie on the same line. It is fairly simple to see whi
h line that is. Just as hhBi1Bi2ii isthe interse
tion between planes hhBi1ii and hhBi2ii, hhBi1Cj1Bi2ii is the interse
tion betweenthe three planes hhBi1ii, hhBi2ii and hhCj1ii. Therefore, equation (47) 
an also be written as�hhBi1Bi2ii _ hhCj1ii�^�hhBi1Bi2ii _ hhCj2ii�^�hhBi1Bi2ii _ hhCj3ii� = 0 (49)That is, we take the outer produ
t of the interse
tion points of line hhBi1Bi2ii with theplanes hhCj1ii, hhCj2ii and hhCj3ii. Obviously all three interse
tion points have to lie on linehhBi1Bi2ii, hen
e their outer produ
t is zero. This 
onstru
tion is shown in �gure 2.
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Figure 2: This demonstrates the 
onstraint type 1 for i1 = 1, i2 = 2 and j1 = 1, j2 = 2,j3 = 3. For example, p(12; 22) ' hhB1C2B2ii ' hhB1B2ii _ hhC2ii.These 
onstraints also have to hold for the interse
tion points of the proje
ted linesT jka . Let the interse
tion between lines T j1k1a and T j2k2a be written as pa(j1k1; j2k2). Thisinterse
tion point lies on the A-image plane by de�nition, and 
an therefore be given inthe A-line basis (equation (40)). With the help of equation (25) we get
18



pa(j1k1; j2k2) � Ti1j1k1Ti2j2k2(A4^Li1a ) _ Li2a= Ti1j1k1Ti2j2k2(A4^hhAi1a A4aii) _ hhAi2a A4aii= Ti1j1k1Ti2j2k2DD�A4 �(Ai1a ^A4a)�Ai2a A4aEE' Ti1j1k1Ti2j2k2hhAi1a Ai2a A4aii (50)following a similar analysis as in equation (45) it is possible to show thatpa(j1k1; j2k2)^pa(j3k3; j4k4) ' Ti1j1k1Ti2j2k2Ti3j3k3hhAi1a Ai2a Ai3a A4aiiTi4j4k4hhAi4a A4aii�Ti1j1k1Ti2j2k2Ti4j4k4hhAi1a Ai2a Ai4a A4aiiTi3j3k3hhAi3a A4aii(51)From the de�nition of the angle bra
ket it follows that for any s
alar 
omponents f�ig,f�jg and f�kg �i�j�khhAiaAjaAkaA4aiia = �i�j�k�ijk= det(�i; �j; �k)ijk (52)where �ijk is +1 if fijkg form an even permutation of f1; 2; 3g, �1 if they form an oddpermutation, and 0 if any two indi
es are equal. det(�i; �j; �k)ijk denotes the determinantof a matrix with rows given by f�ig, f�jg and f�kg in exa
tly that order from top tobottom. The subs
ript gives the indi
es that are used to form the matrix rows. If thef�ig, f�jg and f�kg are written as ve
tors a = �iei, b = �jej and 
 = �kek then we de�nedet(�i; �j; �k)ijk � det(a; b; 
)� jab
j (53)Therefore,Ti1j1k1Ti2j2k2Ti3j3k3hhAi1a Ai2a Ai3a A4aiia = det(Ti1j1k1Ti2j2k2Ti3j3k3)i1i2i3� jT j1k1a T j2k2a T j3k3a j (54)Using this notation, equation (51) may be written more 
on
isely as,pa(j1k1; j2k2)^pa(j3k3; j4k4) ' jT j1k1a T j2k2a T j3k3a jTi4j4k4Li4a� jT j1k1a T j2k2a T j4k4a jTi3j3k3Li3a (55)Therefore, expressing equation (47) in terms of the pa gives,0 = pa(j1k1; j2k1)^pa(j1k2; j2k2)^pa(j1k3; j2k3)= jT j1k1a T j2k1a T j1k2a j jT j2k2a T j1k3a T j2k3a j� jT j1k1a T j2k1a T j2k2a j jT j1k2a T j1k3a T j2k3a j (56)and the 
onstraint in equation (48) be
omes,
19



0 = pa(j1k1; j1k2)^pa(j2k1; j2k2)^pa(j3k1; j3k2)= jT j1k1a T j1k2a T j2k1a j jT j2k2a T j3k1a T j3k2a j� jT j1k1a T j1k2a T j2k2a j jT j2k1a T j3k1a T j3k2a j (57)
5.2 Constraint Type 2The se
ond type of 
onstraint is slightly more 
ompli
ated. Here, the following type ofinterse
tion point is neededp(i1j1; i2j2) = "i1bahhCj1Bi2Cj2ii+ "j1
ahhBi1Cj2Bi2iip(i1j2; i2j1) = "i1bahhCj2Bi2Cj1ii+ "j2
ahhBi1Cj1Bi2iiTherefore, p(i1j1; i2j2) + p(i1j2; i2j1) = "j1
ahhBi1Cj2Bi2ii+ "j2
ahhBi1Cj1Bi2ii (59)Comparing this with equation (45) it 
an be seen right away that as in equation (46) thefollowing has to be truep(i1j1; i2j1)^p(i1j2; i2j2)^�p(i1j1; i2j2) + p(i1j2; i2j1)� = 0 (60)This 
onstraint simply states that the point (p(i1j1; i2j2) + p(i1j2; i2j1)) lies on the linep(i1j1; i2j1)^p(i1j2; i2j2). Or, writing equation (60) in terms of interse
tions of lines andplanes�hhBi1Bi2ii_hhCj1ii�̂ �hhBi1Bi2ii_hhCj2ii�̂ �hhBi1Bi2ii_hhCj1ii+hhBi1Bi2ii_hhCj2ii� = 0 (61)whi
h is even more trivial than equation (49).Translating this into relations between the 
omponents of the trifo
al tensor gives,jT i1j1a T i2j1a T i1j2a j jT i2j2a T i1j2a T i2j3a j � jT i1j1a T i2j1a T i2j2a j jT i1j2a T i1j3a T i2j2a j = 0 (62)The 
onstraints found here were inspired by work done by O.Faugeras and B.Mourrainin [3℄. However, the 
onstraints given in [3℄ form a subset of those given here. Furthermore,here the 
onstraints were derived through mainly geometri
al arguments, rather thanthrough the investigation of polynomials as in [3℄.The 
onstraint equations (56) and (57) are not given in determinant form8 in [3℄. The
onstraints given in [3℄ as equations (12) through (15) are a subset of equation (62) asgiven here.8These 
onstraints are basi
ally the same as the relations between lines detailed on page 26 of [3℄.20



6 ComputationsIt is interesting to see what e�e
t the determinant 
onstraints have on the \quality" ofa trifo
al tensor. That is, a trifo
al tensor 
al
ulated only from point mat
hes has tobe 
ompared with a trifo
al tensor 
al
ulated form point mat
hes while enfor
ing thedeterminant 
onstraints.For the 
al
ulation of the former a simple linear algorithm is used that employs thetrilinearity relationships, as, for example, given by Hartley in [1℄. In the following thisalgorithm will be 
alled the \7pt algorithm".To enfor
e all the determinant 
onstraints, an estimate of the trifo
al tensor is �rstfound using the 7pt algorithm. From this tensor the epipoles are estimated. Using theseepipoles the image points are transformed into the epipolar frame. With these transformedpoint mat
hes the trifo
al tensor 
an then be found in the epipolar basis.It 
an be shown [7℄ that the trifo
al tensor in the epipolar basis has only 7 non-zero
omponents9. Using the image point mat
hes in the epipolar frame these 7 
omponents
an be found linearly. The trifo
al tensor in the \normal" basis is then re
overed bytranforming the trifo
al tensor in the epipolar basis ba
k with the initial estimates ofthe epipoles. The trifo
al tensor found in this way has to be fully self-
onsistent sin
eit was 
al
ulated from the minimal number of parameters. That also means that thedeterminant 
onstraints have to be fully satis�ed. This algorithm will be 
alled the\MinFa
t" algorithm.The main problem with the MinFa
t algorithm is that it depends 
ru
ially on thequality of the initial epipole estimates. If these are bad, the trifo
al tensor will still beperfe
tly self-
onsistent but will not represent the true 
amera stru
ture parti
ularly well.This is re
e
ted in the fa
t that typi
ally a trifo
al tensor 
al
ulated with the MinFa
talgorithm does not satisfy the trilinearity relationships as well as a trifo
al tensor 
al
u-lated with the 7pt algorithm, whi
h is of 
ourse 
al
ulated to satisfy these relationshipsas well as possible.Unfortunately, there does not seem to be a way to �nd the epipoles and the trifo
altensor in the epipolar basis simultaneously with a linear method. In fa
t, the trifo
altensor in a \normal" basis is a non-linear 
ombination of the epipoles and the 7 non-zero
omponents of the trifo
al tensor in the epipolar basis.Nevertheless, sin
e the MinFa
t algorithm produ
es a fully self-
onsistent tensor, the
amera matri
es extra
ted from it also have to form a self-
onsistent set. Re
onstru
tionusing su
h a set of 
amera matri
es may be expe
ted to be better than re
onstru
tionusing an in
onsistent set of 
amera matri
es, as typi
ally found from an in
onsistenttrifo
al tensor. The fa
t that the trifo
al tensor found with the MinFa
t algorithm maynot resemble the true 
amera stru
ture very 
losely, might not matter too mu
h, sin
ere
onstru
tion is only exa
t up to a proje
tive transformation.The question is, of 
ourse, how to measure the quality of the trifo
al tensor. Here thequality is measured by how good a re
onstru
tion 
an be a
hieved with the trifo
al tensorin a geometri
 sense. This is done as follows:9From this it follows dire
tly that the trifo
al tensor has 18 DOF: 12 epipolar 
omponents plus 7non-zero 
omponents of the trifo
al tensor in the epipolar basis minus 1 for an overall s
ale.21



1. A 3D-obje
t is proje
ted onto the image planes of the three 
ameras, whi
h subse-quently introdu
e some Gaussian noise into the proje
ted point 
oordinates. These
oordinates are then quantised a

ording to the simulated 
amera resolution. Themagnitude of the applied noise is measured in terms of the mean Gaussian deviationin pixels.2. The trifo
al tensor is 
al
ulated in one of two ways from the available point mat
hes:(a) using the 7pt algorithm, or(b) using the MinFa
t algorithm.3. The epipoles and the 
amera matri
es are extra
ted from the trifo
al tensor. The
amera matri
es are evaluated using Hartleys re
omputation method [1℄.4. The points are re
onstru
ted using a version of what is 
alled \Method 3" in [10℄and [11℄ adapted for three views. This uses a SVD to solve for the homogeneousre
onstru
ted point algebrai
ally using a set of 
amera matri
es. In [10℄ and [11℄this algorithm was found to perform best of a number of re
onstru
tion algorithms.5. This re
onstru
tion still 
ontains an unknown proje
tive transformation. There-fore it 
annot be 
ompared dire
tly with the original obje
t. However, sin
e onlysyntheti
 data is used here, the 3D-points of the original obje
t are known ex-a
tly. Therefore, a proje
tive transformation matrix that best transforms the re-
onstru
ted points into the true points 
an be 
al
ulated. Then the re
onstru
tion
an be 
ompared with the original 3D-obje
t geometri
ally.6. The �nal measure of \quality" is arrived at by 
al
ulating the mean distan
e in3D-spa
e between the re
onstru
ted and the true points.These quality values are evaluated for a number of di�erent noise magnitudes. For ea
hparti
ular noise magnitude the above pro
edure is performed 100 times. The �nal qualityvalue for a parti
ular noise magnitude is then taken as the average of the 100 trials.Figure 3 shows the mean distan
e between the original points and the re
onstru
tedpoints in 3D-spa
e in some arbitrary units10, as a fun
tion of the noise magnitude. The
amera resolution was 600 by 600 pixels.This �gure shows that for a noise magnitude of up to approximately 10 pixels bothtrifo
al tensors seem to produ
e equally good re
onstru
tions. Note that for zero addednoise the re
onstru
tion quality is not perfe
t. This is due to the quantisation noise ofthe 
ameras. The small in
rease in quality for low added noise 
ompared to zero addednoise is probably due to the 
an
ellation of the quantisation and the added noise.Apart from looking at the re
onstru
tion quality it is also interesting to see how 
losethe 
omponents of the 
al
ulated trifo
al tensors are to those of the true trifo
al tensor.Figures 4 and 5 both show the mean of the per
entage di�eren
es between the 
omponentsof the true and the 
al
ulated trifo
al tensors as a fun
tion of added noise in pixels. Figure4 
ompares the trifo
al tensors found with the 7pt and the MinFa
t algorithms. This shows10The parti
ular obje
t used was 2 units wide, 1 unit deep and 1.5 units high in 3D-spa
e. The Y-axismeasures in the same units. 22
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e between original points and re
on-stru
ted points in arbitrary units as a fun
tion of mean Gaussianerror in pixels introdu
ed by the 
ameras. The solid line showsthe values using the MinFa
t algorithm, and the dashed line thevalues for the 7pt algorithm.that the trifo
al tensor 
al
ulated with the MinFa
t algorithm is indeed very di�erent tothe true trifo
al tensor, mu
h more so than the trifo
al tensor 
al
ulated with the 7ptalgorithm (shown enlarged in �gure 5).
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7 Con
lusionIt was shown here how the GA approa
h to the trifo
al tensor problem leads to a 
leargeometri
al understanding of the same. In parti
ular, 
onstraints on the internal stru
tureof the trifo
al tensor 
ould be derived through mainly geometri
al arguments. The use ofre
ipro
al frames and espe
ially their extension to line frames 
learly showed the advantageof the GA approa
h over a GC algebra approa
h, due to GA's inner produ
t.The data presented in se
tion 6 seems to indi
ate that a tensor that obeys the determi-nant 
onstraints, i.e. is self-
onsistent, but does not satis�es the trilinearity relationshipsparti
ularly well is equally as good, in terms of re
onstru
tion ability, as an in
onsistenttrifo
al tensor that satis�es the trilinearity relationships quite well. In parti
ular the fa
tthat the trifo
al tensor 
al
ulated with the MinFa
t algorithm is so very mu
h di�erentto the true trifo
al tensor (see �gure 4) does not seem to have a big impa
t on the �nalre
omputation quality.One possible explanation for this is that all the di�eren
es between the re
onstru
tionsare evened out when the �nal proje
tive transformation is applied. That would meanthat to strive for a very good estimate of the trifo
al tensor is not a
tually ne
essary sin
eany re
onstru
tion will always in
lude a proje
tive transformation that 
an be 
hosenarbitrarily11.

11In fa
t it was found by the authors that an initial re
onstru
tion is almost always 
at and lo
atedat one of the 
amera image planes. A proje
tive transformation was then ne
essary to \unfold" there
onstru
tion. 25
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