
INSTITUT FÜR INFORMATIK

UND PRAKTISCHE MATHEMATIK

Aspects of Geometric Algebra

in Euclidean, Projective and

Conformal Space

Christian B.U. Perwass, Dietmar Hildenbrand

Bericht Nr. 0310
Version 1.1, January 2004

CHRISTIAN-ALBRECHTS-UNIVERSITÄT

KIEL

Institut für Informatik und Praktische Mathematik der
Christian-Albrechts-Universität zu Kiel

Olshausenstr. 40
D – 24098 Kiel

Aspects of Geometric Algebra

in Euclidean, Projective and

Conformal Space

Christian B.U. Perwass, Dietmar Hildenbrand

Bericht Nr. 0310
Version 1.1, January 2004

e-mail: chp@ks.informatik.uni-kiel.de
dhilden@gris.informatik.tu-darmstadt.de

Dieser Bericht ist als persönliche Mitteilung aufzufassen.

Contents

1 Introductions to Clifford Algebra 1

1.1 Geometric Algebra . 1

1.1.1 The Outer Product . 2

1.1.2 The Outer Product Null Space . 3

1.1.3 Magnitude of Blades . 4

1.1.4 The Inner Product . 5

1.1.5 The Inverse of a Blade . 6

1.1.6 Geometric Interpretation of Inner Product 7

1.1.7 The Inner Product Null Space . 8

1.1.8 The Dual . 9

1.1.9 Geometric Interpretation of the IPNS . 11

1.1.10 The Meet Operation . 13

1.1.11 The Geometric Product . 16

1.1.12 Reflection . 17

1.1.13 Rotation . 19

1.2 Clifford Algebra . 22

1.2.1 The Geometric Product Revisited . 22

1.2.2 The Basis of C̀ n . 25

1.2.3 Inverting Multivectors . 28

1.2.4 Solving for a Versor . 29

1.3 Relation to other Geometric Algebras . 32

1.3.1 Gibbs’ Vector Algebra . 32

1.3.2 Complex Numbers . 33

i

ii

1.3.3 Quaternions . 33

1.3.4 Grassmann Algebra . 36

1.3.5 Grassmann-Cayley Algebra . 37

2 Geometries 39

2.1 Projective Space . 39

2.1.1 The Setup . 39

2.1.2 Geometric Algebra on PEn . 41

2.1.3 The Euclidean OPNS . 42

2.1.4 The Euclidean IPNS . 43

2.1.5 The Pinhole Camera Model . 44

2.1.6 Reflections in Projective Space . 44

2.1.7 Rotations in projective space . 46

2.1.8 A Strange Reflection in Projective Space . 47

2.2 Conformal Space . 50

2.2.1 Embedding Euclidean Space . 51

2.2.2 Homogenizing the Embedding of Euclidean Space 52

2.2.3 Geometric Algebra on PKn . 55

2.2.4 Representation of Geometric Entities in PK3 56

2.2.4.1 The Representation of Points . 56

2.2.4.2 The Representation of Spheres . 57

2.2.4.3 The Representation of Planes . 58

2.2.4.4 The Other Entities . 59

2.2.5 Discovering C̀ (E3) and C̀ (PE3) in C̀ (PK3) 60

2.2.6 Inversions in PKn . 61

2.2.7 Rotations in PKn . 63

2.2.8 Translations in PKn . 64

3 An Interactive Introduction to Geometric Algebra 67

3.1 Motivation . 67

3.1.1 Unification . 67

iii

3.1.2 Low Symbolic Complexity . 68

3.1.3 Robustness . 68

3.2 Introduction to this interactive Tutorial . 68

3.3 Blades and Vectors . 70

3.4 The products of the Geometric Algebra . 71

3.4.1 The Outer Product and Parallelness . 71

3.4.1.1 Bivectors . 72

3.4.1.2 Trivectors . 74

3.4.2 The Inner Product and Perpendicularity . 75

3.4.2.1 The Inner Product of vectors . 75

3.4.2.2 The general Inner Product . 76

3.4.3 The Geometric Product and Duality . 77

3.4.3.1 The Geometric Product of Vectors 77

3.4.3.2 Extension of the Geometric Product to general multivectors . . . 78

3.4.3.3 Invertibility . 80

3.4.3.4 Duality . 81

3.5 Geometric Properties . 82

3.5.1 Projection and Rejection . 82

3.5.2 Reflection . 84

3.5.3 Rotation in 2d . 85

3.5.4 Rotation in 3d . 87

3.5.5 Intersection . 88

3.6 The Conformal Geometric Algebra . 89

3.6.1 The two additional base vectors . 89

3.6.2 Vectors in Conformal Geometric Algebra 89

3.6.2.1 Spheres . 90

3.6.2.2 Points . 91

3.6.2.3 Planes . 91

3.6.3 Bivectors in Conformal Geometric Algebra 92

3.6.3.1 Circles . 92

iv

3.6.3.2 Lines . 93

3.6.4 Dual Vectors in Conformal Geometric Algebra 94

3.6.5 Distances . 95

3.6.5.1 Distances between points . 95

3.6.5.2 Distance between points and planes 96

3.6.5.3 is a point inside or outside of a sphere ? 97

3.6.5.4 is a point inside or outside of a circumcircle of a triangle ? . . . 98

3.6.6 Intersections . 99

3.6.6.1 Intersection of two spheres . 99

3.6.6.2 Intersection of a line and a sphere 100

3.6.6.3 Intersection of a line and a plane 101

3.6.7 Reflection . 102

3.6.8 Projection . 103

v

Preface
This text is meant to be a script of a tutorial on Clifford (or Geometric) algebra. It is therefore

not complete in the description of the algebra and neither completely rigorous. The reader is
also not likely to be able to perform arbitrary calculations with Clifford algebra after reading
this script. The goal of this text is to give the reader a feeling for what Clifford algebra is about
and how it may be used. It is attempted to convey the basic ideas behind the use of Clifford
algebra in the description of geometry in Euclidean, projective and conformal space.

There are also many other introductions to Clifford and Geometric algebra and its applica-
tions in Euclidean, projective and conformal space. Some of these are [19, 18, 20, 16, 25, 32, 15,
31, 21, 10, 26, 28, 9]. A collection of papers discussing in particular the conformal space in detail
and applications of Geometric algebra in Computer Vision may be found in the book Geometric
Computing with Clifford Algebra [38].

This text is separated into three main parts: ”Introductions to Clifford Algebra”, ”Geome-
tries” and ”An Interactive Introduction to Geometric Algebra”. The plural ”Introductions” in
the title of the first chapter is fully intentional, since two introductions will be given. The first
concentrates on the geometric interpretation of Clifford algebra elements and the second on
algebraic properties. The second chapter discusses the application of Geometric algebra to pro-
jective and conformal spaces. Here we will see how Geometric algebra can be used to represent
points, lines, planes, circles and spheres. It will be shown that intersections between any of
these objects can be expressed by a single operation and operations like reflections, rotations or
inversions are equally expressed in a uniform way for all geometric entities. The third chapter
recapitulates some important aspects of Geometric algebra in worked examples using the Geo-
metric algebra visualization tool CLUCalc. This chapter should be particularly helpful, since it
shows you how to explore important aspects of Geometric algebra interactively.

CLUCalc is of course not the only software available that deals with Clifford or Geometric
algebra. Many software packages have been developed, because the numerical evaluation of
Clifford algebra equations becomes more and more important as Clifford algebra becomes more
prominent in applied fields like computer vision, computer graphics and robotics [21, 35, 22,
30, 10, 38, 8]. There are packages for the symbolic computer algebra systems Maple [1, 2] and
Mathematica [5], a package for the numerical mathematics program MatLab called GABLE [9],
the C++ software library GluCat [23], the C++ software library generator Gaigen [14], the Java
library Clados [7] and a stand alone program called CLICAL [24], to name just a few.

In 1996, one of the authors (C. Perwass), started developing a C++ library to implement
Clifford algebra operations. It has since grown to a whole suite of C++ libraries and stand alone
programs for the manipulation and visualisation of Clifford algebras. This suite is called the
CLU-Project [27]. ’CLU’ stands for Clifford algebra Library and Utilities. The goal of the CLU-
Project is to offer an easy to use and yet powerful interface to work with and understand Clifford
or Geometric algebra. All C++ libraries of the CLU-Project are Open Source and thus available
to everybody.

CLUCalc is a user friendly frontend to these libraries. It is used in the ”Interactive Introduc-
tion . . .” and is available for download from [27]. In CLUCalc you can type your equations in
a simple script language, called CLUScript and visualize the results immediately with OpenGL
graphics. The program comes with a manual in HTML form and a number of example scripts.
There is also an online version of the manual under:

vi

http://www.perwass.de/CLU/CLUCalcDoc/

CLUCalc should serve as a good accompaniment to this script, helping you to understand the
concepts behind Geometric algebra visually. The CLUScripts used in chapter three can also be
downloaded through the following link:

www.dgm.informatik.tu-darmstadt.de/staff/dietmar/

By the way, CLUCalc was also used to create all of the 2d and 3d graphics in this script. You
can use it for the same purpose, illustrating your publications or web-pages, from the version
3.0 onwards, which is now available. Some other features of CLUCalc v3.0.0 are:

• render and display LaTeX text and formulas to annotate your graphics, or to create slides
for presentations,

• prepare presentations with user interactive 3D-graphics included in your slides,

• draw 2D-surfaces, including the surface generated by a set of circles,

• do structured programming with if-clauses and loops,

• do error propagation in Clifford algebra,

• and much more...

If you want to know more details, go to www.clucalc.info or simply send an email to
help@clucalc.info .

Christian Perwass
Kiel, January 2004

vii

Figure 1: A screenshot of CLUCalc v2.0.

viii

Chapter 1

Introductions to
Clifford Algebra

by Dr. Christian Perwass

This chapter is separated into two main parts: ”Introductions to Clifford Algebra” and ”Ge-
ometries”. The plural ”Introductions” is fully intentional, since two introductions will be given.
The first concentrates on the geometric interpretation of Clifford algebra elements and the sec-
ond on algebraic properties. These two introductions also reflect the two terms mainly used
for this algebra within the research community: ”Geometric Algebra” and ”Clifford Algebra”.
Roughly speaking, if somebody talks about Clifford algebra, he is more interested in the alge-
braic aspects. If someone talks about Geometric algebra, his interest lies more in the geometric
interpretation of algebraic entities. Here we will start with the geometric interpretation of alge-
braic entities, since it is hoped that the reader’s geometric intuition will further the understand-
ing.

1.1 Geometric Algebra

In this introduction we will neglect many algebraic aspects and introduce Geometric algebra
as an extension of the standard vector algebra. The actual algebra product is called ”geometric
product”, but we will not start this discourse by discussing this product. Instead, we start by
introducing the ”inner product” and ”outer product”, which can be regarded as special ”parts”
of the geometric product. This ”top-down” approach is hoped to show the applicability of the
mathematics before giving a lot of details that may confuse the reader. If you prefer to first
understand what the geometric product is, though, then read first section 1.1.11.

In the following the terms ”scalar product” and ”inner product” will be used quite often, and
it is important to understand that in this text these two terms refer to quite different operations.
Depending on which books you have read before, you may be used to employing these terms
interchangeably. Here, a scalar product is a product which results in a scalar - no more, no less.

1

2

This scalar is in general an element of R , in particular it may also be zero or negative. This
may, for example, occur if the basis of the vector space we are working in is not Euclidean. This
will in fact turn up in section 2.2. The operation termed ”inner product” here, may coincide with
the scalar product, but represents in general an algebraic operation which does not result in a
scalar. This will be explained further in section 1.1.4. One may also say that the scalar product
is a ”metric” operation, since it depends on a metric, while the inner product is an algebraic
operation, which can also be executed without the knowledge of a metric.

So let’s start with a 3d Euclidean vector space denoted by E3 . We will use the coordinate
representation R3 for E3 . We assume that the standard scalar product is defined on E3 . It will
be denoted by ∗ . Furthermore, the usual vector cross product exists on E3 and will be written
as × . Recall that the scalar product gives the length of the component two vectors have in
common. The vector cross product, on the other hand, results in a vector perpendicular to both
of the initial vectors. For example, let a,b, c ∈ E3 , then

a ∗ b ∈ R and a× b ∈ E3.

Furthermore,

c = a× b ⇒ c ⊥ a and c ⊥ b.

A plane in E3 is typically represented by its normal and an offset vector. Given two vectors that
are to span a plane, the vector cross product can be used to find the plane’s normal. However,
this only works in 3d. In higher dimensions the (standard) vector cross product of two vectors
is not defined1. Nevertheless, we may be interested in describing the two dimensional subspace
spanned by two vectors also in a n -dimensional vector space.

1.1.1 The Outer Product

Without explaining exactly what it is, we can define a Clifford algebra on Rn , C̀ (Rn) or simply
C̀ n if it is clear that we are forming the Clifford algebra over the reals. The latter will in fact be
the case for the whole of this text.

The outer product is an operation defined within this algebra and is denoted by ∧ . Here are
the properties of the outer product of vectors. Let a,b, c ∈ En .

a ∧ b = −b ∧ a

(a ∧ b) ∧ c = a ∧ (b ∧ c)

a ∧ (b + c) = (a ∧ b) + (a ∧ c).

(1.1)

Another important property is

a ∧ b = 0 ⇐⇒ a and b are linearly dependent. (1.2)

Let {a1, . . . ,ak} ⊂ Rn be k ≤ n mutually linearly independent vectors. Then

(a1 ∧ a2 ∧ . . . ∧ ak) ∧ b = 0, (1.3)
1Note that in a n -dimensional vector space, one can define a vector cross product between n− 1 vectors.

3

if and only if b is linearly dependent on {a1, . . . ,ak} . The outer product of k vectors is called
a k -blade and is denoted by

A〈k〉 = a1 ∧ a2 ∧ . . . ∧ ak =:
k∧

i=1

ai.

The grade of a blade is simply the number of vectors that ”wedged” together give the blade.
Hence, the outer product of k linearly independent vectors gives a blade of grade k , a k -blade.

1.1.2 The Outer Product Null Space

In Geometric algebra, blades, as defined above, are given a geometric interpretation. This is
based on their interpretation as linear subspaces. For example, given a vector a ∈ Rn , we can
define a function Oa as

Oa : x ∈ Rn 7→ x ∧ a ∈ C̀ (Rn).

The kernel of this function is the set of vectors in Rn that Oa maps to zero. This kernel will be
called the outer product null space (OPNS) of a and denoted by NO(a) . That is,

kern Oa = NO(a) :=
{
x ∈ Rn : x ∧ a = 0 ∈ C̀ (Rn)

}
. (1.4)

We already know that x∧a is zero if and only if x is linearly dependent on a . Therefore, NO(a)
can also be given in terms of a as

NO(a) =
{
α a : α ∈ R

}
,

which means that the OPNS of a is a line through the origin with the direction of a . In Geometric
algebra it is therefore said that a vector in En represents a line.

Given a 2 -blade a ∧ b ∈ C̀ (Rn) , where a,b ∈ Rn , a function Oa∧b can be defined as

Oa∧b : x ∈ Rn 7→ x ∧ a ∧ b ∈ C̀ (Rn).

The kernel of this function is

kern Oa∧b = NO(a ∧ b) :=
{
x ∈ Rn : x ∧ a ∧ b = 0 ∈ C̀ (Rn)

}
. (1.5)

As before, it follows that the OPNS of a ∧ b can be parameterized as follows

NO(a ∧ b) =
{
α a + β b : (α, β) ∈ R2

}
.

Hence, a ∧ b is said to represent the two-dimensional subspace of Rn spanned by a and b ,
ie a plane through the origin. In general the OPNS of some k -blade A〈k〉 ∈ C̀ (Rn) is a k -
dimensional linear subspace of Rn .

NO(A〈k〉) :=
{
x ∈ Rn : x ∧A〈k〉 = 0

}
.

Consider again the three-dimensional Euclidean space E3 with a,b, c ∈ E3 three mutually
linearly independent vectors. Hence, {a,b, c} form a basis of E3 . Then

NO(a ∧ b ∧ c) :=
{
x ∈ E3 : x ∧ a ∧ b ∧ c = 0 ∈ C̀ (R3)

}
=

{
α a + β b + γ c ∈ E3 : (α, β, γ) ∈ R3

}
.

4

Therefore, the OPNS of a ∧ b ∧ c is the whole space E3 . Since the OPNS of the outer product
of any basis of E3 is the whole space E3 , the blades created from different bases have to be
similar. In fact, they only differ by a scalar factor. A blade of grade n in some C̀ (Rn) is called a
pseudoscalar. ”Pseudoscalar” because all pseudoscalars only differ by a scalar factor, just like the
scalar element 1 ∈ C̀ (Rn) .

Aside. Note that the fact that NO
(
A〈n〉 ∈ C̀ (Rn)

)
= Rn , implies that no blades of

grade higher than n can exist in C̀ (Rn) .

1.1.3 Magnitude of Blades

On the Euclidean space En the norm typically used is the L2 norm. This is defined in terms of
the scalar product. Let a ∈ En , then

‖a‖2 :=
√

a ∗ a. (1.6)

This norm can also be extended to blades in C̀ (En) . We will not give a proper derivation here,
but try to motivate the definition. In the following we will also use ‖.‖ instead ‖.‖2 for brevity.
Let a,b ∈ R3 and denote by b⊥ and b‖ the parts of b = b⊥ + b‖ that are perpendicular and
parallel to a , respectively. Then

a ∧ b = a ∧ (b⊥ + b‖)

= a ∧ b⊥ + a ∧ b‖︸ ︷︷ ︸
=0

= a ∧ b⊥.

(1.7)

Similarly, for any k -blade A〈k〉 =
∧k

i=1 ai , we can find a set of k mutually orthogonal vectors
{a′1, . . . , a′k} , such that

A〈k〉 = A′
〈k〉 :=

k∧
i=1

a′i.

Now, it may be shown that2

‖A〈k〉‖ = ‖A′
〈k〉‖ =

√√√√ k∏
i=1

(a′i)2 =
k∏

i=1

‖a′i‖, (1.8)

with k > 0 . Since the {a′i} are mutually orthogonal, the norm or magnitude of A〈k〉 is the
”volume” spanned by them. For k = 1 this reduces to the norm of a vector.

An illustrative example is the norm of a 2 -blade (also called bivector). The bivector a ∧ b ∈
C̀ (Rn) may also be written as a∧b⊥ , where b⊥ is the component of b that is perpendicular to
a . Then ‖b⊥‖ = sin θ ‖b‖ , with θ = ∠(a,b) . Therefore,

‖a ∧ b‖ = ‖a ∧ b⊥‖ = ‖a‖ ‖b‖ sin θ,

2In order to show this, the definition of the inner product is needed, which will be discussed later.

5

Figure 1.1: Area of bivector.

which is the area of the parallelogram spanned by a and b .

Now consider a n × k matrix A , whose columns are the {ai}k
i=1 ⊂ Rn . This will be written

as A = [a1, . . . , ak] . We could now define the norm of such a matrix to be the ”volume” of the
parallelepiped spanned by its column vectors. This would then be in accordance with the norm
of a blade of these vectors. In fact, for a matrix B = [b1, . . . , bn] , where the {bi}n

i=1 ⊂ Rn are a
basis of Rn , the determinant of B , det(B) does give the volume of the parallelepiped spanned
by the {bi}n

i=1 . Therefore, in this case,

‖b1 ∧ . . . ∧ bn ‖ = det([b1, . . . , bn]).

The unit pseudoscalar of some C̀ (Rn) , is a blade of grade n with magnitude 1 and is usually
denoted by I . Therefore, for example,

b1 ∧ . . . ∧ bn = ‖b1 ∧ . . . ∧ bn ‖ I = det([b1, . . . , bn]) I.

1.1.4 The Inner Product

Another important operation in Geometric algebra is the inner product. The inner product will be
denoted by · . For vectors a,b ∈ Rn , their inner product is just the same as their scalar product,
ie

a · b = a ∗ b.

This may be called the ”metric” property of the inner product, since the result of the scalar
product of two vectors depends on the metric of the vector space they lie in. However, the inner
product also has some purely algebraic properties for elements in C̀ (Rn) , which are indepen-
dent of the metric of the vector space Rn . In the following a number of these properties are
stated without proof.

Let a,b, c ∈ Rn , then the bivector b ∧ c ∈ C̀ (Rn) . The inner product of a with this bivector
gives,

a · (b ∧ c) = (a · b) c− (a · c)b. (1.9)

6

Since (a · b) and (a · c) are scalars, we see that the inner product of a vector with a bivector
results in a vector. More generally it may be shown that for k ≥ 1

x ·A〈k〉 = (x · a1) (a2 ∧ a3 ∧ a4 ∧ . . . ∧ ak)

− (x · a2) (a1 ∧ a3 ∧ a4 ∧ . . . ∧ ak)

+ (x · a3) (a1 ∧ a2 ∧ a4 ∧ . . . ∧ ak)

− etc.

=
k∑

i=1

(−1)(i+1) (x · ai)
[
A〈k〉 \ ai

]
,

(1.10)

where [A〈k〉 \ ai] denotes the blade A〈k〉 without the vector ai . Here the inner product of a
vector with a k -blade results in a (k − 1) -blade. An example of another important rule is this

(a ∧ b) ·A〈k〉 = a ·
(
b ·A〈k〉

)
, (1.11)

with k ≥ 2 . More generally, the inner product of blades A〈k〉, B〈l〉 ∈ C̀ (Rn) , with 0 < k ≤ l ≤ n ,
can be expanded as

A〈k〉 ·B〈l〉 = a1 ·
(
a2 ·

(
. . . · (ak ·B〈l〉)

))
. (1.12)

Hence, the result of this inner product is a (l − k) -blade.

In comparison to the outer product we see that the inner and the outer product are antago-
nists: while the outer product increases the grade of a blade, the inner product reduces it.

1.1.5 The Inverse of a Blade

Similar to the formula for vectors, the inverse of a blade A〈k〉 ∈ C̀ (Rn) , k ≤ n , is in general
given by

A−1
〈k〉 :=

Ã〈k〉

‖A〈k〉‖2
,

as long as3 ‖A〈k〉‖ 6= 0 . Using this formula it may indeed be shown that

A〈k〉 ·A−1
〈k〉 = A−1

〈k〉 ·A〈k〉 = 1.

The symbol Ã〈k〉 denotes the reverse of a blade. The reverse is an operator that simply re-
verses the order of vectors in a blade. For example, if A〈k〉 =

∧k
i=1 ai then

Ã〈k〉 =
1∧

i=k

ai = ak ∧ ak−1 ∧ . . . ∧ a1. (1.13)

3The magnitude of a blade can in fact become zero in Minkowski spaces.

7

Since the outer product is associative and anti-commutative, the reordering of vectors in a blade
can only change the blade’s sign. For the reverse we find in particular

Ã〈k〉 = (−1)k(k−1)/2 A〈k〉. (1.14)

So, why do we need the reverse in the definition of the inverse of a blade? The answer is, that
the reverse takes care of a sign that is introduced due to the grade of a blade. As an example
consider the orthonormal basis {ei} of Rn . From equations (1.12) and (1.10) it follows that

(e1 ∧ e2) · (e1 ∧ e2) = e1 ·
(
(e2 · e1)e2 − (e2 · e2)e1

)
= e1 ·

(
− e1

)
= −1.

On the other hand, obviously e1 · e1 = 1 . That is, depending on the grade of a blade (a vector
being a blade of grade 1), an additional sign is introduced or not. This is fixed by the reverse.
Given any blade A〈k〉 ∈ C̀ (Rn) , then

A〈k〉 · Ã〈k〉 = ‖A〈k〉‖2,

whereas

A〈k〉 ·A〈k〉 = (−1)k(k−1)/2 ‖A〈k〉‖2. (1.15)

1.1.6 Geometric Interpretation of Inner Product

We can already get an idea of what is happening by looking at the Clifford algebra of R2 , C̀ (R2)
with orthonormal basis {e1, e2} . The outer product e1 ∧ e2 spans the whole space, ie a plane.
Now let’s look at the inner product of e1 with this bivector.

e1 · (e1 ∧ e2) = (e1 · e1) e2 − (e1 · e2) e1 = e2. (1.16)

This may be interpreted as ”subtracting” the subspace represented by e1 from the subspace
represented by e1 ∧ e2 . What is left after the subtraction is, of course, perpendicular to e1 .

More generally, let x,y,a,b ∈ Rn and let

y = x · (a ∧ b) = (x · a)b− (x · b)a.

Now we find that

x · y = x ·
[
(x · a)b− (x · b)a

]
= (x · a) (x · b)− (x · b) (x · a)

= 0.

That is, x is perpendicular to y , which again implies that the inner product x · (a ∧ b) ”sub-
tracted” the subspace represented by x from the subspace represented by a ∧ b . This can also
be illustrated quite nicely in E3 .

8

Figure 1.2: Inner product of vector and bivector.

Let P denote the bivector a∧ b ∈ C̀ (R3) . In E3 this bivector represents a plane through the
origin, as shown in figure 1.2. A vector x ∈ R3 will in general have a component parallel to P ,
x‖ , and a component perpendicular to P , x⊥ , such that x = x‖ + x⊥ . Therefore,

y := x · P = (x‖ + x⊥) · P = x‖ · P.

The inner product x‖ · P now ”subtracts” the subspace represented by x‖ from the subspace
represented by P , which results in a vector that lies in P and is perpendicular to x , as shown
in figure 1.2.

1.1.7 The Inner Product Null Space

Just as for the outer product, we can also define the null space of blades with respect to the inner
product. The inner product null space (IPNS) of a blade A〈k〉 ∈ C̀ (Rn) , denoted by NI(A〈k〉) , is
the kernel of the function IA〈k〉 defined as

IA〈k〉 : x ∈ Rn 7→ x ·A〈k〉 ∈ C̀ (Rn), (1.17)

and thus

NI(A〈k〉) :=
{

x ∈ Rn : IA〈k〉(x) = 0 ∈ C̀ (Rn)
}
. (1.18)

For example, consider a vector a ∈ R3 , then NI(a) is given by

NI(a) :=
{

x ∈ R3 : x · a = 0
}
.

That is, all vectors that are perpendicular to a belong to its IPNS. In R3 the IPNS of a is there-
fore a plane of which a is the normal. Earlier we already saw that the OPNS of a bivector
represents a plane. This implies that there has to be some kind of relationship between the IPNS
of a vector in R3 and the OPNS of a bivector in C̀ (R3) .

9

1.1.8 The Dual

Let {e1, e2, e3} denote again an orthonormal basis of R3 . The IPNS of e1 is the set of all vectors
that are perpendicular to e1 . Hence,

NI(e1) =
{

α e2 + β e3 : (α, β) ∈ R2
}
,

the plane spanned by e2 and e3 . However, we know that this is also the OPNS of e2 ∧ e3 ,

NO(e2 ∧ e3) =
{

α e2 + β e3 : (α, β) ∈ R2
}
.

We may therefore ask whether there is a relation between the concepts of the IPNS and the
OPNS. Such a relation does indeed exist and it is called duality. In the following we will see how
this comes about.

Before we start with the actual calculations, we will introduce two set operations for sets of
vectors that will become quite useful. The first is the direct sum of two sets of vectors denoted
by ⊕ . Given two sets A := {ai}k

i=1 ⊂ Rn and B := {bi}l
i=1 ⊂ Rn their direct sum is

A⊕ B :=
{

ai + bj ∈ Rn : 0 < i ≤ k, 0 < j ≤ l
}
. (1.19)

In particular this means for two infinite sets, ie one dimensional subspaces

A :=
{

α a ∈ Rn : α ∈ R
}
, and B :=

{
β b ∈ Rn : β ∈ R

}
,

that their direct sum is the set of all linear combinations of the elements of A and B . That is,

A⊕ B =
{

α a + β b ∈ Rn : (α, β) ∈ R2
}
.

In this spirit it makes sense also to define a ”direct subtraction” between two such sets as

A	 B :=
{

x ∈ A : x ∗ y = 0 ∀y ∈ B
}
, (1.20)

where we assume that a scalar product is defined on the elements of A and B . Hence, the direct
subtraction removes the linear dependence on elements of B from the elements of A . Note that
this is more than just to remove the elements of B from A .

Now let us return to the question of duality. First of all note that the OPNS of e1 is simply

NO(e1) =
{

α e1 : α ∈ R
}
,

a line through the origin with direction e1 . The direct sum of NO(e1) and NO(e2 ∧ e3) is the
whole space R3 ,

NO(e1)⊕ NO(e2 ∧ e3) =
{

α e1 + β e2 + γ e3 : (α, β, γ) ∈ R3
}
≡ R3.

and, in particular, ”removing” the linear dependence on NO(e1) from R3 gives
NO(e2 ∧ e3) ,

NO(e2 ∧ e3) = R3 	 NO(e1).

With respect to R3 , NO(e1) may therefore be called the complement set to NO(e2 ∧ e3) . Further-
more,

NI(e1) = R3 	 NO(e1).

10

The question now is: can we find an operation in C̀ (Rn) which transforms any blade A〈k〉 ∈
C̀ (Rn) into a complementary blade B〈n−k〉 ∈ C̀ (Rn) , such that

NO(A〈k〉) = Rn 	 NO(B〈n−k〉).

Such an operation does indeed exist and is called the dual. The dual of a multivector A ∈ C̀ (Rn)
is written A∗ and is defined as

A∗ := A · I−1, (1.21)

where I−1 is the inverse unit pseudoscalar of C̀ (Rn) . It is a nice feature of Geometric alge-
bra that the dual can be given as a standard product with a particular element of the algebra.
However, this has also the drawback that the dual of the dual of a multivector may introduce
an additional sign. That is,(

A∗)∗ =
(
A · I−1

)
· I−1 = A

(
I−1 · I−1

)
.

Why the last step in this equation works will be shown later on in equation (1.31), page 17. If
we believe this equation for the moment, then it shows that an additional sign is introduced
whenever I−1 · I−1 = −1 . Since I−1 is a n -blade in C̀ (Rn) we know from equations (1.14) and
(1.15) that

I−1 · I−1 = (−1)k(k−1)/2 ‖I−1‖2 = (−1)k(k−1)/2.

With respect to the orthonormal basis {e1, e2, e3} of R3 , the dual operation has the following
effect. Consider again the bivector e2 ∧ e3 which represents the plane spanned by e1 and e2 in
its OPNS. The unit pseudoscalar of R3 and its inverse may be given as

I = e1 ∧ e2 ∧ e3 and I−1 = Ĩ = e3 ∧ e2 ∧ e1 = −I.

Now, the dual of e2 ∧ e3 is

(e2 ∧ e3)
∗ = (e2 ∧ e3) · I−1

= (e2 ∧ e3) · (e3 ∧ e2 ∧ e1)

= e2 ·
(
e3 · (e3 ∧ e2 ∧ e1)

)
,

where we used equation (1.12). We first evaluate the term within the outer brackets using equa-
tion (1.10).

e3 · (e3 ∧ e2 ∧ e1) = (e3 · e3) (e2 ∧ e1)− (e3 · e2) (e3 ∧ e1) + (e3 · e1) (e3 ∧ e2)

= e2 ∧ e1.

Therefore,

(e2 ∧ e3)
∗ = e2 · (e2 ∧ e1)

= (e2 · e2)e1 − (e2 · e1)e2

= e1.

11

This is a nice example to see that the dual of a blade gives a blade complementing the whole
space. In this case

(e2 ∧ e3) ∧ (e2 ∧ e3)
∗ = I,

the unit pseudoscalar. With respect to the OPNS we have

NO
(
e2 ∧ e3

)
⊕ NO

(
(e2 ∧ e3)

∗) = R3.

It is now also clear that the relation between the OPNS and IPNS is the duality. For example,
we have seen before that

NO
(
e2 ∧ e3

)
= R3 	 NO

(
e1

)
= NI

(
e1

)
.

Since e1 = (e2 ∧ e3)
∗ we have

NO
(
e2 ∧ e3

)
= NI

(
(e2 ∧ e3)

∗).
In general we have for some blade A〈k〉 ∈ C̀ (Rn)

NO
(
A〈k〉

)
= NI

(
A∗
〈k〉

)
. (1.22)

1.1.9 Geometric Interpretation of the IPNS

Figure 1.3: Dual of plane represented by bivector a ∧ b .

We have already seen that the IPNS of some vector n ∈ R3 is a plane through the origin,
whereby n is the plane’s normal. With respect to the dual operation, it was shown in the previ-
ous section that the normal of a plane spanned by a,b ∈ R3 , is given by (a ∧ b)∗ . Suppose that
n = (a ∧ b)∗ . The side of the plane a ∧ b from which the normal n sticks out from is usually
regarded as the ”front”-side of the plane. Thus, a bivector represents a sided plane. For example,
the normal m of b ∧ a is given by

m = (b ∧ a)∗ = −(a ∧ b)∗ = −n.

12

Hence, the plane represented by b ∧ a consists of the same subspace in R3 as the plane repre-
sented by a ∧ b , but their front-sides point in opposite directions. This situation is shown in
figure 1.3. This also shows the relation between the vector cross product and the outer product:

a× b = (a ∧ b)∗.

Aside. Note that the idea of a plane normal vector does only work in R3 . In any
dimension higher than three the set of vectors perpendicular to one vector spans a
higher dimensional space than a plane. Nevertheless, a bivector always describes a
plane, independent of the dimension it is embedded in.

Now that we are happy that a vector in R3 represents a plane with respect to its IPNS, we can
ask what the IPNS of blades of higher grade is. Consider the non-zero bivector a ∧ b ∈ C̀ (R3) .
In order to give its IPNS we have to find which vectors x ∈ R3 satisfy x · (a ∧ b) = 0 . With the
help of equation (1.10) we find

x · (a ∧ b) = (x · a)b− (x · b)a.

Since we assumed that a ∧ b 6= 0 , a and b have to be linearly independent. Therefore, the
above expression can only become zero if and only if

x · a = 0 and x · b = 0.

Geometrically this means that x has to lie on the plane represented by a and on the plane
represented by b , in their IPNS. Hence, x lies on the intersection of the two planes represented
by a and b . This shows that the outer product of two vectors represents the intersection of their
separately represented geometric entities. In terms of sets this reads

NI(a ∧ b) = NI(a) ∩ NI(b). (1.23)

Such an intersection line also has an orientation, which in this case is given by (b ∧ a)∗ .

Figure 1.4: Intersection of two planes in terms of IPNS.

Aside. Note that in R3 we cannot represent two parallel but not identical planes
through the IPNS of two vectors, since all such planes go through the origin.

13

The last type of blade we can discuss in R3 with respect to its IPNS is a 3 -blade, or trivector.
As we have seen already a trivector A〈3〉 ∈ C̀ (R3) is a pseudoscalar and thus

A〈3〉 = ‖A〈3〉‖ I,

where I is the unit-pseudoscalar of C̀ (R3) . Let A〈3〉 be given by

A〈3〉 := a ∧ b ∧ c.

If A〈3〉 6= 0 then a , b and c are linearly independent. In order to find the IPNS of A〈3〉 , we
need to find which vectors x satisfy x ·A〈3〉 = 0 . Using again equation (1.10) it follows

x ·A〈3〉 = (x · a) (b ∧ c)

− (x · b) (a ∧ c)

+ (x · c) (a ∧ b).

The bivectors (b∧ c) , (a∧ c) and (a∧ b) are linearly independent and thus x ·A〈3〉 = 0 if and
only if

x · a = 0 and x · b = 0 and x · c = 0.

Geometrically this means that x · A〈3〉 = 0 if and only if x lies on the intersection of the three
planes represented by a , b and c . Since all planes represented through the IPNS of vectors
pass through the origin, the only point all three planes can meet in is the origin. Hence, the only
solution for x to x ·A〈3〉 = 0 is the trivial solution x = 0 ∈ R3 . Figure 1.5 illustrates this.

Figure 1.5: Intersection of three planes in terms of IPNS.

1.1.10 The Meet Operation

We have seen that we can intersect subspaces quite easily, if they are represented through the
IPNS of blades. For example, two vectors a,b ∈ R3 represent two planes in their IPNS. The
intersection of these two planes is simply represented by a ∧ b . (Recall figure 1.4) The question

14

we would like to answer in this section is: is there an operation that evaluates the intersection of
subspaces represented through the OPNS of blades?

The short answer is: yes. The longer answer will follow now. First we need to remember how
the OPNS and IPNS are connected. Given a bivector a ∧ b ∈ C̀ (R3) representing a plane in its
OPNS, we can find the respective representation of the plane in term of the IPNS by taking the
dual of the bivector. Suppose that c ∈ R3 is given by c = (a ∧ b)∗ , then

NI
(
c
)

= NI
(
(a ∧ b)∗

)
= NO

(
a ∧ b

)
.

Using a so far unproven property of the inner product (equation (1.31)), we can also write

c · I = (a ∧ b)∗ · I

=
(
(a ∧ b) · I−1

)
· I

= (a ∧ b) (I−1 · I)

= a ∧ b,

where I is again the unit pseudoscalar of C̀ (R3) . That means, in order to transform an IPNS
representation into an OPNS representation, we have to multiply with the unit pseudoscalar, a
kind of ”inverse” dual. In terms of sets,

NO
(
a ∧ b

)
= NO

(
c · I

)
= NI

(
c
)
.

Now we can see how to express the intersection of two subspaces in terms of the OPNS of
two blades. Suppose a1 ∧ a2, b1 ∧ b2 ∈ C̀ (R3) represent two planes in terms of their OPNS.
Let their respective normals be denoted by na = (a1 ∧ a2)

∗ and nb = (b1 ∧ b2)
∗ . Then in terms

of the IPNS the intersection of the two planes is given by na ∧ nb . As we have seen above, the
corresponding expression of the intersection line in terms of the OPNS is simply (na ∧ nb) · I .
Substituting now for na and nb gives,[

(a1 ∧ a2)
∗ ∧ (b1 ∧ b2)

∗] · I.

This is actually not quite the general intersection operation we were looking for, but it is already
pretty good and is thus given its own name: the regressive product. Here is the proper definition.

Let A,B ∈ C̀ (Rn) be two arbitrary multivectors and let I denote the unit pseudoscalar of
C̀ (Rn) . The regressive product is denoted by O and is defined as

AOB :=
[
A∗ ∧ B∗] · I. (1.24)

For the above example this means that given the bivectors a1 ∧ a2 and b1 ∧b2 , representing
two planes in their OPNS, the intersection of these planes in the OPNS is given by

(a1 ∧ a2) O (b1 ∧ b2).

Unfortunately, their is a problem. Let {e1, e2, e3} again denote an orthonormal basis of R3 .
Now suppose we wanted to find the intersection of a line represented by e2 and a plane repre-
sented by e2 ∧ e3 , through their OPNS. We see immediately that since e2 is also contained in

15

the bivector e2∧ e3 , the line is completely contained within the plane and thus their intersection
should be the line e2 itself. However, the regressive product gives

e2 O (e2 ∧ e3) =
[
e∗2 ∧ (e2 ∧ e3)

∗] · I
=

[
(e1 ∧ e3) ∧ e1

]
· I

=
[
− (e1 ∧ e1) ∧ e3

]
· I

= 0,

where I is the pseudoscalar of C̀ (R3) . The problem is that the line NO(e2) and the plane
NO(e2 ∧ e3) live in a 2d-subspace of R3 spanned by e2 and e3 . The dimension e1 is of no
importance for the evaluation of their intersection. Suppose now that we work in the subalgebra
C̀ (R2) ⊂ C̀ (R3) , where {e2, e3} give an orthonormal basis of R2 . Then the respective unit
pseudoscalar is I = e2 ∧ e3 and I−1 = e3 ∧ e2 , and we obtain

e∗2 = −e3 and (e2 ∧ e3)
∗ = 1.

Hence, the regressive product now gives

e2 O (e2 ∧ e3) =
[
e∗2 ∧ (e2 ∧ e3)

∗] · I
=

[
− e3 ∧ 1

]
· I

= −e3 · I

= e2,

which is what we want. This shows that the regressive product works, if we evaluate it in the
correct subalgebra. This notion is captured in the general intersection operation: the meet.

The meet is basically the regressive product where the pseudoscalar is chosen appropriately.
”Appropriately” means that instead of the pseudoscalar of the whole space, the pseudoscalar
of the space spanned by the two blades of which the meet is to be evaluated, is used. This
introduces the concept of the join.

Given two blades A〈k〉, B〈l〉 ∈ C̀ (Rn) , then their join is a unit blade J ∈ C̀ (Rn) such that

NO(J) = NO(A〈k〉) ⊕ NO(B〈l〉).

The join is sometimes also written as an operator, denoted by ∧̇ . For example, the join of e2 and
e2 ∧ e3 is simply

e2 ∧̇ (e2 ∧ e3) = e2 ∧ e3,

since ‖e2 ∧ e3‖ = 1 and

NO(e2 ∧ e3) = NO(e2) ⊕ NO(e2 ∧ e3).

Aside. Note that this definition of the join does not fix the sign of J . This is just as
for the unit pseudoscalar I , where we only demanded that its magnitude is unity,
but we did not say anything about its sign. We will not discuss this problem further
apart from noting that it becomes irrelevant when working in projective spaces.

16

We can now define the meet in terms of the join. Let A〈k〉, B〈l〉 ∈ C̀ (Rn) and let J = A〈k〉∧̇B〈l〉
be their join. Then the meet of A〈k〉 and B〈l〉 is denoted by ∨ and defined as

A〈k〉 ∨B〈l〉 :=
[(

A〈k〉 · J−1
)
∧

(
B〈l〉 · J−1

)]
· J. (1.25)

In terms of sets this is

NO
(
A〈k〉 ∨B〈l〉

)
= NO

(
A〈k〉

)
∩ NO

(
B〈l〉

)
.

Note that the meet is only defined for blades and it becomes the regressive product, if the
join is the pseudoscalar. Equation (1.25) can also be simplified to read

A〈k〉 ∨B〈l〉 =
(
A〈k〉 · J−1

)
· B〈l〉. (1.26)

1.1.11 The Geometric Product

We have already seen a lot of features of Geometric algebra. However, so far, we managed to
avoid the actual algebra product, the geometric product. This product will be discussed in more
detail in the Clifford algebra introduction later on. At this point only some basic features are
introduced.

The formula most often shown right in the beginning of a Geometric algebra introduction is

ab = a · b + a ∧ b, (1.27)

where a,b ∈ Rn are two vectors, and juxtaposition of two vectors, as in ab , denotes the geo-
metric product. It is important to note that this equation is only valid for vectors, not for blades
or multivectors in general. It might at first seem strange to add a scalar (a · b) and a bivector
(a∧b) , but they are just different elements of the Geometric algebra. This is just like for complex
numbers, where a real and an imaginary part are added.

A somewhat more general form of equation (1.27) is

aB〈l〉 = a ·B〈l〉 + a ∧B〈l〉, (1.28)

with B〈l〉 ∈ C̀ (Rn) and l > 0 . For l = 0 , ie B〈l〉 a scalar, we have

aB〈0〉 = a ∧B〈0〉.

In general we always have for a scalar α ∈ R and a multivector A ∈ C̀ (Rn) that their inner
product is identically zero,

α ·A ≡ 0.

This turns out to be a necessary definition to keep the system of operations in Geometric algebra
self-consistent.

17

The geometric product is associative and distributive but in general not commutative. That
is, for multivectors A,B, C ∈ C̀ (Rn)

(A B) C = A (B C),

A (B + C) = (A B) + (A C),

(B + C) A = (B A) + (C A),

A B 6= B A, in general.

(1.29)

Two further useful properties of the geometric product are the following. Given two blades
A〈k〉, B〈l〉 ∈ C̀ (Rn) , then

NO(A〈k〉) ∩ NO(B〈l〉) = ∅ ⇐⇒ A〈k〉 B〈l〉 = A〈k〉 ∧B〈l〉, (1.30)

and

NO(A〈k〉) ⊆ NO(B〈l〉)

or NO(B〈l〉) ⊆ NO(A〈k〉)

 ⇐⇒ A〈k〉 B〈l〉 = A〈k〉 ·B〈l〉. (1.31)

Equation (1.31) for example implies that for some vector a ∈ Rn ,

a∗ · I = (a · I−1) · I = (a I−1) I = a (I−1 I) = a,

where I is the pseudoscalar of C̀ (Rn) .

1.1.12 Reflection

So far we have seen how to construct linear subspaces using the outer product and to subtract
linear subspaces from one another using the inner product. We also now know how to intersect
linear subspaces using the meet and how to form their union with the join. We now would like
to operate on subspaces while keeping their dimensionality unchanged. For example, rotating
a line results in another line, not in a point or a plane. An operation on a blade that does not
change its grade, is called grade preserving.

Without much further ado, we will look at such a grade preserving operation. Let a,n ∈ Rn

denote two vectors, whereby ‖n‖ = 1 . Also write a = a‖+a⊥ , where a‖ is the component of a
parallel and a⊥ the component perpendicular to n . Note that the following calculation is valid
for all dimensions n ≥ 2 of the vector space.

nan = (na)n

= (n · a + n ∧ a)n

= (n · a)n + (n ∧ a) · n + (n ∧ a) ∧ n︸ ︷︷ ︸
=0

.

So far we only applied the associativity of the geometric product and equation (1.27). Using
equation (1.10) we see that

(n ∧ a) · n = (a · n)n− (n · n)a.

18

Hence,

nan = (n · a)n + (a · n)n− (n · n)︸ ︷︷ ︸
=1

a

= 2 (n · a)n− a.

Clearly we have n · a = n · a‖ , and since a‖ is the component of a parallel to n , we can also
write a‖ = ‖a‖‖n . Thus,

nan = 2 (n · a‖)n− a

= 2 ‖a‖‖ n− a

= 2 a‖ − a‖ − a⊥

= a‖ − a⊥.

That is, the component of a perpendicular to n has been negated, while the parallel component
a‖ remained unchanged. Geometrically this is a reflection of the vector a on the line through the
origin with direction n . This is illustrated in figure 1.6.

Figure 1.6: Reflection of vector a on vector n .

The really nice thing about this reflection operation is that it can be applied to any blade.
For example, given a plane as bivector A〈2〉 ∈ C̀ (R3) , it can be reflected in a normalized vector
n ∈ R3 simply by evaluating nA〈2〉 n . This is shown in figure 1.7.

Let A〈2〉 = a1 ∧ a2 with a1,a2 ∈ R3 , then it may in fact be shown that

nA〈2〉 n =
(
na1 n

)
∧

(
na2 n

)
.

That is, the reflection of the outer product of two vectors, is the outer product of the separately
reflected vectors. By the way, this property is also called outer-morphism, not to be confused with
auto-morphism.

A blade may also be reflected on another blade. Figure 1.8 shows the reflection of a vector
a ∈ R3 on a bivector N〈2〉 ∈ C̀ (R3) by evaluating N〈2〉aN〈2〉 . This operation again results in

N〈2〉aN〈2〉 = a‖ − a⊥,

19

Figure 1.7: Reflection of bivector A〈2〉 on vector n .

Figure 1.8: Reflection of vector a on bivector N〈2〉 .

where a‖ and a⊥ are this time the parallel and perpendicular components of a with respect to
N〈2〉 .

The reflection operation is in fact the only operation we will ever be using in Geometric
algebra. Any other operation needed will be obtained by combining a number of different re-
flections. In Euclidean space this confines us in fact to reflections and rotations about axes that
pass through the origin, as will be shown in the next section. To extend the set of available oper-
ations Euclidean space will have to be embedded in other spaces, which will be discussed later
on.

1.1.13 Rotation

Reflections with respect to a normalized vector n are always reflections on a line with direction
n , passing through the origin. It may be shown that two consecutive reflections on different,
normalized vectors n and m are equivalent to a rotation of twice the angle between n and m .

20

Figure 1.9: Rotation of vector a by consecutive reflections of a on n and m .

Figure 1.9 shows such a setup in 3d-Euclidean space. The normalized vectors n,m ∈ R3

enclose an angle ∠(n,m) = θ and define a rotation plane through their outer product n ∧m .
Reflecting a vector a ∈ R3 first on n and then on m , rotates the component of a that lies
in the rotation plane by 2θ . The component of a perpendicular to the rotation plane remains
unchanged.

The rotation of vector a in the plane n ∧m by an angle 2θ may then be written as

b = mnanm. (1.32)

From the definition of the geometric product we find that

mn = m · n + m ∧ n

and also

nm = n ·m + n ∧m = n ·m + (m ∧ n)̃ .

Since the reverse of a scalar is still the same scalar it follows

mn = (nm)̃ .

Equation (1.32) may therefore also be written more succinctly as

b = R a R̃, with R := mn. (1.33)

Since applying R as above has the effect of a rotation, R is called a rotor. Note that a rotor has
to satisfy the equation

R R̃ = 1,

21

because it would otherwise also scale the entity it is applied to. We can actually recognize this
as something familiar, by expanding R as

R = mn

= m · n + m ∧ n

= cos θ + sin θ U〈2〉,

(1.34)

where θ = ∠(m,n) and U〈2〉 is the normalized version of m ∧ n , ie

U〈2〉 :=
m ∧ n
‖m ∧ n‖

.

From equation (1.15) we know that

U〈2〉 · U〈2〉 = (−1)2(2−1)/2 ‖U〈2〉‖2 = −1.

Since U〈2〉 squares to −1 , the expression for R in equation (1.34) is similar to that of a complex
number z in the polar representation

z = r (cos θ + i sin θ),

where i =
√
−1 represents the imaginary unit and r ∈ R is the radius. For complex numbers it

is well known that the above expression can also be written as

z = r exp(i θ).

The definition of the exponential function can be extended to Geometric algebra, and it can be
shown that the Taylor series of exp(θ U〈2〉) does indeed converge to

exp
(
θ U〈2〉

)
= cos θ + sin θ U〈2〉 = R. (1.35)

It turns out that R = exp(θU〈2〉) actually represents a clockwise rotation by an angle 2θ in the
plane U〈2〉 . The term ”clockwise” only makes really sense in 3d-space. Here it means clockwise
relative to the rotation axis given by U∗

〈2〉 . If we want to represent a mathematically positive,
ie anti-clockwise, rotation about an angle θ , within the plane U〈2〉 , we need to write the corre-
sponding rotor as

R = exp
(
− θ

2 U〈2〉
)
. (1.36)

Just as for reflections, a rotor represents a rotation in any dimension. A rotor can also rotate
any blade. That is, with the same rotor we can rotate vectors, bivectors, etc. It turns out that for
a rotor we also have an outer-morphism. This means that given a blade A〈k〉 =

∧k
i=1 ai , with

{ai} ⊂ Rn , and a rotor R , we can expand the expression RA〈k〉R̃ as

R A〈k〉 R̃ =
(
R a1 R̃

)
∧

(
R a2 R̃

)
∧ . . . ∧

(
R ak R̃

)
. (1.37)

Hence, the rotation of the outer product of a number of vectors is the same as the outer product
of a number of rotated vectors.

22

1.2 Clifford Algebra

In the previous section we mainly discussed the geometric interpretation of elements of Geo-
metric algebra. However, we did not say very much about the algebra itself. We will do this
now, and since we are in the following mainly interested in algebraic aspects, we will talk about
Clifford algebra instead of Geometric algebra. Recall that these are just two names for the same
thing. The only difference is that when we talk about Geometric algebra we would like to em-
phasize the geometric interpretation of the elements of that algebra. Note that in the following
we will not be a hundred percent mathematically rigorous. For a ”proper”, pure mathematical
introduction see for example [15, 31, 17, 32, 25]. An even more abstract but very interesting
approach to Clifford algebra can be found in [36, 37].

William K. Clifford (1845-1879) introduced what we now call Geometric or Clifford Algebra,
in a paper entitled ”On the classification of geometric algebras,” [6]. He realized (as Grassmann
did) that Grassmann’s exterior algebra and Hamilton’s quaternions can be brought into the same
algebra by a slight change of the exterior product. With this new product, which we will call the
geometric product, the multiplication rules of the quaternions follow directly from combinations
of basis vectors (more details later), while Grassmann’s exterior algebra is not lost. Furthermore,
complex numbers and the Pauli matrices, as used in Quantum mechanics, have also a natural
representation in Clifford algebra.

1.2.1 The Geometric Product Revisited

Let Vn be some n -dimensional vector space over a field F , where n is finite4. Furthermore, let
a scalar product, denoted by ∗ , be defined on Vn . That is, for two elements a,b ∈ Vn ,

a ∗ b = b ∗ a ∈ F.

Note that a Hilbert space also satisfies these properties.

The Clifford algebra over Vn , denoted by C̀ (Vn) or simply C̀ n , is an algebra that also con-
tains the elements of Vn and the field F . The algebra product is called the Clifford or geometric
product and will for the moment be denoted by ◦ . Later on the geometric product will be rep-
resented by the juxtaposition of two elements. At the moment an explicit symbol is hoped to
further the reader’s understanding.

In order to clarify what we mean by algebra, here are all the axioms of C̀ (Vn) . First of all, the
elements of some C̀ (Vn) , which will be called multivectors, satisfy the axioms of a vector space
over the field F .

1. Multivector addition. For any two elements A,B ∈ C̀ (Vn) there exists an element C =
A + B ∈ C̀ (Vn) , their sum.

2. Scalar multiplication. For any element A ∈ C̀ (Vn) and any scalar α ∈ F , there exists an
element αA ∈ C̀ (Vn) , the α -multiple of A .

4We will only discuss finite dimensional Clifford algebras. Infinite dimensional Clifford algebras pose some ad-
ditional problems which we would like to avoid here.

23

Now the axioms of the vector space. In the following let C̀ n denote C̀ (Vn) . Also let A,B, C ∈
C̀ n and α, β ∈ F .

1. Associativity of multivector addition

(A + B) + C = A + (B + C).

2. Commutativity

A + B = B + A.

3. Identity element of addition. There exists an element 0 ∈ C̀ n , the zero element, such that
A + 0 = A .

4. Associativity of scalar multiplication

α(βA) = (αβ)A.

5. Commutativity of scalar multiplication

αA = Aα.

6. Identity element of scalar multiplication. The identity element 1 ∈ F satisfies

1 A = A.

7. Distributivity of multivector sums.

α (A + B) = αA + αB.

8. Distributivity of scalar sums.

(α + β) A = α A + β A.

If we choose the field F to be the reals R , then it follows from these axioms that for each A ∈ C̀ n

there exists an element −A := (−1)A such that

A−A := A + (−A) = A + (−1)A =
(
1 + (−1)

)
A = 0A = 0.

Now we come to the axioms of the algebra product, the geometric product. Again let A,B, C ∈
C̀ n and α, β ∈ F .

1. The algebra is closed under the geometric product

(A ◦B) ∈ C̀ n.

2. Associativity.

(A ◦B) ◦ C = A ◦ (B ◦ C).

24

3. Distributivity.

A ◦ (B + C) = A ◦B + A ◦ C and (B + C) ◦A = B ◦A + C ◦A.

4. Scalar multiplication.

α ◦A = A ◦ α = αA.

So far, all the axioms we gave simply define a fairly general algebra. What actually separates
Clifford algebra from other algebras is its defining equation. We said before that Vn ⊂ C̀ (Vn) ,
which is mathematically not quite rigorous but good enough to understand what is going on.
The defining equation of Clifford algebra is that for all vectors a ∈ Vn ⊂ C̀ (Vn) the following
equation holds

a ◦ a = a ∗ a ∈ F. (1.38)

That is, the geometric product of a vector (not multivector in general) with itself maps to an
element of the field F . From now we will only consider Clifford algebras over the reals, ie we
set F ≡ R .

In order to work with Clifford algebra we would also like to know whether the scalar product
of two different vectors a,b ∈ Vn can also be expressed in terms of the geometric product. Well,
using the defining equation (1.38) we find

(a + b) ◦ (a + b) = (a + b) ∗ (a + b)

⇐⇒ a ◦ a + a ◦ b + b ◦ a + b ◦ b = (a ∗ a) + 2 a ∗ b + b ∗ b

⇐⇒ 1
2 (a ◦ b + b ◦ a) = a ∗ b.

(1.39)

The expression 1
2 (a ◦ b + b ◦ a) is also called the anti-commutator product. We will also write

this as

a×−b := 1
2 (a ◦ b + b ◦ a), anti-commutator product. (1.40)

Similarly we can also define the commutator product as

a×−b := 1
2 (a ◦ b− b ◦ a), commutator product. (1.41)

In the literature the commutator product of two multivectors A,B ∈ C̀ n would usually
be written as [A,B] and the anti-commutator product as {A,B} . In this text we will use the
symbols introduced above to emphasize the operator quality of these products. By applying the
properties of the geometric product we can see immediately that the geometric product of two
multivectors can be written as the sum of the commutator and anti-commutator product.

A ◦B = A×−B + A×−B. (1.42)

Usually vectors in Vn are expressed as linear combinations of a set {e1, e2, . . .} of orthonor-
mal basis vectors of Vn . However, in this formal setting we havn’t even defined what we mean
by ”orthogonal”. So let’s do this now. Two vectors are said to be orthogonal iff

a×−b = a ∗ b = 0.

25

A set of n orthonormal vectors {e1, e2, . . . , en} ⊂ Vn therefore has the properties,

ei×−ei = 1 and ei×−ej = 0 , i 6= j.

From this it also follows that for i 6= j ,

ei ◦ ej = ei×−ej + ei×−ej = ei×−ej ,

ej ◦ ei = ej×−ei + ej×−ei = ej×−ei ,

(1.43)

and since A×−B = −B×−A by definition, we have ei ◦ ej = −ej ◦ ei . This is also one of the
properties of the outer product which we introduced in equation (1.1). Now that we know the
properties of the {ei} , we can take a first look at the geometric product of two general vectors.
Let a,b ∈ C̀ (R2) be given by a = αiei and b = βiei , where i ∈ {1, 2} . Note that we use
the Einstein summation convention here, which states that a superscript index repeated as a
subscript index, or vice versa, implies a summation over the range of the index. In this case
αiei ≡

∑2
i=1 αiei .

a ◦ b = (α1e1 + α2e2) (β1e1 + β2e2)

=
(
α1β1 e1 ◦ e1 + α2β2 e2 ◦ e2

)
+

(
α1β2 e1 ◦ e2 + α2β1 e2 ◦ e1

)
=

(
α1β1 + α2β2

)
+

(
α1β2 − α2β1

)
e1 ◦ e2 ,

(1.44a)

b ◦ a = (β1e1 + β2e2) (α1e1 + α2e2)

=
(
β1α1 e1 ◦ e1 + β2α2 e2 ◦ e2

)
+

(
β1α2 e1 ◦ e2 + β2α1 e2 ◦ e1

)
=

(
α1β1 + α2β2

)
−

(
α1β2 − α2β1

)
e1 ◦ e2.

(1.44b)

We therefore see that

a×−b = 1
2(a ◦ b + b ◦ a) = α1β1 + α2β2 = a ∗ b , (1.45a)

a×−b = 1
2(a ◦ b− b ◦ a) =

(
α1β2 − α2β1

)
e1 ◦ e2 = a ∧ b. (1.45b)

1.2.2 The Basis of C̀ n

The question still remains what the geometric algebra of a vector space is. Given a vector space
Rn with an orthonormal basis {e1, e2, . . . , en} there are 2n ways to combine the {ei} with the
geometric product such that no two of these products are linearly dependent. Each of these
products is called a basis blade. Together they form the (algebraic) basis of C̀ n(Rn) denoted by
Bn . This will become more clear in the following example.

From now on we will write the geometric product again by juxtaposition of two elements.
For example, the geometric product of A,B ∈ C̀ n will no longer be written as A ◦ B but as
A B .

Consider the vector space R3 with orthonormal basis {e1, e2, e3} . A set of linearly indepen-
dent combinations of these basis elements using the geometric product is for example given

26

by,

B3 := { 1︸︷︷︸
scalar

, e1, e2, e3︸ ︷︷ ︸
vectors

, e2e3, e3e1, e1e2︸ ︷︷ ︸
bivectors

, e1e2e3︸ ︷︷ ︸
trivector

} (1.46)

Recall that the geometric product is associative. Hence, we can write (e1e2)e3 simply as e1e2e3 .
Also recall that eiej = −ejei for i 6= j . Therefore, using a different order for the {ei} in the
basis blades can at most change the sign of the basis blades.

Given a basis Bn := {Ei} of some C̀ n , we can write a multivector explicitly as

A = αiEi ; i ∈ {1, 2, . . . , 2n}, (1.47)

where we used the Einstein summation convention, which, as was already mentioned above,
says that a superscript index repeated as a subscript index, or vice versa, within a product im-
plies a sum over the range of the index. That is,

2n∑
i=1

αiEi ≡ αiEi ; i ∈ {1, 2, . . . , 2n}. (1.48)

In our C̀ 3 example the elements of B3 may be defined as

E1 := 1,

E2 := e1, E3 := e2, E4 := e3,

E5 := e2e3, E6 := e3e1, E7 := e1e2,

E8 := e1e2e3.

(1.49)

Therefore, a general multivector in C̀ 3 looks like this.

A = αiEi

= α1+

α2 e1 + α3 e2 + α4 e3+

α5 e2e3 + α6 e3e1 + α7 e1e2+

α8 e1e2e3.

(1.50)

The grade of a basis blade is defined as the number of different e -elements the basis blade
contains. Hence, the grade of e1e2 is 2 and the grade of e1e2e3 is 3 . Consequently the grade of
the scalar 1 is zero. The basis blade of highest grade in a particular geometric algebra is called
the pseudoscalar of that algebra. It plays an important role in the context of the dual operation,
as we have already seen. A linear combination of basis blades all of some grade k is called a
vector of grade k or a k -vector. Thus the name multivector for an arbitrary element of a geometric
algebra: it is a linear combination of vectors of different grades.

The basis blades {Ei} of some Clifford algebra C̀ n satisfy the following properties.

27

1. There exists an identity element denoted by E1 such that

E1Ei = EiE1 = Ei

2. EiEi = λi E1 , where λi ∈ {−1, 1} .

3. EiEj = gij
k Ek , where gij

k ∈ {−1, 0, 1} and for given i and j , gij
k is non zero for exactly

one value of k .

From these properties it follows that every basis blade of some C̀ n is invertible, that is for all Ei

there exists an E−1
i such that EiE

−1
i = E−1

i Ei = E1 .

Let’s take a look at some examples. The following calculations employ the associativity of
the geometric product and the property eiej = −ejei for i 6= j .

E2E2 = e1e1 = 1;

E5E5 = (e2e3) (e2e3) = −e2(e3e3)e2 = −e2e2 = −1
(1.51)

This shows that there exist basis blades that square to −1 . This is an important property that
has far reaching consequences. It allows us for example to create multivectors that behave like
complex numbers, without using the imaginary unit i =

√
−1 .

For example, consider C̀ 2 with pseudoscalar I := e1e2 . From our previous considerations it
is clear that I2 = −1 if e1e1 = e2e2 = 1 . Define two multivectors A,B ∈ C̀ 2 as A := α1 + β1I
and B = α2 + β2I . The geometric product of A and B becomes

AB = (α1 + β1I) (α2 + β2I)

= α1α2 + β1β2I
2 + α1β2I + α2β1I

= (α1α2 − β1β2) + (α1β2 + α2β1)I

Comparing this with the multiplication rules for complex numbers, it shows that the multivec-
tors A,B in conjunction with the geometric product behave just like complex numbers.

Let us now return to the properties of basis blades. Here are some examples to clarify the
third property.

E2E5 = e1(e2e3) = E8

E5E6 = (e2e3) (e3e1) = e2(e3e3)e1 = −e1e2 = −E7

E6E5 = (e3e1) (e2e3) = e1(e3e3)e2 = e1e2 = E7

(1.52)

The last two equations show that basis blades do not necessarily commute. Hence, multivectors
may not commute.

28

Even though every basis blade is invertible, multivectors may not be. Consider for example
A ∈ C̀ 2 defined as A := 1

2(1 + e1) .

A2 = 1
4(1 + e1)(1 + e1)

= 1
4(1 + e1 + e1 + e1e1)

= 1
4(2 + 2e1)

= 1
2(1 + e1)

= A

That is, A squares to itself. It can be shown that this implies that A has no inverse. Therefore,
if we talk about multivectors in general we cannot assume that they always have an inverse.
It can also be shown that if a multivector has no inverse there exists another multivector that
multiplied with the first gives zero. For example, let B ∈ C̀ 2 be defined as B := 1

2(1−e1) . Then

AB = 1
4(1 + e1)(1− e1)

= 1
4(1− e1 + e1 − e1e1)

= 0

Also note the following ”curiosity”. For the coset of multivectors C̀ 2A := {XA : X ∈ C̀ 2} ,
A is a right idempotent, since (XA)A = X(AA) = XA . In other words, right multiplying an
element of C̀ 2A with A leaves the initial multivector unchanged. Furthermore, for all Y ∈
C̀ 2A , Y B = (XA)B = X(AB) = 0 .

1.2.3 Inverting Multivectors

So far we have mainly dealt with vectors and blades. This is mainly because they offer a nice
way to deal with subspaces. However, we have not done much with general multivectors.
General multivectors are linear combinations of subspaces. Therefore, simple operations like
increasing or decreasing a grade are not immediately useful. Nevertheless, we may still be
interested in solving multivector equations of the type AX = B for X given A and B , where
A,B, X ∈ C̀ p,q . The solution is obviously X = A−1B . However, can we always invert the
multivector A ? And what if X has to satisfy a number of equation simultaneously? In order to
solve these problems in general, we need to look at multivectors from a more general point of
view.

Earlier we denoted the basis of a Clifford algebra by a set of basis blades. That is, the basis
Bn of C̀ n is given by Bn = {Ei} . Let us repeat the basic properties of the {Ei} .

1. There exists an identity element denoted by E1 such that

E1Ei = EiE1 = Ei,

29

2. EiEi = λi E1 , where λi ∈ {−1, 1} ,

3. EiEj = gij
k Ek , where gij

k ∈ {−1, 0, 1} and for any given i and j , gij
k is non zero for

exactly one value of k . Recall that gij
k Ek implies a summation over the range of k which

is {1, 2, . . . , 2n} .

The last property ensures that the {Ei} are invertible. It is also the key to inverting multivectors.
The point is, that we can regard multivectors as 2n dimensional vectors, and the geometric
product is evaluated by contraction with the tensor gij

k .

For example, let A,B ∈ C̀ n be given by A = αiEi and B = βiEi , where αi, βi ∈ R . Given
the basis Bn we can therefore represent A and B by (α1, α2, . . . , α2n

) and (β1, β2, . . . , β2n
) ,

respectively. Then the resultant multivector C ∈ C̀ n , with C = ηiEi , of the geometric product
of A and B is given by

ηk = αiβj gij
k. (1.53)

Recall again that there is an implicit summation over indices i and j . Now suppose multivec-
tors B and C are given, and we would like to evaluate A . We can do this by first contracting
βj with gij

k and then inverting the resultant matrix. That is, first define

hi
k := βj gij

k, (1.54)

and then solve for (αi) via

αi =
∑

k

ηk
(
hi

k
)−1 = ηk h̄i

k, (1.55)

where h̄i
k := (hi

k)−1 . In future we will write the inverse of any tensor aijk...
pqr... as āijk...

pqr... .

Clearly, the problem with equation (1.55) is that hi
k does not necessarily have an inverse.

However, if we apply a singular value decomposition to hi
k , we can see whether a multivector

is invertible (if no singular value is zero), if yes invert it and otherwise find a pseudo-inverse.
If a multivector is not invertible we also call it a singular multivector. With regard to the matrix
hi

k from above, it may be shown that the rank of hi
k is always a power of two. Since hi

k is a
2n × 2n matrix, also the dimension of the null space of hi

k is a power of two.

1.2.4 Solving for a Versor

In the last section we saw how to invert multivectors if they are invertible and how to solve
multivector equations of the type AX = B . Another type of equation which we will encounter
quite frequently, is that of a versor equation. That is, we are looking for the versor V ∈ C̀ n ,
which solves V AṼ = B , given A,B ∈ C̀ n . At first it might seem that this is not a linear
equation anymore, since V appears twice on the left hand side. However, since a versor is
always invertible and its inverse is its reverse, we can write

V AṼ = B ⇐⇒ V A = BV ⇐⇒ V A−BV = 0, (1.56)

which is again a linear equation. Unfortunately, we cannot write this equation in the form
XV = Y . Nevertheless, we can still solve this equation numerically. Before we show how to do
this, let us first see whether the solution for V is unique.

30

Let UB ⊂ C̀ n be a set of invertible, linearly independent multivectors that commute with B ,
i.e.

UB := {X ∈ C̀ n : XB = BX, ∃X−1 ∈ C̀ n ⇒ XX−1 = 1 }.

For X ∈ UB we therefore have

X(V A−BV) = 0 ⇐⇒ (XV)A−B(XV) = 0. (1.57)

That is, if V is a solution to V A − BV = 0 , then so is the coset UBV = {XV : X ∈ UB} .
Again we have that if X1, X2 ∈ UB , then (X1X2) ∈ UB . Hence, UB is the basis of a subalgebra
C̀ (UB) ⊂ C̀ n . Therefore, the number of elements in UB is a power of two. The following
example should clarify this.

Let a,b ∈ C̀ 3 be two unit vectors in Euclidean 3d-space R3 . We are looking for the rotor R
such that RaR̃ = b . We will denote the solution rotor as Rab . However, we find that a basis set
of the subalgebra that commutes with b is given by

Ub = {1,b,b∗, I}, (1.58)

where I is the pseudoscalar of C̀ 3 . Note that in C̀ 3 the pseudoscalar commutes with all multi-
vectors. Therefore, the solution set of R that solves RA−BR = 0 , is the coset

UbRab = {Rab,bRab,b∗Rab, IRab}. (1.59)

The solution of RA − BR = 0 is thus not unique. If we introduce a second vector pair {a′,b′}
that is also related by Raba′R̃ab = b′ , and demand that R is a solution of RaR̃ = b and
Ra′R̃ = b′ simultaneously, then the solution set of R is {Rab, IRab} . Even if we introduce a
third vector pair related by Rab as before, we cannot constrain the solution set for R further.
Instead we have to demand that the solution for R lies in the even subalgebra of C̀ 3 . The
even subalgebra of C̀ 3 contains all linear combinations of blades of even grade. It is indeed a
subalgebra, since the geometric product of two even grade elements results again in an even
grade element.

We want R to lie in the even subalgebra of C̀ 3 , since this is how we usually express a rotor: a
scalar plus a bivector component. This then reduces the solution set for R to {Rab} , since IRab

contains only odd grade blades: a vector and a trivector.

In fact, it is possible to evaluate a rotor from two vectors, so this analysis might seem some-
what superfluous. However, in applications we typically have vector estimates that contain
noise and we want to find the best rotor from a set of noisy vector pairs. This can be achieved
through a numerical method.

Let us consider again the general problem, We have two multivectors A,B ∈ C̀ n which are
related by a versor V ∈ C̀ n via V AṼ = B . In order to solve this problem numerically, we again
express A , B and V as 2n -dimensional vectors, A = αiEi , B = βiEi and V = ηiEi . Then the
equation V A−AV = 0 becomes

V A−BV = ηiαj gij
k − βjηi gji

k

= ηi (αj gk
ij − βj gk

ji)

= ηi ti
k,

(1.60)

31

where ti
k := αj gk

ij − βj gk
ji . That is, in order to solve for V we have to solve ηiti

k = 0 for
ηi . In other words, we are looking for the null-space of the matrix ti

k . ti
k is a 2n × 2n matrix.

From the above analysis it also follows that the dimension of the solution space of V is a power
of two. We can constrain the solution space by introducing more multivector pairs X, Y ∈ C̀ n

such that V X−Y V = 0 . However, at some point we will probably want to restrain the solution
space to some subalgebra of C̀ n or even to certain basis blades. This can be done quite easily
by reducing the matrix ti

k in the index i appropriately.

For example, if we are looking for a rotor R , we know that it only contains a scalar and a
bivector component. Accordingly we could reduce the respective matrix ti

k in index i to those
indices that refer to the scalar and the bivector components.

This will not be discussed further here. However, a C++ implementation of this algorithm is
part of the CLU library. It is also used to invert multivectors in CLUCalc.

32

1.3 Relation to other Geometric Algebras

Clearly, Clifford (or Geometric) algebra is not the only algebra describing geometry. In this
section we will take a look at other algebras that relate to geometry and see how they are related
to Clifford algebra.

1.3.1 Gibbs’ Vector Algebra

Basically, the inner product between vectors in Clifford algebra is equivalent to the scalar prod-
uct of vectors in Gibbs’ vector algebra. Furthermore, since the dual of the outer product of two
vectors a , b ∈ R3 gives the vector perpendicular to the plane spanned by a and b , it should
be no surprise that the outer product is related to the cross product in the following way.

a× b = (a ∧ b)∗. (1.61)

We can also translate identities of Gibbs vector algebra into Clifford algebra. For example, the
triple scalar product of three vectors a , b , c ∈ R3 .

a · (b× c) = a · (b ∧ c)∗

= a ·
(
(b ∧ c) · I−1

)
= (a ∧ b ∧ c) · I−1

= (a ∧ b ∧ c)∗

= det([a, b, c]).

(1.62)

Recall that the magnitude of a ∧ b ∧ c is the volume of the parallelepiped spanned by a ,
b and c . This shows again that the outer product of three vectors spans a volume element.
Another often used identity is the triple vector product a × (b × c) . This is usually expanded
as

a× (b× c) = b (a · b)− c (a · b).

Translating this expression into Clifford algebra gives,

a× (b× c) =
(
a ∧

(
(b ∧ c)I−1

))
I−1

= a ·
((

(b ∧ c)I−1
)
I−1

)
= −a · (b ∧ c)

= b (a · c)− c (a · b).

(1.63)

The expansion in Clifford algebra is valid in any dimension, whereas the vector cross product is
only defined in a 3d-vector space.

33

1.3.2 Complex Numbers

Complex numbers may also be regarded as a geometric algebra, if we interpret the real and
imaginary part of a complex number as the two coordinates of a point in a 2d-space. A complex
number z ∈ C can be expressed in two equivalent ways.

z = α + iβ = % exp(i θ),

where i =
√
−1 denotes the imaginary unit, and α, β, %, θ ∈ R . The relation between α , β and

% and θ is % =
√

α2 + β2 and θ = tan−1(β/α) . When we discussed rotors we argued that since
a unit bivector in C̀ n squares to minus one, it may replace the imaginary unit i . Accordingly,
we extended the definition of the exponential function to multivectors, in order to write a rotor
in exponential form. We can also use the exponential function to write any multivector A ∈ C̀ n

which is defined as A = α + U〈2〉β , where U〈2〉 ∈ C̀ n is a unit bivector, as

A = % exp(U〈2〉 θ).

Note that A is an element of a subalgebra C̀ 2 ⊆ C̀ n , n ≥ 2 . More precisely, it is an element
of the even subalgebra C̀ +

2 ⊂ C̀ 2 , which consists of the linear combinations of the even grade
elements of C̀ 2 . The even subalgebra C̀ +

2 of C̀ 2 has basis {1, U〈2〉} , where U〈2〉 is also the
pseudoscalar of C̀ 2 . C̀ +

2 is indeed a subalgebra, since it is closed under the geometric product.
Therefore, we have found an isomorphism between the complex numbers C and the geometric
algebra C̀ +

2 , where the product between complex numbers becomes the geometric product.
Note that the complex conjugate becomes the reverse, since the reverse of A is

Ã = % exp(Ũ〈2〉 θ) = % exp(−U〈2〉 θ),

which is equivalent to

z∗ = % exp(−i θ).

We will not go any deeper into complex analysis at this point. In any case, since there is an
isomorphism between C and C̀ +

2 , everything from complex analysis carries over. However,
simply replacing i by a bivector is in itself not particularly interesting, since it does not give
us anything we did not have before. Nevertheless, it shows that we can regard the complex
number geometric algebra as part of Clifford algebra.

1.3.3 Quaternions

The interesting aspect of the isomorphism between C and C̀ +
2 is, that C̀ n has

(
n
k

)
bivectors

and thus the same number of different even subalgebras C̀ +
2 . That is, in Clifford algebra we can

combine different complex spaces. One effect of this is that there is an isomorphism between
quaternions (H) and C̀ +

3 . Before we show this isomorphism, we should probably recapitulate
quaternions.

The name ’quaternion’ literally means a combination of four parts. The quaternions we are
talking about here consist of a scalar component and three imaginary components. The imagi-

34

nary components are typically denoted by i, j, k and they satisfy the following relations.

i2 = j2 = k2 = −1,

ij = k, jk = i, ki = j,

ij = −ji, jk = −kj, ki = −ik,

ijk = −1.

(1.64)

A general quaternion is then given by

a = α0 + α1i + α2j + α3k,

with {αi} ⊂ R . A pure quaternion is one with no scalar component, i.e. ā = α1i + α2j + α3k is a
pure quaternion. The square of a pure quaternion gives

ā2 = (α1i + α2j + α3k)2 = −
(
(α1)2 + (α2)2 + (α3)2

)
.

The complex conjugate of a quaternion a is denoted by a∗ . It negates all imaginary components.
Therefore,

aa∗ = (α0 + α1i + α2j + α3k) (α0 − α1i− α2j− α3k)

= (α0)2 + (α1)2 + (α2)2 + (α3)2.

A unit pure quaternion ˆ̄a satisfies ˆ̄aˆ̄a∗ = 1 and thus ˆ̄aˆ̄a = −1 . We can therefore write the
quaternion a also as

a = (α0 + α1i + α2j + α3k)

= % (cos θ + ˆ̄a sin θ),

where % =
√

aa∗ , θ = tan−1(āā∗/α0) , ā = α1i + α2j + α3k and ˆ̄a = ā/
√

āā∗ . Since ˆ̄a squares to
minus one, we have again an isomorphism between the complex numbers C and a subalgebra
of H . We can also extent the definition of the exponential function to quaternions to find

a = (α0 + α1i + α2j + α3k) = % exp(θ ˆ̄a),

where % , θ and ˆ̄a are given as before. It can be shown that the operation r̂ār̂∗ between a unit
quaternion r̂ = exp(1

2θˆ̄r) and a pure quaternion ā , represents a rotation of ā . That is, if we
regard ā = α1i + α2j + α3k as a vector (α1, α2, α3) , then r̂ār̂∗ rotates this vector by an angle θ
about the vector represented by ˆ̄r .

Let us take a look at two simple examples of this. We assume (i, j, k) to form the basis of a
right-handed coordinate system. The pure quaternion k can be written in exponential form as
k = exp(1

2π k) . Therefore, it should rotate the pure quaternion i about 180 degrees, if applied as
kik∗ .

kik∗ = −ikk∗ = −i.

35

Note that this example also shows that operators and elements we operate on can be of the same
type. Let us consider now this somewhat more complex example.

Consider the rotation operator for a rotation about the k -axis, r = exp(1
2θk) . We can expand

r to read r = cos 1
2θ + k sin 1

2θ . If we apply r to i it should rotate i in the ij -plane by an angle
θ .

r i r∗ = (cos 1
2θ + k sin 1

2θ) i (cos 1
2θ − k sin 1

2θ)

= cos2 1
2θ i− cos 1

2θ sin 1
2θ ik + cos 1

2θ sin 1
2θ ki− sin2 1

2θ kik

= (cos2 1
2θ − sin2 1

2θ)i + 2 cos 1
2θ sin 1

2θ j

= cos θ i + sin θ j.

This shows that r = exp(1
2θ k) is indeed a rotation operator about a mathematically positive

angle θ . If we compare this with rotors in Clifford algebra, we see that there is a difference
in sign. Recall that a rotor for a rotation about a mathematically positive angle θ is given by
exp(−1

2θU〈2〉) . This difference in sign stems from the way in which we interpreted bivectors.
This will become clear once we have given the isomorphism between quaternions and a Clifford
algebra.

What we have discussed so far about quaternions already shows how similar they are to
rotors, which we discussed earlier. This also gives us a hint on how to find an isomorphism.
Basically, we need to find multivectors in a Clifford algebra which have the same properties as
i , j and k , and form together with the unit scalar the basis of a Clifford subalgebra. To cut a
long story short, we can identify the imaginary units i , j and k with the following bivectors in
C̀ 3 .

i → e2e3, j → e1e2, k → e3e1, (1.65)

where the {e1, e2, e3} ⊂ R3 are an orthonormal basis of R3 . Therefore, the Clifford algebra
C̀ +

3 with basis {1, e2e3, e1e2, e3e1} , is isomorph to the quaternions H , if we make the above
identifications. Note that this is only one possible isomorphism. Let us check one property of
the quaternions.

ij → e2e3 e1e2 = e3e1 → k,

jk → e1e2 e3e1 = e2e3 → i,

ki → e3e1 e2e3 = e1e2 → j.

(1.66)

We can now see where the sign difference in the rotation operators comes from. When we work
with vectors we usually assume that we are working in a right-handed system and the coordi-
nates are given in order of the x -, y - and z -axis, e.g. (α1, α2, α3) . When we use quaternions,
we identify i , j and k with the three coordinate axes in this order. In Clifford algebra, on the
other hand, we denote the three axes by e1 , e2 and e3 . Now, recall that the rotation plane is
given by a unit bivector, e.g. U〈2〉 ∈ C̀ +

3 . We have also seen that the corresponding rotation axis
in 3d is given by U∗

〈2〉 . Note that

(e2e3)
∗ = e1, (e1e2)

∗ = e3, (e3e1)
∗ = e2.

36

Therefore, the rotation axis (α1i+α2j+α3k) corresponds to the rotation axis (α1e1+α2e3+α3e2)
in the Clifford algebra using the above identification for i , j and k . That is, the y - and z -axes
are exchanged. Therefore, if we embed quaternions into Clifford algebra, we cannot apply them
to vectors, only to other quaternions. If we translate the quaternions to rotors, we need to make
the appropriate exchange of axes, which also introduces the minus sign into the rotor.

We have seen that quaternions are basically the space of rotors in C̀ 3 , which is the even
subalgebra C̀ +

3 ⊂ C̀ 3 . The main advantages of rotors in Clifford algebra over quaternions are
that rotors may be defined in any dimension and that a rotor can rotate blades of any grade.
That is, we can not only rotate vectors but also lines, planes and any other geometric object that
can be represented by a blade.

1.3.4 Grassmann Algebra

Today Grassmann algebra is usually taken as a synonym for exterior algebra. Although Grass-
mann also developed exterior algebra, he looked at the whole subject from a much more general
point of view. In fact, he developed some fundamental results of what is today known as uni-
versal algebra. In his book ”Die lineare Ausdehnungslehre dargestellt und durch Anwendungen
auf die übrigen Zweige der Mathematik, wie auch auf die Statistik, Mechanik, die Lehre vom
Magnetismus und die Krystallonomie erläutert”, Grassmann basically developed linear algebra
with the theory of basis and dimension for finite-dimensional linear spaces. He called vectors
extensive quantities and a basis {e1, e2, . . . , en} a system of units. The vector space spanned by a
basis he called region. He then introduced a very general product on the extensive quantities
(vectors). Given two vectors a = αiei and b = βiei , a general product of the two is written as

ab = αiβj (eiej).

Recall that there is an implicit sum here over i and j . He makes no additional assumptions at
first about the elements (eiej) , apart from noting that they are extensive quantities themselves.
The set of products that can be formed with extensive quantities he called a product structure.
For example, for a vector basis {e1, e2} the set of products is

{e1, e2, (e1e1), (e1e2), (e2e1), (e2e2), e1(e1e1), e1(e1e2), . . .}.

This product structure may then be constrained by a determining equation. That is, if we denote
the elements of the product structure by {Ei} , a determining equation is αiEi = 0 , αi ∈ R .
For example, we could use as determining equation (e1e2) + (e2e1) = 0 . Then (e1e2) is linearly
dependent on (e2e1) . Or, more generally, (eiej) + (ejei) = 0 , for all i and j . This also implies
that eiei = 0 . If we also assume associativity of the product, then the basis for the algebra
generated by {e1, e2} becomes

{e1, e2, (e1e2)}.

Grassmann found that the only determining equations that stay invariant under a change of
basis are, for two vectors a and b , a b = 0 , a b − b a = 0 and a b + b a = 0 . He then
considered in some length the algebra generated by the determining equation a b + b a = 0 .
This algebra is today called exterior algebra and the product which satisfies this determining
equation is called the exterior product. In the following we will denote the exterior product by
∧ , just like the outer product. In fact, ”outer product” is just another name for exterior product.

37

Today exterior algebra is introduced in much the same way, albeit more generally and rigor-
ously. The general product Grassmann introduced is replaced by the tensor product.

Grassmann also introduced an inner product between extensive quantities of the same grade.
He did this in a very interesting way, by first defining what is essentially the dual. For an
extensive quantity E the dual is denoted by E∗ and is defined such that E∗∧E is an extensive
quantity of highest grade, i.e. a pseudoscalar. Since the pseudoscalars span a one dimensional
subspace he equated the extensive quantity e1∧e2∧. . .∧en with the scalar 1 . With this definition
E∗ ∧ E is indeed a scalar. The inner product of two extensive quantities E,F of same grade is
then defined as

< E, F >:= E∗ ∧ F.

1.3.5 Grassmann-Cayley Algebra

The main difference between Grassmann and Grassmann-Cayley algebra is that there is also
a grade reducing inner product defined between blades of different grade. This product may
also be called the shuffle or the regressive product. Sometimes this product is also called the
meet and the exterior product is called the join. This should not be confused with the meet and
join defined previously in this text. Another source of confusion is the meaning of the symbols
∧ and ∨ , which is exactly the opposite to what they mean in Clifford algebra. The symbol ∧
usually stands for the meet (inner product) and the ∨ stands for the join (outer product). This
is actually somewhat more logical than the use in Clifford algebra, since it compares with the
use of the symbols for union (∪) and intersection (∩). Unfortunately, not all authors that use
Grassmann-Cayley algebra follow this convention. Sometimes Grassmann algebra is also taken
to mean Grassmann-Cayley algebra. At times even completely different symbols (O , 4) are
used for meet and join.

Despite these notational differences Grassmann-Cayley algebra and Clifford algebra are equiv-
alent in the sense that anything expressed in one of them can also be expressed in the other.
Which one you prefer is probably a matter of taste.

The shuffle product is defined with respect to the bracket operator [] . The bracket operator
is defined for elements of highest grade in an algebra (pseudoscalars), for which it evaluates
their magnitude. In the following we will use the Clifford algebra notation. If A〈k〉, B〈l〉 ∈ C̀ n

are given by A〈k〉 =
∧k

i=1 a i and B〈l〉 =
∧l

i=1 b i , with k + l ≥ n and k ≥ l , then the shuffle
product of A〈k〉 and B〈l〉 , which we will temporarily denote by � , is defined as

A〈k〉 �B〈l〉 :=
∑

σ

sgn(σ)
[
aσ(1)aσ(2) . . .aσ(n−l) b1 ∧ . . . bl

]
aσ(n−l+1) ∧ . . .aσ(k). (1.67)

The sum is taken over all permutations σ of {1, . . . , k} , such that σ(1) < σ(2) < . . . σ(n − l)
and σ(n− l + 1) < σ(n− l + 2) < . . . σ(n) . These type of permutations are called shuffles of the
(n − l, k − (n − l)) split of A〈k〉 . If σ is an even permutation of {1, . . . , k} then sgn(σ) = +1 ,
otherwise sgn(σ) = −1 . For example, the shuffles of a (2, 1) split of {1, 2, 3} are(

{1, 2}, {3}
)
,

(
{1, 3}, {2}

)
,

(
{2, 3}, {1}

)
,

where

sgn({1, 2, 3}) = +1, sgn({1, 3, 2}) = −1, sgn({2, 3, 1}) = +1.

38

Therefore, for {a 1, a 2, a 3} ⊂ R3 and b ∈ R3 we find

(a1 ∧ a2 ∧ a3)� b = [a1a2b]a3 − [a1a3b]a2 + [a2a3b]a1.

If {e1, e2, e3} is an orthonormal basis of R3 , and b = βiei , then we find

(e1 ∧ e2 ∧ e3)� b = [e1e2b] e3 − [e1e3b] e2 + [e2e3b] e1

= [e1e2 β3e3] e3 − [e1e3 β2e2] e2 + [e2e3 β1e1] e1

= b,

since [e1e2e3] = 1 . This shows that the pseudoscalar is the unit element with respect to the shuf-
fle product. We have seen this before when we introduced the regressive product in definition
1.24 (page 14). In fact, it can be shown that the regressive product as we defined it is the shuffle
product. That is,

A〈k〉 �B〈l〉 ≡ A〈k〉OB〈l〉 =
(
A∗
〈k〉 ∧B∗

〈l〉
)
I.

The shuffle product is usually used to evaluate the intersection of subspaces. As we have seen
in the discussion of the meet and join, this is only the case if the join of the two subspaces is the
whole space. The shuffle product also cannot fully replace the Clifford algebra inner product,
since it is defined to be zero for two blades A〈k〉, B〈l〉 ∈ C̀ n if k+ l < n . It is nonetheless possible
to recover the inner product from the shuffle product through the definition of the Hodge dual.
This is basically the same as the dual we defined here. The only difference is that the Hodge
dual of the Hodge dual of a blade is again the blade in any space. The dual of the dual of blade
in Clifford algebra is either the blade or the negated blade. The Clifford algebra inner product
may then be expressed in terms of the shuffle product as

A〈k〉 ·B〈l〉 ⇐⇒ A∗
〈k〉 �B〈l〉.

This follows right away from the definition of the regressive product. If we translate the Hodge
dual of A〈k〉 as A〈k〉I then

A∗
〈k〉 �B〈l〉 ⇒ (A〈k〉I)OB〈l〉 = (A〈k〉 ∧B∗

〈l〉)I = A〈k〉 ·B〈l〉.

Grassmann-Cayley algebra is probably most widely used in the area of computer vision
[12, 13] and robotics [39, 40]. There is still a lively, ongoing discussion within the research com-
munity, whether Grassmann-Cayley or Clifford algebra is better suited for these fields. To a
large extend this is probably a matter of personal preference, and we will leave this decision to
the reader’s intuition.

Chapter 2

Geometries

by Dr. Christian Perwass

In the previous chapter we first talked about Geometric algebra and how elements of that
algebra are taken to represent geometric entities. We also saw how we can operate on such
entities in order to reflect or rotate them. In the second part of the previous chapter we then
looked at Geometric algebra from an algebraic point of view, ie we introduced the axioms of
Clifford algebra. In this chapter we would like to return to the geometric interpretation of the
algebra.

Although we will talk in the following about spaces which embed Euclidean space in some
way, the basic meaning of blades as linear subspaces and the reflection operator remain the
same within these spaces. However, their effect on the embedded Euclidean space, or rather
their interpretation in terms of the embedded Euclidean space may change quite substantially.

2.1 Projective Space

We will denote the homogeneous embedding of Euclidean space En by PEn . PEn is also called
a projective space. The properties of PEn basically derive from the way Euclidean space is em-
bedded in it. The projective space PEn will be represented by Rn+1\0 , ie a (n+1) -dimensional
vector space without the origin. The canonical (orthonormal) basis of Rn+1 will be denoted by
{e1, . . . , en, en+1} . The basis vector en+1 is also called the homogeneous component or dimen-
sion.

2.1.1 The Setup

The transformation operator from Euclidean to the corresponding projective space will be de-
noted by P and its inverse by P−1 . The operator P is defined as

P : x ∈ En 7→ x + en+1 ∈ PEn. (2.1)

39

40

That is, Euclidean space is embedded as a particular hyperplane P(En) in projective space. A
vector in PEn will also be called a homogeneous vector. Note that the origin of Euclidean space
becomes en+1 in projective space. This means that the origin of Euclidean space, as represented
in projective space is not a special point any more. For example, while the scalar product of a
vector with the origin in Euclidean space is always identically zero, this is not necessarily the
case in projective space.

Figure 2.1: Embedding of Euclidean vector a ∈ E2 in projective space PE2 as A = P(a) .

Figure 2.1 illustrates the embedding of Euclidean vectors in projective space for the case of
E2 . A vector a ∈ E2 from Euclidean space is embedded in projective space PE2 by adding the
homogeneous dimension e3 . The homogeneous representation of a in PE2 is then denoted by
A = P(a) .

Although Euclidean vectors are mapped to a hyperplane in projective space, a general ho-
mogeneous vector may lie anywhere in PEn ≡ Rn+1 \ 0 . Therefore, the question is how homo-
geneous vectors that do not lie on P(En) are projected back to En . This projection is in fact the
key to the power of the homogeneous representation.

The transformation from PEn to En is denoted by P−1 and is defined as

P−1 : A ∈ PEn 7→ 1
A · en+1

n∑
i=1

(
A · ei

)
ei ∈ En. (2.2)

Clearly, this transformation is only valid for homogeneous vectors that have a non-zero homo-
geneous component. Those homogeneous vectors that do have a zero homogeneous component
would map to infinity and are accordingly called points at infinity or direction vectors.

Using the transformation P−1 the whole of PEn apart from the plane en+1 = 0 is mapped to
En . What does this mean for a particular homogeneous vector? Well, the homogeneous vector
is first scaled such that its homogeneous component is unity, and then its first n components are
taken as the n components of the corresponding Euclidean vector. This is illustrated in figure
2.2.

The effect of P−1 is that the overall scale of a homogeneous vector in projective space is of

41

Figure 2.2: Projections of a homogeneous vector A ∈ PE2 into the corresponding Euclidean
space E2 as a = P−1(A) .

no importance. For example, given a vector a ∈ En and a scale α ∈ R \ 0 , then

P−1
(

αP
(
a
))

= a.

Hence, the name ”projective space”: homogeneous vectors are projected onto the hyperplane
P(En) before they are ”orthographically” projected into En . The hyperplane P(En) is also
called the affine plane.

Aside. Affine transformations are in fact just those that when applied to a point on
P(En) leave the point on that plane. Projective transformations on the other may
move points through the whole space PEn .

2.1.2 Geometric Algebra on PEn

Recall that elements of Geometric algebra are given geometric meaning by looking at their OPNS
or IPNS, the outer or inner product null space. When we write down a blade, its OPNS always
represents a linear subspace. For example, a bivector in PE2 is a two dimensional subspace,
since we represent PE2 by R2+1 . However, we are not really interested in what this bivector
represents in PE2 . We would like to know what it represents in the corresponding E2 . How do
we do that? Well, we need to be more precise about which null space we are actually interested
in.

Given a bivector A〈2〉 ∈ C̀ (PE2) , we are only interested in those vectors in PE2 that lie in
one of its null spaces, which we can also map back to Euclidean space. The other way around:
we ask which vectors in E2 when transformed to PE2 lie in the null space of A〈2〉 . We therefore
introduce the concept of the Euclidean outer and inner product null space, denoted by NOE and
NIE , respectively. For C̀ (PEn) they are defined as follows.

42

NOE(A〈k〉 ∈ C̀ (PEn)) :=
{

a ∈ En : P(a) ∧A〈k〉 = 0 ∈ C̀ (PEn)
}
,

and NIE(A〈k〉 ∈ C̀ (PEn)) :=
{

a ∈ En : P(a) ·A〈k〉 = 0 ∈ C̀ (PEn)
}
.

(2.3)

2.1.3 The Euclidean OPNS

So how can we evaluate the Euclidean IPNS or OPNS of a blade in projective space? Consider,
for example, a vector a ∈ En with homogeneous representation A = P(a) ∈ PEn . The OPNS
of A is simply given by

NO(A) =
{

αA ∈ PEn : α ∈ R \ 0
}
,

a projective line in PEn . The factor α must not be zero since the origin of Rn+1 is not an element
of PEn . Since all elements of NO(A) can be mapped to En by P−1 , we find that

NOE(A) = P−1
(
NO(A)

)
=

{
1

(αA)·en+1

∑n
i=1

(
(αA) · ei

)
ei : α ∈ R \ 0

}
=

{
P−1(A) : α ∈ R \ 0

}
= a.

This shows that even though the OPNS of A is a (projective) line in PEn , the Euclidean OPNS
of A is only the vector a ∈ En . This is great, since it enables us to represent a zero-dimensional
object, ie a point, in En by a line in PEn .

An example of this has already been shown for the case of E2 in figure 2.2. All points in PE2

along the line from, but excluding, the origin of PE2 to the homogeneous vector A , represent
the same point a in E2 .

Figure 2.3: Representation of line in E2 through bivector in C̀ (PE2) .

Figure 2.3 illustrates the OPNS and Euclidean OPNS of a bivector in PE2 . The OPNS of the
outer product of two homogeneous vectors A,B ∈ PE2 is a plane in PE2 . The orthographic

43

projection of the intersection of NO(A ∧ B) with the plane P(E2) , then gives the Euclidean
OPNS of A ∧ B : a line in E2 . Note that this line does not pass through the origin. This
shows one of the advantages of working in C̀ (PE2) instead of C̀ (E2) . In C̀ (E2) we could
only represent lines through the origin, whereas in C̀ (PE2) we can represent arbitrary lines in
the corresponding E2 .

Without going into any more detail, it may be shown that the Euclidean OPNS of the outer
product of three homogeneous vectors in C̀ (PE3) represents a plane in E3 . That is, given vec-
tors a,b, c ∈ E3 and A,B,C ∈ PE3 with

A = P(a) and B = P(b) and C = P(c),

it may be shown that NOE(A ∧B ∧C) is a plane in E3 which passes through the points a , b
and c . To summarize, we have

NOE(A) Point a

NOE(A ∧B) Line through a and b

NOE(A ∧B ∧C) Plane through a, b and c

2.1.4 The Euclidean IPNS

We can also consider the Euclidean IPNS of blades of C̀ (E3) . We will do this in some detail for
a homogeneous vector. Let A ∈ PE3 be given by

A = â− α eo,

where â ∈ E3 and ‖â‖ = 1 . Furthermore, α ∈ R and eo denotes the homogeneous dimension
e3+1 , in order to emphasize its meaning as the vector in PE3 representing the origin of En . Let
us now try to evaluate the Euclidean IPNS of A . That is, we are looking for all those vectors
x ∈ E3 that satisfy A · P(x) = 0 .

A · P(x) = 0 ⇐⇒ (â− α eo) · (x + eo) = 0

⇐⇒ â · x− α = 0

⇐⇒ â · x‖ − α = 0

⇐⇒ x‖ = α â,

where x‖ is the component of x parallel to â . If we write the component of x perpendicular
to â as x⊥ , then it follows that any vector x ∈ E3 of the form

x = α â + x⊥,

lies in the Euclidean IPNS of A . Hence, A represents a plane with normal â and distance
α from the origin in E3 . As for Euclidean space it may also be shown that for homogeneous
vectors A,B,C ∈ PE3 , we have

Plane: NIE(A)

Line: NIE(A ∧B) = NIE(A) ∩ NIE(B)

Point: NIE(A ∧B ∧C) = NIE(A) ∩ NIE(B) ∩ NIE(C)

44

2.1.5 The Pinhole Camera Model

Figure 2.4: Model of a pinhole camera in PE3 .

The Geometric algebra of projective space is very useful to represent projections in the pin-
hole camera model. Figure 2.4 show such a setup. Homogeneous vectors A1,A2,A3,A4 ∈ PE3

form a basis of PE3 . The homogeneous vector A4 represents the optical center of the pinhole
camera, while P = A1∧A2∧A3 represents the image plane. In order to project a homogeneous
vector X onto the image plane, we simply have to intersect the image plane P with the line
L connecting X with the optical center A4 , ie L = A4 ∧ X . We can do this with the meet
operation,

Y = L ∨P = (A4 ∧X) ∨ (A1 ∧A2 ∧A3).

Since the join of L and P is the whole space PE3 , we can also use the regressive product instead
of the meet, which simplifies the evaluation of the meet.

By using such simple geometric constructions, which can be readily translated into Geometric
algebra equations, also the relations between two, three or more cameras can be analyzed. This
then leads, for example, to the fundamental matrix and the trifocal tensor as was shown in
[22, 29, 30, 28].

2.1.6 Reflections in Projective Space

By going from Euclidean to projective space, an additional dimension, the homogeneous di-
mension, is introduced. We may therefore wonder what effect this has when using the reflection
operator as introduced earlier. First of all consider a vector a ∈ E2 and its homogeneous repre-
sentation

A = P(a) = a + eo ∈ PE2,

45

where eo denotes again the homogeneous dimension e3 ∈ PE2 . A reflection about eo gives

eo A eo = eo a eo + eo eo eo

= −a eo eo + eo

= −a + eo,

where we used the fact that eo is perpendicular to all vectors in E2 . Therefore,

eo a = eo ∧ a = −a ∧ eo = −aeo.

We thus have

P−1
(
eo P

(
a
)
eo

)
= −a,

which shows that a reflection of A about eo represents a reflection about the origin of a .

Next consider a vector n ∈ E2 , with ‖n‖ = 1 . Although this is mathematically not quite
rigorous, we can regard the vector n also as a direction vector of PE2 , since it has no eo com-
ponent. If we take A as given above, we can ask what a reflection of a homogeneous vector A
on a direction vector n in PE2 means.

nAn = n (a + eo)n

= nan + n e0 n

= nan− eo n2

= nan− eo.

For convenience, let us at this point introduce an operator A that projects homogeneous
vectors in PEn onto the affine plane P(En) ⊂ PEn . The operator is therefore defined as

A : A ∈ PEn 7→ A
A · eo

∈ PEn, (2.4)

where eo is again the homogeneous dimension. We may also say that A transforms homo-
geneous vectors to affine vectors. This operator is also useful, since homogeneous vectors on
P(En) can be immediately identified with their corresponding Euclidean vectors in En . For our
reflection example from above we find,

A(nAn) = −nan + eo

= −(a‖ + a⊥) + eo

= a⊥ − a‖ + eo,

where a‖ and a⊥ are the orthogonal and parallel components of a with respect to n , respec-
tively. This shows that the component of the homogeneous vector A that is parallel to the reflec-
tion direction n , is reflected and not the part perpendicular to it. Figure 2.5 shows this setup.

46

Figure 2.5: Effect in E2 of reflection of homogeneous vector on direction vector in PE2 .

This is not really what we wanted to achieve. However, we can remedy the situation by
reflecting nAn again through the origin. That is, in order to reflect a homogeneous vector on a
line with direction n , we have to use as operator (n e0) instead of n .

(n e0)A (e0 n) = n (−a + e0)n

= −nan + n eo n

= −nan− eo,

and thus

A
(
(n e0)A (e0 n)

)
= nan + eo.

2.1.7 Rotations in projective space

In the last section we saw how a reflection in E2 has to be expressed in projective space PE2

when applied to homogeneous vectors. Since a rotation expressed by a rotor is nothing else than
two consecutive reflections, a rotor may also take on a different form in projective space.

Suppose we want to rotate the vector a ∈ E2 by reflecting it first on n ∈ E2 and then on
m ∈ E2 . However, we want to do this in projective space where A = P(a) ∈ PE2 . Since a
reflection on n has to be expressed as (n eo) and a reflection on m as (m eo) , the rotation of A
has to look like this

(m eo) (n eo)A (eo n) (eo m) = RA R̃, R := (m eo) (n eo).

Such a double reflection is illustrated in figure 2.6. Here vector a ∈ E2 is represented in PE2 by
A . A first reflection of A on n eo gives B . A further reflection of B on m eo gives C .

However, the expression for R can be simplified.

R = (m eo) (n eo)

= −mn eo eo

= −mn.

That is, compared to the expression of the rotor in E2 , a minus sign is introduced. This, however,
cancels out when the rotor is applied.

RA R̃ = (−mn) A (−nm) = (mn) A (nm).

47

Figure 2.6: Double reflection of homogenous vector A on reflection planes n eo and m eo in
PE2 .

We may also argue that since an overall scalar factor is of no importance for homogeneous vec-
tors with respect to their projection into Euclidean space, the minus sign of the rotor in projective
space may be neglected. Hence, we can use the same representation of a rotor in Euclidean
and projective space.

2.1.8 A Strange Reflection in Projective Space

We have so far looked at reflections of homogeneous vector on the homogeneous dimension eo

and on direction vectors, ie homogeneous vectors with a zero eo component. However, what
does a reflection of a homogeneous vector on another homogeneous vector look like?

Figure 2.7: Effect in E2 and PE2 of the reflection of a homogeneous vector A on another ho-
mogeneous vector N .

The answer to this question is illustrated in figure 2.7. Vector a ∈ E2 is embedded in projec-
tive space as A = P(a) ∈ PE2 . Instead of reflecting a on n in E2 , A is reflected on N in PE2 .

48

In this example n = e1 and N = 1√
2

(n + eo) , ie N is of unit ”length”, if we regard PE2 ≡ R3

as a three dimensional Euclidean space for a moment. A reflection of A on N will thus negate
the component of A perpendicular to N , which results in B . This vector however lies off the
affine plane P(E2) . A projection of B into Euclidean space E2 then results in b , which is not
the reflection of a on n .

Figure 2.8: Effect in E2 of reflection of homogeneous vector on another homogeneous vector in
PE2 .

Analytically we find the following equation for this type of reflection.

P−1
(
NP

(
a
)
N

)
= P−1

(
1√
2
(n + eo) (a + eo) 1√

2
(n + eo)

)
= . . . exercise :-)

= (a‖)−1 − tan θ â⊥,

where a‖ and a⊥ are again the parallel and perpendicular components of a with respect to n ,
â⊥ = a⊥/‖a⊥‖ and θ = ∠(a, n) . A geometrically more informative expansion of the above
equation is the following

P−1
(
NP

(
a
)
N

)
= n− a− n

a · n
.

This latter formula is illustrated in figure 2.8.

Figure 2.9 shows the effect of this type of reflection on the points of the unit circle centered
on the origin. The non-central point moving from left to right is the projection into E2 of the
homogeneous vector about which the points on the unit circle were reflected. The reflection of
the unit circle becomes an ellipse, a hyperbola or the unit circle if the homogeneous reflection
vector becomes the origin.

49

Figure 2.9: Effect of reflecting points on a circle centered on the origin in E2 on varying homo-
geneous vectors in PE2 .

50

2.2 Conformal Space

In this introduction to conformal space we use many of the concepts introduced in the discussion
of the projective space. We use again the same trick of embedding Euclidean space in a higher
dimensional space, where the extra dimensions have particular meanings (interpretations), such
that linear subspaces in conformal space represent particular objects in Euclidean space we are
interested in. In projective space the simple ”trick” of adding one dimension and giving it a
particular meaning, already enabled us to represent null-dimensional spaces, ie points, in Eu-
clidean space by one dimensional subspaces in projective space. In this way we could also dis-
tinguish actual points from directions, which were represented in projective space as elements
that project to infinity in Euclidean space.

To introduce conformal space we initially also only add one dimension. However, this time
Euclidean space is embedded in a non-linear way in this higher dimensional space. The ac-
tual conformal space we will be working with is in fact a special homogenization of the initial
conformal space we introduce. That is, when people usually mention the conformal Geometric
algebra they actually mean the Geometric algebra over a homogeneous conformal space. We
will not break with this tradition here and simply talk of conformal space.

Before we delve into the embedding of Euclidean space in conformal space, we should prob-
ably say what conformal actually means. A conformal transformation is one that is locally angle
preserving. It turns out that all conformal transformations can be expressed by combinations of
inversions. What is an inversion? Well, in E1 ≡ R an inversion of a vector x ∈ R on the unit,
one-dimensional sphere centered on the origin is simply x−1 . In E3 the inversion of a plane on
the unit sphere centered on the origin is a sphere, as shown in figure 2.10.

Figure 2.10: Inversion of plane and line on sphere in E3 .

Note that inversions are closely related to reflections in that a reflection is a special case of an
inversion. In fact, an inversion on a sphere with infinite radius, ie a plane, is a reflection. Note
that all Euclidean transformations can be represented by combinations of reflections. We have
already seen this for rotations, which are combinations of two reflections. A translation may be
represented by the reflection on two parallel reflection planes. Since all Euclidean transforma-
tions can be represented by combinations of reflections and all conformal transformations by

51

combinations of inversions, we see that Euclidean transformations form a subset of conformal
transformations.

The actual trick behind the particular embedding of Euclidean space in conformal space is,
that a reflection in conformal space represents an inversion in Euclidean space. Here we have to
be careful with what we mean when we say reflection. Do we mean a reflection in the space in
which the Euclidean space is embedded, or a reflection in Euclidean space itself. In section 2.1.8
we already came across this distinction. A reflection in PE2 taken as R3 represented something
very unlike a reflection in the corresponding E2 .

2.2.1 Embedding Euclidean Space

We will denote conformal space by Kn and represent it in Rn+1 . The additional dimension,
however, is this time not a homogeneous dimension. For reasons that will become apparent
later on, we will also denote the additional dimension by e+ ≡ en+1 . Euclidean space En is
embedded in Kn via a stereographic projection. The embedding function will be denoted by K
and is defined as

K : x ∈ En 7→ 2
x2 + 1

x +
x2 − 1
x2 + 1

e+ ∈ Kn ≡ Rn+1. (2.5)

All embedded points lie on a hypersphere of unit radius centered on the origin of Kn . Therefore,

‖K(x ∈ En)‖ = 1. (2.6)

Figure 2.11: Stereographic projection of points x,y ∈ E1 onto unit circle in K1 .

Figure 2.11 illustrates this embedding for E1 . Note that the point e+ ∈ K1 represents ±∞ ∈
E1 and −e+ represents the origin of E1 . Figure 2.12 shows the stereographic projection of a line
and a circle from E2 into K2 . We can see that a line is mapped to a circle on K(E2) that passes
through e+ and a circle in E2 maps to a circle on K(E2) that does not pass through e+ .

The conformal embedding operator K transforms the whole of En to a n -dimensional sub-
space of Kn . This implies that an inverse transformation will only be able to transform points

52

Figure 2.12: Stereographic projection of a line and a circle in E2 into K2 .

from that subspace of Kn back to En . Recall that for the projective space we also had such a re-
striction: the plane of homogeneous vectors with a zero eo component could not be transformed
back to Euclidean space.

Mathematically we can express this restriction on the back projection by saying that only
vectors x ∈ Kn that satisfy ‖x‖ = 1 can be projected into En . For those vectors the inverse
operator K−1 is given by

K−1 : x ∈ Kn, ‖x‖ = 1 7→ 1
1− x · e+

n∑
i=1

(
x · ei

)
ei. (2.7)

2.2.2 Homogenizing the Embedding of Euclidean Space

Similar to the homogenization of Euclidean space, we will now homogenize conformal space.
Specifically, we embed Kn in a projective space denoted by PKn , which we will represent by
Rn+1,1 \ 0 . The space Rn+1,1 \ 0 is of dimension n + 2 , whereby its orthonormal basis contains
n + 1 basis vectors that square to +1 and one basis vector that squares to −1 . This type of
space is also called Minkowski space. The effect of using a negatively squaring homogeneous
dimension is quite substantial, as we will see throughout the rest of this text.

We will again use the symbol P to denote the transformation from conformal Kn to projec-
tive conformal PKn space. The transformation is defined as

P : x ∈ Kn 7→ X = x + e− ∈ PKn, (2.8)

where we denoted the homogeneous dimension by e− , since e− ·e− = −1 by definition. Now it
is also clear why we denoted the extra dimension introduced by Kn as e+ . Figure 2.13 illustrates
this embedding for a vector in E1 .

53

Figure 2.13: Embedding of a vector x ∈ E1 first in K1 and then in PK1 .

One immediate result that follows from the use of a homogeneous dimension with negative
signature is that(

αP
(
K(x ∈ En)

))2
= α2

(
K(x) + e−

)2

= α2
((
K(x)

)2 +
(
e−

)2
)

= α2 (1− 1)

= 0,

where α ∈ R \ 0 is some scale. That is, all vectors in PKn that resulted from an embedding
of a Euclidean vector from En , square to zero. For E1 the set of points in PK1 that satisfy this
condition lie on a cone. Hence, all null vectors in PKn , ie all vectors that square to zero in PKn ,
are said to lie on the null cone. This set of vectors will be denoted by Hn ⊂ PKn and is defined
as

Hn :=
{

X ∈ PKn : X2 = 0
}
. (2.9)

From our previous considerations it follows that

Hn =
{

αP
(
K(En)

)
: α ∈ R \ 0

}
.

The inverse transformation P−1 from PKn into Kn is defined for all elements X ∈ PKn that
satisfy X · e− 6= 0 as

P−1 : X ∈ PKn 7→ 1
X · e−

n+1∑
i=1

(X · ei) ei ∈ Kn. (2.10)

To summarize, the embedding of a Euclidean vector x ∈ En in (homogeneous) conformal
space PKn is given by

P
(
K(x)

)
=

2
x2 + 1

x +
x2 − 1
x2 + 1

e+ + e− ∈ PKn. (2.11)

54

Since this is an element of a projective space, an overall scale is not important. We may therefore
scale the above equation without changing the vector in En it represents. We will in fact do this,
in order to get rid of the fractions. Since we represent PKn by Rn+1,1 , the expression x2 +1 can
never be zero1.

1
2(x2 + 1) P

(
K(x)

)
= x + 1

2(x2 − 1) e+ + 1
2(x2 + 1) e−

= x + 1
2 x2 (e− + e+) + 1

2 (e− − e+)

= x + 1
2 x2 e∞ + eo,

(2.12)

where we defined

e∞ := e− + e+ and eo := 1
2 (e− − e+). (2.13)

The embedding of a Euclidean vector in PKn will from now on always be given in the form of
equation (2.12). We will therefore define a homogeneous conformal embedding operator C as

C : x ∈ En 7→ 1
2(x2 + 1)P

(
K(x)

)
∈ PKn, (2.14)

such that

C(x) = x + 1
2 x2 e∞ + eo. (2.15)

Figure 2.14 illustrates this type of embedding. The vector x is embedded in PK1 just as in figure
2.13. Then it is scaled such that its eo component is unity. It then lies on the parabola H1

a . The

Figure 2.14: Embedding of a vector x ∈ E1 first in K1 and then in H1
a .

inverse operator C−1 is only defined for vectors on the null cone Hn .

C−1 : x ∈ Hn 7→ K−1
(
P−1(x)

)
∈ En. (2.16)

1This would be possible if were to regard PKn as a vector space over the complex numbers C

55

The properties of e∞ and eo are quite important, so we should state them here. They are
easily derived from the properties of e+ and e− .

e2
∞ = e2

o = 0 and e∞ · eo = −1. (2.17)

In projective space PEn we introduced an operator A that maps vectors of PEn onto the
affine plane P(En) . That is, it scales a homogeneous vector such that its component along the
homogeneous dimension is unity. The vectors in PKn whose component along eo is unity have
a number of useful properties, as will be seen later. Even though eo is not the homogeneous
dimension of PKn , we will call the set of null vectors that have a unit eo component the affine
null cone. The affine null cone is denoted by Hn

a and defined as

Hn
a :=

{
X ∈ Hn ⊂ PKn : X · e∞ = −1

}
. (2.18)

2.2.3 Geometric Algebra on PKn

Just as for projective space we can form a Geometric algebra over PKn denoted by C̀ (PKn) .
Blades in C̀ (PKn) again represent linear subspaces through their IPNS and OPNS with respect
to PKn itself. However, we are only interested in the set of Euclidean vectors that embedded in
conformal space lie in the IPNS or OPNS of a blade of C̀ (PKn) . Hence, the Euclidean IPNS and
OPNS for PKn are defined as

NOE

(
A ∈ C̀ (PKn)

)
:=

{
x ∈ En : C(x) ∧A = 0

}
,

NIE

(
A ∈ C̀ (PKn)

)
:=

{
x ∈ En : C(x) ·A = 0

}
.

(2.19)

Since we know that all vectors on the null cone in PKn can be projected into En , these sets can
also be expressed as

NOE

(
A ∈ C̀ (PKn)

)
= C−1

({
X ∈ Hn : X ∧A = 0

})
,

NIE

(
A ∈ C̀ (PKn)

)
= C−1

({
X ∈ Hn : X ·A = 0

})
.

In other words, the vectors in PKn we are interested in are those that lie on the intersection of
the null space represented by A ∈ C̀ (PKn) and the null cone Hn . That is,

NOE

(
A ∈ C̀ (PKn)

)
= C−1

(
NO(A) ∩Hn

)
,

NIE

(
A ∈ C̀ (PKn)

)
= C−1

(
NI(A) ∩Hn

)
,

with

NO
(
A ∈ C̀ (PKn)

)
=

{
X ∈ PKn : X ∧A = 0

}
,

NI
(
A ∈ C̀ (PKn)

)
=

{
X ∈ PKn : X ·A = 0

}
.

An example of the OPNS of a bivector in C̀ (PK1) is shown in figure 2.15. Vectors X,Y ∈ H1
a

span a 2d-subspace in PK1 , the plane NO(X ∧Y) . However, the Euclidean OPNS of X ∧Y is
the set of points on H1

a that lie in NO(X ∧Y) . These are simply the points X and Y . Hence,
NOE(X ∧Y) is the point pair C−1(X) and C−1(Y) .

56

Figure 2.15: OPNS of the outer product of two vectors X,Y ∈ PK1 .

2.2.4 Representation of Geometric Entities in PK3

It is initially easier to look at the Euclidean IPNS of blades in PK3 . For a start, we will consider
a Euclidean vector a ∈ E3 with its conformal embedding

A = C(a) = a + 1
2a

2 e∞ + eo ∈ H3
a.

Before we look at the Euclidean IPNS of this vector, we look at the general inner product of A
with another vector B ∈ H3

a , given by

B = C(b) = b + 1
2b

2 e∞ + eo ∈ H3
a.

Using the properties of e∞ and eo we find

A ·B = (a + 1
2a

2 e∞ + eo) · (b + 1
2b

2 e∞ + eo)

= a · b− 1
2a

2 − 1
2b

2

= −1
2(a− b)2

= −1
2‖a− b‖2.

(2.20)

That is, the inner product of two conformal vectors in H3
a gives a measure of the Euclidean

distance of their corresponding Euclidean vectors. That’s pretty neat and is the fundamental
feature of conformal space we will use over and over again.

2.2.4.1 The Representation of Points

The IPNS of a vector A ∈ H3 is given as usual by

NI(A ∈ H3) :=
{

X ∈ PK3 : X ·A = 0
}

57

However, we know that vectors on the null cone are null vectors and thus

NI(A ∈ H3) =
{

αA : α ∈ R \ 0
}
,

and the corresponding Euclidean IPNS is

NIE(A ∈ H3) = C−1
(
NI(A)

)
= a.

Just as for the projective space, we have again the feature that we can represent null dimensional
entities in Euclidean space by one dimensional subspaces in (homogeneous) conformal space.

2.2.4.2 The Representation of Spheres

Now we know that vectors on the null cone in PK3 represent points in Euclidean space E3 .
However, what to vectors in PK3 off the null cone represent? We will initially only discuss
their IPNS representation. Consider the vector A ∈ H3

a on the affine null cone and the vector
S ∈ PK3 off the null cone, given by

S = A− 1
2ρ2 e∞, ρ ∈ R. (2.21)

Let X ∈ H3
a , then

S ·X = A ·X− 1
2ρ2 e∞ ·X

= −1
2(a− x)2 + 1

2ρ2.
(2.22)

Hence,

S ·X = 0 ⇐⇒ (a− x)2 = ρ2.

That is, the inner product of S and X is zero if and only if x = C−1(X) lies on a sphere centered
on a = C−1(A) with radius ρ . Therefore, the Euclidean IPNS of S is a sphere.

NIE(S = A− 1
2ρ2 e∞) =

{
x ∈ E3 : ‖x− a‖2 = ρ2

}
. (2.23)

Note that since we are working in a homogeneous conformal space, also every scaled version
of S represents the same sphere. However, if we use the ”affine” form as in equation (2.21), we
can also evaluate the radius of the sphere represented by S quite easily.

S2 = A2 − ρ2 A · e∞ = ρ2. (2.24)

For an arbitrarily scaled version of S we can evaluate the radius via(
S

−S · e∞

)2

= ρ2. (2.25)

We can also easily tell whether a point lies inside, on or outside the sphere represented by S .
From equation (2.22) it follows that

S ·X
(S · e∞) (X · e∞)


> 0 : x inside sphere

= 0 : x on sphere

< 0 : x outside sphere

(2.26)

58

This feature also forms that basic idea behind the hypersphere neuron [4, 3]. It may be repre-
sented as a perceptron with two ”bias” components and allows the separation of the input space
of a multi-layer perceptron in terms of hyperspheres and not hyperplanes.

So what about vectors of the form

S = A + 1
2ρ2 e∞. (2.27)

The inner product of S with some X ∈ H3
a gives

S ·X = −1
2(a− x)2 − 1

2ρ2,

such that

S ·X = 0 ⇐⇒ (a− x)2 = −ρ2.

Since we assumed E3 to be a vector space over R , this condition is never satisfied for ρ 6= 0 .
However, had we regarded E3 as a vector space over the complex numbers C , then, together
with an appropriate definition of the norm, the solution would be

‖a− x‖ = i ρ,

where i =
√
−1 is the imaginary unit. We may thus say that S as defined in equation (2.27)

represents a sphere with imaginary radius in E3 .

Note that any vector in PK3 may be brought into the form

S = A± 1
2ρ2 e∞,

where A is a vector on the null cone. From a visual point of view, we can say that vectors of
the type S = A − 1

2ρ2 e∞ lie outside the null cone and vectors of the type S = A + 1
2ρ2 e∞ lie

inside the null cone. We may thus say that any vector in PK3 either represents a sphere with
positive, zero or imaginary radius. In terms of the Euclidean IPNS, the basic ”building blocks”
of homogeneous conformal space are therefore spheres.

2.2.4.3 The Representation of Planes

We mentioned earlier that a plane can be regarded as a sphere with infinite radius. Since we
are working in a homogeneous space, we can represent infinity by setting the homogeneous
component of a vector to zero. And this is also all it takes to make a sphere into a plane, which
also becomes clear from equation (2.25). Consider the vector P ∈ H3 given by

P = A− eo − 1
2ρ2 e∞ = a + 1

2a
2 e∞ − 1

2ρ2 e∞.

The inner product of P with some vector X ∈ H3
a gives

P ·X = a · x− 1
2a

2 + 1
2ρ2

= ‖a‖ ‖x‖‖ − 1
2(a2 − ρ2),

59

where x‖ is the component of x parallel to a . Therefore,

P ·X = 0 ⇐⇒ ‖x‖‖ =
a2 − ρ2

2 ‖a‖
.

Hence, all vectors x whose component along a has a fixed length lie in the Euclidean IPNS of
P , which thus represents a plane with orthogonal distance (a2−ρ2)/(2‖a‖) from the origin and
normal a .

A particularly nice representation of planes is the difference of two vectors on the affine null
cone. That is, for A,B ∈ H3

a , we define P = A − B . The inner product of P with a vector
X ∈ H3

a then gives

P ·X = A ·X−B ·X

= −1
2(a− x)2 + 1

2(b− x)2.

It follows that

P ·X = 0 ⇐⇒ 1
2(a− x)2 = 1

2(b− x)2.

This is the case if x lies on the plane half way between a and b , with normal a− b .

2.2.4.4 The Other Entities

We have seen in section 1.1.9 (eqn. (1.23), p. 12), that in terms of the IPNS, the outer product of
two vectors represents the intersection of their respective inner product null spaces. This is, of
course, still valid here. Hence, the Euclidean IPNS of the outer product of two spheres is their
intersection circle or point. If the spheres do not intersect we obtain an intersection circle of
imaginary radius. The Euclidean IPNS of the outer product of three spheres is accordingly the
intersection of three spheres. This may be a point pair, a single point or an imaginary point pair.
The Euclidean IPNS of the intersection of four spheres can at most give a single point. This also
works for spheres with infinite radius, ie planes.

Since the OPNS is dual to the IPNS, we find the following representations for blades in terms
of their OPNS in PK3 . In the following let A,B,C,D,E ∈ H3

a be mutually linearly independent
vectors.

NOE(A) : Point a

NOE(A ∧B) : Point pair (a, b)

NOE(A ∧ e∞) : Point pair (a, ∞)

NOE(A ∧B ∧C) : Circle through a, b, c

NOE(A ∧B ∧ e∞) : Line through a, b

NOE(A ∧B ∧C ∧D) : Sphere through a, b, c,d

NOE(A ∧B ∧C ∧ e∞) : Plane through a, b, c

NOE(A ∧B ∧C ∧D ∧E) : The whole space E3.

(2.28)

60

It may seem strange that there is a ”point pair” object. It clearly has to be there, since other-
wise the intersection of, for example, a sphere with a circle could not be expressed. However, a
somewhat better explanation is that a point pair is nothing else but a one dimensional sphere:
a point pair has a center from which all points on the point pair (the pair itself) have the same
distance. This is simply the definition of a sphere applied to one dimension. A circle is thus a
two dimensional sphere and a point may in fact be interpreted as a zero dimensional sphere.
This shows again that the basic entities of conformal space are spheres.

In equation (2.28) you may have wondered why there is a point pair of a finite point in E3

and infinity. If we recall the stereographic projection of lines in E2 , it becomes clear that two
lines that intersect in a point in E2 intersect in two points when stereographically projected: the
north pole e+ and another point (see figure 2.16). Two parallel lines in E2 only intersect in e+ .
Since e+ maps to e∞ in the homogenization of K3 , it is now clear why we need point pairs of
the type A ∧ e∞ .

Figure 2.16: Stereographic projection of two intersecting lines.

2.2.5 Discovering C̀ (E3) and C̀ (PE3) in C̀ (PK3)

When we look again at equation (2.28), it is interesting to see that those geometric entities that
can also be represented in C̀ (PE3) are represented by the outer product of a blade of null vectors
and e∞ . It therefore seems as if C̀ (PE3) is a subalgebra of C̀ (PK3) . Even though the operators
do not carry over immediately, there is an isomorphism between the algebraic entities of the two
spaces. We will not give a proof here but a motivation.

Consider again a vector A ∈ H3
a with

A = a + 1
2a

2 e∞ + eo.

If we take the outer product of A with e∞ we obtain

A ∧ e∞ = a ∧ e∞ + eo ∧ e∞.

61

If we identify eo ∧ e∞ with the homogeneous dimension and the bivectors {ei ∧ e∞}3
i=1 with

the orthonormal basis vectors of a vector space, then we do obtain an element of PE3 . This also
carries over to blades of the type A〈k〉 ∧ e∞ , where A〈k〉 is a blade of null vectors excluding e∞ .

In a similar way we can also rediscover C̀ (E3) . This time we take the outer product of A
with e∞ ∧ eo ,

A ∧ e∞ ∧ eo = a ∧ e∞ ∧ eo.

Now we could identify the {ei ∧ e∞ ∧ eo}3
i=1 with the orthonormal basis of a Euclidean space

E3 . In fact, NOE(a ∧ e∞ ∧ eo) is a line through the origin with the direction of a , that is exactly
the same as NO(a ∈ C̀ (E3)) . Similarly NOE(a ∧ b ∧ e∞ ∧ eo) is the same plane through the
origin as NO(a ∧ b ∈ C̀ (E3)) .

This shows that when we are working in conformal space, we have all the features of Eu-
clidean and projective space combined. This also carries over to the operators, as we will see in
the next section. This embedding of Euclidean and projective space in a single framework, offers
immediately the possibility to implement the ideas laid out in the well known paper ”Stratifi-
cation of Three Dimensional Vision: Projective, Affine and Metric Representations” by Olivier
Faugeras [11], without changing spaces or representations. This has, for example, been used
quite successfully in [33, 34].

2.2.6 Inversions in PKn

When we introduced conformal space initially, we said that it takes its name from the conformal
mappings that are possible within it. We carried on to say that a conformal transformation
can be expressed by a combination of inversions. However, so far we have not shown how an
inversion may be expressed in PKn .

Before we go for the full monty, let us take a look what effect an inversion has in Kn . Recall
that the embedding of a vector x ∈ En in Kn was a stereographic projection defined as

K(x ∈ En) =
2

x2 + 1
x +

x2 − 1
x2 + 1

e+.

The inverse of x can be written as

x−1 =
x
x2

,

which is the same as the inversion of x on the unit sphere centered at the origin. The embedding
of x−1 in Kn gives

K(x−1) =
2

x2

x4 + 1
x
x2

+
x2

x4 − 1
x2

x4 + 1
e+

=
2

1
x2 + 1

x
x2

+
1
x2 − 1
1
x2 + 1

e+

= x2 2
1 + x2

x
x2

+
1
x2

1
x2

1− x2

1 + x2
e+

=
2

x2 + 1
x− x2 − 1

x2 + 1
e+.

62

This shows that in order to invert a vector in En , we only have to negate its e+ component
in its embedding in Kn . That’s quite neat. Especially since we can express this negation by a
reflection in Kn on the Euclidean subspace. For example, in K1 , vector x = αe1 becomes

K(x) =
2α

α2 + 1
e1 +

α2 − 1
α2 + 1

e+.

The inverse of x is then given by

x−1 = K−1
(
e1K(x) e1

)
= K−1

(2α

α2 + 1
e1 −

α2 − 1
α2 + 1

e+

)
=

1
1 + α2−1

α2+1

2α

α2 + 1
e1

=
2α

(α2 + 1) + (α2 − 1)
e1

= α−1 e1,

where we used equation (2.7) to evaluate K−1 . Figure 2.17 illustrates this example.

Figure 2.17: Inversion of vector x in K1 .

Let us now return to PKn . Here it turns out that an inversion of a vector on the unit sphere
centered at the origin is given by a reflection on e+ . Mathematically we find for a vector X ∈
Hn

a ,

e+ X e+ = e+ (x + 1
2x

2 e∞ + eo) e+

= . . . exercise :-)

= −1 (x + x2 eo + 1
2 e∞)

= −x2 (x−1 + 1
2x

−2 e∞ + eo).

63

Projecting this vector back into En then clearly gives

C−1(e+ C(x) e+) = x−1.

This is visualized in figure 2.18. Vector X ∈ H1
a on the affine null cone is reflected on e+ which

gives e+ X e+ . However, if we scale the latter vector such that its eo component is unity, we
obtain Y which lies again on the affine null cone. Projecting Y back into E1 then gives the
inverse of C−1(X) .

Figure 2.18: Inversion of vector X ∈ H1
a via reflection on e+ .

Note that using the definitions of e∞ = e− + e+ and eo = 1
2(e− − e+) , we find for the unit

sphere S centered at the origin

S = eo︸︷︷︸
origin

− 1
2e∞︸︷︷︸

radius 1
= 1

2(e− − e+)− 1
2(e− + e+)

= −e+.

Hence, we seem to be able to use vectors in PKn representing spheres in their Euclidean IPNS
to invert vectors in Hn on them. In fact, it turns out that we can indeed use any sphere vector to
invert any other blade in PKn . In this way we can invert points, lines, circles, planes and spheres
on spheres. Note that inversions on circles and point pairs are also possible, but we will not
discuss this any further here.

2.2.7 Rotations in PKn

We said before that the group of Euclidean transformation is a subgroup of the conformal group.
Since the conformal group can be created by combinations of inversions and we can express

64

inversion in C̀ (PKn) , we should also be able to find operators for the group of Euclidean trans-
formations.

It turns out that in C̀ (PKn) we can not just express reflections on planes that pass through
the origin but on arbitrary planes. Therefore, we can also reflect consecutively on two arbitrary
planes. The intersection line of two such planes then gives the rotation axis. If the two planes
are parallel, ie the rotation axis lies at infinity, we obtain a translation. This, however, will be
discussed in the next section.

It is interesting to see how, by enlarging the embedding space of Euclidean space, we get
more and more freedom of expression. In Euclidean space we could only express planes that
pass through the origin and reflections on planes through the origin. In projective space PEn , we
managed to ”free” planes from the origin and place them anywhere. Reflections, however, were
still confined to planes through the origin. In conformal space PKn we finally also managed to
place reflection planes arbitrarily in space.

In order to achieve the reflection of a vector x ∈ En on a line with direction n ∈ En , in PKn

we have to reflect C(x) on

n ∧ e∞ ∧ eo = n ∧ e+ ∧ e−.

This is similar to what we found for the projective space and is also in accordance with what
we said about the embedding of C̀ (En) in C̀ (PKn) in section 2.2.5. A rotor R expressed as two
consecutive reflections on n ∈ En and m ∈ En , will thus take the following form in C̀ (PKn) .

R = (n ∧ e+ ∧ e−) (m ∧ e+ ∧ e−) = nm e+ e− e+ e− = nm. (2.29)

Therefore, a rotor in C̀ (PKn) expressing a rotation about an axis through the origin, takes again
the same form as for C̀ (En) .

2.2.8 Translations in PKn

It may be shown that a translation in En can also be expressed by two consecutive reflections
on two parallel lines. In PKn the appropriate operator does take on a similar form as that of a
rotor. To cut a long story short, the translation operator, also called translator, for a translation
by a Euclidean vector t , is given by

T = 1− 1
2t e∞. (2.30)

That is, a translator also has a scalar and a bivector part, just like a rotor. In fact, in terms of the
representation of PKn as Rn+1,1 , a translator expresses a rotation. However, the rotation plane
does not lie in the Euclidean subspace but in a mixed subspace.

It may be shown that since

(t e∞)2 = t e∞ t e∞ = −t t e∞ e∞ = 0,

the operator T can be expressed in exponential form as

T = exp
(
− 1

2t e∞
)
. (2.31)

65

Furthermore, T T̃ = 1 . If we apply T to the origin eo we get

T eoT̃ = (1− 1
2t e∞) eo (1 + 1

2t e∞)

= . . . difficult exercise :-(

= t + 1
2t

2 e∞ + eo.

If we translate the point at infinity, e∞ , it remains the point at infinity. That is,

T e∞ T̃ = e∞.

With a translator we can again translate any blade in C̀ (PKn) . That is, we can use the op-
erator to translate points, lines, planes, circles and spheres. We can even translate a rotor with
a translator, which then results in a rotation about an arbitrary axis in space. Such a general
rotation operator may simply be given by

M = T R T̃ . (2.32)

If we apply M to a vector X ∈ PKn we get

M XM = T

rotation︷ ︸︸ ︷
R T̃ X T︸ ︷︷ ︸

translation by −t

R̃ T̃

︸ ︷︷ ︸
translation by t

.

One very nice effect of having a translator available is that for many properties it is enough
to show that they are valid at the origin. Applying the translation operator it is then possible to
show that this property holds everywhere in space. A simple example may elucidate this. For a
sphere centered at the origin of radius ρ , we know that the expression in PKn is

S = e0 − 1
2ρ2 e∞.

It is easily shown that

S · S = ρ2,

in this case. But is this true for any sphere? Suppose now S′ is a sphere with center t in
Euclidean space and let T denote a translator representing a translation by t , then S′ = T̃ ST ,
if S denotes a sphere of the same radius as S′ at the origin. We then find that

S′ S′ = T S T̃ T S T̃ = T SS T̃ = ρ2 T T̃ = ρ2.

Thus we can relate a property that is valid at the origin to any point in space.

66

Chapter 3

An Interactive Introduction to
Geometric Algebra

by Dietmar Hildenbrand

3.1 Motivation

Geometric Algebra promises to stimulate new methods and insights in all areas of science deal-
ing with geometric properties.
It has a lot of advantages, e. g. it allows simple, compact, coordinate-free and dimensionally
fluid formulations.

3.1.1 Unification

Geometric Algebra comprises a lot of mathematical systems like

• Clifford Algebra

• Vector Algebra

• Grassmann Algebra

• Complex Numbers

• Quaternions

• Tensor Algebra

• Spinor Algebra

67

68

3.1.2 Low Symbolic Complexity

Expressions in Geometric Algebra normally have low complexity. For instance in section 3.6.5
we will see that the inner product of two vectors P · S is used for different tasks like

• the Euclidean distance between two points

• the distance between one point and one plane

• the decision whether a point is inside or outside of a sphere

3.1.3 Robustness

One reason for the robustness of Geometric Algebra is its natural dealing with infinity. For
example the intersection of two parallel lines delivers a well-defined result.

3.2 Introduction to this interactive Tutorial

In this tutorial we use the CLUCalc software to calculate with Geometric Algebra and to visu-
alize the results of these calculations. CluCalc is available for download at [27]. With help of
the CLUCalc Software you are able to edit and run Scripts called CLUScripts.

CluCalc offers the following three windows

• editor window

• visualization window (results can be arranged with help of the left mouse button)

• output window

Figure 3.1: Screenshot of the CLUCalc windows

69

The following CLUScript example ”BaseVectorsE3.clu” draws the 3 base vectors of the 3-
dimensional Euclidean space.

DefVarsE3();
_BGColor = Color(1,1,1); // Background white

:Red;
:a=e1;
:b=e2;
:c=e3;

Figure 3.2: BaseVectorsE3.clu

DefVarsE3(); in this CLUScript indicates that we are working in the 3-dimensional Euclidean
space E3.
:Red; means that the succeeding geometric objects will be drawn in red.
:a=e1; assigns the base vector e1 to the variable a and visualize it (Note : without the leading
colon it would not be visualized).

Figures generated by CLUScripts are labeled by the name of the script.
All the CLUScripts of this tutorial can be downloaded at

http://www.dgm.informatik.tu-darmstadt.de/staff/dietmar/

Formatting information like setting of background colors or annotations are not explained in
this tutorial.
For details regarding CLUScript please refer to the CLUCalc online help [27].

70

3.3 Blades and Vectors

Blades are the basic computational elements of the Geometric Algebra.
The Geometric Algebra of the Euclidean 3D space consists of blades with dimension (usually
called grade) 0, 1, 2 and 3.
A scalar is a 0-blade (blade of grade 0).

1-blades are the 3 base vectors e1, e2, e3 .
2-blades are plane elements spanned by 2 base vectors.

In the following CLUScript ”plane element.clu” the 2-blade e1 ∧ e2 (spanned by the 2 base
vectors e1 and e2) is drawn in red.

DefVarsE3(); // 3D Euclidean space

:Blue;
:a=e1;
:b=e2;
:c=e3;

:Red;
:PE = e1ˆe2;

Figure 3.3: plane element.clu

The Geometric Algebra of the Euclidean 3D space also consists of a 3-blade e1∧ e2∧ e3 spanned
by all the 3 base vectors.

A linear combination of k-blades is called a k-vector (also called vectors, bivectors, trivectors ...
).

Table 3.1 lists the 8 blades of the Geometric Algebra of the Euclidean 3D space.

71

Table 3.1: list of blades of the 3D Euclidean space

blade grade abbreviation

1. 1 0 1

2. e1 1 e1

3. e2 1 e2

4. e3 1 e3

5. e2 ∧ e3 2 e23

6. e3 ∧ e1 2 e31

7. e1 ∧ e2 2 e12

8. e1 ∧ e2 ∧ e3 3 I

3.4 The products of the Geometric Algebra

The Geometric Algebra offers 3 products

• outer product

• inner product

• geometric product

3.4.1 The Outer Product and Parallelness

Geometric Algebra provides an outer product ∧ with the following properties

Property Meaning

1. anti-symmetry a ∧ b = −(b ∧ a)

2. linearity a ∧ (b + c) = a ∧ b + a ∧ c

3. associativity a ∧ (b ∧ c) = (a ∧ b) ∧ c

What is a ∧ a then ?

As you can easily see, the outer product of a vector with itself is always 0.
a ∧ a = −(a ∧ a) = 0 .

The outer product of parallel vectors is 0. This is why the outer product can be used as a measure
for parallelness.

72

3.4.1.1 Bivectors

A bivector is a plane element spanned by two vectors. It is the result of the outer product of the
vectors.

The following CLUScript bivectorE3.clu computes and draws a simple bivector

DefVarsE3();
:Blue;
:a = e1 + e2;
:b = e1 - e2;
:Red;
:c = a ˆ b;

Figure 3.4: bivectorE3.clu

The 2 vectors a = e1 + e2 and b = e1 − e2 are drawn in blue. The result c of their outer product
c is a bivector. It is visualized as a plane element in red color.

?c; // output in separate window

The algebraic representation of the bivector c is shown in a separate window (see the question
mark in front of the variable c) as

c = -2 e12

According to table 3.1 this is the same as −2 (e1 ∧ e2) .

73

?reverse = ˜c;

The reverse of c is computed.
It results in

reverse = 2 e12

since the reverse of a blade simply reverses its order.

We compute the above mentioned example in order to better understand its geometrical mean-
ing.

c = a ∧ b

= (e1 + e2) ∧ (e1 − e2)

because of linearity

c = (e1 ∧ e1)− (e1 ∧ e2) + (e2 ∧ e1)− (e2 ∧ e2)

since a ∧ a = 0

c = −(e1 ∧ e2) + (e2 ∧ e1)

because of anti-symmetry

c = −(e1 ∧ e2)− (e1 ∧ e2)

= −2(e1 ∧ e2)

because of anti-symmetry

c = 2(e2 ∧ e1)

We see that the resulting plane element is

• twice the plane element spanned by the base vectors e2 and e1 , or

• twice the plane element spanned by the base vectors e1 and e2 and inverted orientation

Note : c̃ (the reverse of c) is equal to

c̃ = 2(e1 ∧ e2)

74

3.4.1.2 Trivectors

A trivector is a volume element resulting from the outer product of three vectors. The following
CLUScript computes and draws a simple trivector in E3

DefVarsE3();

:Blue;
:a = e1 + e2;
:b = e1 - e2;
:c = e3;

:Red;
:d = a ˆ b ˆ c;
?d;

Figure 3.5: trivectorE3.clu

The 3 vectors a, b, c are drawn in blue and their outer product d in red color.

We compute the above mentioned example in order to better understand its geometrical mean-
ing.

d = a ∧ b ∧ c = (e1 + e2) ∧ (e1 − e2) ∧ e3

because of linearity

d = ((e1 ∧ e1︸ ︷︷ ︸
0

)− (e1 ∧ e2) + (e2 ∧ e1)− (e2 ∧ e2︸ ︷︷ ︸
0

)) ∧ e3

= (−(e1 ∧ e2) + (e2 ∧ e1)) ∧ e3

because of anti-symmetry

d = (−(e1 ∧ e2)− (e1 ∧ e2)) ∧ e3

75

= (−2(e1 ∧ e2)) ∧ e3

= −2(e1 ∧ e2 ∧ e3)

= −2I

This means, the resulting geometric object a ∧ b ∧ c is equal to -2 multiplied by the volume
element spanned by the 3 base vectors e1, e2, e3 . This is often denoted as I , the so-called pseu-
doscalar.

3.4.2 The Inner Product and Perpendicularity

Geometric Algebra offers a so-called inner product denoted by A ·B
(in CLUScript A.B).

3.4.2.1 The Inner Product of vectors

For Euclidean spaces, the inner product of 2 vectors is the same as the well known Euclidean
scalar product of 2 vectors.

The result of the following CLUScript

DefVarsE3();
B = e1+e2;
? length = sqrt(B.B);

is

length = 1.41421,

the length of the vector e1 + e2 .

For perpendicular vectors the inner product is 0 .

The result of the following CLUScript

DefVarsE3();
? norm = e1.e2;

is

norm = 0,

since the two base vectors are perpendicular.

76

3.4.2.2 The general Inner Product

In Geometric Algebra, the inner product is not only defined for vectors.

The following CLUScript innerProductE3.clu computes and draws inner product calculations
of
- 2 bivectors
- a vector and a bivector

DefVarsE3();

:Red;
:B = e1 ˆ e2;
? norm = B.B;

:Green;
:x = e1+e3;

:Blue;
// xiB is a vector in the B-plane perpendicular to x
:xiB = x.B;

The surprising result of the square product B2 of the bivector B = e1 ∧ e2 is −1 .

The result of the inner product of the vector x = e1 + e3 and the bivector B is a vector in the
plane (represented by the bivector B).
The resulting vector is perpendicular to x .

Remark : the inner product is grade decreasing, e. g. in the previous example the result of the
inner product of an element with grade 2 and grade 1 is an element of grade 2-1 =1.

77

Figure 3.6: innerProductE3.clu

3.4.3 The Geometric Product and Duality

The geometric product is a combination of the outer product and the inner product. The Geo-
metric Product of u and v is denoted by uv (in CLUScript u*v).
As we will see, it is an amazingly powerful operation.

3.4.3.1 The Geometric Product of Vectors

For vectors u and v the geometric product uv is defined as

uv = u ∧ v + u · v (3.1)

We derive for the inner and the outer product

u · v =
1
2
(uv + vu) (3.2)

u ∧ v =
1
2
(uv − vu) (3.3)

Example 1 : What is the square of a vector ?

a2 = aa = a ∧ a + a · a = a · a

for example

e1e1 = e1 · e1 = 1

Example 2 : What is (e1 + e2)(e1 + e2) ?

78

DefVarsE3();
?(e1+e2)*(e1+e2);

results in

Constant = 2

(e1 + e2)(e1 + e2) = (e1 + e2) · (e1 + e2) = e1 · e1 + e1 · e2 + e2 · e1 + e2 · e2 = e1 · e1 + e2 · e2 = 2

Example 3 : What is e1e2 ?

DefVarsE3();
?e1*e2;

results in

Constant = e12

e1e2 = e1 ∧ e2 + e1 · e2 = e1 ∧ e2

Example 4 : What is e1(e1 + e2) ?

DefVarsE3();
?e1*(e1+e2);

results in

Constant = e12 +1

e1(e1 + e2) = e1e1 + e1e2 = 1 + e1 ∧ e2

Note : The result of this calculation is a linear combination of different types of blades (in this
example of a scalar and a bivector). These kind of expressions are called multivectors.

3.4.3.2 Extension of the Geometric Product to general multivectors

The geometric product is not only defined for vectors but also for all kind of multivectors.
Let us for example calculate the geometric product of 2 bivectors:

DefVarsE3();
?(e1ˆe2)*((e1+e2)ˆe3);

79

The result is

Constant = - e23 - e31

Proof

(e1 ∧ e2)((e1 + e2) ∧ e3)

= (e1e2)(e1 ∧ e3 + e2 ∧ e3)

= e1e2(e1e3 + e2e3)

= e1e2e1e3 + e1e2e2e3

= −e2e1e1e3 + e1e3

= −e2e3 + e1e3

= −(e2 ∧ e3) + e1 ∧ e3

80

3.4.3.3 Invertibility

The invertibility of a blade A is defined by

AA−1 = 1

The inverse of a vector v is

v−1 =
v

v · v

Proof

v
v

v · v
=

v · v
v · v

= 1

Example 1 : What is the inverse of the vector v = 2e1

DefVarsE3();
:v=2*e1;
? 1/v;

results in 0.5e1

Example 2 : What is the inverse of the pseudoscalar ?

DefVarsE3();
? 1/I;

results in the negative of the pseudoscalar (−I)

Constant = - I;

Proof

II = (e1 ∧ e2 ∧ e3)(e1 ∧ e2 ∧ e3) = (e1e2e3)(e1e2e3)

= e1e2︸︷︷︸
−e2e1

e3e1e2e3 = −e2e1e3e1e2e3 = e2e3 e1e1︸︷︷︸
1

e2e3

= e2e3e2e3 = −e3e2e2e3 = −e3e3 = −1

→ II = −1

→ II(I−1) = −I−1

→ I−1 = −I

81

3.4.3.4 Duality

Since the geometric product is invertible, divisions by geometric objects are possible.
The dual of a geometric object is calculated by its division by the pseudoscalar I .

In the following CLUScript DualE3.clu the dual of the plane A is calculated.

DefVarsE3();

:Blue;
:A= e2 ˆ (e1+e3);

:Green;
:b= A/I;
?b;

Figure 3.7: DualE3.clu

The resulting vector b

b = e1 - e3

corresponds to the normal vector of the plane.
Let us verify the result.
A superscript ”*” means the dual operator. In CLUScript this is denoted by a leading ”*”.

(e2 ∧ (e1 + e3))∗ = (e2 ∧ (e1 + e3))(e1e2e3)−1

= (e2 ∧ (e1 + e3))(−e1e2e3) = −(e2(e1 + e3))e1e2e3

= −e2 e1e1︸︷︷︸
1

e2e3 − e2e3︸︷︷︸
−e3e2

e1e2e3 = −e2e2e3 + e3e2e1e2e3

= −e3 − e3e1e2e2e3 = −e3 − e3e1e3

= −e3 + e1e3e3 = −e3 + e1

82

3.5 Geometric Properties

The products of the Geometric Algebra already have some geometric meaning. We will now see
some additional geometric properties.

3.5.1 Projection and Rejection

In the following example ProjectE3.clu we compute and draw the projection and rejection of a
vector v to a plane B .
The projection is calculated with help of

vpar = (v ·B)/B

and the rejection with help of

vperp = (v ∧B)/B

Figure 3.8: ProjectE3.clu

DefVarsE3();
:Red;
:B = e1ˆ(e1+e2);
v = 1.5*e1 + e2/3 +e3;

The plane B and the vector v are computed. The plane B is drawn in red color.
Remark : the vector v is only computed but not drawn because of the missing colon.

:Blue;
:vpar = (v.B)/B;
?vpar;

83

vpar is computed as vpar = (v ·B)/B and drawn in blue color.
It is the part of v parallel to B .

:Yellow;
:vperp= (v ˆ B)/B;
?vperp;

vperp is computed as vperp = (v ∧B)/B and drawn in yellow color.
It is the part of v perpendicular to B .

:Magenta;
:Sum = vpar + vperp;
?Sum;

Sum (as the sum of the 2 vectors vpar and vperp) results in the original vector v , since
vB = v ·B + v ∧B and therefore
(vB)/B = (v ·B)/B + (v ∧B)/B = v

84

3.5.2 Reflection

The reflection of a vector v from a plane M is defined by

vrefl = MvM

In the following example ReflectE3.clu we reflect a vector from a plane.

Figure 3.9: ReflectE3.clu

DefVarsE3();
:Blue;
:v=e1+2*e3;
:Green;
:M = e1 ˆ e2;

The vector v is drawn in blue color, the plane M in green.

:Red;
:vrefl = M*v*M;
? vrefl;

With help of the geometric product MvM the reflected vector vrefl is calculated, drawn and
printed.

85

3.5.3 Rotation in 2d

In geometric algebra, the geometric product R := ba of two normalized vectors describes the
rotation between these two vectors (by twice the angle between a and b). In the following
example Rotor2d.clu we rotate the vector a with help of

c = R a R̃.

R is called a rotor, R̃ is the reverse of R .

DefVarsE3();

:Blue;
:a = e1;

:Green;
:b = 1/sqrt(2)*(e1+e2);

Figure 3.10: Rotor2d.clu

The vector a is drawn in blue color, the vector b in green.

?R = b*a;

The rotation operator R is calculated as product of the vector b and the vector a .

:Red;
:c = R*a*˜R;

The rotated vector c is calculated and drawn in red color. We see that R rotates a by twice the
angle between a and b .

86

The rotation operator can also be calculated with help of an exponential function.

DefVarsE3();
:Green;
:i = e1 ˆ e2;

The plane i is drawn in green.

R=exp(-i * (Pi/4)/2);

The rotation operator is calculated with help of i and the specific angle Pi/4 (π/4).

:Blue;
:a = e1;
:Red;
:b = R*a*˜R;

Figure 3.11: Rotate EXP E3.clu

The operator R = e−i φ
2 with i = e1 ∧ e2 can be decomposed as follows :

With help of the Taylor series and the fact that i2 = −1 (see 3.4.2.2)

R = e−i φ
2 = 1 +

−iφ
2

1!
+

(−iφ
2)2

2!
+

(−iφ
2)3

3!
+

(−iφ
2)4

4!
+

(−iφ
2)5

5!
+

(−iφ
2)6

6!
...

= 1−
(φ

2)2

2!
+

(φ
2)4

4!
−

(φ
2)6

6!
...

+− i
φ
2

1!
+−i

(φ
2)3

3!
−−i

(φ
2)5

5!
...

= cos(
φ

2
)− isin(

φ

2
)

87

3.5.4 Rotation in 3d

The operator R = e−
φ
2
p describes a rotor in 3d with p being a normalized plane. The normal

vector (or the dual) of this plane is used as rotation axis.
In the following example Rotor3d.clu we rotate the vector a with help of rot = R a R̃ .

DefVarsE3();
:Blue;
:a=e1+e2;

:Green;
axis = -3*e1 + 6*e2 - 2*e3;
:axis = axis/sqrt(axis.axis);
:p = *axis;

angle = Pi/3;
?R=exp(-0.5*angle*p);
:Red;
:rot=R*a*˜R;

Figure 3.12: Rotor3d.clu

The vector a is drawn in blue color.
The rotated vector c is calculated and drawn in red color.

88

3.5.5 Intersection

In the geometric algebra, there is a powerful meet operation to calculate the intersection between
geometric objects.
The meet operation between two blades A and B is given by

A ∨B = A∗ ·B,

if the direct sum of the OPNS of A and B is the whole vector space. In the following example
meetE3.clu we intersect two planes.

DefVarsE3();
:Blue;
:A = e2 ˆ (e1 + e3);
:Green;
:B = e1 ˆ(e2 + e3/2);

The two planes A and B are calculated and drawn in blue and green color.

:Red;
:mAB = *A.B;

Figure 3.13: meetE3.clu

The result of the intersection mAB = A∗ ·B is drawn in red.

89

3.6 The Conformal Geometric Algebra

Up to now we have dealt with the well known Euclidean space.
In this section we will extend our investigations to one specific non-Euclidean space, the so-
called conformal space.
The Conformal Geometric Algebra is a 5-dimensional Geometric Algebra. For details please
refer to [38]. In this Algebra, points, spheres and planes are easily represented as vectors (grade
1 blades).

3.6.1 The two additional base vectors

The Conformal Geometric Algebra uses 2 additional base vectors (e+, e−) with the following
properties.

e2
+ = 1 e2

− = −1 e+ · e− = 0 (3.4)

Another base (e∞, eo) can be defined with the following relations

eo =
1
2
(e− − e+) e∞ = e− + e+

The reader is encouraged to verify the following equations.

e2
o = e2

∞ = 0, e∞ · eo = −1

e− = eo +
1
2
e∞ e+ =

1
2
e∞ − eo

The outer product e∞ ∧ eo is often abbreviated by E .

3.6.2 Vectors in Conformal Geometric Algebra

A vector can be written as

S = s1e1 + s2e2 + s3e3 + s4e∞ + s5eo (3.5)

The point s = s1e1 + s2e2 + s3e3 is denoted as inhomogenous point of the Euclidean space.
Note : bold points s in this document mean s ∈ R3 .

The meaning of the two additional coordinates of the Conformal Geometric Algebra is as fol-
lows :

s5 = 0 s5 6= 0

s4 = 0 plane through origin sphere/point through origin

s4 6= 0 plane sphere/point

90

3.6.2.1 Spheres

A sphere S with inhomogenous center point s and radius r is represented as

S = s + s4e∞ + eo (3.6)

with

s4 =
1
2
(s2

1 + s2
2 + s2

3 − r2) =
1
2
(s2 − r2)

The radius of the sphere results in

r2 = s2 − 2s4 = s2
1 + s2

2 + s2
3 − 2s4

Figure 3.14: OneSphereN3.clu

In the example OneSphereN3.clu

DefVarsN3();
:IPNS;
:N3_SOLID;
:S = e2 +e3 - e +e0;

the radius the radius of the sphere S = e2 + e3 − e∞ + eo results in

r2 = 1 + 1− 2 ∗ (−1) = 4

:DefVarsN3(); is needed in order to indicate conformal space calculations.
:IPNS; means that we describe the sphere with help of the inner product null space (IPNS).
OPNS would be used if we would like to describe the sphere with help of its dual representation
(quadvector instead of vector).
:N3 SOLID; is needed in order to visualize the sphere solid instead of a wired (N3 WIRED).

91

3.6.2.2 Points

Points are degenerate spheres with radius r = 0 . The inhomogenous point p is represented as

X = p +
1
2
p2e∞ + eo (3.7)

3.6.2.3 Planes

Planes are degenerate spheres with infinite radius. They are represented as a vector with s5 = 0 .

Plane = n1e1 + n2e2 + n3e3 + de∞ (3.8)

with the normal vector (n1, n2, n3)

n2
1 + n2

2 + n2
3 = 1

and d as the distance of the plane from the origin.

In the following CLUScript PlaneN3.clu the plane e2 + e∞ is drawn in red.
The point at infinity e∞ is indicated by the predefined value n .

DefVarsN3();
:N3_IPNS;

:Red;
:a=VecN3(0,0,0);
:Plane=e2+n;
:Green;
:b=VecN3(0,1,0);

Figure 3.15: PlaneN3.clu

Its normal vector is (n1, n2, n3) = (0, 1, 0) and the distance is 1 (indicated in the picture by the
red point a at the origin and the green point b). The points in conformal space are generated
by the function VecN3().

92

3.6.3 Bivectors in Conformal Geometric Algebra

The representation of bivectors of Conformal Geometric Algebra are circles and lines.
Lines are degenerate circles with infinite radius.

3.6.3.1 Circles

A circle can be defined by 3 points. Its algebraic description in Conformal Geometric Algebra is
the dual of the outer product of these 3 points.

In the following CLUScript CircleN3.clu a circle is shown in green based on the red points a, b, c .

DefVarsN3();
:IPNS;

:Red;
:a=VecN3(0,-0.5,-0.5);
:b=VecN3(0,0.5,0.5);
:c=VecN3(0.5, 0.5, 0.5);

:Green;
:Circle=*(aˆbˆc);

?Circle;

Figure 3.16: CircleN3.clu

The resulting bivector is calculated and printed.

93

3.6.3.2 Lines

A line as a degenerate circle with infinite radius can be defined by 2 points and the point at
infinity.
Its algebraic description in Conformal Geometric Algebra is the dual of the outer product of
these 3 points.

In the following CLUScript LineN3.clu a line is shown in green based on the red points a, b .

DefVarsN3();
:IPNS;

:Red;
:a=VecN3(0,-0.5,-0.5);
:b=VecN3(0,0.5,0.5);

:Green;
:line=* (a ˆ b ˆ n);

?line;

Figure 3.17: LineN3.clu

The point at infinity e∞ is indicated by the predefined value n . The resulting bivector is calcu-
lated and printed.

94

3.6.4 Dual Vectors in Conformal Geometric Algebra

In the previous section we already saw circles and lines as the dual of trivectors based on the
outer product of three points.
In the same way we are able to define spheres and planes as the dual of the outer product of
four points (IPNS) or as the outer product of four points (OPNS).

The dual of vectors in conformal geometric algebra are 4-vectors (or quadvectors).

In the following CLUScript DualSphereN3.clu a sphere generated by four points is visualized.

DefVarsN3();
:OPNS;
:N3_SOLID;

:Red;
:A=VecN3(-0.5,0,1);

:Blue;
:B=VecN3(1,-0.5,2);

:Green;
:C=VecN3(0,1.5,3);

:Black;
:D=VecN3(0,2,2);

:Yellow;
:Sphere=AˆBˆCˆD;

?Sphere;

The sphere is generated by the outer product of the four points A,B, C, D . These points are
indicated by different colors. The resulting quadvector is shown in the output window.

95

3.6.5 Distances

In the Conformal Geometric Algebra points, planes and spheres are represented as vectors.
The inner product of this kind of objects is a scalar and can be used as a measure for distances.

In the following examples we will see that the inner product P · S of two vectors P and S can
be used for tasks like

• the Euclidean distance between two points

• the distance between one point and one plane

• the decision whether a point is inside or outside of a sphere

Let us first translate the inner product to an expression in Euclidean space.

The inner product between a vector P and a vector S is defined by

P · S = (p + p4e∞ + p5eo) · (s + s4e∞ + s5eo)

= p · s + s4 p · e∞︸ ︷︷ ︸
0

+s5 p · eo︸ ︷︷ ︸
0

+p4 e∞ · s︸ ︷︷ ︸
0

+p4s4 e2︸︷︷︸
0

+p4s5 e∞ · eo︸ ︷︷ ︸
−1

+p5 eo · s︸︷︷︸
0

+p5s4 eo · e∞︸ ︷︷ ︸
−1

+p5s5 e2
o︸︷︷︸
0

It results in

P · S = p · s− p5s4 − p4s5 (3.9)

or

P · S = p1s1 + p2s2 + p3s3 − p5s4 − p4s5

3.6.5.1 Distances between points

In the case of P and S being points we get

p4 =
1
2
p2, p5 = 1

s4 =
1
2
s2, s5 = 1

The inner product of these points is according to equation 3.9

P · S = p · s− 1
2
s2 − 1

2
p2

96

= p1s1 + p2s2 + p3s3 −
1
2
(s2

1 + s2
2 + s2

3)−
1
2
(p2

1 + p2
2 + p2

3)

= −1
2
(s2

1 + s2
2 + s2

3 + p2
1 + p2

2 + p2
3 − 2p1s1 − 2p2s2 − 2p3s3)

= −1
2
((s1 − p1)2 + (s2 − p2)2 + (s3 − p3)2)

= −1
2
(s− p)2

We recognize that the square of the Euclidean distance of the inhomogenous points corresponds
to the inner product of the homogenous points multiplied by −2 .

(s− p)2 = −2(P · S)

3.6.5.2 Distance between points and planes

For a vector P representing a point we get

p4 =
1
2
p2, p5 = 1

For a vector S representing a plane with normal vector n and distance d we get

s = n, s4 = d, s5 = 0

The inner product of point and plane is according to equation 3.9

P · S = p · n− d

representing the Euclidean distance of a point and a plane.

97

3.6.5.3 is a point inside or outside of a sphere ?

We will see now that the inner product of a point and a sphere can be used for the decision of
whether a point is inside of a sphere or not.

For a vector P representing a point we get

p4 =
1
2
p2, p5 = 1

For a vector S representing a sphere we get

s4 =
1
2
(s2

1 + s2
2 + s2

3 − r2), s5 = 1

The inner product of point and sphere is according to equation 3.9

P · S = p · s− 1
2
(s2 − r2)− 1

2
p2

= p · s− 1
2
s2 +

1
2
r2 − 1

2
p2

=
1
2
r2 − 1

2
(s2 − 2p · s− p2)

=
1
2
r2 − 1

2
(s− p)2

We get

2(P · S) = r2 − (s− p)2

In terms of the Euclidean distance d with

(d + r)2 = (s− p)2 = d2 + 2dr + r2

we get

2(P · S) = r2 − (d2 + 2dr + r2)

2(P · S) = −d2 − 2dr

or

D(d) = P · S = −d

2
(d + 2r)

With help of curve sketching we see that this is a parabola with

D(0) = 0 D(−2r) = 0

and a maximum at

D(−r) =
1
2
r2

we can see that

P · S > 0 : p is inside of the sphere
P · S = 0 : p is on the sphere
P · S < 0 : p is outside of the sphere

98

3.6.5.4 is a point inside or outside of a circumcircle of a triangle ?

The reader is encouraged to verify that the following CLUScript PointInsideCircleN3.clu is able
to decide whether a point is inside or outside of a circumcircle of a triangle.

DefVarsN3();

:IPNS;
:N3_SOLID;

:Red;
:A=VecN3(-0.5,0,1);
:Blue;
:B=VecN3(1,-0.5,2);
:Green;
:C=VecN3(0,1.5,3);
:Black;
:X=VecN3(0,4,4);

:Magenta;
:Circle=*(AˆBˆC);
Plane=*(AˆBˆCˆe);

:Yellow;
:Sphere=Circle*Plane;
?Distance=Sphere.X;

Figure 3.18: PointInsideCircleN3.clu

99

3.6.6 Intersections

As already mentioned for the 3D Euclidean space the meet operation between two blades A
and B may be given by

A ∨B = A∗ ·B,

In the following examples we will compute intersections between different objects like spheres,
lines and planes.

3.6.6.1 Intersection of two spheres

In the following CLUScript meetSphereSphereN3.clu the intersection of two spheres is calcu-
lated with help of the meet operation.

DefVarsN3();
:OPNS;
:N3_SOLID;

:Red;
:a=*(VecN3(0,-0.5,-0.5)-0.5*e);
:b=*(VecN3(0,0.5,0.5)-0.5*e);

:Blue;
:M=*a.b;
?M;

Figure 3.19: meetSphereSphereN3.clu

Two spheres, defined as dual vectors in OPNS are drawn in red color. The intersection of theses
spheres is calculated with help of the meet operation. The resulting circle is drawn in blue.

100

3.6.6.2 Intersection of a line and a sphere

In the following CLUScript meetSphereLineN3.clu the intersection of one sphere s and one line
l is calculated with help of the meet operation s∗ · l .

DefVarsN3();
:OPNS;
:N3_SOLID;

:Red;
:a=VecN3(0,-0.5,-0.5);
:b=VecN3(0,0.5,0.5);

:Green;
:l=aˆbˆn;
?l;

:Yellow;
s=VecN3(0,1,1) -0.1*e;
:s=*s;

:Magenta;
:r=*s.l;

Figure 3.20: meetSphereLineN3.clu

The intersection of the line l (defined by the points a and b) and the sphere s is a point pair.
This geometric object is visualized in magenta.
A point pair is a trivector in Conformal Geometric Algebra.

101

3.6.6.3 Intersection of a line and a plane

In the following CLUScript meetPlaneLineN3.clu the intersection of one plane p and one line l
is calculated with help of the meet operation p∗ · l .

DefVarsN3();
:OPNS;

:Red;
:a=VecN3(0,-0.5,-0.5);
:b=VecN3(0,0.5,0.5);

:Green;
:l=aˆbˆn;
?l;

:c=VecN3(2,1,2);
:d=VecN3(1,-1,1);
:e=VecN3(-1,-2,-1);

:Yellow;
:p=cˆdˆeˆn;

:Magenta;
:r=*p.l;
?r;

Figure 3.21: meetPlaneLineN3.clu

The plane p is defined with help of the three points c, d, e and the point at infinity n . The
intersection point r with the line l (defined with help of a, b, n) is visualized in magenta.

102

3.6.7 Reflection

In the following CLUScript ReflectN3.clu we visualize the reflection of one line l from one plane
p with help of the operation plp .

DefVarsN3();
:OPNS;

a=VecN3(0,-0.5,-0.5);
b=VecN3(0,2,2);

:Green;
:l=aˆbˆn;
?l;

c=VecN3(2,1,2);
d=VecN3(1,-1,1);
e=VecN3(-1.5,-2,-1);

:Yellow;
:p=cˆdˆeˆn;

:Magenta;
:r=p*l*p;
?r;

Figure 3.22: ReflectN3.clu

The result is one reflected line drawn in magenta.

103

3.6.8 Projection

In the following CLUScript ProjectN3.clu we visualize the projection of one line to one plane
with help of the operation p·l

p

DefVarsN3();
:OPNS;

a=VecN3(0,-0.5,-0.5);
b=VecN3(0,2,2);

:Green;
:l=aˆbˆn;
?l;

c=VecN3(2,1,2);
d=VecN3(1,-1,1);
e=VecN3(-1.5,-2,-1);

:Yellow;
:p=cˆdˆeˆn;

:Magenta;
:r=(p.l)/p;
?r;

Figure 3.23: ProjectN3.clu

The result is the projected line drawn in magenta.

104

Bibliography

[1] R. Abłamowicz. Clifford algebra computations with maple. In W. E. Baylis, editor, Clifford
(Geometric) Algebras, pages 463–501. Birkhäuser, Boston, 1996.

[2] R. Abłamowicz and B. Fauser. The CLIFFORD home page. 2002. Last visited 15. Sept. 2003.

[3] V. Banarer, C. Perwass, and G. Sommer. Design of a multilayered feed-forward neural
network using hypersphere neurons. In N. Petkov and M.A. Westenberg, editors, Proc. 10th
Int. Conf. Computer Analysis of Images and Patterns, CAIP 2003, Groningen, The Netherlands,
August 2003, volume 2756 of LNCS, pages 571–578. Springer-Verlag, 2003.

[4] V. Banarer, C. Perwass, and G. Sommer. The hypersphere neuron. In 11th European Sympo-
sium on Artificial Neural Networks, ESANN 2003, Bruges, pages 469–474. d-side publications,
Evere, Belgium, 2003.

[5] J. Browne. The grassmannalgebra book home page. HTML document, 2002. Last visited
15. Sept. 2003.

[6] William K. Clifford. On the classification of geometric algebras. In R. Tucker, editor, Math-
ematical Papers, pages 397–401. Macmillian, London, 1882.

[7] A. Differ. The Clados home page. HTML document, 2002. Last visited 15. Sept. 2003.

[8] L. Dorst, C. Doran, and J. Lasenby, editors. Applications of Geometric Algebra in Computer
Science and Engineering. Birkh 2002.

[9] L. Dorst, S. Mann, and T. Bouma. GABLE: A MatLab tutorial for geometric algebra. HTML
document, 2000. Last visited 15. Sept. 2003.

[10] Leo Dorst. Honing geometric algebra for its use in the computer sciences. In G. Sommer,
editor, Geometric Computing with Clifford Algebra. Springer-Verlag, 2001.

[11] Olivier Faugeras. Stratification of Three Dimensional Vision: Projective, Affine and Metric
Representations. Journal of the Optical Society of America - A, 12(3), 1995.

[12] Olivier Faugeras and Bernard Mourrain. On the Geometry and Algebra of the Point and
Line Correspondences between N Images. In Proceedings ICCV’95, pages 951–956, 1995.

[13] Olivier Faugeras and Theodore Papadopoulo. Grassmann-Cayley Algebra for Modelling
Systems of Cameras and the Algebraic Equations of the Manifold of Trifocal Tensors. Phil.
Trans. R. Soc. Lond. A, 356(1740):1123–1152, 1998.

[14] D. Fontijne. The GAIGEN home page. HTML document, 2002. Last visited 15. Sept. 2003.

105

106

[15] John E. Gilbert and Margaret A. M. Murray. Clifford algebras and Dirac operators in harmonic
analysis. Cambridge University Press, 1991.

[16] S. F. Gull, A. N. Lasenby, and C. J. L. Doran. Imaginary numbers are not real – the geometric
algebra of space time. Found. Phys., 23(9):1175, 1993.

[17] Alexander J. Hahn. Quadratic Algebras, Clifford Algebras, and Arithmetic Witt Groups.
Springer–Verlag, 1994.

[18] D. Hestenes. New Foundations for Classical Mechanics. Dordrecht, 1986.

[19] D. Hestenes and G. Sobczyk. Clifford Algebra to Geometric Calculus: A Unified Language for
Mathematics and Physics. Dordrecht, 1984.

[20] David Hestenes and Renatus Ziegler. Projective Geometry with Clifford Algebra. Acta
Applicandae Mathematicae, 23:25–63, 1991.

[21] Joan Lasenby, W. J. Fitzgerald, A.N. Lasenby, and C.J.L. Doran. New geometric methods for
computer vision: An application to structure and motion estimation. International Journal
of Computer Vision, 3(26):191–213, 1998.

[22] Joan Lasenby and Anthony N. Lasenby. Estimating Tensors for Matching over Multiple
Views. Phil. Trans. R. Soc. Lond. A, 356(1740):1267–1282, 1998.

[23] P. Leopardi. The GluCat home page. HTML document, 2002. Last visited 15. Sept. 2003.

[24] P. Lounesto. The CLICAL home page. HTML document, 1987. Last visited 15. Sept. 2003.

[25] Pertti Lounesto. Clifford Algebras and Spinors. Cambridge University Press, 1997.

[26] Alan MacDonald. Elementary Construction of the Geometric Algebra. In Proceedings 5 th In-
ternational Conference on Clifford Algebras and their Applications in Mathematical Physics, 1999.
To be published.

[27] C. Perwass. The CLU home page. HTML document, 2002. Last visited 15. Sept. 2003.

[28] C.B.U. Perwass. Applications of Geometric Algebra in Computer Vision. PhD thesis, Cambridge
Universtiy, 2000.

[29] C.B.U. Perwass and J. Lasenby. A Geometric Analysis of the Trifocal Tensor. In R. Kakar-
ala R. Klette, G. Gimel’farb, editor, Image and Vision Computing New Zealand, IVCNZ’98,
Proceedings, pages 157–162. The University of Auckland, 1998.

[30] C.B.U. Perwass and J. Lasenby. A Unified Description of Multiple View Geometry. In
G. Sommer, editor, Geometric Computing with Clifford Algebra. Springer-Verlag, 2001.

[31] Ian R. Porteous. Clifford Algebras and the Classical Groups. Cambridge University Press, 1995.

[32] Marcel Riesz. Clifford Numbers and Spinors. Kluwer Academic Publishers, 1993.

[33] B. Rosenhahn, C. Perwass, and G. Sommer. Pose estimation of 3d free-form contours. Tech-
nical Report Number 0207, Christian-Albrechts-Universit”at zu Kiel, Institut f”ur Infor-
matik und Praktische Mathematik, August 2002.

107

[34] B. Rosenhahn, C. Perwass, and G. Sommer. Pose estimation of free-form surface models.
In 25. Symposium für Mustererkennung, DAGM 2003, Magdeburg, 2003. to appear.

[35] J. M. Selig. Geometrical Methods in Robotics. Springer–Verlag, 1996.

[36] Frank Sommen. An algebra of abstract vector variables. Porugaliae Math., 54:287–310, 1997.

[37] Frank Sommen. The problem of defining abstract bivectors. Result. Math., 31:148–160, 1997.

[38] G. Sommer, editor. Geometric Computing with Clifford Algebra. Springer Verlag, 2001.

[39] Neil L. White. Grassmann–Cayley algebra and robotics. J. Intell. Robot. Syst., 11:91–107,
1994.

[40] Neil L. White. A tutorial on Grassmann–Cayley algebra. In Neil L. White, editor, Invariant
methods in discrete and computational geometry, pages 93–106. Kluwer, Dordrecht, 1995.

Index

Anti-commutator product
definition of, 24
of vectors, 25

Basis blade
definition of, 25
grade of, 26

Bivector
magnitude of, 4

Blade
definition of, 3
grade of, 3
inverse of, 6
magnitude of, 4
reverse of, 6

Clifford algebra
axioms of, 22
basis of C̀ (R3) , 25
isomorphism to C , 27, 33
isomorphism to Quaternions, 35
relation to Grassmann algebra, 36
relation to Grassmann-Cayley algebra,

37
vs. Geometric algebra, 1

Commutator product
definition of, 24
of vectors, 25

Conformal transformation
definition of, 50

Direct subtraction
definition of, 9

Direct sum
definition of, 9
of subspaces, 9

Dual
definition of, 10
geometric meaning, 11, 81, 92–94
relation between OPNS and IPNS, 11

Einstein summation convention, 26
Geometric algebra

vs. Clifford algebra, 1
Geometric product

of vectors, 16
Grade

of basis blade, 26
of blade, 3, 70, 89

Grassmann algebra
relation to Clifford algebra, 36

Grassmann-Cayley algebra
relation to Clifford algebra, 37

Homogeneous
component, 39
dimension, 39
space, 39
vector, 40

Inner product
metric property, 5
of blades, 5
relation to shuffle product, 38
with scalar, 16

Inner product null space
definition of, 8
Euclidean in PEn , 41
Euclidean in PKn , 55
intersection of, 12
relation to OPNS, 11

Inverse
of blade, 6
of multivector, 29

Inversion
in conformal space, 63

Join
definition of, 15

Magnitude
of bivector, 4
of blade, 4
of pseudoscalar, 5

Meet
definition of, 16

108

109

Multivector
definition of, 26
in C̀ 3 , 26
inverse of, 29

Operator
grade preserving, 17
inversion in PKn , 63
reflection in En , 17
reflection in PEn , 45
rotor in En , 20
rotor in PEn , 46
rotor in PKn , 64

Outer product
properties, 2
relation to vector cross product, 12

Outer product null space
definition of, 3
Euclidean in PEn , 41
Euclidean in PKn , 55
relation to IPNS, 11

Outer-Morphism
of reflection, 18
of rotor, 21

Product
anti-commutator, 24
commutator, 24
geometric, 16
inner, 5
join, 15
meet, 16
outer, 2
regressive, 14
scalar, 2
shuffle, 37
triple scalar, 32
triple vector cross, 32
vector cross, 2

Pseudoscalar
magnitude of, 5
of R3 , 10, 75, 80, 81

Quaternions
isomorphism to Clifford algebra, 35

Reflection
in Euclidean space, 17, 84
in projective space, 45
outer-morphism, 18

Regressive Product

definition of, 14
Regressive product

relation to shuffle product, 38
Reverse

of blade, 6, 73
Rotor

definition of, 20
exponential form, 21
in conformal space, 64
in projective space, 46
outer-morphism, 21

Shuffle product
definition of, 37
relation to inner product, 38
relation to regressive product, 38

Stereographic projection
definition of, 51
inverse of, 52

Vector
of grade k , 26

Vector cross product
relation to outer product, 12

Versor
equation, 29

