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Abstract. In Computer Vision applications, one usually has to work with un-
certain data. It is therefore important to be able to deal with uncertain geome-
try and uncertain transformations in a uniform way. The Geometric Algebra of
conformal space offers a unifying framework to treat not only geometric enti-
ties like points, lines, planes, circles and spheres, but also transformations like
reflection, inversion, rotation and translation. In this text we show how the un-
certainty of all elements of the Geometric Algebra of conformal space can be
appropriately described by covariance matrices. In particular, it will be shown
that it is advantageous to represent uncertain transformations in Geometric Alge-
bra as compared to matrices. Other important results are a novel pose estimation
approach, a uniform framework for geometric entity fitting and triangulation, the
testing of uncertain tangentiality relations and the treatment of catadioptric cam-
eras with parabolic mirrors within this framework. This extends previous work by
Förstner and Heuel from points, lines and planes to non-linear geometric entities
and transformations, while keeping the linearity of the estimation method. We
give a theoretical description of our approach and show exemplary applications.

1 Introduction

In Computer Vision one has to deal almost invariably with uncertain data. Appropriate
methods to deal with this uncertainty do therefore play an important role. In this text
we show how geometric entities and transformations can be described together with
their uncertainty in a single, unifying mathematical framework, namely the Geometric
Algebra of conformal space.

A particular advantage of the presented approach stems from the linear representa-
tion of geometric entities and transformations and from the fact that algebra operations
are simply bilinear functions. This allows us to easily construct geometric constraints
with the symbolic power of the algebra and then to equivalently express these con-
straints as multi-linear functions, such that the whole body of linear algebra can be
applied. Solutions to many problems, like the estimation of the best line, plane, circle
or sphere fit through a set of points, or the best rotation between two point sets (in a
least-squares sense), reduces to the estimation of the null space of a matrix. Applying
the so called Gauss-Helmert model, it is then also possible to evaluate the uncertainty
of the estimated entity.

This text builds on previous works by Förstner et al. [1] and Heuel [2] where uncer-
tain points, lines and planes were treated in a unified manner. The linear estimation of



rotation operators in Geometric Algebra was previously discussed in [3], albeit without
taking account of uncertainty. In [4] the description of uncertain circles and 2D-conics
in Geometric Algebra was first discussed. The stratification of Euclidean, projective
and affine spaces in Geometric Algebra, has been previously presented in [5]. In [6] the
estimation of uncertain general operators was introduced.

In this text we present a number of new results and show how this method can be
used in important applications of Computer Vision. We start out with a short introduc-
tion to Geometric Algebra. We then show how uncertain geometry and transformations
can be represented in the algebra and discuss the error introduced when embedding
Euclidean vectors in conformal space. Then we present the novel result that the uncer-
tainty of transformations can be represented by linear subspaces, i.e. through a covari-
ance matrix. Note that this is, for example, not possible for rotation matrices, since the
sub-space of orthogonal matrices is not linear.

Next a number of applications of this methodology are presented. Firstly, estimation
of geometric entities is discussed, where it is, for example, shown that triangulation
of points and lines can be done in much the same way as the fitting of lines, planes,
circles and spheres to a set of points. Next we present two variants of pose estimation,
one of which estimates the pose of a known object given a set of projection rays. The
corresponding constraint equation is quadratic in the components of the transformation
operator, while not making any approximations of the operator. Later on we show how
the estimation of projection rays from corresponding image points can be done via a
matrix multiplication, for a projective and a catadioptric camera with parabolic mirror.
The latter is, to the best of our knowledge, a new result, which makes pose estimation
with catadioptric cameras mathematically as complex as pose estimation with projective
cameras. Furthermore, we also show how uncertain geometric relations can be tested.
This includes next to the test for the intersection of two lines, also tests for tangentiality
of planes to circles and spheres.

2 Geometric Algebra

For a detailed introduction to Geometric Algebra see e.g. [7, 8]. Here we can only give a
short overview. Geometric Algebra is an associative, graded algebra, whereby the alge-
bra product is called geometric product. The Geometric Algebra over a n-dimensional
vector space Rp,q , with n = p + q has dimension 2n and is denoted by G(Rp,q) or sim-
ply Gp,q . Here p denotes the number of basis elements of the vector space that square
to +1 and q the number of basis elements that square to −1. If only one index is given,
it denotes the number of positively squaring basis elements. Elements of different grade
of the algebra can be constructed through the outer product of linearly independent
vectors. For example, if {ai} ∈ Rn are a set of k linearly independent vectors, then
A〈k〉 := a1 ∧ . . . ∧ ak is an element of Gn of grade k, which is called a blade, where
∧ denotes the outer product. A general element of the algebra, called multivector, can
always be expressed as a linear combination of blades of possibly different grades.
Geometric entities are represented in the algebra through blades, while operators are
typically represented by linear combinations of blades of different grades.



Geometric Algebra of Conformal Space To combine projective geometry and kine-
matics we need to consider the Geometric Algebra of the (projective) conformal space
of 3D-Euclidean space (cf. [7]). The embedding function K is defined as K : x ∈
R3 7→ x+ 1

2 x2 e∞+eo ∈ R4,1. The basis ofR4,1 can be written as {e1, e2, e3, e∞, eo},
where e2

i = +1, e2
∞ = e2

o = 0 and e∞ · eo = −1. The various geometric en-
tities that can be represented by blades in G4,1 are shown in table 1. In this table
X,Y ,Z, U ,V ∈ R4,1 are embeddings of points x, y, z, u,v ∈ R3, respectively,
and the eij ≡ ei ∧ ej etc. denote the algebra basis elements of an entity.

In particular, note that the elements homogeneous point, line and plane represent
those elements that can also be expressed in the Geometric Algebra over projective
space. For the homogeneous point, the element eo∞ takes on the role of the homoge-
neous dimension.

Apart from representing geometric entities by blades, it is also possible to define
operators in Geometric Algebra. The class of operators we are particularly interested
in are versors. A versor V ∈ Gn is a multivector that satisfies the following two con-
ditions: V Ṽ = 1 and for any blade A〈k〉 ∈ Gn, V A〈k〉 Ṽ is also of grade k, i.e. a
versor is grade preserving. The expression Ṽ denotes the reverse of V . The reverse
operation changes the sign of the constituent blade elements depending on their grade,
which has an effect similar to conjugation in quaternions. The most interesting versors
for our purposes in conformal space are rotation operators (rotors), translation operators
(translators) and scaling operators (dilators).

All of them share the property that they can be applied to all geometric entities in
the same way. That is, it does not matter whether a blade A〈k〉 represents a point, line,
plane, circle or sphere. If R represents a rotation operations, then the rotated entity is
always given by R A〈k〉 R̃.

Entity Grade No. Basis Elements

Point X 1 5 e1, e2, e3, e∞, eo

Homogen. Point X ∧ e∞ 2 4 e1∞, e2∞, e3∞, eo∞
Point Pair X ∧ Y 2 10 e23, e31, e12, e1o, e2o, e3o, e1∞, e2∞, e3∞, eo∞
Line X ∧ Y ∧ e∞ 3 6 e23∞, e31∞, e12∞, e1o∞, e2o∞, e3o∞

Circle X ∧ Y ∧ Z 3 10
e23∞, e31∞, e12∞, e23o, e31o, e12o,

e1o∞, e2o∞, e3o∞, e123

Plane X ∧ Y ∧ Z ∧ e∞ 4 4 e123∞, e23o∞, e31o∞, e12o∞
Sphere X ∧ Y ∧ Z ∧U 4 5 e123∞, e123o, e23o∞, e31o∞, e12o∞

Reflection 1 4 e1, e2, e3, e∞
Inversion 1 5 e1, e2, e3, e∞, eo

Rotor R 0,2 4 1, e23, e31, e12

Translator T 0,2 4 1, e1∞, e2∞, e3∞
Dilator D 0,2 2 1, eo∞
Motor RT 0,2,4 8 1, e23, e31, e12, e1∞, e2∞, e3∞, e123∞
Gen. Rotor T R eT 0,2 7 1, e23, e31, e12, e1∞, e2∞, e3∞

Table 1. Entities and their algebra basis. Note that the operators are mostly multivectors
of mixed grade.



Representation as Component Vectors Let {Ei} denote the 2n-dimensional algebra
basis ofGn. Then a multivector A ∈ Gn can be written as A = ai Ei, where ai denotes
the ith component of a vector a ∈ R2n

and a sum over the repeated index i is implied.
We will use this Einstein summation convention also in the following, i.e. ai Ei ≡∑

i ai Ei. If B = bi Ei and C = ci Ei, then the components of C in the algebra
equation C = A ◦B can be evaluated via ck = ai bj Gk

ij , where a summation over
i and j is again implied. Such a summation of tensor indices is also called contraction.
Here ◦ is a placeholder for an algebra product and Gk

ij ∈ R2n×2n×2n

is a tensor
encoding this product.

The set of tensor symbols representing the various algebra operations, that we use
in the following, is shown in table 2. This table also gives the symbolic abbreviations
for the Jacobi matrices of the tensor contractions.

For example, the geometric product of multivectors A,B ∈ Gn can be written in
terms of their component vectors a, b ∈ R2n

as ai bj Gk
ij = G(a) b = Ḡ(b) a.

We can reduce the complexity of the tensor equations considerably by only using
those components of multivectors that are actually needed. In the following we therefore
refer to the minimum number of components as given in table 1, when talking about the
component vector of a multivector.

Operation Geometric Product Outer Product Inner Product Reverse Dual

Tensor Symbol Gk
ij Ok

ij Nk
ij Rj

i Dj
i

Jacobi Matrices
G(a) := ai Gk

ij

Ḡ(b) := bj Gk
ij

O(a) := ai Ok
ij

Ō(b) := bj Ok
ij

N(a) := ai Nk
ij

N̄(b) := bj Nk
ij

R := Rj
i D := Dj

i

Table 2. Tensor symbols for algebra operations and corresponding Jacobi matrices.
Note that for tensors with two indices (i.e. matrices) we define the first index to denote
the matrix row and the second index the matrix column.

3 Geometric Algebra with Uncertain Entities

In order to describe the uncertainty of multivectors, we need to expressed them as com-
ponent vectors and algebra operations as tensor contractions.

Operations between Multivectors We now give a short description of error propa-
gation for operations between uncertain multivectors. This is based on the assumption
that the uncertainty of a multivector can be modeled by a Gaussian distribution. Hence,
the probability density function of a random multivector variable is fully described by a
mean multivector and a covariance matrix. Using error propagation we can then evalu-
ate the mean and covariance of a function of random multivector variables. In particular,
this allows us to evaluate the mean and covariance of algebra products between multi-
vector valued random variables. For a detailed introduction to error propagation see [9,
10].



We will denote a random variable by an underbar, its expectation or mean value by
the symbol itself, the expectation operator by E and the covariance matrix of a random
vector variable a by Σa,a. The cross-covariance matrix between two random variables
a and b, say, will be written as Σa,b.

Let A, B ∈ Gn be two general random multivector variables and a, b ∈ R2n

their
component vectors. Furthermore, let C ∈ Gn be given by C = A B. It then follows
that c = G(a) b. Since we assume the random vector variables to have Gaussian proba-
bility density distributions, we would like to know the expectation value and covariance
matrix of C, given the expectation values and covariance matrices of A and B. Error
propagation yields,

c = G(a) b and Σc,c = Ḡ(b) Σa,a Ḡ(b)T + G(a)Σb,b G(a)T

+ Ḡ(b) Σa,b G(a)T + G(a) Σb,a Ḡ(b)T.

(1)

Note that this equation is only an approximation. In the case of the geometric prod-
uct, the exact expression for evaluating the mean of a product of two random variables
is ck = ai bj Gk

ij + Σij
a,b Gk

ij . Furthermore, the exact expression for the covariance
matrix Σc,c is the one given in equation (1) minus the term (Σrs

a,b Gi
rs) (Σrs

a,b Gj
rs).

That is, if a and b are statistically independent, then equation (1) is the exact expression
for the error propagation in all algebra products.

The meaning of the term Σij
a,b Gk

ij can be understood when writing the cross-
covariance matrix in terms of a singular value decomposition (SVD). Let {un} and
{vn} denote the set of left and right singular column vectors of Σa,b, and let the {σn}
denote the corresponding set of singular values. Then Σa,b =

∑
n σn un vT

n , and thus
Σij

a,b Gk
ij =

∑
n σn ui

n vj
n Gk

ij . That is, the correction term Σij
a,b Gk

ij is a linear
combination of the geometric products of corresponding left and right singular vectors
of Σij

a,b. The order of magnitude of this correction is the sum of the singular values.
Similarly, the order of magnitude of the correction to the covariance matrix is the square
of the sum of the singular values.

Conformal Space We want to work with uncertain geometric entities and operators in
conformal space. However, the initial data we will be given, has almost invariably been
measured in Euclidean space. We therefore have to embed the Euclidean data and its
uncertainty in conformal space.

Let a ∈ R3 be a Euclidean random vector variable with covariance matrix Σa,a,
and A ∈ R4,1 be defined by A := K(a). It may then be shown that A = E [K(a)] =
a + 1

2 a2 e∞ + eo + 1
2 tr(Σa,a) e∞. Note that by definition of the geometric product

a2 ≡ ‖a‖2. Typically the trace of Σa,a is negligible compared to ‖a‖2, which leaves
us with A = K(a). If we denote the Jacobi matrix of K evaluated at a by JK(a), then
the error propagation equation for the covariance matrix can be written as ΣA,A =
JK(a) Σa,a JT

K(a). Denoting by I ∈ R3×3 the identity matrix and by a ∈ R3 the
column component vector of a, the Jacobi matrix JK(a) ∈ R5×3 is given by JK(a) =
[ I a 0 ]T.

From the definition of the conformal embedding function K it follows that K maps
the Euclidean space onto a paraboloid in R4,1, the so called horosphere [11]. However,



this implies that when we move a vector A = K(a) within the subspace spanned by its
covariance matrix ΣA,A, it will no longer exactly represent a point. In fact, the subspace
spanned by ΣA,A is tangential to the horosphere at A. For small covariances of A this
is still a good approximation. Furthermore, if we only need an affine point (A ∧ e∞),
then the quadratic component of A is removed and the corresponding covariance matrix
gives an exact description of the uncertainty.

Depending on the application, it may or may not be necessary to express entities
of the Geometric Algebra of conformal space in Euclidean terms. The only geometric
entities that may be projected back directly into Euclidean space are points. However,
if the goal is to test geometric relations, then a projection back into Euclidean space is
not necessary.

Given a point in conformal space as A = α1 e1 +α2 e2 +α3 e3 +α∞ e∞+αo eo,
the projection operation K−1 back into Euclidean space is given by K−1(A) = a/αo,
where a := α1 e1+α2 e2+α3 e3. That is, eo takes on the function of the homogeneous
dimension. If we again denote the component vector of a by a, then the corresponding
Jacobi matrix JK−1(A) ∈ R3×5 is given by JK−1(A) = 1

αo [ I 0 − a/αo ].

Blades and Operators In this section we will show that covariance matrices can be
used to describe the uncertainty of blades and operators in Geometric Algebra. The
fundamental problem is, that while covariance matrices describe the uncertainty of an
entity through a linear subspace, the subspace spanned by entities of the same type may
not be linear.

For example, Heuel [2] describes the evaluation of general homographies, by writ-
ing the homography matrix H as a vector h and solving for it, given appropriate con-
straints. It is then also possible to evaluate a covariance matrix Σh,h for h. While this
is fine for general homographies, Heuel also notes that it is problematic for constrained
transformations like rotations, since the necessary constraints on h are non-linear. The
basic problem here is that the subspace of vectors h that represent rotation matrices, is
not linear. Hence, a covariance matrix for h is not well suited to describe the uncertainty
of the corresponding rotation matrix.

The question therefore is, whether the representation of geometric entities and op-
erators in Geometric Algebra allows for an uncertainty description via covariance ma-
trices. For example, consider a line L, which may be represented in conformal space as
L = X ∧ Y ∧ e∞ (cf. table 1). The six components of L are the well known Plücker
coordinates, which have to satisfy the Plücker condition in order to describe a line. In
Geometric Algebra the Plücker condition is equivalent demanding that L is a blade, i.e.
it can be factorized into the outer product of three vectors.

If we want to describe the uncertainty of a line L with a covariance matrix, the
sum of the component vector of L with any component vector in the linear subspace
spanned by the covariance matrix, has to satisfy the Plücker condition. Here we only
want to motivate that such a linear subspace can exist. For that purpose suppose that the
covariance matrix of X has rank 1 with eigenvector D ∈ R4,1 and Y is a point without
uncertainty. If a scaled version of D is added to X , then the L changes according to
the following equation.

(X + α D) ∧ Y ∧ e∞ = X ∧ Y ∧ e∞ + α (D ∧ Y ∧ e∞), (2)



Fig. 1. Effect of adding each of the six eigenvectors of the covariance matrix of a rotor onto the
rotor’s component vectors. In each of the images, the darker rotor is the initial one.

where α ∈ R. Thus any scaled version of D∧Y ∧e∞ can be added to L, such that their
sum still satisfies the Plücker condition. Furthermore, D ∧ Y ∧ e∞ is the eigenvector
of the covariance matrix of L.

Since rigid transformation operators also consist of blades, they inherit the same
property. For example, a rotor representing a rotation about an arbitrary axis, can be
generated by the geometric product of the dual of two planes, that intersect in a line.
(If the planes are parallel they result in a translation operator.) The rotation axis is
then this intersection line and the rotation angle is twice the angle between the planes.
Using error propagation we can in this way construct an uncertain rotor. It turns out
that the corresponding covariance matrix can be at most of rank six. The effect on the
rotation operation when transforming such an uncertain rotor separately along the six
eigenvectors of its covariance matrix is shown in figure 1.

Expressing uncertain transformation operations, like rotation and translation, through
elements of the Geometric Algebra of conformal space, therefore offers an advanta-
geous description compared to matrices, since the space of rotation matrices is not lin-
ear. In synthetic experiments presented in [6], it was shown that this results in a robust
estimation of operators.

Furthermore, note that the sub-algebra of rotors for rotations about the origin, is
isomorphic to the quaternion algebra and the sub-algebra of motors is isomorphic to the
dual quaternions [12, 13]. Compared to quaternions and dual quaternions, the Geomet-
ric Algebra of conformal space allows us not only to describe the operators themselves,
but also to apply them to any geometric entity that can be expressed in the algebra. In
contrast, when using quaternions only points can be represented by pure quaternions
(i.e. no scalar part), and in the dual quaternions only lines can be represented.

4 Applications

In this section we give a number of examples of how uncertain Geometric Algebra can
be applied to various problem settings in Computer Vision. The type of problems can
be roughly separated into three different categories: construction, estimation and the
testing of geometric relations of uncertain entities. For example, given the uncertain
optical center of a camera and an uncertain image point, we can construct the uncer-
tain projection ray. On the other hand, given a number of such uncertain projection
rays, which should all meet in one point, we can estimate that point and its uncertainty.
Alternatively, we could also test the hypothesis that two projection rays meet.



Geometric Entity Estimation A fundamental problem that often occurs is the evalua-
tion of a geometric entity based on the measurement of a number of geometric entities
of a different type. For example, suppose we want to find the line L that best fits a given
set of points {Xn}. Additionally, we also want to obtain a covariance matrix for the es-
timated line. This can be achieved using the Gauss-Helmert (GH) model as described
in [6, 2, 9, 10]. The GH-model allows us to evaluate a parameter vector with associated
covariance matrix, given a set of data vectors with covariance matrices, a constraint
function between data and parameter vectors and possibly a constraint function on the
parameters alone. The resultant parameter vector is the solution to a system of linear
equations that depends on the Jacobi matrices of the constraint functions, the data and
the covariance matrices.

In terms of the GH-model, the parameters are the components l of the line L that
is to be estimated, and the data vectors {xn} are the component vectors of the points
{Xn}. The constraint function Q(Xn, L) between data and parameters has to be zero
if a point lies on the line. The constraint function on the parameters alone H(L) has to
be zero if L does indeed represent a normalized line, i.e. l satisfies the Plücker condition
and lT l = 1.

In this case Q(Xn, L) = Xn∧L, or qk(xn, l) = xi
n lj Ok

ij and H(L) = LL̃−1,
or hk(l) = li1 lj Ri2

j Gk
i1i2 − δk

1, where δk
j is the Kronecker delta, and index 1 is

assumed to be the index of the scalar component of the corresponding multivector. The
Jacobi matrices of q are Qk

nj = xi
n Ok

ij and Q̄k
i = lj Ok

ij and the Jacobi matrix
of h is Hk

j = li1 (Ri2
i1 Gk

ji2 + Ri2
j Gk

i1i2). With these definitions of the constraint
functions and their Jacobi matrices, we can now apply the GH-model, to evaluate the
best uncertain line that fits the given uncertain points.

Table 3 lists the constraint functions Q between geometric entities, that result in a
zero vector if one geometric entity is completely contained within the other. For exam-
ple, the constraint between two lines is only zero if the multivectors describe the same
line up to scale. The constraint function H stays the same for all parameter types. Note
in particular that instead of fitting a line to a set of points, we can also fit a point to a set
of lines. This can, for example, be used for triangulation, where the best intersection of a
set of projection rays has to be evaluated. Similarly, the best intersection line of a set of
projective planes can found. In table 3, the symbols×− and×− denote the commutator and
anti-commutator product, respectively, which are defined as A×−B = 1

2 (AB −B A)
and A×−B = 1

2 (AB + B A).

↓ Data, Parameter→ Point X Line L Plane P Circle C Sphere S

Points {Yn} X ∧ Yn L ∧ Yn P ∧ Yn C ∧ Yn S ∧ Yn

Lines {Kn} X ∧Kn L×−Kn P×−Kn

Planes {On} X ∧On L×−On P×−On

Circles {Bn} X ∧Bn C×−Bn S×−Bn

Spheres {Rn} X ∧Rn C×−Rn S×−Rn

Table 3. Constraints between data and parameters that are zero if the corresponding geometric
entities are contained in one another.



Pose Estimation An important problem in Computer Vision is the estimation of the
relative pose of two objects. The simplest instance of this problem is to find the un-
known rigid body transformation M that maps a set of points {Xn} into the set {Yn},
i.e. Yn = M Xn M̃ . Since M M̃ = 1, the constraint equation is Q(Yn, M) =
M Xn − Ym M and in this way gives a linear constraint on M . In terms of the
parameter vectors this constraint can be written as Q(yn, m) = yj

n mr Qk
jr, with

Qk
rj := (xi

n Gk
ri − Gk

jr) and thus an initial solution for m is given by the com-
mon right null space of Q(yn) = yj

n Qk
jr for all n (cf. [3]). When using the GH-

model to estimate M and its covariance matrix, then the constraint on M alone is
again M M̃ − 1 = 0. Experimental results of this method can be found in [6].

A more complicated, but also more interesting case of pose estimation is to fit a
given set of model points onto a corresponding set of projection rays. This occurs,
when we want to estimate the camera or object pose from a single view of a known
object. Let Ln denote the projection ray of the transformed model point M Xn M̃ ,
where M denotes the unknown motor. Then the constraint equation is Q(Ln, M) =
Ln ∧ (M Xn M̃). This equation cannot be made linear in M , since Qn(ln, m) =
lk1
n mp1 mq2 Qr

n k1 p1 q2
, with

Qr
n k1 p1 q2

= xp2
n Gq1

p1p2 Gk2
q1q2 Or

k1k2 . (3)

Thus we also cannot immediately obtain an initial estimate for m from a null space of
Q. Nonetheless, we have a constraint equation for the evaluation of a motor, that is only
quadratic in the components of the motor, without having made any approximations,
like a small angle approximation.

We developed a robust method to evaluate an initial estimate for m using a geomet-
ric construction [14]. Alternatively, an initial estimate for m may be given through a
tracking assumption. Once an initial estimate for m is known, Qn(ln, m) may again be
used in the GH-model approach. The constraint on M is M M̃ − 1 = 0, as before.

We tested this approach on synthetic data in the following way. First random model
points were generated and transformed by a ”true” rigid transformation. Then a covari-
ance matrix was associated with each transformed model point and error vectors were
added to the transformed model points according to their respective covariance matri-
ces. Note that the error vectors were parallel to the image plane. These points were
then projected onto a virtual camera. We then estimated the rigid transformation that
best mapped the initial model points onto the noisy projection rays using the above de-
scribed method. The results are shown in table 4. Here µr denotes the mean length of
the error vectors added to the model points, and µ denotes the mean Euclidean distance
between the projection rays and the model points transformed with the true, the initial
estimate and the Gauss-Helmert (GH) estimate of the transformation, respectively. The
σ columns give the corresponding standard deviations. The values shown are the mean
of 800 runs with varying ”true” transformations. It can be seen that the Gauss-Helmert
approach always leads to good results, which are better than the estimate with the ”true”
and ”initial” transformation. Note that since random vectors were added to the model
points, the initially ”true” transformation, need not anymore be the best solution.



True Initial GH
µr µ σ µ σ µ σ

0.200 0.227 0.037 0.233 0.045 0.215 0.040
0.283 0.320 0.051 0.330 0.066 0.304 0.055
0.416 0.470 0.074 0.476 0.095 0.441 0.081

Table 4. Results of pose estimation for a synthetic experiment.

↓ Entity→ Line L Circle C Sphere S

Line K K∗ · L (K∗ ·C)2 (K∗ · S)2

Circle B (B∗ ·C)2 (B∗ · S)2

Sphere R (R∗ · S)2

Table 5. Constraints between geometric entities that yield zero if they intersect in a single point.

Testing Uncertain Geometric Relations Given uncertain geometric entities, a ques-
tion like ”does point X lie on line L” is not very useful, since the probability that
this occurs for ideal points and lines is infinitesimal. We therefore follow the method
described by Heuel and Förstner in [2, 1], who apply statistical hypothesis testing as
described in [9].

The basic idea is that the hypothesis H0 ”X lies on L” is tested against the hy-
pothesis H1 ”X does not lie on L”. In order to perform the hypothesis test, we need
to fix the probability α that we reject H0 even though it is true. Furthermore, we as-
sume that a vector valued distance measure q with associated covariance matrix Σq,q is
given, which is zero if X is incident with line L. Then hypothesis H0 can be rejected
if qT Σ−1

q,q q > χ2
1−α;n, where χ2

1−α;n is the (1−α)-quantile of the χ2
n distribution for

n degrees of freedom. Note that if Σq,q is not of full rank, its pseudo-inverse can also
be used in the above equation.

The distance measure Q for the containment of geometric entities is just given by
the constraint equations of table 3. The covariance matrix Σq,q can then be evaluated
with equation (1) using the appropriate Jacobi matrices.

Furthermore, the distance measure Q for the intersection in a single point (not con-
tainment as in table 3) is given in table 5. Note that the relation between lines and circles
and two circles is also zero, if the entities are co-planar. Also, note that if a plane and a
sphere intersect in a single point, the plane is tangential to the sphere. That is, we can
also test tangentiality in this way.

In terms of the component vectors we have, for example, for two lines qk(k, l) =
ki lj2 Dj1

i Nk
j1j2 , with Jacobi matrices Qk

j2(k) = ki Dj1
i Nk

j1j2 and Q̄k
i(l) =

lj2 Dj1
i Nk

j1j2 , which can be used in equation (1) to evaluate Σq,q. For line and circle
we have

qs(k, c) = wr1(k, c)wr2(k, c) Gs
r1r2 , wk(k, c) = ki cj2 Dj1

i Nk
j1j2 . (4)

When evaluating the covariance matrix for q(k, c) one also has to include the cross-
correlation part of equation (1) with cross-correlation matrix Σw,w in the calculation.



Fig. 2. a) Projection on a parabolic mirror and b) its mathematical representation as stereographic
projection.

Projective Camera A central aspect of Computer Vision is the projection of points and
lines onto the image plane of a projective camera and also the reconstruction of points
and lines in 3D-space from their projections.

The projection of a point X onto the image plane PA of a camera with optical
center A can be evaluated as the intersection of the projective ray A ∧X ∧ e∞ with
PA. The projected point XA is then given by XA = (A ∧X ∧ e∞) · P ∗

A. Note that
this description of a camera is intimately related to the corresponding camera matrix as
is shown in [15]. Using this formula we can immediately evaluate the projection of an
uncertain point, whereby also an uncertainty of the camera basis can be accounted for.
Note that the resultant projected point is an affine point as described in section 2.

Conversely, if we are given an uncertain image point XA (as a standard point), and
we would like to estimate the corresponding uncertain projection ray L, we can use the
relation L = A∧XA ∧ e∞. If we assume that A is a certain point, then this becomes,
in terms of the component vectors, l = K xA and Σl,l = K ΣxA,xA

KT, with

Kk
i2 = ai1 ej2∞ Oj1

i1i2 Ok
j1j2 , (5)

Note that K ∈ R6×5, since xA contains the five components of a standard point and l
the six Plücker coordinates of the projective ray. An uncertain projection ray evaluated
in this way may, for example, be used in the pose estimation approach described above.

Catadioptric Camera We now show how the projection ray related to an image point
in a catadioptric camera with a parabolic mirror can be constructed using Geometric
Algebra. Figure 2a shows the basic setup of a catadioptric imaging system with a par-
abolic mirror. A light ray emanating from point X in the world that would pass through



the focal point F of a parabolic mirror (shown with a half-transparent checkered tex-
ture), is reflected down at point XM with direction parallel to the axis of the parabolic
mirror. If below the mirror a projective camera is placed focused to infinity, then an
image as shown in the figure is generated. Schematically we can replace the projective
camera with an orthogonal one, and then obtain image point XI from world point X .

In [16], Geyer and Daniilidis show that this type of image generation can mathe-
matically be modeled as shown in figure 2b. The world point X is projected onto a
unit sphere, centered on the focal point of the parabolic mirror, thus generating XS . A
stereographic projection of XS then results in X ′

I , which lies on the plane bisecting
the sphere perpendicular to the parabolic mirror’s axis. Projecting X ′

I parallel to the
parabolic mirror’s axis, then generates the same image point XI as before.

We found that the stereographic projection of the latter method can be replaced by
an inversion in the sphere centered on N with radius

√
2. This allows us to perform

the following geometric construction using the Geometric Algebra of conformal space.
Suppose we are given an image point XI with an associated covariance matrix and we
would like to evaluate the corresponding uncertain projection ray passing through the
focal point of the parabolic mirror F and XS . First of all, we can move XI to X ′

I

without the need for error propagation. If S represents the inversion sphere centered
on N with radius

√
2, then XS = S∗X ′

I S∗. The projection ray L is then given by
L = F ∧ e∞ ∧ XS = F ∧ e∞ ∧ (S∗X ′

I S∗). Again we can apply standard error
propagation to obtain the covariance matrix of L.

If we assume that F and S are ideal, that is they are not regarded as uncertain
entities, then L and its covariance matrix can be evaluated from X ′

I via matrix mul-
tiplications using the corresponding component vectors. Let e∞, f, s, l and xI denote
the component vectors of e∞, F , S∗, L and X ′

I , respectively. Then l = KxI and
Σl,l = K ΣxI ,xI

KT, where

Kr
k2 = fi1 ei2∞ sk1 sl2 Gl1

k1k2 Oj1
i1i2 Gj2

l1l2 Or
j1j2 . (6)

Note that K ∈ R6×5, since l contains the six Plücker coordinates of the projective ray
and xI the five components of a standard point in conformal space. Again, an uncer-
tain projection ray evaluated in this way may be used in the pose estimation approach
described above.

5 Conclusions

We have presented a unifying framework for the description of uncertain geometry and
kinematics. It was shown that the Geometric Algebra of conformal space can be applied
to many important applications of Computer Vision and can deal with the invariably
occurring uncertainties of geometric entities and transformations, in an appropriate way.

A result of particular importance is that covariance matrices can appropriately rep-
resent the uncertainty of algebra entities that represent transformations. This is, for ex-
ample, not possible for rotation matrices, since orthogonal matrices do not span a linear
subspace.

Furthermore, a novel pose estimation approach was introduced, which is quadratic
in the components of the transformation, without having made any approximations.



A uniform framework for geometric entity fitting and triangulation and the testing of
uncertain geometric relations was presented. Finally, the treatment of catadioptric cam-
eras with parabolic mirrors within this framework was discussed. The main result here
was that the construction of projection rays from image points, which is needed for
pose estimation, can be achieved by a simple matrix multiplication for projective and
catadioptric cameras.

We believe these results show that a combination of an algebraic description of
geometric problems, with a linear algebra approach to their numerical solution, offers a
valuable framework for the treatment of many Computer Vision applications.
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