A Geometric Derivation of the
Trifocal Tensor and its
Constraints

C.B.U. Perwass ', J. Lasenby 2

CUED/F - INFENG/TR. 331
October 1998

! Cavendish Laboratory, Madingley Road, Cambridge CB3 OHE, UK
+44 (1223) 337366
cperwass@mrao.cam.ac.uk
www.mrao.cam.ac.uk/~cperwass

2 C. U. Engineering Department, Trumpington Street, Cambridge CB2 1PZ, UK
+44 (1223) 332767
jl@eng.cam.ac.uk
www-sigproc.eng.cam.ac.uk/7jl

Abstract

Reconstruction of 3D-objects from a number of images is a central subject of Com-
puter Vision. In this paper we investigate the geometrical structure of the trifocal tensor
using Geometric Algebra. Furthermore, we will give a novel expression for the trifocal
tensor, derive constraints on its geometrical structure and investigate its reconstruction
ability computationally. We will show that the reconstruction quality is not directly
related to the self-consistency of the trifocal tensor.

Categories: Trifocal Tensor, Geometric Algebra, Grassmann-Cayley Algebra, Reciprocal
Frames, Reconstruction

1 Introduction

Recently there has been much interest in deriving and characterising the trifocal tensor.
The trifocal tensor is used to obtain a projective reconstruction from three images, taken
with uncalibrated cameras from unknown positions of the same 3D-scene. It can also be
used to transfer lines or points from one image to another. [1] and [2] give a discussion of
the structure of the trifocal tensor and present examples of its use.

In effect the trifocal tensor encodes the relative positions and orientations of the cam-
eras. It can be calculated if at least 7 point matches over the three images are available.
Once the trifocal tensor has been calculated, the epipoles, camera matrices and funda-
mental matrices can be extracted from it. The quality of the initial point matches is
crucial for obtaining good estimates of these values, however. Therefore, a lot of research
has gone into obtaining a good estimate of the trifocal tensor from not so good point
matches. The main problem being how to decide what estimate of a trifocal tensor is
“good” if only point matches and nothing else are known.

The trifocal tensor has also been studied in terms of Grassmann-Cayley (GC) algebra
([3], [4], [5]). A derivation and analysis in terms of Geometric Algebra (GA) can be found
in [6] and [7].

In this paper the derivation and analysis of the trifocal tensor in terms of Geometric
Algebra will be extended. Although GA is similar to GC algebra, it will be shown that
geometric algebra has some distinct advantages due to its use of the inner product. This is
especially apparent in a novel interpretation of camera matrices and the trifocal tensor. In
particular, a concise expression for the trifocal tensor is given, which allows a better insight
into its geometrical meaning. Also, a set of constraints on the internal structure of the
trifocal tensor will be derived. These constraints form a superset of constraints previously
derived in [3] and [5]. However, here the derivation is done purely geometrically and not
through the investigation of polynomials as in [3]. The effect of the newly found constraints
on the reconstruction ability of the trifocal tensor will be investigated computationally.

2 Geometric Algebra

Since all the analysis in this paper is carried out in terms of GA, a short introduction
will be given here. All the calculation rules and identities needed to follow this report
are presented. However, proofs and derivations will be omitted. The interested reader
may refer to [8] and [9] for a thorough treatment of GA. A shorter derivation of the most
important results can be found in [6] and [7].

The easiest way to understand GA is to show how it extends the functionality of
standard vector calculus (SVC), which we assume all readers are familiar with. In SVC
the starting point is to define a frame. Here all calculations are performed in a cartesian
frame, so we can start by defining an orthonormal basis of E?, {e;, e, e3} with signature
{+ + +}. A vector a in this basis may then be defined as

a = o'e;

Here, as throughout the rest of the text, greek indices will be assumed to count from 1 to
4 and latin indices to count from 1 to 3. Also, a superscript index repeated as a subscript
(or vice versa) implies a summation over the range of that index, unless specifically stated
otherwise. Now, SVC defines a scalar product of two vectors which results in a scalar.
For example, the scalar product of two vectors a and b is written as s = a-b, where s is
a scalar. The scalar s gives some information about the relative orientation of vectors a
and b. That is, the scalar product is a metric operation, since it is only defined in relation
to a frame.

GA extends the scalar product to an inner product. The inner product of two vectors
a and b is still written as a-b and it has the same metric meaning. However, the inner
product can also be applied in a non-metric sense. In order to see this, we will first have
to introduce the outer product.

The outer product of two vectors @ and b is written as aAb and is called a 2-blade.
A 2-blade may be regarded as an oriented area. Analogously, the outer product of three
vectors, a 3-blade, aAbAc can be interpreted as an oriented volume. However, in projective
geometry, which will be treated later on, the geometric meaning of 2-blades and 3-blades
is quite different. A more general interpretation of k-blades will be given at the end of
this section.

The outer and inner product are also defined in the absence of a basis frame. This is
where the power of GA lies. Let a,b,c € E", then the following rules apply to the inner
product:

1. If a-b =0 then a and b are said to be orthogonal.
2. a-b=b-a = s where s is a scalar. That is, the inner product is commutative.

3. a-(b+ c) = a-b+ a-c. Distributive law.
For the outer product we have

1. If aAb = 0 then a and b are said to be parallel or linearly dependent.
2. aAb = —bAa. That is, the outer product is anti-commutative.
3. an(b+ ¢) = anb+ aAc. Distributive law.

4. an(bAe) = (aAb)Ace. Associative law.

From the first rule for the outer product it follows directly that the highest grade
object in E™ is of grade n, simply because in E" at most n mutually linearly independent
vectors can be formed. The object of highest grade is called the pseudoscalar of that space.
Obviously the pseudoscalars of some vector space can only differ by a scalar factor.

A 1-vector, or simply vector, in GA is the same as a vector in SVC. In that sense it
is also equivalent to a 1-blade. However, in GA we can have vectors of higher grade, as
well. A k-vector is defined to be the sum of a number of k-blades. Note that a k-vector
cannot necessarily be expressed as a k-blade, but every k-blade is also a k-vector. Some
examples may help to clarify this idea. A 2-vector , or bivector, w € E? may be given by

w = 2(e;Aeg) + 3(e1Aes)

This particular bivector can also be written as a 2-blade;
w = e;A\(2e9 + 3e3)

In fact, in E? any 2-vector can be expressed as a 2-blade. However, in higher dimensional
spaces this is not necessarily the case. Consider the following bivector in E* with basis
{e1,eq,€3,€4}.

w = ale;Ney) + BezNey)

where « and 3 are some scalar factors. This bivector cannot be written as a 2-blade.

Just as a k-vector is the sum of a number of k-blades, GA also defines a multivector
which is the sum of a number of blades that are not necessarily of the same grade'.
Working with multivectors is considerably more complicated than working with k-vectors.
Since they are also not needed in this report multivectors will not be discussed here. We
refer the interested reader to [8] and [9].

There is also a distributive law for the inner product with respect to the outer product.
The following is an important general result. Let By be an s-blade and let the {a,} form
a set of unique vectors such that for no two a;, a; € {a,} a;Aa; =0. Then,

Bs-(@aiAasA.. . Aa,) =D €.]T[(aj, Naj,A.. /\a]g)}ajw/\.../\ajr (1)
{di}
where €, ,...;, is +1 if the {j;} form an even permutation of {1,2,...,r}, —1 if they form

an odd permutation and 0 if any two indices are identical. Admittedly this equation looks
rather confusing. A few examples, however, should clarify the situation.

a'(bl/\bg) = (a'bl)bg—(a'bg)bl (2—1)

a'(bl/\bQ/\bg) = (a'bl)(bg/\bg) — (a'bg)(bl/\bg}) + (a'bg)(bl/\bg) (2—2)

Furthermore,

(a1Aay)-(biAby) = al-(ag-(b1/\b2)) (3-1)

= ay-bya;-by — ayb, a-b

(@17as)-(biAbyAbs) = [(@1Aay)-(biAby)|bs
~ [(a1nay)- (b1 Abs) by (3-2)
+[(a1/ay)- (ByAbs)| by

Equations (2) and (3) clearly show the non-metric side of the inner product. For
example, in equation (2-1) the inner product of a vector with a bivector results in a
vector. In equation (2-2) the inner product of a vector with a trivector? gives a 2-vector.
Similarly for equations (3).

'In more general texts on GA a k-vector as defined here is called a homogeneous multivector of grade k.
We have chosen not to follow this naming convention since in projective geometry the term “homogeneous
vector” is already used to describe something quite different.

2A “trivector” is a 3-vector. Note that for vectors higher than grade 3 there are no special names.

That is, the inner product reduces the grade of a k-vector whereas the outer product
mncreases it.

Following this interpretation of inner and outer product consequently leads to the
notion that a scalar is a 0-vector, because the inner product of two vectors results in a
scalar. However, then we must also assert that the inner product of a scalar with a vector
is identically zero.

In Section 3 it will be shown that intersections as well as the dual operation can be
expressed in terms of the inner product. GC algebra lacks such a universal operator and
therefore has to resort to defining a number of different inner-product-like structures.

Now we are in a position to see what the algebraic meaning of a bivector is. Let a
vector & € E® be defined as
r —=a- (b] /\bg)

We can get some information about the orientation of & by calculating

axr = a-[a-(bl/\bQ)]
= (aAa)-(bjAby) from equation (3-1) (4)
= 0

This shows that & and a are orthogonal. Furthermore, we have

r = a- (bl/\bg)
== (a'bl)bg — (a-bQ)bl
and hence x lies in the plane given by b; and b,. Therefore, we can interpret the bivector
biAbsy as the combination of the linear dependencies given by b; and by. Taking the inner

product of a with this bivector then “takes out” the linear dependence represented by a.
What we are left with therefore has to be orthogonal to a.

(5)

By definition the inner product is commutative and the outer product anti-commutative.
GA defines another product which combines these two properties and is accordingly called
the geometric product. In fact, it is the most fundamental operation in GA?. The geometric
product of two vectors is written as ab and defined by

ab= a-b + anb

3 Projective Geometry

3.1 Fundamentals

Projective geometry can be expressed in terms of GA by defining a set of 4 basis vectors
{e1, €2, €3, €4} with signature {— — —+1}, ie. €,-e, = 26,40,4 — J,,. The pseudoscalar of
this space is defined as,

I = eiNeaNesNey.

3Had an axiomatic approach been followed here, the geometric product would have been the first
product to be defined. The inner and outer product can then be derived from that. However, here we
present a more “intuitive” introduction to GA.

The inverse pseudoscalar /' is defined such that I7-' = 1. From the metric given above
it follows that I/ = I-'I-' = —1. Furthermore,

I=-1" (6)

A vector in this 4D-space (P?), which will be called a homogeneous vector!, can then
be regarded as a projective line which describes a point in the corresponding 3D-space
(E®). Also, a line in E?® is represented in P? by the outer product of two homogeneous
vectors, and a plane in E? is given by the outer product of three homogeneous vectors in
P3. In the following, homogeneous vectors in P? will be written as capital letters, and
their corresponding 3D-vectors in E? as lower case letters in bold face.

Let A be a homogeneous vector, i.e. A = ate,, where the {a#} are some scalar
components. The projection of A into E? is given by,

. A/\€4
N A'€4

a

This is called the projective split. Note that a homogeneous vector with no e4 component
will be projected onto the plane at infinity. Also, an overall scalar factor of A cancels when
A is projected down to 3D-space via the projective split. Therefore, if two homogeneous
vectors of any grade are equal up to a scalar factor, they are identical when projected
down to 3D-space. Since we are ultimately only interested in 3D-space vectors, equality
up to a scalar factor is often sufficient. For that purpose we use the symbol ~. For
example, A >~ pA, where p is a scalar constant.

The following gives an example of the projective split. Let A = pa'e,, where the {a#}
and p are some scalar values. Then

_ Aley
© T A)
pal ei Ney + pateaNey + pad esAey
— o
If we define a new basis {g;} as
9i = eiNey
then the vector @ may be written as
a = a—49z

[0}

The basis {g;} has signature {+ + +}, as required. This may be shown quite easily;

9irgi = (eiNes) (eiNey)
= —e;-e; eq-ey from equation (3-1) (8)
= 41 from previously defined metric

Similarly it may be shown that g;-g; = 0 if 7 # j. Now it is clear why the signature
of the basis {e,} had to be defined as {— — —+}.

4This definition of homogeneous differs from its conventional use in GA but is here chosen to tie in
with the Computer Vision convention.

A set {A4,} of four homogeneous vectors forms a basis or frame of P* if and only if
(AINAsNA3NA,) # 0. The characteristic pseudoscalar of this frame for 4 such vectors is
defined as

I, = A\NANASNAY

Since I, and I are both pseudoscalars of the same space, they can only differ by a scalar
factor. That is,
I, = pol (9)

where p, is the scale of the A-frame, given by
pa = (ALANAGNAZNA)T
The inverses of these two pseudoscalars are related by
It =p ! (10)
From equations (6), (9) and (10) it follows that

I'=—p°l, (11)

The outer product of a vector with a pseudoscalar is always zero. Hence, the geometric
product of a vector with a pseudoscalar reduces to the inner product of the two. From
this fact and with help of equation (1) the following important result follows;

AN]“ — AN. (Al /\AQ/\A%/\A;})

- i (A Au) (A A AL AAL,) (12)

vi=1

Here, and throughout the rest of the text the {vy, vy, 3,14} are assumed to be an even
permutation of {1,2,3,4}, unless otherwise stated. Since the inner product of two vec-
tors is a scalar, the result of this calculation is a multivector of grade 3. Similarly, the
geometric product of a bivector with a pseudoscalar gives a bivector and the geometric
product of a trivector with a pseudoscalar gives a vector. This introduces the concept of
the dual.

The dual of a multivector X, written X*, is defined as
X =XI"

Therefore, if X is of grade r < 4 then X* is of grade 4 — r. It will be extremely useful
to introduce the dual bracket and the inverse dual bracket. To a certain extent they are
related to the bracket notation as used in GC algebra and GA®. There the bracket of a
pseudoscalar P, say, is a scalar, defined as the dual of P in GA. That is, [P] = PI"'; here
however the dual bracket concept can produce something other than a scalar.

The dual bracket is defined as
[[AMAM T Aun]]a = (Aul/\Au2/\- ‘ '/\Aﬂn)]—(zl (13-1)

[Ap Ay, - Ap] = (A AAL AL AA,)T (13-2)

°See, for example [6]

The inverse dual bracket is defined as
<<Au1Au2 T Aun»a = (Am NAu A -/\Aun)la (14-1)

(A A ALY = (AN NALN L NAL)T (14-2)

with n € {0,1,2,3,4}. The range given here for n means that in P? none, one, two,
three or four homogeneous vectors can be bracketed with a dual or inverse dual bracket.
For example, if P = AjAAyANA3N Ay, then [A1AyA3AL] = [P] = [P] = pa. Furthermore,
the following identities hold:

(X)) =-[x1] (15-1)
[X] = pa[X]a (15-2)
(X) = pa ' {X)a (15-3)
[XTa = —p(X)a (15-4)
(IXT) = (XM =X (15-5)
[IX70 = (X)) = X (15-6)

There is another useful identity;

1A, AL,ALAL]l = (A NALNALNAL) T
A (A A AAL) T (16)
Apy A Ay Apa]
Similarly it may be shown that
[Aum Ay Aus Al = (A AAw,) - [Au A
= (AN AL AAL) - [Au] (17)
= (A A AAAA,)-[1]

Note that [1] = I"'. The same identities also apply for the [---], type brackets. Put
simply, vectors may be “pulled” out of a dual bracket (or inverse dual bracket) by taking
the inner product of them with the remainder of the bracket.

3.2 Reciprocal Vector Frames

It is now straightforward to define reciprocal frames. From equation (16) it follows that

[[<<1>>a]]a =1
= [[A] A2A3A4]]a - 1
— AN1'[[Au2Au3Au4 a=1

= Ay AR =1

(18)

with no implicit summation over the range of p;. This defines the normalized reciprocal
A-frame, written {A*}, as
Ay = [[AmAuaAmHa

It is also useful to define a standard reciprocal A-frame.
Al = [[AuzAuaAm]]
The relation between A%t and A" is
A= g A (19

From these definitions of reciprocal frame vectors it follows that

A-AY = oY (20-1)
Ay A" = pdY (20-2)

where 4, is the Kronecker delta. That is, a reciprocal frame vector is nothing else but the
dual of a plane. It may therefore also be regarded as the normal of the plane that is its
dual.

In GC algebra these reciprocal vectors would be defined as elements of a dual space,
which is indeed what is done in [3]. However, because GC algebra does not define an
inner product explicitly as in GA, elements of this dual space cannot operate on elements
of the “normal” space. Hence, the concept of reciprocal frames cannot be defined in GC
algebra.

A reciprocal frame can be used to transform a vector from one frame into another.
That is,

X =(X-AMA, =(X-A,)AY (21)

To show the first part of this equation we can say that since the {A,} form a basis of P?,

X can be given in terms of that frame as X = o#A,, where the {a"} are some scalars.
Then, with use of equation (20-1)

XAy = ol (A, AY) = o) = o
from which the first part of equation (21) follows.

Note that the {A#} also form a basis of P? since AL AA2ZANA3ANAS £ 0. Therefore, X
can also be given as X = a, A, where the {a,} are a set of scalars different to the {a/}.
Then, using again equation (20-1)

X-A, =aou(AL-A) = ,0F = a,

and hence the second part of equation (21).

10

3.3 Reciprocal Line Frames

It will be important later not only to consider vector frames but also line frames. The
A-line frame {L!} is defined as L2 = A;,, AA;,. Once again, the {ij,is,i3} are assumed
to be an even permutation of {1,2,3}. A reciprocal line frame can then be defined as
follows, again by using the identities in equation (17)

[(1)ala =1
= [A1A2A3A4], =1
= (Ai, NAL) [Ai Al =1
— LBk.L! =1

(22)

This® defines the normalised reciprocal A-line frame {L?} and the standard reciprocal
A-line frame {L!} as

Lt = [A;Ad. (23-1)
Ly = [AiA4] (23-2)
Hence,
Li-Lo =6 (24-1)
Li-L? = p,d! (24-2)

Again, this shows the universality of the inner product: bivectors can be treated in the
same fashion as vectors.

Note that L’ can also be expressed in the following way,
L = A,NA;,
= (A,NA)IT, since I7'1, =1
= (A AAy)-(AINAINAZNAD) T,
= —(ANAD
= —(40 A
~ (AGAL)

This particular form of L! will become useful later on.

(25)

3.4 Meet and Join

The meet and join are the two operations needed to calculate intersections between two
lines, two planes or a line and a plane. In general terms the join is the sum and the meet
is the intersection of two spaces. In GA any blade can be treated as a pseudoscalar of a
particular subspace.

6Note how similar this derivation is to that of reciprocal vector frames (equation (18)).

11

The join of two blades A and B, written as A/A B can be defined in general as the
pseudoscalar of the space given by the sum of the spaces spanned by A and B. For
example, if A = e;Aey and B = esAes then AAB = e; AeyAes.

The meet of A and B, written as AV B, is defined to give the space that A and B have
in common. Using the definitions of A and B from the previous example AV B ~ e5. In

general, the following expression for the meet can be given. Let A and B be two arbitrary
multivectors, and let J = AA B, then

AV B =[(AJ ") ABJI]I (26)

For the intersection of two planes or a plane and a line in P?, the join will always be the
pseudoscalar I, unless the line lies on the plane or the two planes are the same. In the
following we will assume that this is not the case. Then, for intersections between two
planes or a plane and a line equation (26) may be written as

AV B = ([A][B])
= [A]-([B]) from equation (17) (27)

= [A]-B from equation (15-5)
More details about meet and join may be found in [8] and [6].

There is a particularly nice feature of the meet operation which is worth mentioning
here: a vector is transformed into a particular frame by “meeting” it with the pseudoscalar
of that frame. The proof of this statement relies on the fact that the operation X V I,
can be expanded in three different ways. First of all

XVI, = ((XIT)A(LLI YT
——
scalar

= XTI '
= PaX
It may be shown with an analysis similar to the one used in equations (2) that X1 = —I X

and simlilarly X7-' = —T"'X. Also, I,I ' = I'I,. Using these facts X V I, can also be
expanded as

(28)

Xvi, = XII,
= —I,XI
= —(AANANAZNAY)-[X] (29)
= —A[A2A3ALX] + AsJA1 A3 ALX
—A3[AI A ALX] + Ag[A1 Ay A3 X
Writing this as the sum over an index gives

XVI, = S[XA,A,A,JA,

M1

= Z [X [[AmAua AM]]] Am (30)

Hi

= X-Am A,

12

Similarly

Xvli, = *IilX[a
= *Iil(X-Ia)
= Z —I! X'Am (AMQ/\A/B/\A/M) (31)
B

= XA, AW
Equating equations (28), (30) and (31) gives
X = (XA A = (X-A,)A]

which is the same as equation (21).

3.5 Cameras and Projections

A pinhole camera can be defined by 4 homogeneous vectors in P3: one vector gives the
optical centre and the other three define the image plane [6], [7]. Thus, the vectors needed
to define a pinhole camera also define a frame for P3. Conventionally the fourth vector
of a frame, eg. A,, defines the optical centre, and the outer product of the other three
defines the image plane.

Projection of some point X onto the image plane is done by intersecting the line con-
necting the optical centre with X, with the image plane. Intersections are calculated with
the meet operation. As an example, consider a camera defined by the A-frame. The line
connecting some point X with the optical centre is then given by X A A4, and the image
plane of the camera is given by (A; A Ay A Az). Therefore, the projection of X onto the
image plane is given using equations (17) and (27) by

= Z[[XAilAizA4]]AZ~3

= (X-A")A;
Suppose that X is given in some frame {Z,} as X = (#Z,. Then the projection X,
of X onto the A-image plane can be written as

(32)

= (¢"Z, A4, (33)
= C“Kiqu'; K,;u = 7, A
The matrix Ky;u is the camera matriz” of camera A, for projecting points given in the
Z-frame onto the A-image plane.

"Note that the indices of K are not given as super- and subscripts of K but are raised (or lowered)
relative to each other. This notation was adopted since it leaves the superscript position of K free for
other usages.

13

In [3] the derivations begin with the camera matrices by noting that the row vectors
refer to planes. As was shown here, the row vectors of a camera matrix are the reciprocal
frame vectors {A’}, whose dual is a plane.

With the same method, lines can be projected onto an image plane. For example, let
L be some line in P?. Then its projection onto the A-image plane is

(LAAL)V (ALANAGANAg) = (L-LE)LE (34)

4 The Trifocal Tensor

L =X"Y

Figure 1: Line projected onto three image planes. Note that although the figure
is drawn in E®, lines and points are denoted by their corresponding vectors in P3.

Let the frames {A,}, {B,} and {C}} define three distinct cameras. Also, let L = XAY
be some line in P3. The plane LA B, is then the same as the plane AL A By, up to a
scalar factor, where \ = L-L?. But,

Ly ABy = By, AB;, AB, = (B™)

Intersecting planes LA B, and LACy has to give L. Therefore, (A{B’)) V (X;(C7)) has
to give L up to a scalar factor. Now, if two lines intersect, their outer product is zero.
Thus, the outer product of lines XAA, (or YAA,) and L has to be zero. Note that XAA,
defines the same line as (a‘A4;) A Ay, up to a scalar factor, where o = X-A*. Figure 1
shows this construction. Combining all these expressions gives

0 = (XAANL)T
= oA [(AAA)((BI) v (CM))] (35)
= o NAL[(AnAN(BICH)]

14

where the following identity was used which can be derived with the help of equation
(27);
(B7y v (Cr)y = (I(BHICHT)
= (B-70k>>
If the trifocal tensor T'jx is defined as

(36)

T = [(AnA)(BICH] (37)

then, from equation (35) it follows that it has to satisfy ai)\;’-)\zTijk = (0. This expression
for the trifocal tensor can be expanded in two different, but equivalent ways. The first
way yields,

Ty = (AAA)-[(BICH)]
= (A;AAL)-(BIACH)

. N . (38)
= (A4 B7)(Ai-CF) = (Ay-CH)(A;- BY)
- Kb4K’5i B K;éle;?i
where Kb = A;-B’ and Kk = A;-C* are the camera matrices for cameras B and C,

respectlvely, relative to camera A. This is the expression for the trifocal tensor given

by Hartley in [1]. Note that the camera matrix for the A-plane would be written as

K§ = A, A7 ~ §]. That is, K* = [I|0] in standard matrix notation. In many other
n

derivations of the trifocal tensor (eg. [1]) this form of the camera matrices is assumed
at the beginning. Here, however, the trifocal tensor is defined first geometrically and we
then find that it implies this particular form for the camera matrices.

On the other hand, equation (37) can also be expanded to

Tj = [AiAd]-(BICF)
= L?-(B/C*) from equation (23-2)

This expression for the trifocal tensor is somewhat more instructive than the previous
one. Recall that MA;{B/C*) gives line L up to a scalar factor. From equation (34) it
then becomes clear that Ag)\iTijk gives the components of the projection of line L onto im-

(39)

age plane A, up to a scalar factor. Alternatively, let T77% = (B/C*). Then the projection
of line T7* onto image plane A (from equation (34)), denoted by T7* is

. .

T =Tl (40)

Since epipoles are not essential in this report only a short definition will be given here.
More details may be found in [6].

An epipole is the projection of the optical centre of one camera onto the image plane
of another. For example, the epipole Fy, is the projection of the optical centre of camera
A (A4) onto the image plane of camera B (B;AByABs). That is, from equation (32)

Eba - (A4/\B4) \/ (Bl/\BQ/\Bq)

_ (4.B)B (41)

15

From the definition of the camera matrices as given in equation (33) and equation (38) it
then follows that
By = K} B

In other words, the fourth column of the camera matrix gives the coordinates of an epipole.

5 Constraints on the Trifocal Tensor

By transforming the trifocal tensor into an epipolar basis, it can be shown quite easily
(see [7]) that the trifocal tensor only has 18 degrees of freedom (DOF). This also yields
a minimal parameterisation of the trifocal tensor in term of its epipoles. Nevertheless,
this approach has two big problems. Firstly, the epipoles are only known once the tri-
focal tensor has been calculated. Secondly, preliminary attempts have shown that this
parameterisation is very non-linear. That is, a tiny change in the value of one epipole
appears to result in a large change in the components of the full trifocal tensor. There-
fore, an iterative minimisation routine that tries to find the correct epipolar values, would
have to search over a very non-linear surface in 18 dimensions. Nonetheless, the epipolar
parameterisation is an easy way to prove that the trifocal tensor has indeed only 18 DOF.

A potentially better approach for calculating the trifocal tensor is to use all 27 com-
ponents as free variables, but to restrain the whole system through some additional con-
straints. These constraints have to define the structure of the trifocal tensor without
depending on any values other than its components.

Such constraints are derived here following the approach given in [3]. However, not
only has this approach been generalized but the arguments used are also of purely ge-
ometrical origin. In particular, the derivation given here does not involve working with
any polynomials.

The underlying idea is to find relations between the lines TI* which also hold for their
projections T?*. Relations between the TI* can in turn be directly related to the components
of the trifocal tensor. There are two types of constraints.

5.1 Constraint Type 1

In the following, the {iy,is,13}, etc. are no longer assumed to be any particular kind of
permutation.

The constraints we are looking for somehow have to relate the lines {T%}. Finding
relations between the intersection points of these lines seems to be a promising idea.
However, there is no guarantee that any two lines of the set {T%} do intersect, i.e. are
co-planar. Therefore, it is better to find the intersection between a plane A4AT"7" and a
line 7272 which is always well defined, as long as A, does not lie on the line 7%71. In the
following we will assume that Ay ATt £ (.

To simplify the notation, the intersection between A, AT and T%/2 is written as
p(i11,92J2) and given by

16

plirjiyisj2) = (AA(B"CM)) Vv (B=C7)
<<|IA4 Bllc’h I||[<<B12072>>I|>>
<<(A4 [[(B CI") }])Bizcjz>>
- (42)

= ((As-(B ACT)) BRC)

— << A4.Bll)C’JlBlzC’j2 _ (A4.C’.71)Bi1Bi2C.72>>

= &, (C'B2CP”) + ¢l (B C72 B™2)
where i, = A,-B' and &', = A,-C" are the image point coordinates for epipoles
Fy, and F,,, respectively.

Consider the following types of intersection points.
p(inj,izj) = el, (B CB™) (43-1)

plifi,ij2) = g4, (C B'C72) (43-2)

Using just this type of intersection point a very simple constraint can be found. First of
all consider

pingrsiogi) Ap(in o, inja) = eliel (B"CT B)A(B" G B™)
grade i'vector grade i'vector

— ghgh (((BilC’leh))/\((BﬁCjQBiQ)))I*lI (44)

ca~ ca

ca~ ca

— 871872 («Bilclei2>>_(Bi1chQ/\BiQ))[

grade 1 vector grade 3 vector

Using equation (16) we get
p(irj, i2f1) Ap(irfz, inja) = 5715“(B (B"CB®) (C7:NB™)

_ Ciz. <<Bi1 O Bi2>> (Bil /\Biz)
4 Bi2. <<Bi1 Ch Bi2>> (Bil /\Cjz))]

= gligie (<<Bll Bil le BiQ >>l<<C]2B72>>

ca=- ca

_ <<C’j2 B (i Bi2>> <<Bi1 Bi2>>
+ \((BiQBiva-le“))l((B“CjZ‘}))

= _ghgl ((Bil B:C71C72) (B B™)

ca~ ca

(45)

scalar

Note that only the term (B B%) is not a scalar. Following a similar analysis it can
be shown that

(B B) Aplirjs, injs) = 2B B2) A(B"C* B?) = 0 (46)

17

Therefore,

plirg1, i271) Ap(ir]2, i272) Ap(i1]s, i273) = 0

and similarly

plirg1, 9172) Apiagr, i2j2) Ap(isji, isjz) =0

(47)

(48)

These two constraints simply express the fact that all three intersection points (all the
p’s) lie on the same line. It is fairly simple to see which line that is. Just as (B B%) is
the intersection between planes (B") and (B%), (B"*C7 B®) is the intersection between
the three planes (B"), (B%) and (C7'). Therefore, equation (47) can also be written as

(((BilBi2>> vV ((C’-jl)))/\((BilB“)) V ((C’-j?)))A(((BiIB“)) V <<C7";>>) -0

(49)

That is, we take the outer product of the intersection points of line (B B*) with the
planes (C7'), (C72) and (C’*). Obviously all three intersection points have to lie on line

(B" B™), hence their outer product is zero. This construction is shown in figure 2.

< glgZ>
N 3
Lol \\(KC >

! p(13,23)

<«ci>
p(12.22)

< pl> |

Kct>

c
< 2> 2

C1

By

Figure 2: This demonstrates the constraint type 1 for iy = 1, is = 2 and j; = 1, jo = 2,

ja = 3. For example, p(12,22) ~ (B*C%B?%) ~ (B! B?) v (C?).

Cy

These constraints also have to hold for the intersection points of the projected lines
Tgk. Let the intersection between lines Tglk‘ and Tg2k2 be written as p,(ji1k1, joko). This
intersection point lies on the A-image plane by definition, and can therefore be given in

the A-line basis (equation (40)). With the help of equation (25) we get

18

Pa(dik, joka) = T,y T, joka (AsALY) V L2
= T, 56T jors (AN (AT AG)) V (AR AL)
=TT e (Aa- (A0 AD) A7 AL)
=~ T,;l.ml insz((Af;AgZAg))

(50)

following a similar analysis as in equation (45) it is possible to show that

pa(.jlkla.j2k2)/\pa(.j3k3;.j4k4) = CZ;],hkl];szkz 7%k3<<A“AZ2AZ%A4>>]4k4<<AZ4A4>>

51)
_];1_j1k17;2]'2k2 74k4 <<A“AZ2AZ4A4>> 7%/63 «AZ%A4>>

From the definition of the angle bracket it follows that for any scalar components {a;},

{B;} and {my}

O‘iﬁjnk«AzAgA’;Ai»a = ;Bink€ijk
= det(v, B, k)i
where €, is +1 if {ijk} form an even permutation of {1,2,3}, —1 if they form an odd
permutation, and 0 if any two indices are equal. det(ay, (;, nx)ijx denotes the determinant
of a matrix with rows given by {o;}, {f;} and {7} in exactly that order from top to
bottom. The subscript gives the indices that are used to form the matrix rows. If the
{a;}, {B,} and {n;} are written as vectors @ = a;e', b = (¢’ and ¢ = ne* then we define

(52)

det(cy, Bj,mk)ijk = det(a, b,)

53
= |abc]| (53)
Therefore,
7;1.71k17;2.72k27;3.7‘3k3 «AZIAZZA?Ai»H = det(71k1T;2.7'2k2];3.7'3k3>i1i2i3 (54)
= \T31k1T£2k2T33k3\
Using this notation, equation (51) may be written more concisely as,
Paldrkr, joka) Apa(jsks, jaka) = IT£1k1T£2k2T£3k3|T,-4j4k4L24 (55)
, . . ' . 55
[T TER T T, o, L
Therefore, expressing equation (47) in terms of the p, gives,
0 = Pa(Jikr, 2k1) Apa(jika, joka) Apa(jiks, joks)
=TT TR TR T (56

- J1k1 gkt jeks Jrkajiksiaks
|Ta Ta Ta ‘ ‘Ta Ta Ta ‘

and the constraint in equation (48) becomes,

19

0 = pa(jlk]ajle)/\pa(jZk]ajZkZ)/\pa(jﬁ’klajSkZ)
= TPRTRTER TR T 657)

jik1jikajoks Jok1jak1 jaks
|T(I T(L T(I ‘ ‘T(L T(I T(L ‘

5.2 Constraint Type 2

The second type of constraint is slightly more complicated. Here, the following type of
intersection point is needed

P(i1,71, 7:2].2) — 8;)10 «C.leiQO.jZ» + 8(7’}L<<B“ szBlé))

p(irja,iofy) = el (C2B2CIY) + ¢l2 (B CI B2)
Therefore,
p(irji, izfa) + p(irga, iojr) = el (B C7B™) + el2(B" C7' B™) (59)

Comparing this with equation (45) it can be seen right away that as in equation (46) the
following has to be true

p(ivjr,iagi) Aplirga. izga) A (plingy. iaga) + p(irfa. inj1)) = 0 (60)

This constraint simply states that the point (p(i1j1,4272) + p(i172,271)) lies on the line
p(i171,9271) Ap(i1Ja, i2J2). Or, writing equation (60) in terms of intersections of lines and
planes

((B" B2YV(CTYA((B? B=)V(C))A((B" B2)V(C)+ (B B#) v(C?)) = 0 (61)

which is even more trivial than equation (49).

Translating this into relations between the components of the trifocal tensor gives,

|Té1.7'1Tézj1T;1jz| ‘T;2'72T51'72T52'73| _ |Télle52le52jz‘ ‘T;1'72T51'73T52'72| =0 (62)

The constraints found here were inspired by work done by O.Faugeras and B.Mourrain
in [3]. However, the constraints given in [3] form a subset of those given here. Furthermore,
here the constraints were derived through mainly geometrical arguments, rather than
through the investigation of polynomials as in [3].

The constraint equations (56) and (57) are not given in determinant form® in [3]. The
constraints given in [3] as equations (12) through (15) are a subset of equation (62) as
given here.

8These constraints are basically the same as the relations between lines detailed on page 26 of [3].

20

6 Computations

It is interesting to see what effect the determinant constraints have on the “quality” of
a trifocal tensor. That is, a trifocal tensor calculated only from point matches has to
be compared with a trifocal tensor calculated form point matches while enforcing the
determinant constraints.

For the calculation of the former a simple linear algorithm is used that employs the
trilinearity relationships, as, for example, given by Hartley in [1]. In the following this
algorithm will be called the “7pt algorithm”.

To enforce all the determinant constraints, an estimate of the trifocal tensor is first
found using the 7pt algorithm. From this tensor the epipoles are estimated. Using these
epipoles the image points are transformed into the epipolar frame. With these transformed
point matches the trifocal tensor can then be found in the epipolar basis.

It can be shown [7] that the trifocal tensor in the epipolar basis has only 7 non-zero
components’. Using the image point matches in the epipolar frame these 7 components
can be found linearly. The trifocal tensor in the “normal” basis is then recovered by
tranforming the trifocal tensor in the epipolar basis back with the initial estimates of
the epipoles. The trifocal tensor found in this way has to be fully self-consistent since
it was calculated from the minimal number of parameters. That also means that the
determinant constraints have to be fully satisfied. This algorithm will be called the
“MinFact” algorithm.

The main problem with the MinFact algorithm is that it depends crucially on the
quality of the initial epipole estimates. If these are bad, the trifocal tensor will still be
perfectly self-consistent but will not represent the true camera structure particularly well.
This is reflected in the fact that typically a trifocal tensor calculated with the MinFact
algorithm does not satisfy the trilinearity relationships as well as a trifocal tensor calcu-
lated with the 7pt algorithm, which is of course calculated to satisfy these relationships
as well as possible.

Unfortunately, there does not seem to be a way to find the epipoles and the trifocal
tensor in the epipolar basis simultaneously with a linear method. In fact, the trifocal
tensor in a “normal” basis is a non-linear combination of the epipoles and the 7 non-zero
components of the trifocal tensor in the epipolar basis.

Nevertheless, since the MinFact algorithm produces a fully self-consistent tensor, the
camera matrices extracted from it also have to form a self-consistent set. Reconstruction
using such a set of camera matrices may be expected to be better than reconstruction
using an inconsistent set of camera matrices, as typically found from an inconsistent
trifocal tensor. The fact that the trifocal tensor found with the MinFact algorithm may
not resemble the true camera structure very closely, might not matter too much, since
reconstruction is only exact up to a projective transformation.

The question is, of course, how to measure the quality of the trifocal tensor. Here the
quality is measured by how good a reconstruction can be achieved with the trifocal tensor
in a geometric sense. This is done as follows:

9From this it follows directly that the trifocal tensor has 18 DOF: 12 epipolar components plus 7
non-zero components of the trifocal tensor in the epipolar basis minus 1 for an overall scale.

21

—

. A 3D-object is projected onto the image planes of the three cameras, which subse-
quently introduce some Gaussian noise into the projected point coordinates. These
coordinates are then quantised according to the simulated camera resolution. The
magnitude of the applied noise is measured in terms of the mean Gaussian deviation
in pixels.

2. The trifocal tensor is calculated in one of two ways from the available point matches:

(a) using the 7pt algorithm, or
(b) using the MinFact algorithm.

3. The epipoles and the camera matrices are extracted from the trifocal tensor. The
camera matrices are evaluated using Hartleys recomputation method [1].

4. The points are reconstructed using a version of what is called “Method 3” in [10]
and [11] adapted for three views. This uses a SVD to solve for the homogeneous
reconstructed point algebraically using a set of camera matrices. In [10] and [11]
this algorithm was found to perform best of a number of reconstruction algorithms.

5. This reconstruction still contains an unknown projective transformation. There-
fore it cannot be compared directly with the original object. However, since only
synthetic data is used here, the 3D-points of the original object are known ex-
actly. Therefore, a projective transformation matrix that best transforms the re-
constructed points into the true points can be calculated. Then the reconstruction
can be compared with the original 3D-object geometrically.

6. The final measure of “quality” is arrived at by calculating the mean distance in
3D-space between the reconstructed and the true points.

These quality values are evaluated for a number of different noise magnitudes. For each
particular noise magnitude the above procedure is performed 100 times. The final quality
value for a particular noise magnitude is then taken as the average of the 100 trials.

Figure 3 shows the mean distance between the original points and the reconstructed
points in 3D-space in some arbitrary units'®, as a function of the noise magnitude. The
camera resolution was 600 by 600 pixels.

This figure shows that for a noise magnitude of up to approximately 10 pixels both
trifocal tensors seem to produce equally good reconstructions. Note that for zero added
noise the reconstruction quality is not perfect. This is due to the quantisation noise of
the cameras. The small increase in quality for low added noise compared to zero added
noise is probably due to the cancellation of the quantisation and the added noise.

Apart from looking at the reconstruction quality it is also interesting to see how close
the components of the calculated trifocal tensors are to those of the true trifocal tensor.
Figures 4 and 5 both show the mean of the percentage differences between the components
of the true and the calculated trifocal tensors as a function of added noise in pixels. Figure
4 compares the trifocal tensors found with the 7pt and the MinFact algorithms. This shows

10The particular object used was 2 units wide, 1 unit deep and 1.5 units high in 3D-space. The Y-axis
measures in the same units.

22

0.2

0.18 1

0.16 1

0.14 7

0.17

0.08 1

0.06

0.04

0.02 1

0 2 4 6 8 10 12 14 16 18 20

Figure 3: Mean distance between original points and recon-
structed points in arbitrary units as a function of mean Gaussian
error in pixels introduced by the cameras. The solid line shows
the values using the MinFact algorithm, and the dashed line the
values for the 7pt algorithm.

that the trifocal tensor calculated with the MinFact algorithm is indeed very different to
the true trifocal tensor, much more so than the trifocal tensor calculated with the 7pt
algorithm (shown enlarged in figure 5).

23

4001 ;

3000 P

2001 .

100

Figure 4: Mean difference between elements
of calculated and true tensors in percent. Solid
line shows values for trifocal tensor calculated
with 7pt algorithm, and dashed line shows val-
ues for trifocal tensor calculated with MinFact
algorithm.

401
381
361
34
327
301
281
261
241
227
201
184
169
14
121
101

70 5 10 15 20

Figure 5: Mean difference between elements
of true trifocal tensor and trifocal tensor cal-
culated with 7pt algorithm in percent.

24

7 Conclusion

It was shown here how the GA approach to the trifocal tensor problem leads to a clear
geometrical understanding of the same. In particular, constraints on the internal structure
of the trifocal tensor could be derived through mainly geometrical arguments. The use of
reciprocal frames and especially their extension to line frames clearly showed the advantage
of the GA approach over a GC algebra approach, due to GA’s inner product.

The data presented in section 6 seems to indicate that a tensor that obeys the determi-
nant constraints, i.e. is self-consistent, but does not satisfies the trilinearity relationships
particularly well is equally as good, in terms of reconstruction ability, as an inconsistent
trifocal tensor that satisfies the trilinearity relationships quite well. In particular the fact
that the trifocal tensor calculated with the MinFact algorithm is so very much different
to the true trifocal tensor (see figure 4) does not seem to have a big impact on the final
recomputation quality.

One possible explanation for this is that all the differences between the reconstructions
are evened out when the final projective transformation is applied. That would mean
that to strive for a very good estimate of the trifocal tensor is not actually necessary since
any reconstruction will always include a projective transformation that can be chosen
arbitrarily!!.

HTn fact it was found by the authors that an initial reconstruction is almost always flat and located
at one of the camera image planes. A projective transformation was then necessary to “unfold” the
reconstruction.

25

References

1]

2]

R. I. Hartley, “Lines and Points in Three Views and the Trifocal Tensor,” Interna-
tional Journal of Computer Vision, pp. 125 140, 1997.

A. Shashua, “Trilinear Tensor: the Fundamental Construct of Multiple-View Ge-
ometry and its Applications,” in Algebraic frames for the Perception-Action Cycle
(G. Sommer and J. Koenderink, eds.), no. 1315 in Lecture Notes in Computer Sci-
ence, 1997.

O. Faugeras and B. Mourrain, “On the Geometry and Algebra of the Point and Line
Correspondences between N Images,” Tech. Rep. 2665, INRIA, Sophia Antipolis,
1995.

T. Papadopoulo and O. Faugeras, “A New Characterization of the Trifocal Tensor.”
On INRIA Sophia Antipolis Web-Site.

O. Faugeras and T. Papadopoulo, “Grassmann-Cayley Algebra for Modelling Sys-
tems of Cameras and the Algebraic Equations of the Manifold of Trifocal Tensors,”
Phil. Trans. R. Soc. Lond. A, vol. 356, no. 1740, pp. 1123 1152, 1998.

J. Lasenby and E. Bayro-Corrochano, “Computing Invariants in Computer Vision us-
ing Geometric Algebra,” Technical Report CUED/F - INFENG/TR. 224, Cambridge
University Engineering Department, 1997.

J. Lasenby and A. N. Lasenby, “Estimating Tensors for Matching over Multiple
Views,” Phil. Trans. R. Soc. Lond. A, vol. 356, no. 1740, pp. 1267 1282, 1998.

D. Hestenes and R. Ziegler, “Projective Geometry with Clifford Algebra,” Acta Ap-
plicandae Mathematicae, vol. 23, pp. 25 63, 1991.

D. Hestenes and G. Sobczyk, Clifford Algebra to Geometric Calculus: A Unified
Language for Mathematics and Physics. Dordrecht, 1984.

C. Rothwell, G. Csurka, and O. Faugeras, “A Comparison of Projective Reconstruc-
tion Methods for Pairs of Views,” Tech. Rep. 2538, INRIA, Sophia Antipolis, 1995.

C. Rothwell, O. Faugeras, and G. Csurka, “A Comparison of Projective Recon-
struction Methods for Pairs of Views,” Computer Vision and Image Understanding,
vol. 68-1, pp. 37 58, 1997.

26

