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Abstract. This paper presents a dense optic flow algorithm based on
quite simple local probability assumptions. Due to the explicit derivation
of the correspondence concept in a probability-theoretical framework,
occlusion probability evolves straight-forwardly from the model for each
pixel. Initialized with a similarity measure based on single pixels, an
iterated diffusion step propagates local information across the image,
while occlusion probability is used to inhibit flow information transfer
across depth discontinuities, which prevents flow smoothing at 3d object
boundaries. The inhibition is thereby not artificially modelled by some
heuristically chosen parameters, but arises directly from the Bayesian
correspondence model. The algorithm structure can be interpreted as a
recurrent neural network, where matched points have reached a stable
state, while others (e.g. those in homogeneous areas) keep receiving in-
formation from regions more and more far away until they converge, this
way overcoming the aperture problem. The massive parallel structure
allows for and demands a real hardware implementation of the system.

1 Introduction

There are several applications which require a dense displacement field of pixels
between images of a video sequence or between different camera images. The
efficient and accurate computation of this so-called optical flow especially in
presence of occlusion is still an open research topic. Standard dense matchers
usually assume some region (a window) around each pixel to be invariant and
compare the window of the pixel in image A to all candidate windows in image
B to compute a similarity. This creates the problem of finding an appropriate
window size, such that the region is significant (aperture problem) but still in-
variant (regarding occlusion and perspective), which may be avoided in parts if
adaptable windows are used [1]. In our approach, there is no need to choose a
window size since the region used for matching is automatically extended, when
the local information does not suffice for a stable result.

Nearly all proposed optical flow computation methods make use of some kind
of smoothness constraint on the flow field as has early been proposed by Horn
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and Schunck [2], where the actual implementation varies, e.g. in Markov Ran-
dom Field (MRF) approaches [3], nonlinear diffusion [4], global minimization
with discontinuity punishment [5] and so on. However, in addition to adding
stability to the matching, smoothing also blurs discontinuities in the flow field.
Especially at the projections of 3d object boundaries one would like to have a
flow field, which is as sharp as possible, such that smoothing has to be avoided
in these regions. Most previous Bayesian methods, which have the advantage
of making all assumptions explicit (e.g. [6, 7]) did not take occlusion into ac-
count yet. When occluded pixels have been considered (as in [8, 9, 4]), they are
usually modelled as some additional disturbance of a prior or yield another
penalty term in an error function. In our novel approach they are stated in
terms of existing probability distributions in the model. Opposed to that in [10],
an algorithm for rectified stereo images only, occlusions and discontinuities are
modelled by additional stochastic processes with parameters, which have to be
estimated simultaneously to the flow in a global optimization scheme. If explicit
knowledge about the number of moving objects is present, the computation of
boundary curves around regions with uniform displacement may be possible [11],
which can then also be used to avoid smoothing at discontinuities. Other tech-
niques directly using high image gradient values for diffusion blocking discard
the significant structure for optic flow estimation contained in these regions. In
[9] the prior allows discontinuities only at intensity edges, otherwise penalties
apply.

The basic concepts of the algorithm used have already been proposed in [12],
but occlusion (and the information it carries) has not been taken into account
yet. Furthermore, the concept has been extended regarding a scale pyramid
initialization, which makes detailed knowledge on pre-positioning obsolete. Ini-
tially, the algorithm computes a probability distribution for each pixel in frame
0 among all (predefined) possible match candidates in frame 1 (a test patch) by
calculating the probability that both pixels correspond only based on their color.
Using only color information of single pixels is usually not enough, such that an
additional constraint has to be imposed on the neighborhood. Thus, a local
probability measure that demands similar displacement for neighboring pixels
is iteratively applied to propagate information throughout the image, such that
local constraints are transformed into global information over time. The entropy
of the probability distribution among match candidates in the test patches is re-
duced step-by-step and finally converges to a single (sub-)pixel position, which
represents the expected correspondence.

In [4] concepts are comparable to our approach but differ in the implemen-
tation of the pixel invariance properties. Where they make use of a MRF to
enforce a smooth disparity space, we follow the idea that the distribution of
correct pixel matches can locally be described by a particular probability dis-
tribution, whereas wrong match candidates are uniformly distributed. Based on
our model, we derive that the information propagation (as the equivalent of
smoothing) is blocked proportionally to the probability that a pixel is occluded
either in the first or in the second image. This helps to improve the match-
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ing quality between subsequent frames and sharpens the flow field at depth
discontinuities, since moving objects usually introduce occluded pixels into the
images.

The occlusion probability is derived straight-forwardly from the Bayesian cor-
respondence theory framework, as opposed to more ad hoc occlusion detection
algorithms like “goodness of match discontinuities” or “bimodalities in dispar-
ity”, which are compared in [13]. Nonetheless, detecting occluded areas is an
intricate problem, since they may not exactly coincide with the pixel grid, such
that they are smoothed into neighboring pixels. The concept of an occlusion
probability accounts perfectly for this. This is an improvement over previous
methods, which used a binary distinction between occluded and visible pixels
during their minimization scheme [9, 8].

The spread of correspondence information implicitly starts at heavily struc-
tured regions, which may be viewed like seed crystals and progresses to homoge-
neous regions, where the probability distributions converge over time. This may
be regarded as automatic feature selection and matching at descriptive points
and subsequent guided interpolation across less-structured regions. However, no
minimization of a global probability model is carried out, since at each iteration
step probabilities are updated with local information only.

The algorithm works on uncalibrated image sequences and is much more
scale and rotation tolerant than standard window correlation approaches. It
can also be used for (uncalibrated) stereo scenarios and is easily adaptable
to exploit the knowledge of rectified epipolar geometry, too. Due to its sim-
ple structure a huge number of basic operations is necessary to compute the
correspondences, which is well-suited for a parallel implementation using spe-
cialized hardware like an FPGA (Field Programmable Gate Array) chip or a
graphics card.

2 The Bayesian Model

In the model we develop, we are not interested in the exact camera geometry. We
simply assume that we are given two images A and B whose pixels are correlated
in as far as they represent the same scene, albeit from a different point of view
(stereo matching) or at a different time (optical flow). The only constraints we
can invoke then are pixel similarity and an ordering constraint.

We assume that correct matches satisfy a particular statistical distribution
whereas incorrect matches are equivalent to noise and are uniformly distributed.
We are looking for an iterative procedure that amplifies those pixels that sat-
isfy the appropriate distribution and subdues the others. We can only give
a short overview of the algorithm’s derivation here. For a detailed account
see [14].

First we will derive the local match probabilities, which refer only to the first-
order neighborhood of the pixels under inspection. After explaining the concept
of correspondence probability, we will finally bind the local probability measures
into an iterative algorithm, which increases the region upon which probability
statements are based.
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2.1 Local Probabilities

The correspondence problem is modelled through random variable pairs (XA,
XB), where XA can take on all pixel positions (represented by I) in image
A and XB can take on those in B. However, given some images, these random
variables are not independent of one another, we explicitly accept only outcomes
of XA and XB where the pixel positions xA and xB both correspond to the same
element in 3d space, i.e. the event (XA = xA, XB = xB) means that position xA

in image A corresponds to xB in B. This is our correspondence pair assumption,
which is implicitly stated in every subsequent probability further down.

To find out which pixels refer to which others, we basically need a measure
for pixel similarity. This measure has to express the likelihood that two pixels
were created by the same element in a scene, without taking into account any
neighboring pixels. Such a measure therefore will be based on a pixel’s color, but
may also include any other local property like the local scale or local phase. We
will denote this measure by s(a, b), where a denotes a pixel color (in image A)
and b another color (in image B). A good similarity function is the maximum
likelihood estimator as used by Belhumeur in [10].

P (A |xA= a, B |xB= b | XA = xA, XB = xB) � s(a, b) (1)

The � here means equality up to a scalar factor, since a pdf must sum to unity.
Using s(A |xA , B |xB ), we can evaluate for each pixel in image A its similarity
to the pixels within an area of image B where we expect the correct match to
lie. We will also call this a test patch T . Next we scale the computed similarities
in T in a way that they sum to unity, such that we can interpret them as
probabilites. That is, each pixel in image A has associated with it a probability
distribution giving its matching likelihood to a set of pixels in image B. Our goal
is to minimize the entropy of these probability distributions, i.e. to minimize
the match uncertainty. In order to do this, the pixel similarity measure alone
is not enough. We also have to take into account a structural constraint. We
do this by assuming that the local distribution of pixel matches takes on a
particular form. This becomes the prior distribution in our derivation, denoted
by h(xA,xB ,yA,yB). That is, given an assumed pixel match (xA,xB) and a
particular neighbor yA of xA, h(xA,xB,yA,yB) gives the a priori probability
distribution for yB being a correct match of yA. Note that h does not depend

Fig. 1. Left two images: Positions of test patches, right three images: Probability dis-
tributions in patches based on pixel similarity
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on the images but reflects our assumption that neighboring pixels have a similar
displacement. Therefore h yields the highest probabilities if yB is chosen such
that xA − xB = yA − yB and lower values the more the lhs and the rhs of this
equation differ. Therefore, a simple choice for h may be a zero-mean Gauss of
the difference of lhs and rhs of the above.

P (YB = yB | XA = xA, XB = xB, YA = yA) � h(xA,xB,yA,yB) (2)

This is similar to a Gibbs potential as for example used in MRF approaches [3]
to describe the preferences of a disparity surface. However, h does not account
for all cliques on the disparity surface as in [4] but only for one neighbor.

We are asking how likely it is that (xA,xB) is a correct match. This depends
on the pixel similarity (s(A |xA , B |xB )) and the likelihood that the eight directly
neighboring pixels of xA, denoted by {yi

A}, have high pixel similarities with
those pixels in image B {yi

B} where h(xA,xB,yA,yB) is maximal.
Formally, let (XA, XB) and (YA, YB) be the random variables of two neigh-

boring pixel correspondences, i.e. for some XA = xA only outcomes yA of YA

are inspected, where xA and yA are neighbors and xA and xB (and also yA

and yB) are corresponding pixels. Using Bayes’ law together with the s and h
functions we get:

P (XB = xB , YB = yB, YA = yA | A, B, XA = xA) � (3)

s(A |xA , B |xB )s(A |yA , B |yB )h(xB ,yB ,xA,yA)
P (XA = xA | A, B)

Given some position xA in A this equation expresses the probability, that xB

is the correct match, while the neighbor yA of xA corresponds to yB. To make
the pdf independent of some particular match candidate yB , the best matching
yB (regarding equation (3)) is assumed to be the match of yA and its match
information is used to evaluate the neighborhood and similarity constraint for
yA. This is in contrast to MRF field methods, which would marginalize at this
point over YB. We explicitly select only that match candidate for each neighbor,
where the image data best satisfies the assumed prior distribution. It was found
that this improves convergence. The slightly different pdf is denoted by P̂ .

Additionally, the match probability for xB should also be stated indepen-
dently of a particular neighbor yA of xA. Therefore we maginalize over all neigh-
bors yA and end up with the pixel-match pdf:

P̂ (XB = xB | A, B, XA = xA) �

s(A |xA , B |xB )
P (XA = xA | A, B)

·
∑

yA:(yA−xA)∈N
max
yB

(s(A |yA , B |yB )h(xA,xB,yA,yB)) (4)

With this equation, we can now compute the probability of each candidate match
xB in B to be the correct match, given some position xA in image A. It is only
based on the color and the fitting of the direct neighbors.
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2.2 Occlusion Detection

Now we want to inspect the probability that a pixel really has a correspondence
in the other image at all. One finds that this information is carried in the prob-
ability distributions P (XA | A, B) and P (XB | A, B). We will refer to them
as the correspondence probabilities. Remember that P (XA = xA | A, B) is the
probability that random variable XA has the outcome xA under the correspon-
dence pair assumption. If there is no correspondence, XA will never have the
outcome xA. On the other hand, if every pixel in the image has exactly one
correspondence, XA will be uniformly distributed.

To unterstand the principle used for occlusion detection, suppose two images
are matched. If everything works as expected, the test patches eventually have a
strong peak at the correct position. Now suppose that there are some occluded
pixels, e.g. a pixel xO in A, which has no correspondence in image B. Never-
theless, its test patch may have a high value at some position, say xB in B,
which represents the most likely match for xO. However, if xB has a true match
xA in A, xB’s test patch will most likely be maximal at this position and vice
versa. That is, xO’s position (in the test patch of xB) has a very low probability.
One might say that xO chose xB as a correspondence partner but does not get
support from the inverse direction. Now, the observation that occluded pixels
do not get support from the inverse direction is exploited to detect them. Both,
the lhs and the rhs of the following equation represent P (XA, XB | A, B) :

P (XA | A, B)P (XB | A, B, XA) = P (XB | A, B)P (XA | A, B, XB) (5)

This equation must hold for every single match candidate in the test patch.
However, instead of inspecting single correspondences, it is more promising to
evaluate all possible matches in the other image at once and thus to get more
robust information. Equation (5) is solved for P (XA | A, B) and summed across
all candidate pixels (i.e. across xA’s test patch TxA):

P (XA = xA | A, B) =

∑
xB∈TxA

P (XA = xA | A, B, XB = xB)P (XB | A, B)
∑

xB∈TxA
P (XB = xB | A, B, XA = xA)

(6)
Since there is no preference on matching from A to B or from B to A, the
same can be applied to the B to A direction analogously. It can be seen that
the probability P (XA | A, B) depends on the support of the inverse direction.
Unfortunately, it does also depend on the correspondence probability of that
direction. Since both probabilities depend on one another, they cannot be calcu-
lated explicitly before the start of the algorithm. Instead, each correspondence
probability has to be initialized with some value and is updated iteratively uti-
lizing the above equations, which is referred to as the collection of support.

We will now give an interpretation of the correspondence probability values
for a binary occlusion classification (which may be desired by a high level appli-
cation). Since P (XA = xA | A, B) is a probability (of the event xA), summing
it over all possible |I| (disjoint) events must yield unity. As pointed out be-
fore, if every pixel has a match, P (XA | A, B) must be a uniform distribution
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with the value 1/|I|. If a single pixel xO in A is occluded, the true distribution
for XA yields slightly higher values for all pixels having correspondences and
zero for (XA = xO). The more occluded pixels exist, the more the correspon-
dence probability for pixels with true matches increases. Accounting for noise
and spurious support, a pixel xO should therefore only be classified as occluded,
if P (XA = xO | A, B) � 1/|I|.

Intrinsically the correspondence probability is some kind of measure for the
support from the inverse direction. Apart from detecting occluded pixels it also
yields a low value in case of low similarity (and great uncertainty) for true
matches. Hence, it can also be a hint for the confidence in a pixel’s match value,
indicating how well the pixel and the neighborhood are found in the other image.

2.3 Propagation of Local Constraints

The structural constraint and the pixel-match pdf refer only to direct neighbors
of a pixel. Usually more global information is needed for stable matching re-
sults, since the aperture problem is very relevant for these small neighborhoods.
This section binds the derived equations into an iterative algorithm, where local
information propagates throughout the images step by step.

The previously derived pdf (4) is used as the base equation, where the match
probability resulting from the last iteration is used as the pixel similarity for
the next round. To abstract from the s-function, f t is defined to contain the
similarities from the tth iteration, where the first f is the similarity s. The
functions cA and cB represent the correspondence probabilities for the pixels at
each iteration (initialized with their expectation value).

f0(xA,xB) := s(A |xA , B |xB ) c0
A(xA) := 1/|I| c0

B(xB) := 1/|I|

Let F t contain the information available at iteration t, i.e. f t, ct
A and ct

B. The
resulting pdf P̂ (XB = xB | F t, XA = xA) can then be computed up to scale as:

f t(xA,xB)
ct
A(xA)

∑

yA:(yA−xA)∈N
max

yB∈TyA

(
f t(yA,yB)h(xA,xB ,yA,yB)

)
(7)

The correspondence probabilities are computed as described in equation (6):

ct+1
A (xA) = P̂ (XA = xA | F t) �

∑
xB∈TxA

P̂ (XA = xA | F t, XB = xB)ct
B(xB)

∑
xB∈TxA

P̂ (XB = xB | F t, XA = xA)
(8)

To get an idea of the final step, imagine first that we directly reuse the proba-
bilities of the last iteration:

f t+1(yA,yB) = P̂ (YA, YB | F t) � P̂ (YB = yB | F t, YA = yA)ct
A(yA) (9)

Using this in equation (7), the term ct
A(yA) is independent of the maximization

and may be moved in front of it. It is plain to see that all eight neighbours of
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Fig. 2. Upper left: image A, lower left: image B, where blue (right) pixel is moved
one pixel right and one up. Right images: Initial test patches (similarity) and first five
iterations. At first, test patches in homogeneous regions hold uniform distributions,
while those of the red and the blue pixel have already converged to a single position.
The neighboring patches have only excluded some candidates. When iterating, more
and more candidates becomes improbable, and information propagates throughout the
image. However, for the white pixels in between the colored ones, two maxima survive,
since it is not clear how they have behaved. The expectation value yields a subpixel
position in between the two possible movements.

xA are weighted by their correspondence probability ct, i.e. occluded pixels have
a smaller weight than pixels with support. Consequently, the probability for xA

mainly depends on the probabilities of its not-occluded neighbors.
For stability reasons the simple step of equation (9) is replaced by a bidi-

rectional merging step, because instead of matching from A to B we may also
match from B to A as well. Since P (XA | A, B)P (XB | A, B, XA) and P (XB |
A, B)P (XA | A, B, XB) both represent the same joint probability, they should
be equal then. Therefore, we assign their (geometric) average to both of them for
the next iteration. Again, this applies only up to scale, since we have to normal-
ize the test patches afterwards. For each patch we choose the factor which makes
it sum to unity. Note that the feature of diffusion control by the correspondence
probability is not affected by the bidirectional merging.

f t+1(xA,xB) = P̂ (XA, XB | F t) � (10)
√

P̂ (XA = xA | F t, XB = xB)ct
B(xB)P̂ (XB = xB | F t, XA = xA)ct

A(xA)

To support large disparities and to detect occlusions at larger scales, the whole
process is done using a Gauss pyramid. Starting at the highest layer (usually
with image size in the order of 32) images are matched with a test patch size
of 5x5 pixels. The pyramid layer and the test patch size encode the maximum
displacement expected between the images. For optic flow sequences it is usually
sufficient to go up one or two layers, since displacements are in the range of a
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few pixels. Having calculated the test patches and correspondence probabilities
of one layer, test patches of the lower scale are positioned at the interpolated
expectation values of the higher ones and correspondence probability is also in-
terpolated from that scale. The matching and occlusion detection is then started
for the lower pyramid layer. Depending on the images, after about 10-20 iter-
ations all test patches have converged and the procedure can be repeated with
the next layer until finally the original images are matched.

3 Experiments

Though the algorithm allows for a hardware implementation, it has been realized
in software for qualitative analysis. Since all operations that may be executed in
parallel have to be serialized using a standard CPU, the matching is very slow
and takes several minutes. However, an FPGA implementation of a simplified
version of the basic algorithm has shown that if enough hardware resources are
available, the parallel structure can be exploited to increase speed by several
orders of magnitude. To check how the model works in practice, some artificial
images with exact ground truth data are evaluated as a first proof of concept in
figure (3). To generate image A, a small image is inserted into a large one at a
position near the center, simulating a rectangular object, which hides parts of
the background. In image B, the foreground object is moved by two pixels to
the right and one up, so that it hides a slightly different area of the background.

For evaluation purposes only the A to B direction displacement images are
shown, but all observations are also valid for the B to A direction. Setting all cor-
respondence probabilities to constant values (as assumed in [12]) instead of com-
puting them (see figure (4)), most pixels are matched correctly (test patch size
5x3, 20 iterations), but problems occur at the borders of the foreground object.
Background pixels left to it and below it are matched badly, although they have
well-defined correspondences in the other image. As pointed out, occluded pix-
els (right of and above the foreground object) have no correspondences, so their
match values are neglected here. The displacement field has been smoothed at
the left and lower object boundary: Pixels of the background have been strongly
influenced by foreground object pixels and are matched as if they were moving

Fig. 3. Artificial flow sequence images (noisy images) generated by moving a 8x16 pixel
block (foreground object) by 2 pixels right and one up in front of a 32x32 pixel image
(containing uniformly distributed noise,pixelwise independent). Ground truth optical
flow is displayed right of each image, i.e. black pixels have the same position in both
images, grey ones are displaced. Pure white pixels are occluded in the other image.
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Fig. 4. Left two images: A to B results for disabled occlusion detection: Disparity (left),
error (right). Pixels above and to the right of the foreground object are occluded in
that direction and therefore disregarded in the error analysis. Middle two images: A
to B results using correspondence probability: Disparity (left), error (right). Right two
images: Correspondence probability. A to B (left) and B to A (right), black pixels mean
low values (probably occluded).

with the object. This occurs due to the structural constraint, that demands sim-
ilar displacements for neighboring pixels. Since there is a very high degree of
information and pixel color differs noticably for wrong match candidates, pixels
should be matchable quite uniquely. However, without occlusion information,
neighboring pixels belonging to a different object are trusted exactly as much as
really neighboring pixels are. The matching error is high in these border regions,
as can be seen in the error image in the left part of figure (4).

Now the correspondence probability is concurrently computed using the same
parameters as before on the same images. The images show the probabilities
that some pixel in A has a correspondence in B (left image) and vice versa
(right image). All occluded pixels have been detected, i.e. their correspondence
probabilities are low. The implications of correct occlusion detection on the
matching result can be seen right in figure (4). There are sharp displacement
field discontinuities at the object’s lower and left borders. The other borders are
not relevant for this matching direction since the pixels right and on top of the
foreground object in A are occluded in B.

At first sight it is somewhat surprising that the matching results have im-
proved for the A to B direction in regions where there are actually no occluded
pixels in that direction, whose influence could have been reduced. This is achieved
by bidirectional merging. Occlusions from the other direction discouple the flow
field and optimize the matching accuracy of this direction, too.

Adding some noise to image A and image B independently does not disturb
the matching results and occlusion detection as can be seen in table (1). Viewing
the mean matching error in thousandths can give approximately the number of
pixels being matched really wrong. Note that the images used have two arti-
ficial properties, which are not always valid for natural images: First, there is
very strong structure present, which simplifies the matching and the occlusion
detection. Usually natural images are smoother and contain regions with low
contrast. Secondly, there are no subpixel correspondences, i.e. no probabilities
are distributed across some neighboring pixels and there is a one-to-one corre-
spondence. However, in that scenario, occlusion detection works and improves
matching results at image borders, even in the presence of noise.

An interesting approach for the evaluation of optic flow algorithms is used in
[15], where a ray-tracer is used to render semi-artificial scenes that look more
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Table 1. Mean matching error in presence of Gaussian noise (in percent of the dynamic
range of the pixel values) added independently to both images

Noise Level disabled occl. detection eM / 1
1000 enabled occl. detection eM / 1

1000
0 % 34.1 1.6
3 % 34.3 1.7
5 % 34.3 1.7
10 % 36.3 1.6

Table 2. Results for the street scene: basic algorithm without occlusion detection(left
column), enabled occlusion detection and flow constraint(middle), values of comparing
paper(right). ēm is the mean absolute error and ēma is the mean absolute error in
direction orthogonal to the local gradient.

Simple Extended Value Range from [15]
ēm 0.27 0.21 0.16 .. 0.45
ēma 0.17 0.13 0.11 .. 0.48

realistic than line patterns or random dot images, but for which full ground truth
is provided. We have made experiments on the street sequence from [15], which
are quite promising. To exploit the fact that in dense image sequences only small
changes apply, we incorporated four frames into the similarity function instead
of two. Additionally to using frame 1 and 2 we extrapolate a pixel position in
frame 0 and 3 and use their similarities (with smaller weights) as well. This is
a preliminary solution, a better way to exploit dense frames may be the use of
a Kalman or Particle Filter over time and should be subject to future research.
The mean errors are calculated taking into account all images of the sequence
and can be seen in table (2) as well as the error range from [15]. The algo-
rithm performs quite well compared to other optic flow algorithms used for this
sequence regarding the mean error em, again, occlusion information improves
the matching result. McCane et al. state that the value ema, which is quite low
here, can give a hint about how well the algorithm can cope with the aperture
problem. This value refers only to the first order neighborhood of some pixel
and does not depend on the absolute value of the gradient. However, regarding
that measure the algorithm can handle the aperture problem quite well, since
the error vectors do not always point into the locally most uncertain direction.

The next example shows the results of the aerial Pentagon pair provided by
CMU/VASC. Note that the exploitation of the epipolar geometry is only that
the test patch height can be set to one. Apart from that the images are handled
as if they were two frames of a video sequence.

As pointed out before, white pixels (in the middle images of figure (5)) mean
great correspondence probability while black pixels mean low support and thus
indicate occluded pixels. Note that the main occlusion lines are detected, but that
these lines are not absolutely accurate and sharp. Hence, the matching results
are also not sharpened as much as it may have been expected. For completeness
reasons the matching results are displayed in the disparity image of figure (5),
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Fig. 5. Aerial image from the CMU/VASC Pentagon pair (left), correspondence prob-
ability (middle images) and absolute value of optic flow (right)

Fig. 6. Image of Tsukuba stereo pair, correspondence probability, computed disparity

although this example is intended to demonstrate the occlusion detection in real
images. Since there is no real ground truth available for this image pair, it is
not exactly known, where the occlusions are and how they look like. If a bird
flies over the building or some tree is moving in the wind, occlusion changes.
However, the detected occlusions refering to the building look pretty realistic.

In figure (6) the well known Tsukuba pair is displayed. The correspondence
probability images show that the algorithm can extract occluded pixels even in
real images with (partly) weak structure beneath object borders. Though these
probability images are quite noisy, the main occlusions can be seen well. It is also
interesting to see that the correspondence probability image is black at the left
image border, which is no error due to border problems. Quite the reverse, these
pixels are also occluded in the other image, since they have no correspondence
there.The disparity image of figure (6) shows a good matching result compared
to the ground truth image. The scale approach has positioned the test patches
well and the depth discontinuities are represented in the disparity image.

4 Conclusion

A dense matching algorithm has been proposed, which is based on explicit as-
sumptions about local probability distributions in the images. The algorithm
extracts occlusion probability for each pixel, which is used in the model to steer
the diffusion process. We have shown that this increases the matching quality
significantly at depth discontinuities. The algorithm works for uncalibrated cam-
eras and supports a wide range of displacements, since it matches and detects
occlusion over a scale pyramid. No explicit window size parameter is needed since
the aperture problem is handled automatically by information propagation from
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structured to homogeneous regions over time, which can be interpreted as a re-
current neural network converging to a stable state. Due to its fundamentally
parallel structure, a fast hardware implementation is necessary, which has not
been done so far. Another focus of future research must be the exploitation of
multiple frames to stabilize the matching and occlusion extraction process.
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