
Design of a Multilayered Feed-Forward Neural
Network Using Hypersphere Neurons

Vladimir Banarer, Christian Perwass, Gerald Sommer

Institut für Informatik und Praktische Mathematik
Christian-Albrechts-Universität zu Kiel

Christian-Albrechts-Platz 4, 24118 Kiel, Germany
{vlb,chp,gs}@ks.informatik.uni-kiel.de

Abstract. In this paper a special higher order neuron, the hypersphere
neuron, is introduced. By embedding Euclidean space in a conformal
space, hyperspheres can be expressed as vectors. The scalar product of
points and spheres in conformal space, gives a measure for how far a
point lies inside or outside a hypersphere. It will be shown that a hyper-
sphere neuron may be implemented as a perceptron with two bias inputs.
By using hyperspheres instead of hyperplanes as decision surfaces, a re-
duction in computational complexity can be achieved for certain types
of problems. This is shown in two experiments using classical test data
for neural computing. Furthermore, in this setup, a reliability measure
can be associated with data points in a straight forward way.

1 Introduction

The basic idea behind a single standard perceptron is that it separates its input
space into two classes by a hyperplane [12]. For most practical purposes such a
linear separation is, of course, not sufficient. In general, data is to be separated
into a number of classes, where each class covers a particular region in the input
space. The basic idea behind classifying using a multi-layer perceptron (MLP),
is to use a number of perceptrons and to combine their linear decision planes, to
approximate the surfaces of the different class regions. In principle, a MLP can
approximate any type of class configuration, which implies that it is an universal
approximator [3, 6].

However, being an universal approximator alone says nothing about the com-
plexity a MLP would need to have in order to approximate a particular surface.
In fact, depending on the structure of the data it may be advantageous to not use
perceptrons but instead another type of neuron which uses a non-linear ’decision
surface’ to separate classes. Such neurons are called higher-order neurons. There
has been a lot of effort to design higher-order neurons for different applications.
For example, there are hyperbolic neurons [2], tensor neurons [11] and hyper-
bolic SOMs [13]. Typically, the more complex the decision surface a neuron has
is, the higher its computational complexity. It is hoped that a complex decision
surface will allow to solve a task with fewer neurons. However, the computational
complexity of each neuron should not offset this advantage.

In this paper we present a simple extension of a perceptron, such that its
decision surface is not a hyperplane but a hypersphere. The representation used
is taken from a conformal space representation introduced in the context of
Clifford algebra [10]. The advantage of this representation is that only a standard
scalar product has to be evaluated in order to decide whether an input vector
is inside or outside a hypersphere. That is, the computational complexity stays
low, while a non-linear decision plane is obtained. This will be explained in
some detail later on. The main advantages of such a hypersphere neuron over a
standard perceptron are the following:

– A hypersphere with infinite radius becomes a hyperplane. Since the hyper-
sphere representation used is homogeneous, hyperspheres with infinite radius
can be represented through finite vectors. Therefore, a standard perceptron
is just a special case of a hypersphere neuron.

– The VC-dimension [1] of a hypersphere neuron for a 1-dimensional input
space is three and not two, as it is for a standard perceptron. However, for
higher input dimensions, the VC-dimensions of a hypersphere neuron and a
standard perceptron are the same.

Although the VC-dimensions of a hypersphere neuron and a standard per-
ceptron are the same for input dimensions higher than one, it is advantageous to
use a hypersphere neuron, if the classification of the data is orientation invariant
about some point in the input space. For example, let {xi} ⊆ Rn and {yi} ⊆ Rn

denote the input vectors of two different classes. If there exists a point c ∈ Rn,
such that maxi |xi − c| < mini |yi − c| or maxi |yi − c| < mini |xi − c|, then
the classification of the data is basically a 1-dimensional problem, and the two
classes can be separated by a single hypersphere, independent of the input di-
mension. A multi-layer hypersphere perceptron (MLHP), therefore separates the
input space into regions where the classification is orientation invariant.

The remainder of this paper is structured as follows. First the representation
of hyperspheres used is described in some more detail. Then some important as-
pects concerning the actual implementation of a hypersphere neuron in a single-
and multi-layer network are discussed. Afterwards some experiments with the
Iris data set and the two spirals benchmark are presented. Finally, some conclu-
sions are drawn from this work.

2 The Representation of Hyperspheres

There is not enough space here to give a full treatment of the mathematics
involved. Therefore, only the most important aspects will be discussed. For a
more detailed introduction see [9, 10].

Consider the Minkowski space R1,1 with basis {e+, e−}, where e2
+ = +1 and

e2
− = −1. The following two null-vectors can be constructed from this basis,

e∞ := e− + e+ and e0 := 1
2 (e− − e+), such that e2

∞ = e2
0 = 0 and e∞ · e0 =

−1. Given an n-dimensional Euclidean vector space Rn, the conformal space
Rn+1,1 = Rn ⊕ R1,1 can be constructed. Such a conformal space will also be

denoted as MEn ≡ Rn+1,1. A vector x ∈ Rn may be embedded in conformal
space as

X = x + 1
2 x2 e∞ + e0, (1)

such that X2 = 0. It may be shown that this embedding represents the stere-
ographic projection of x ∈ Rn onto an appropriately defined projection sphere
in MEn. Note that the embedding is also homogeneous, i.e. αX, with α ∈ R,
represents the same vector x as X. In other words, any vector A ∈ MEn that
lies in the null space of X, i.e. satisfies A ·X = 0, represents the same vector x.

The nomenclature e0 and e∞ is motivated by the fact that the origin of Rn

maps to e0 when using equation(1). Furthermore, as |x| with x ∈ Rn tends to
infinity, the dominant term of the mapping of x into MEn is e∞.

A null-vector in MEn whose e0 component is unity, is called normalized.
Given the normalized null-vector X from equation (1) and Y = y+ 1

2 y2 e∞+e0,
it can be shown that X · Y = − 1

2 (x − y)2. That is, the scalar product of two
null-vectors in conformal space, gives a distance measure of the corresponding
Euclidean vectors. This forms the foundation for the representation of hyper-
spheres. A normalized hypersphere S ∈ MEn with center Y ∈ MEn and radius
r ∈ R is given by S = Y − 1

2 r2 e∞, since then

X · S = X · Y − 1
2 r2 X · e∞ = − 1

2 (x− y)2 + 1
2 r2, (2)

and thus X · S = 0 iff |x − y| = |r|. That is, the null space of S consists of all
those vectors X ∈ MEn that represent vectors in Rn that lie on a hypersphere.
It can also be seen that the scalar product of a null-vector X with a normalized
hypersphere S is negative, zero or positive, if X is outside, on or inside the
hypersphere. Scaling the normalized hypersphere vector S with a scalar does not
change the hypersphere it represents. However, scaling S with a negative scalar
interchanges the signs that indicate inside and outside of the hypersphere.

The change in sign of X · S between X being inside and outside the hyper-
sphere, may be used to classify a data vector x ∈ Rn embedded inMEn. That is,
by interpreting the components of S as the weights of a perceptron, and embed-
ding the data points into MEn, a perceptron can be constructed whose decision
plane is a hypersphere.

From the definition of a hypersphere in MEn it follows that a null-vector
X ∈MEn may be interpreted as a sphere with zero radius. Similarly, a vector in
MEn with no e0 component represents a hypersphere with infinite radius, i.e. a
plane. In fact, given two normalized null-vectors X, Y ∈MEn, X−Y represents
a plane. This can be seen quite easily, since it is again the null space of X − Y
that gives the geometric entity represented by the algebraic object. That is, all
those vectors A ∈ MEn that satisfy A · (X − Y) = 0 lie on the geometric entity
represented by X − Y . Clearly,

A · (X − Y) = A ·X −A · Y = − 1
2 (a− x)2 + 1

2 (a− y)2 = 0, (3)

which is satisfied for all points a that are equidistant to x and y. All these points
lie on the plane located half way between x and y with normal x− y.

Such a plane still has a sidedness, that is, the scalar product of a null-vector
with a plane is either positive, zero or negative depending on whether the test
vector is off to one side, on the plane or off to the other side. Therefore, a
hypersphere neuron may also represent a hyperplane.

3 Implementation

The propagation function of a hypersphere neuron may actually be implemented
as a standard scalar product, by representing the input data as follows. Let a
data vector x = (x1, x2, . . . , xn) ∈ Rn be embedded in Rn+2 (not MEn) as
X = (x1, . . . , xn,−1,− 1

2 x2) ∈ Rn+2. Then, representing a hypersphere S =
c + 1

2 (c2 − r2)e∞ + e0 ∈ MEn in Rn+2 as S = (c1, . . . , cn, 1
2 (c2 − r2), 1), one

finds that X · S = X · S. During the training phase of a hypersphere neuron,
the components of S are regarded as independent, such that S may simply be
written as S = (s1, . . . , sn+2). This embedding also allows hyperspheres with
imaginary radii. However, since such a hypersphere cannot include any points,
it does not produce spurious solutions. It may indeed contribute to a successful
learning.

Therefore, a hypersphere neuron may be regarded as a standard perceptron
with a second ’bias’ component. Of course, the input data must be of a particular
form. That is, after embedding the input data in Rn+2 appropriately, a decision
plane in Rn+2 represents a decision hypersphere in Rn. In this respect, it is
similar to a kernel method, where the embedding of the data in a different space
is implicit in the scalar product.

The computational complexity of a hypersphere neuron is as follows. Apart
from the standard bias, which is simply set to unity, the magnitude of the input
data vector has to be evaluated. However, for a multi-layer hypersphere net-
work, this magnitude only has to be evaluated once for each layer. In terms of
complexity this compares to adding an additional perceptron to each layer in a
MLP.

It follows from equation (2), that the value of the scalar product of a data
point with a normalized hypersphere is bounded by the radius of the hypersphere
for data points lying within (class I), but it is not limited for data points lying
outside (class O). Since the result of this scalar product is the input to an acti-
vation function, the type of activation function appears to have an influence on
how large the radius of a hypersphere will tend to be. However, since the weights
of a hypersphere neuron are treated as independent components, they represent
an un-normalized hypersphere. The overall scale factor of the hypersphere vector
then allows the scalar product of the hypersphere with points lying within it to
take on arbitrarily large values.

For example, denote by X ∈ MEn the representation of data point x ∈ Rn,
and denote by S ∈MEn the representation of a hypersphere neuron with center
c ∈ Rn, radius r ∈ R+ and scale κ ∈ R\{0}. Furthermore, let the activation
function of the hypersphere neuron be the sigmoidal function σ(λ, z) = (1 +
e−λz)−1. Training the hypersphere neuron to classify x as belonging to I then

means to vary c, r and κ, such that σ(λ, X · S) > 1− ε, where ε ∈ R+ gives the
decision threshold. If x is to be classified as belonging to O, then one demands
that σ(λ,X · S) < ε. With respect to the radius this means that

r2 >
2
λκ

ln
1− ε

ε
+ (c− x)2 if x ∈ I, (4)

r2 <
2
λκ

ln
ε

1− ε
+ (c− x)2 if x ∈ O, (5)

It can be seen that for fixed ε, c and κ, the radius of the hypersphere depends
on the parameter λ of the sigmoid function. The effect of this is that the smaller
λ, the larger the radius of the hypersphere tends to be. Note that the above
equations are valid for κ > 0, whence X · S = 1

2 |κ| (r2 − (x− y)2). However, for
κ < 0, this becomes X · S = 1

2 |κ| ((x− y)2 − r2), such that data points inside S
belong to class O and outside S to class I.

We can introduce a measure for the reliability of a particular data point by
extending data points in the following way. Given a data point x with some confi-
dence measure rconf , it is embedded inMEn as Xconf = x+ 1

2 (x2+r2
conf) e∞+e0.

This is equivalent to a hypersphere with imaginary radius. It will therefore be
called an imaginary hypersphere. The scalar product between a hypersphere S
and X then yields,

S ·Xconf = 1
2

(
r2 − (

(c− x)2 + r2
conf

))
. (6)

That is, the vector x appears to be further away from the center c than it actu-
ally is. Therefore, a training algorithm will try to place a decision hypersphere
such that x lies further to the inside of the hypersphere’s surface, than without
confidence. This effect is shown in figure 1.

Fig. 1. Position of the decision hypersphere can be influenced by confidence. Left pic-
ture shows the position of decision hypersphere (black circle) for uniformly distributed
confidences (grey circles). After increasing of confidence for left bottom point, the de-
cision circle is moved in such a way, that the affected point is placed further inside.

4 Experiments

In an initial experiment, a multi-layer hypersphere perceptron was tested on
Fisher’s Iris data set [5]. This set consists of 150 four-dimensional data vectors,
which are classified into three classes. Visualizing the data [7] shows that one
class can be separated linearly from the other two. The two remaining classes,
however, are somewhat entangled. The data set was separated into a training
data set of 39 randomly chosen data vectors and a test data set of the remaining
111 data vectors. A standard single-layer perceptron (SLP) and a single-layer
hypersphere perceptron (SLHP) were then trained on the training data set in
two different configurations. In the first configuration (C1) the network consisted
of one layer with three neurons, each representing one class. In the second con-
figuration (C2) there was a single layer with only two neurons, whereby the three
classes were coded in a binary code. That is, the output of the two neurons had
to be (1, 0), (0, 1) and (1, 1), respectively, to indicate the three classes.

The following tables give the number of incorrectly classified data vectors
after training in configuration C1 and C2, respectively, for the training and the
test data set using the SLP and the SLHP.

Net C1 Train. Data C1 Test Data C2 Train. Data C2 Test Data

SLP 0 2 9 31
SLHP 0 7 0 7

It can be seen that both the SLP and the SLHP in C1, classify the training
data perfectly. However, the SLP is somewhat better in the classification of the
test data set. For C2, where only two neurons were used, the SLP cannot give an
error free classification of the training data set. This is in contrast to the SLHP
where an error free classification is still possible. Also for the test data set the
SLHP gives much better results than the SLP. In fact, the SLHP does equally
well with two and with three neurons.

The results in C2 basically show that the data set cannot be separated into
three classes by two hyperplanes. However, such a separation is possible with
two hyperspheres.

In the second experiment the two spirals benchmark [4] was used, to compare
a MLHP with a classical MLP. The task of this benchmark is, to learn to dis-
criminate between two sets of training points, which lie on two distinct spirals
in the 2D plane. These spirals coil three times around the origin and around
one another. This can be a very difficult task for back-propagation networks and
comparable networks [8, 14].

Figure 2 shows the results of training for two-layer-networks with classical
perceptrons (MLP) and hypersphere neurons (MLHP) in dependance of the
amount of units in the hidden layer. All network configurations were trained
with a backpropagation-algorithm. Two different methods were used to train
the MLHP, with complete derivatives and with simplified derivatives under the
assumption, that the quadratic component of the input for each neuron is inde-
pendent (MLHPS). The figure shows, that the MLHP gives much better results

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

2 3 4 5 6 7 8 9 10

C
la

s
s
if

ic
a
ti

o
n

 r
a
te

MLHP

MLP

MLHPS

0,5

10,5

20,5

30,5

40,5

50,5

60,5

70,5

80,5

90,5

2 3 4 5 6 7 8 9 10

R
u

n
ti

m
e

 i
n

 s
e

c
o

n
d

s MLHP

MLP

MLHPS

Fig. 2. Top - Comparison of classification rates (y-axis) for MLP, MLHP and MLHPS
for different number of neurons used in the hidden layer (x-axis). The results are aver-
aged over 100 trials. Bottom - Time performance of the different network configurations.

in comparison to the MLP. The simplification of derivatives leads to ’smoother’
minimization surfaces and increased stability of solution, while at the same time
accelerating the convergence. Also the comparison in dependence of the number
of free parameters (weights) of the whole net shows, that the MLHP produces
better results than the MLP. For example, the classification with a MLHPS with
5 neurons in the hidden layer (24 weights) is significantly better, than with a
MLP with 7 neurons in the hidden layer (also 24 weights).

5 Conclusions

In this paper a higher-order neuron was presented which has the effect of placing
a decision hypersphere in the input space, whereas a standard perceptron uses a
hyperplane to linearly separate the input data. It was shown that a hypersphere
neuron may also represent a hypersphere with infinite radius, i.e. a hyperplane,
and thus includes the case of a standard perceptron. Advantages that may be
gained by using hypersphere neurons, are the possibility to classify compact
regions with a single neuron in n-dimensions, while the computational complexity
is kept low. A single-layer hypersphere perceptron was tested and compared to a
standard single-layer perceptron on the Iris data of R.A. Fisher. The data could

be successfully classified with two hypersphere neurons. At least three standard
neurons were necessary to achieve similar results. Furthermore multi-layered
network architecture was tested with the two spirals benchmark. Also in this
case better results are achieved with hypersphere neurons then with a classical
MLP. An the error-free classification can already be achieved by MLHP with
eight neurons in the hidden layer. For a MLP larger networks are necessary [14].
This shows that using hypersphere neurons is advantageous for certain types of
data.

Acknowledgment

This work has been supported by DFG Graduiertenkolleg No. 357 and by EC
Grant IST-2001-3422 (VISATEC).

References

1. Y. S. Abu-Mostafa. The Vapnik-Chervonenkis dimension: Information versus com-
plexity in learning. Neural Computation, 1(3):312–317, 1989.

2. S. Buchholz and G. Sommer. A hyperbolic multilayer perceptron. In S.-I. Amari,
C.L. Giles, M. Gori, and V. Piuri, editors, International Joint Conference on Neural
Networks, IJCNN 2000, Como, Italy, volume 2, pages 129–133. IEEE Computer
Society Press, 2000.

3. G. Cybenko. Approximation by superposition of a sigmoidal function. Mathematics
of Control, Signals and Systems, 2:303–314, 1989.

4. S. E. Fahlman and C. Lebiere. The cascade-correlation learning architecture. In
D. S. Touretzky, editor, Advances in Neural Information Processing Systems, vol-
ume 2, pages 524–532, Denver 1989, 1990. Morgan Kaufmann, San Mateo.

5. R. A. Fisher. The use of multiple measurements in axonomic problems. Annals of
Eugenics 7, pages 179–188, 1936.

6. K. Hornik. Approximation capabilities of multilayer feedforward neural networks.
Neural Networks, 4:251–257, 1990.

7. Larry Hoyle. http://www.ku.edu/cwis/units/IPPBR/java/iris/irisglyph.html.
8. K.J. Lang and M.J. Witbrock. Learning to tell two spirals apart. In D.S. Touretzky,

G.E. Hinton, and T. Sejnowski, editors, Connectionist Models Summer School.
Morgan Kaufmann, 1988.

9. H. Li, D. Hestenes, and A. Rockwood. Generalized homogeneous coordinates for
computational geometry. In G. Sommer, editor, Geometric Computing with Clifford
Algebra, pages 27–52. Springer-Verlag, 2001.

10. H. Li, D. Hestenes, and A. Rockwood. A universal model for conformal geometries.
In G. Sommer, editor, Geometric Computing with Clifford Algebra, pages 77–118.
Springer-Verlag, 2001.

11. H. Lipson and H.T. Siegelmann. Clustering irregular shapes using high-order neu-
rons. Neural Computation, 12(10):2331–2353, 2000.

12. M. Minsky and S. Papert. Perceptrons. Cambridge: MIT Press, 1969.
13. H. Ritter. Self-organising maps in non-Euclidean spaces. In E. Oja and S. Kaski,

editors, Kohonen Maps, pages 97–108. Amer Elsevier, 1999.
14. Alexis Wieland and Scott E. Fahlman. http://www.ibiblio.org/pub/academic/computer-

science/neural-networks/programs/bench/two-spirals, 1993.

