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ABSTRACT 
 

This paper focuses on the symmetries of crystal cells and crystal space lattices. All two dimensional 
(2D) and three dimensional (3D) point groups of 2D and 3D crystal cells are exclusively described by 
vectors (two in 2D, three in 3D for one particular cell) taken from the physical cells. Geometric 
multiplication of these vectors completely generates all symmetries, including reflections, rotations, 
inversions, rotary-reflections and rotary-inversions. The sets of vectors necessary are illustrated in 
drawings. We then extend this treatment to 2D and 3D space groups by including translations, glide 
reflections and screw rotations. For 3D space groups we focus on the monoclinic case as an example. 
A companion paper [15] describes corresponding interactive visualization software. 

 
 

1. INTRODUCTION 
 

Crystallography is one of the oldest scientific 
occupations of mankind and of pivotal 
importance for exploiting the symmetry 
properties of materials. A convenient geometric 
description of crystal symmetries is e. g. vital for 
the prediction and description of the grain 
structure in a material system, which are of 
primary concern to material engineers [1]. 
Crystallography is internationally represented by 
the International Union of Crystallography 
(IUCr), which periodically edits, expands and 
updates the International Tables for 
Crystallography, Vol. A (ITC) [10].  
Crystallography deals with the inherent 
geometric properties of crystals, in particular 
with their their symmetry transformations, 
geometric transformations, that consist of 
reflections, rotations, inversions, translations and 
their combinations. The classical approach 
intruduces a set of 3D coordinate axis and 
expresses all positions and symmetry operations 
by coordinate triplets and matrices. Thus 
crystallography and its results traditionally 
become far removed from the inherent geometry 
of the crystal space lattice. 
Our new approach is based on geometric algebra. 

The origins of geometric algebra go back to the 
successful union of quaternions (1843, Sir W. 
Hamilton, Ireland) with the Theory of Extension 
(1844, Grassmann algebra, H. Grassmann, 
Germany) in 1872 by the talented British 
mathematician W. Clifford. Geometric algebra 
has been developed into a comprehensive 
geometric calculus for all areas of physics, and 
for the applied sciences, including 
computational geometry [3,6].  
Traditionally three and four dimensional 
coordinate vectors and matrices in non-cartesian 
coordinate systems make it hard to relate to the 
constituting physical vectors and their relative 
orientations. Yet, the left and right geometric 
product with a normal vector (of a mirror plane) 
in geometric algebra easily produces reflections. 
Repetition with the normal vector (of a second 
mirror plane) produces rotations, etc. This way 
all point symmetries are represented. Like in 
projective geometry we add two dimensions for 
the origin and infinity. This permits us an 
analogous representation of translations. The 
complete set of infinite geometric algebras (and 
subalgebras) of translations and reflections of 
three vectors for each type of crystal cell is in 
one to one correspondence with the envisaged 
230 space groups. This compares well with 
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matrix algebra, though rotation matrixes e.g. 
cannot distinguish between angles α and 2π−α. 
This new geometrically motivated approach is 
fully based on physical crystal vectors and 
perfectly matches geometric intuition with the 
powerful multivector computation methods 
famously invented by Hamilton, Grassmann and 
Clifford. 
Theoretical research in this area has begun 
nearly 10 years ago in the thesis of J.D.M. 
Gutierrez (UNAM, Mexico 1996, supervised by 
J. Keller), who made a first approach to unify 
the disciplines of geometric algebra and crystal 
symmetry. We base our work on the successful 
attempt of D. Hestenes in [4]. He clearly showed 
how the 2D and 3D crystallographic point 
symmetries can be fully described in the 
geometric algebra of 3D Euclidean space. It is 
sufficient to select only three vectors for each 
elementary type of crystal cell. These vectors 
describe elementary reflections and their 
geometric products describe all other operations: 
rotations, rotary reflections, inversions, and 
rotary inversions. These symmetries can be 
combined without the need for a coordinate 
system or matrices, thus achieving a close match 
of mathematical description and geometric 
nature of crystals. He indicated that this 
approach can be expanded to the treatment of 
the 230 space groups. First work with respect to 
developing a new fully scientific geometric 
algebra based space group notation has been 
undertaken by J. Holt (Honors Thesis, Univ. of 
Michigan Flint, US). 
 
 
2. MULTIPLYING VECTORS 
 
The geometric product [2,3] of vectors a,b 
includes sine and cosine of the enclosed angle 
α : 
 

ab = |a||b|(cos α + i sin α),       (1) 
 

where i=e1e2 is the unit oriented area element 
(bivector) of the plane of the vectors a,b. The 
geometric product has symmetric (inner) and 
antisymmetric (outer) parts: 
 

a ・ b = (ab+ba)/2 = |a||b| cos α,     (2) 
a∧b = (ab−ba)/2 = |a||b| i sin α.    (3) 

 
These properties can already be used to 
implement reflections across a line (in 2D) or at 
a mirror plane (in 3D). In both cases the mirror 

(line or plane) can be given by a normal vector c 
(with inverse c−1=c/c2, c−1c=1.) 
 

x’ = – c−1xc             (6)  
 
is the reflected vector as detailed in [11]. To do a 
sequence of two reflections with unit normal 
vectors c,d simply results in  
 

x’=d−1c−1 x cd = (cd) −1x cd,       (7) 
 

etc. From elementary geometry we know that 
two reflections at planes with normal vectors c,d 
enclosing the angle θ/2 result in a rotation by the 
angle θ. A general rotation operator (rotor) is 
therefore the product of two vectors R=cd 
enclosing half the angle of the final rotation. 
 

Fig 1. Left: Reflection at plane normal to a. 
Right: 2 reflections make 1 rotation. 

 
A sequence of three reflections at planes with 
normal vectors c,d,e gives a rotary-reflection: 
 

x’=(−1)(cde) −1x cde,          (8) 
 
because the first two reflections result in a 
rotation followed by a final reflection. If the 
three vectors c,d,e happen to be mutually 
orthogonal (cde=i), then (8) describes an 
inversion: 
 

x’= (−1)(−i) x i = − x.       (9) 
 
The general point group transformation law is 
 

x’= (−1)p S −1 x S,           (10) 
 

with p = parity (even or odd) of the vector 
products in S. Because both S −1 and S are factors 
in (10), the sign of S and (non-zero) scalar 
factors of S always cancel. We therefore equate 
operators S if they only differ by real scalar 
factors (including positive and negative signs)! 
 
 
3. TWO-DIMENSIONAL POINT GROUPS 
 



 

 
 
 
 
 
 
 
 
 
Fig. 2. Top: Regular polygons (n=2,3,4,6) with 

vectors a,b. Bottom: a,b shifted to centers. 
 

Fundamental are the two-dimensional 
symmetries of regular polygons with n=1,2,3,4,6 
corners.[4] (With n=5, no lattice can be built.) 
For an interactive online visualization see [8]. 
In general the point symmetry group of a regular 
polygon with n corners is generated by a side 
vector a and a vector b pointing to a next 
neighbor corner as illustrated in Fig. 2. a,b will 
enclose +180?/n. (Rn = −1 is equivalent to this.) 
Using R=ba, instead of R=ab would generate 
rotations of opposite sense. 
All reflections and rotations of the 
two-dimensional symmetry groups of regular 
polygons with n=1,2,3,4,6 can thus be fully and 
compactly represented by: 
 
n=1: identity ±1 
n=2: reflection a, identity ±1 
n=3: reflections a, b, bR 

120º rot. R=ab, R2, R3 = −1          (11)    
n=4: ref. a, b, aR2, bR2 

90º rot. R=ab, R2, R3, R4 = −1 
n=6: ref. a, b, aR2, bR2, aR4, bR4 

60º rot. R=ab, R2, R3, R4, R5, R6= −1. 
 
Based on this knowledge and the notation of 
table 1 we can now denote the 10 point groups 
of the five two-dimensional crystal cells as 
l Oblique  1 (1),  2 (2) 
l Rectangular  1 (m),  2 (mm) 
l Trigonal  3 (3m),  3 (3) 
l Square  4 (4m),  4 (4) 
l Hexagonal  6 (6m),  6 (6) 
Where the international symbol is given in 
brackets. We observe that in 2D the underbar 
indicates a group of rotations. The group 1 only 
contains the identity element. 
 
 
4. THREE- DIMENSIONAL POINT 
GROUPS 

 
All known three-dimensional crystal lattices can 
be characterized by their crystal cells shown in  

 Fig. 3. Triclinic, monoclinic and orthorhombic 
crystal cells with invariant point centers O. 

 
 

 
 
 
 
 
 
 

 
 

Fig. 4. Tetragonal cell, trigonal (|a’|=|b’|=|c’|) 
cell (side view and top view along d-axis A’OA). 
a*, a, b, b* all in paper plane perpendicular to d, 

containing O. 
 
 
 
 
 
 
 
 
 

Fig. 5. Hexagonal and cubic cells. 
 

Figs. 3,4 and 5. The symmetry transformations 
of these cells: 
l Simple reflections 
l Rotations 
l Rotary-Reflections, Inversions 
l Rotary-Inversions 

which leave the center points O invariant, form 
32 point groups [11,4,5,6]. 
For example the monoclinic cell of Fig. 3 has 
three physical edge vectors a,b,c of unequal 
length. Only the angle of a and b is not 90?. We 
have the following three groups [11]: 
 

1 (m) = {c, 1},           (12) 
      2 (2) = {R=a∧b, 1},      (13) 

22 = (2/m) = {c, R, cR, 1}.     (14) 



where cR is a rotary-reflection. The geometric 
point group symbols 1, 2 and 22 were introduced 
in [4]. The second symbol in brackets is the 
international symbol. In general one or two 
numbers p, q indicate the angles of the 
generating vectors (angle of a,b: 180?/p, angle 
of b,c: 180?/q). [4] uses overbars instead of 
underlines. Therefore 1 means a single reflection 
generating vector (c). 2 means a generating rotor 
R formed by the product of two vectors a*,b at 
90? 
 

a*=(a∧b)b, b           (15) 
R= a*b=(a∧b)bb ? a∧b, 

 
because bb=b2 is only an unimportant scalar 
factor. 22 means three generating vectors a*,b,c, 
all at right angles (180?/2), two of which are 
combined to the rotor R=a*b. Compare [11] for a 
thorough explicit treatment of all 32 point 
groups. A free attractive interactive visualization 
of high graphics quality is online available from 
[13]. 
 
Table 1. Geometric point group symbols [4]. 

 
 
5. TWO-DIMENSIONAL SPACE GROUPS 
 
The 2D space groups (also known as wallpaper 
groups) arise from the 2D point groups by 
including translations T(a), T(b) along the 
vectors a,b. As illustrated in Fig. 6, this leads 
directly to the 11 groups: p1 (p1), p2 (p2), p1 
(pm), p2 (pmm), p4 (p4), p4 (p4m), p3 (p3), p3 
(p3m1), p’3 (p31m), p6 (p6) and p6 (p6m). For 
the reflection symmetries of p’3 we need to take 
the dual vectors a*=(a? b)a, b*=(a? b)b instead 
of the translation vectors a,b. ‘p’ stands for 
primitive Bravais lattice. The international 
notation is given in brackets. 
For the rectangular lattice two more groups c1 
(cm) and c2 (cmm) stem from adding a general 
element at the center of the rectangle, i.e. by 
including the translation T((a+b)/2).  
We obtain further four space groups pg1 (pg), 

pg2 (pmg), pg2g (pgg) and pg4 (p4g) by 
augmenting reflections by half translations 
parallel to the line of reflection to become 
socalled glide reflections. With the geometric 
notation we followed suggestions of [12]. Fig. 6 
shows examples of the 17 two-dimensional 
space lattices (wallpapers) with asymmetric 
general elements. It includes all generators, 
except the lattice translations T(a), T(b). The 
free interactive Wallpaper Explorer software is 
available from [13].  
 
 
6. THREE-DIMENSIONAL SPACE 
GROUPS 
 
To give an example of the way geometric 
algebra represents three-dimensional space 
groups [4,12,14] we will concentrate on the 
example of the monoclinic lattice space groups. 
A free, fully interactive and high graphics 
quality Spacegroup Visualizer software is 
available online from [13]. Its use is described in 
some detail in a companion paper [15].  
Without loss of geometric rigor or generality, we 
adopt in this section the ITC [10] convention for 
the labeling of the edge vectors of the 
monoclinic cell illustrated in Fig. 7. In Fig. 7 the 
angle of a,c, is not 90°, whereas the angles of 
a,b and b,c are 90°angles. In general, the 
lengths of all three vectors are different. 
Then also the labels in equations (12) to (14) 
need to be changed 
 

1 (m) = {b, 1},           (16) 
      2 (2) = {R=a∧c, 1},      (17) 
22 = (2/m) = {b, R, bR, 1}.     (18) 

 
A mathematical remark is, that in (17) and 
(18) 
 

R = a∧c ? ib,          (19) 
 
where i represents the inversion in geometric 
algebra. (Taking the inversion to the other side 
gives a formula for the familiar vector cross 
product in 3D: b ? a×c = −ia∧c. ) We then 
recognize the inversion in (18) 
 

bR = bib = bbi = |b|2i ? i.     (20) 
 
Inserting (19) and (20) in (17) and (18) we get a 
very elegant form for the monoclinic point group 
representations in geometric algebra 

Point group symbol Generators 
p a, b 
p ab 

pq a,b,c 
pq ab, c 
pq a, bc 
p q ab, bc 
pq abc 



Fig. 6. 17 space group patterns (wallpapers) and generators. 

 
1 (m) = {b, 1},        (16) 

      2 (2) = {ib, 1},        (21) 
22 = (2/m) = {b, ib, i, 1}.      (22) 

 
For constructing the 13 monoclinic space groups 
we can follow the same strategy as in two 
dimensions. The only new combination of 
rotations and translations will be the socalled 
screw transformations (in the following: screws). 
Screws in the monoclinic case simply consists of 
a 180° rotation around the b-axis followed by 
a half translation in the axis direction. The screw 
generator is therefore because of (19) 

 
a? c T(b/2) = ib T(b/2)      (23) 

 
The glide reflection in the monoclinic case is 
given by the reflection at the plane normal to b, 
followed by a half translation in c. The glide 
reflection generator is therefore 
 

b T(c/2).            (24) 
 
To find all three dimensional monoclinic space 
groups starting from the point groups 1, 2, 22 of 
(16), (21) and (23) is done by  
1. using the translations T(a), T(b), T(c) 
2. replacing the reflection b the glide 

reflection b T(c/2) 
3. replacing the rotation R = a? c ? ib by the 

screw ib T(b/2) 



4. placing an additional general element at the 
center of the a,b base parallelogram of the 
cell, i.e. using TC=T([a+b]/2) as additional 
translation. 

The space groups obtained by 1. have geometric 
[12] symbols P1, P2, P22. The space groups 
obtained by 4. have symbols C1, C2, C22. The 
space groups obtained by 2. have symbols Pc1, 
Pc22 and Cc1, Cc22. The space groups obtained 
by 3. have symbols P21, P221, Pc221. It is 
obvious, that dropping the initial Bravais letters 
P or C, the lower screw index number 1 and the 
lower glide direction index c brings us straight 
back to the original point groups 1, 2, 22. These 
can be directly interpreted with table 1.  
 

Fig. 7. Monoclinic cell with ITC labeling [10]. 
 

All these data are combined in table 2. The first 
column lists the monoclinic space groups by 
their ITC number [10]. The second column has 
the international symbols (abbreviated 
Hermann-Maugin notation). The third column 

lists the above explained geometric symbols 
with a rational geometric interpretation. The 
fourth column lists the generators of each 
monoclinic group. These generators can more or 
less be derived from the geometric symbol.  
By convention the ITC tables [10] place the 
origin at a center of inversion symmetry and the 
inversion in the space groups derived from point 
group 22 is taken as generator basis element. 
Therefore we list in column 5 the geometric 
algebra generators, that correspond to the 
generators specified in the ITC table. An 
alternative set of basis generators based on 
inversions and reflections is listed in the last 
column of table 2.  
It is an elegant approach to follow the ideas of 
projective geometry and assign an extra vector 
to the origin. This can also be done for points at 
infinity. These vectors are also special in that 
they square to zero, like light ray vectors in 
special relativity. This leads to the socalled 
conformal model of Euclidean space and is very 
advantageous for computer implementations 
[4,7,13,15]. Then translations can be represented 
by translators [16] very similar to the 
representation of rotations in (10).  
 
 
7. CONCLUSIONS 
 
In this paper we presented the geometric algebra 

 

Table 2. Monoclinic space group generators represented in geometric algebra (GA). ITC numbers 
and ITC space group symbols [10], geometric symbols [12,14], GA generators with 
TC=T([a+b]/2), ITC generator choices expressed in GA, alternative inversion and reflection 
generator choice in GA.  



representations of point groups and space groups 
in two and three dimensions. In three 
dimensions we focused on the monoclinic space 
groups.  
Both in two and three dimensions it was 
demonstrated in some detail how to derive the 
space groups from the corresponding point 
groups. We also reported suggestions for a new 
geometric notation for point and space groups 
[12], which will find a more final form in [14].  
An accompanying paper [15] gives details on 
free, interactive OpenGL visualizations of point 
and space groups based on the theory introduced 
in the present paper.  
After the completion of these basic geometric 
formulations for all 230 space groups, we hope 
to show in the future how this geometric 
approach leads to new insights for the analysis 
of crystal symmetry structures by physical 
methods, like diffraction patterns, for 
polycrystalline solidification models [1], etc.  
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