
The Inversion Camera Model ?

Christian Perwass and Gerald Sommer

Institut für Informatik, CAU Kiel
Christian-Albrechts-Platz 4, 24118 Kiel, Germany

chp,gs@ks.informatik.uni-kiel.de

Abstract. In this paper a novel camera model, the inversion camera
model, is introduced, which encompasses the standard pinhole camera
model, an extension of the division model for lens distortion, and the
model for catadioptric cameras with parabolic mirror. All these different
camera types can be modeled by essentially varying two parameters. The
feasibility of this camera model is presented in experiments where object
pose, camera focal length and lens distortion are estimated simultane-
ously.

1 Introduction

In a typical application utilizing wide angle lens cameras, the cameras’ images
have to be rectified before they can be used. Various lens distortion models
have been suggested for this purpose, like the widely used polynomial model [5],
the bicubic model [7], the rational model [1] or the division model [3]. Another
type of imaging systems that are particularly useful for navigation applications
are catadioptric cameras, since they allow a 360 degree view in a single image.
Geyer and Daniilidis showed in [4] how such systems can be modeled quite easily
mathematically.

In this paper a novel camera model, the inversion camera model, is intro-
duced, which combines the pinhole camera model, a lens distortion model and a
model for catadioptric cameras with parabolic mirrors. As is shown later on, the
lens distortion model is just the division model introduced by Fitzgibbon in [3]
and the catadioptric camera model has been first presented by Geyer and Dani-
ilidis in [4]. However, the authors found that both models can be represented in
much the same way using inversion in a sphere. This also extends the division
model to lenses with an angular field of view (FOV) of 180 degrees or more.

Inversion in a sphere can be represented as a (tri-)linear function in the
Geometric Algebra of conformal space, which makes this algebra an ideal math-
ematical framework to work with the inversion camera model. The inversion
camera model can be expressed as an algebraic entity of Geometric Algebra, i.e.
a multivector, and a covariance matrix can be associated with it, which makes it
directly applicable to statistical linear estimation methods as presented in [10, 9].
This is demonstrated in section 3, where results of the simultaneous estimation
of object pose, camera focal length and lens distortion are presented.
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(a) Basic pinhole camera setup. (b) Pinhole camera setup with inversion.

(c) Projective camera with lens distor-
tion.

(d) Parabolic catadioptric camera.

Fig. 1. Different cameras representable by inversion camera model.

A detailed understanding of Geometric Algebra is not necessary to follow the
ideas presented in this paper. General introductions to Geometric Algebra can
be found in [11, 6, 2]. Discussions of the application of Geometric Algebra to the
estimation of geometric entities and operators, which are most closely related to
this text, are [12, 10, 9].

The structure of this paper is as follows. First a general introduction to
the inversion camera model is given, which is followed by a detailed discussion
of the representation of lens distortion and parabolic mirror imaging systems.
Finally, experiments on the simultaneous estimation of pose, focal length and
lens distortion are presented to test the feasibility of the inversion camera model.

2 The Inversion Camera Model

The basic setup of the inversion camera model is shown schematically in figure
1 for the different imaging setups. Figure 1(a) shows the setup of the pinhole
camera model. Point F is the focal point or optical center, point X is a world
point and Y is the image of X on the image plane Pimg. In a typical problem
setup, the image point Y is given and the projection ray L has to be evaluated.



If the pinhole camera’s internal calibration is given, the projection ray L can
immediately be evaluated in the camera’s coordinate frame.

In the inversion camera model this pinhole camera setup is represented as
shown in figure 1(b). The sphere Sinv with center Cinv is used to perform an
inversion of the image plane Pimg which results in the sphere Simg. In particular,
image point Y is mapped to point Z. In figure 1(b) the center Cinv of inversion
sphere Sinv coincides with the focal point F . In this case the inversion of Y in
Sinv results again in a point on the projection ray L, independent of the inversion
sphere radius. Therefore, this setup is equivalent to the standard pinhole camera
setup.

Figure 1(c) demonstrates what happens when the inversion sphere is moved
below the focal point. Now the image point Y is mapped to Z under an inversion
in Sinv. The corresponding projection ray L is constructed by F and Z and thus
does not pass through Y anymore. It will be shown later on that this results in
a lens distortion model similar to the division model proposed by Fitzgibbon [3].

Simply by moving the inversion sphere Sinv and the image plane Pimg, cata-
dioptric cameras with a parabolic mirror can be modeled. This construction is
shown in figure 1(d), and is based on work by Geyer and Daniilidis [4]. An in-
version of image point Y in sphere Sinv generates point Z. In this case, it is
equivalent to an inverse stereographic projection of Y on the image sphere Simg,
which is how this mapping is described in [4]. The corresponding projection ray
L is again the line through F and Z.

The image Y of a world point X generated in this way is equivalent to the
image generated by a parabolic mirror whose focal point lies in F , as is shown
in [4]. That is, a light ray emitted from point X that would pass through the
focal point F of the parabolic mirror, is reflected down parallel to the central
axis of the parabolic mirror. This is also indicated in figure 1(d). The reflected
light ray intersects the image plane Pimg exactly in the point Y .

While the construction for the parabolic mirror in terms of a stereographic
projection has been known for some while, the authors recognized that the stere-
ographic projection can be replaced by an inversion, which makes this model
readily representable in the Geometric Algebra of conformal space (CGA). In
the following the mathematical details of the inversion camera model will be
discussed.

Mathematical Formulation In all calculations that follow, a right handed
coordinate system is assumed, whereby e1 points towards the right along the
horizontal image plane direction, e2 points upwards along the vertical image
plane direction and e3 points from the image plane center towards the focal
point or optical center. This implies that objects that are in front of the camera
will have a negative e3 coordinate.

The geometric setup of the inversion camera model as presented in the pre-
vious section, can be modeled algebraically in CGA as follows. Like all transfor-
mations in Geometric Algebra, the image point transformation in the inversion
camera model will be represented by a versor K. That is, if Y represents an



image point, then Z := K Y K̃ is the transformed image point. As can be seen
in figure 1 the point Z will in general not lie on the image plane. However, the
goal is to find a K such that Z lies on the ’correct’ projection ray. The trans-
formed image point in the image plane can then be estimated by intersecting
the projection ray with the image plane.

One of the simplest forms K can take on is

K = Ts S T̃s D, (1)

where S is a sphere centered on the origin, Ts is a translator (translation oper-
ator) and D a dilator (isotropic scaling operator). This form was also found to
behave well numerically. The dilator scales the image, which has the same effect
as varying the focal length, if the inversion sphere Sinv := Ts S T̃s is centered
on the focal point (cf. figure 1(b)). If the inversion sphere is not centered on
the focal point, the dilator also influences the distortion. In the following, the
transformation K Y K̃ is analyzed in some detail.

To simplify matters, it is assumed that Ts translates the inversion sphere
only along the e3 axis. Furthermore, S is a sphere of radius r centered on the
origin. This is expressed in CGA as S := eo− 1

2 r2 e∞ and Ts := 1− 1
2 τs e3 e∞.

It may then be shown that Sinv = Ts S T̃s = s1 e3 + 1
2 s2 e∞ + eo, with s1 := τs

and s2 := τ2
s − r2. The inversion sphere Sinv can thus be regarded as a vector

with two free parameters, that influence the sphere’s position along e3 and its
radius.

The dilation operator D for a scaling by a factor d ∈ R is given by D =
1 + 1−d

1+d E, where E := e∞ ∧ eo. For brevity we define τd := − 1−d
1+d , such that

D = 1− τd E. The image point transformation operator K is then given by

K = Sinv D = k1 e3 + k2 e∞ + k3 eo + k4 e3 E, (2)

with k1 := s1, k2 := 1
2 s2 (1− τd), k3 := 1 + τd and k4 := −τd s1.

In the model setup, the image plane Pimg passes through the origin and is
perpendicular to e3. That is, image points lie in the e1−e2-plane. An image point
will be denoted in Euclidean space by y ∈ R3 and its embedding in conformal
space by Y := C(y) ∈ G4,1, that is Y = y + 1

2 y2 e∞ + eo. The embedded
image point Y is then mapped to the point Z on the image sphere Simg, via
Z = K Y K̃. Intersecting the line through the focal point F and the transformed
point Z with the image plane gives the respective undistorted Euclidean image
point yd ∈ R3. From a straight forward, if tedious calculation, it follows that

yd =
−(s2

1 − s2) d

s1 (s2 − s1) + (s1 − 1) d2 y2
y =

β

1 + α y2
y, (3)

where α := (s1−1) d2

s1 (s2−s1)
and β := −(s2

1−s2) d
s1 (s2−s1)

. Note that yd/β is the division model
as proposed by Fitzgibbon in [3].

Typically, lens distortion models are used to remove the distortion in an image
independent of the focal length or angular field of view (FOV) of the imaging



system that generated the image. This is usually done by either requiring that
lines which appear curved in the image have to be straight, or by enforcing
multi-view constraints given a number of images of the same scene. The rectified
image can then be used for any other type of application. For this purpose and
for lenses with a FOV of at most 180◦, the inversion model is equivalent to the
division model.

However, here the applicability of the inversion model as a camera model is
investigated. That is to say, the lens distortion of a camera system is modeled
directly in the context of a constraint equation. This is shown in section 3 in the
context of monocular pose estimation.

Focal Length and Lens Distortion Relationship The distortion generated
by the inversion model as given in equation (3), has the effect that focal length
and distortion are not independent, since α and β are not independent. The fac-
tor β mainly represents an overall scaling of the image, while α mainly influences
the distortion. The exact relationship will be discussed in the following.

First of all, note that the interrelation of α and β does not represent a
drawback as compared to the division model, if the image rectification is done
independently and previous to any other calculations, as pose estimation. How-
ever, if the inversion camera model is used directly in a constraint equation as
in equation (5) in section 3, then not every level of distortion can be rectified
for every focal length or field of view (FOV).

The relationship between the transformed image point yd and the initial
image point y is given by the factor ω := β

1+α y2 , such that yd = ω y. The
factor ω is therefore a function of the squared radial distance y2 of an image
point from the image center. The locations of constant ω in an image thus form
concentric circles about the image center. These circles will be called iso-circles
in the following. An iso-circle of particular interest in the analysis is the one that
touches the upper and lower borders of the image, i.e. its radius is equal to half
the vertical extent of the image. This particular iso-circle will be called vertical
iso-circle and its radius will be denoted by ρv.

The value of ω for image points on the vertical iso-circle is directly related
to the vertical angular field of view (vFOV). Note that the relation to the focal
length is more complex if lens distortion is present, since the focal length is now
a function of y2. That is, the focal length depends on the position of an image
point in the image. It is therefore more useful to define an effective focal length
(EFL) as the focal length of the image points on the vertical iso-circle.

The value of ω for image points on the vertical iso-circle will by denoted by
ωv and is given by ωv = β

1+α ρ2
v
. The Euclidean position vector f of the focal

point is in the following parameterized as f = τf e3. That is, if the image is
neither scaled nor distorted, τf is the focal length. It may be shown that the
EFL fe is related to ωv by fe = τf/ωv.

It is possible to vary the inversion sphere center τs and the image scaling d
such that the diagonal angular field of view (dFOV), i.e. the image distortion,



Fig. 2. Vertical vs. diagonal field of view (FOV) for pinhole model (mid-
dle, green graph), maximum trapezoidal (top, red graph) and maximum
cushion (bottom, blue graph) distortion. Inversion sphere radius is 0.5.

is varied, while fe and thus the vFOV are kept constant. This relationship is
shown in figure 2.

Here τf = 1, r = 0.5 and the image plane size was assumed to be 23.7 ×
15.6mm, which is the CCD-chip size of a D70 digital SLR camera. The middle,
green line shows the relation between the vFOV and the diagonal angular field
of view (dFOV) for a standard pinhole setup. The top, red line gives the relation
for maximum trapezoidal distortion and the bottom, blue line for the maximum
cushion distortion. It was found that the maximum dFOV does not depend on
τf or r. The location of the kink in the minimum dFOV plot does depend on
the combination of τf and r, though.

To check, whether the inversion camera model can model actual lenses, the
vFOV and dFOV of two lenses were measured and plotted. The first was the
zoom lens SIGMA DC 18-125mm, 1:3.5-5.6 D, set to 18mm. This lens lies in the
achievable distortion range of the inversion camera model.

The second lens was the Nikkor AF Fisheye 10.5mm, 1:2.8 G ED. This lens
is a corrected fisheye, whereby the image does not appear circular but fills the
whole image. This is achieved by obtaining a 180◦ FOV only along the diagonal
and compressing the image more along the vertical than the horizontal. As can
be seen in figure 2 the 10.5mm lens cannot correctly be represented by the
inversion camera model. This is due to the different type of projection of fisheye
lenses, which cannot be modeled by the inversion camera model. In the pose
estimation experiments presented in section 3, it turns out that the inversion
camera model approximates the 10.5mm lens well enough, though, to achieve
good pose estimation results.

It is important to note that the above analysis is only an indicator whether
a lens may be representable in the inversion camera model, since the actual lens



distortion will in general be a more complex function. However, it was already
shown in [3] that the division model, which is equivalent to the inversion model in
the case of lens distortion, is a sufficiently good approximation of lens distortion
for many applications.

Catadioptric Camera with Parabolic Mirror With respect to figure 1(d),
the generation of image point Y from world point X via reflection at a parabolic
mirror, can be represented mathematically by projecting X onto the sphere Simg

followed by an inversion in the sphere Sinv. In contrast to the inversion model
setup for lens distortion, the focal point F lies on the image plane in this case.

The relation of the physical parabolic mirror with respect to the mathemat-
ical setup is indicated in figure 1(d). In a standard setup the sphere Simg has
unit radius and is centered on the focal point F of the parabolic mirror. The
corresponding parabolic mirror then has to pass through the intersection points
of Simg with the image plane Pimg. The inversion sphere Sinv has to be centered
on Cinv and has to pass through the intersection points of Simg with Pimg. This
fixes the radius of Sinv to be

√
2.

If the location and radius of the inversion sphere Sinv is fixed, the only free
parameter left in the inversion camera model from equation (1) is the dilation,
i.e. scaling of the image.

It may be shown that the relation between the image scaling d and the
focal length of the parabolic mirror µ is given by d = 1/(2µ). The image point
transformation operator for such a parabolic mirror setup is therefore K =
Sinv D whereby

Sinv = −e3 − 1
2 e∞ + eo, D = 1 +

2 µ− 1
2 µ + 1

E. (4)

3 Experiments

The accuracy of the inversion camera model as compared to other lens distortion
models, is the same as that of the division model introduced in [3]. A comparison
of a number lens distortion models, including the division model can be found
in [1], where it is shown that the division model with one free parameter has
a rectification quality that is comparable to a fourth order radial polynomial
approach with two free parameters.

To demonstrate the feasibility of the inversion camera model in the context
of an application, monocular pose estimation experiments were carried out. In
these experiments not only the pose of a known object from a single camera view
was estimated but also the camera’s focal length and lens distortion. In the case
of a catadioptric imaging system with a parabolic mirror, the object’s pose and
the mirror’s focal length were computed.

The monocular pose estimation treated here, assumes that a model of the
object is known, whose pose in space (location and orientation) is to be esti-
mated. This model is given as a set of feature points, and it is also assumed that
the correspondences between object feature points and image points are known.



Monocular Pose Estimation The problem is therefore to evaluate the trans-
formation operator (motor) M , such that a model point X comes to lie on the
projection ray of a corresponding image point Y . If lens distortion is present or
a catadioptric imaging system is used, the image point has to be transformed to
a rectified point Z, via Z = K Y K̃, where K implements the inversion camera
model. Hence, the transformed model point X has to lie on the projection ray
through the focal point F and Z. This can be formulated in CGA as

(
(K Y K̃) ∧ F ∧ e∞

) ∧ (M X M̃) = 0. (5)

If K is known, then this is basically the same as the pose estimation constraint
in [13]. In contrast to [13] both operators M and K are estimated here us-
ing the same concepts as in [10, 9]. That means, equation (5) is written as a
multilinear equation which is quadratic in the components of M and K. This
equation is then linearized so that a Gauss-Markov model can be employed to
estimate M and K iteratively. The Gauss-Markov estimation is started from a
very rough, automatically computed heuristic estimate and can be refined using
Gauss-Helmert estimation. The whole estimation process is thus automatic and
no a priori knowledge about a starting pose is necessary.

Experimental Setup Note that the simultaneous estimation of object pose,
focal length and lens distortion is only numerically stable if the object has a
sufficiently large appearance in the image and its extension along the optical
axis is at least the same as its extension parallel to the image plane. For the
following experiments the model of a house was used which was approximately
20× 15× 15cm in size (L×H×W).

This house model was moved by a robot arm in front of a stationary camera.
Since the robot movements have a positioning uncertainty of below 1 mm, these
positions can be used as ground truth. Note that the model was not rotated since
an exact calibration of the rotation center with respect to the model was not
possible. The model was translated in an area of approximately 50cm parallel
to the image plane and 35cm perpendicular to the image plane. The closest
approach of the object to the camera was approximately 10cm.

Neither an internal nor an external calibration of the cameras was carried
out before the pose estimation experiments. However, the CCD-chip size in mil-
limeters and its resolution in pixels were known and it was assumed that the
optical axis passes at a right angle through the center of the CCD-chip.

Two different cameras were used. A Nikon D70 digital SLR camera with a
pixel size of 7.8× 7.8µm and a resolution of 3008× 2000 pixel was used to take
pictures with three different lenses: the zoom lens SIGMA DC 18-125mm, 1:3.5-
5.6 D, set to 18mm, the Nikkor AF Fisheye 10.5mm, 1:2.8 G ED, and the Sigma
8mm 1:4.0 EX DG Circular-Fisheye. The other camera was a LogLux camera-
link camera with a resolution of 1280×1024 pixel and a pixel size of 6.7×6.7µm,
which was used with the parabolic mirror catadioptric imaging system.

Eight markers were attached to the visible corners of the house model. The
correspondences between these model points and their apparent positions in the



images were found manually. The constraint equation given in equation (5) was
then used to estimate the object pose and camera model parameters for each of
the images taken. For each camera-lens setup the house was moved to the same
six positions. Because no external calibration of the cameras with the robot arm
was available, the pose estimation accuracy is measured as the difference between
the true and the estimated object translations.

In fact, the 15 difference vectors between all pairs of the 6 house positions
were evaluated separately for the true and the estimated house positions. Then
the rotation was found that best aligned the true and estimated difference vec-
tors. This is basically an external calibration of the camera. Two quality mea-
sures were then calculated. First, the root mean squared (RMS) Euclidean dis-
tance between the true and estimated aligned difference vectors and second, the
RMS of the ratio of the Euclidean distance between the difference vectors and
the length of the true vector. That is, the latter is the RMS percentage error.

The algorithm was implemented in CLUScript, an interpreted programming
language, and was executed with CLUCalc [8]. The software was run on a 1.6GHz
Pentium M processor. An optimized implementation in C++ may be expected
to increase the execution speed by a factor of 10.

Results The results of the experiments are shown in table 1. It may be surpris-
ing that the pose estimation is most accurate for the fisheye lenses, which were
found not to be exactly representable by the inversion camera model. This is be-
cause the house model only appeared in part of the image, whose distortion can
be modeled quite well locally. Furthermore, the camera could be placed closer
to the objects with the fisheye lenses (8mm, 10.5mm), than with the 18mm lens.
The larger error in the LogLux camera results are mainly due to the low effec-
tive resolution when using a parabolic mirror. A 360 degree view is in this case
mapped to a circular band in the image.

Note again that these pose estimation results were achieved without a full
camera calibration. Instead focal length and lens distortion were estimated si-
multaneously with the object pose.

4 Conclusions

In this paper a novel camera model is introduced, the inversion camera model.
It combines in a single model the standard pinhole camera model, the division
model of lens distortion and the model of parabolic mirror imaging systems. The
inversion camera model is based on the inversion of image points in a sphere,
which can be be expressed in a straight forward manner in Geometric Algebra
as a multilinear operator. This also implies that the camera model operator can
be treated just like any other transformation operator in Geometric Algebra,
as for example, a Euclidean transformation. Thus linear statistical estimation
methods as presented in [10, 9] can be applied.

The experimental results show that this camera model can be employed suc-
cessfully in the simultaneous estimation of object pose, and camera model para-



Camera/Lens RMS Err. Rel. RMS Err. Mean Iter. Mean Time

D70 / 8mm 2.63mm 1.48% 5.17 0.41s

D70 / 10.5mm 2.37mm 1.50% 5.50 0.41s

D70 / 18mm 5.51mm 3.12% 5.17 0.42s

LogLux / Cata. 7.87mm 3.66% 8.83 0.70s
Table 1. Experimental results of pose estimation.

meters in a ’half’ calibrated camera setup. Next to the model’s good behaviour
in an actual application, it is also another example of the unifying nature of
Geometric Algebra.
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