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Abstract. In this text we show how points, point pairs, lines, planes,
circles, spheres, and rotation, translation and dilation operators and their
uncertainty can be evaluated from uncertain data in a unified manner
using the Geometric Algebra of conformal space. This extends previous
work by Förstner et al. [3] from points, lines and planes to non-linear enti-
ties and operators, while keeping the linearity of the estimation method.
We give a theoretical description of our approach and show the results
of some synthetic experiments.

1 Introduction

In Computer Vision applications uncertain data occurs almost invariably. Ap-
propriate methods to deal with this uncertainty do therefore play an important
role. In this text we discuss the estimation of geometric entities and operators
from uncertain data in a unified mathematical framework, namely Geometric
Algebra. In particular, we will show that evaluating points, lines, planes, cir-
cle, spheres and their covariance matrices from a set of uncertain points can
be done in much the same way as the evaluation of rotation, translation and
dilation operators with corresponding covariance matrices. Using error propaga-
tion, further calculations can be performed with these uncertain entities, while
keeping track of the uncertainty. This text builds on previous works by Förstner
et al. [3] and Heuel [5] where uncertain points, lines and planes were treated in
a unified manner. Perwass & Sommer previously discussed the linear estimation
of rotation operators in Geometric Algebra [11], albeit without taking account
of uncertainty. In [8] the description of uncertain circles and 2D-conics in Ge-
ometric Algebra was first discussed. The stratification of Euclidean, projective
and affine spaces in Geometric Algebra, has been previously discussed in [12].
In this text, it is shown how the Geometric Algebra of the conformal space of
3D-Euclidean space can be used to deal with uncertain projective geometry and
uncertain kinematics in a unified way. In particular, we will concentrate on the
estimation of geometric entities and operators from uncertain data.

The structure of this text is as follows. First we give short introductions to
Geometric Algebra, error propagation and the Gauss-Helmert model. Then we
combine these methods to show how the various objects can be estimated. We
conclude the text with some synthetic experiments and conclusions.
? This work has been supported by DFG grant SO-320/2-3.



2 Geometric Algebra

For a detailed introduction to Geometric Algebra see e.g. [10, 4]. Here we can
only give a short overview. Geometric Algebra is an associative, graded alge-
bra, whereby the algebra product is called geometric product. The Geometric
Algebra over a n-dimensional Euclidean vector space Rn has dimension 2n and
is denoted by G(Rn) or simply Gn. Elements of different grade of the algebra
can be constructed through the outer product of linearly independent vectors.
For example, if {ai} ∈ Rn are a set of k linearly independent vectors, then
A〈k〉 := a1 ∧ . . . ∧ ak is an element of Gn of grade k, which is called a blade,
where ∧ denotes the outer product. A general element of the algebra, called mul-
tivector, can always be expressed as a linear combination of blades of possibly
different grades. Blades can be used to represent geometric entities. To combine
projective geometry and kinematics we need to consider the Geometric Algebra
of the (projective) conformal space of 3D-Euclidean space (cf. [10]). The em-
bedding function K is defined as K : x ∈ R3 7→ x + 1

2 x2 e∞ + eo ∈ R4,1. The
basis of R4,1 can be written as {e1, e2, e3, e∞, eo}. The various geometric entities
that can be represented by blades in G4,1 are shown in table 1. In this table
X, Y, Z, U, V ∈ R4,1 are embeddings of points x, y, z, u, v ∈ R3, respectively, and
the eij ≡ ei ∧ ej etc. denote the algebra basis elements of an entity.

Entity Grade No. Basis Elements

Point X 1 5 e1, e2, e3, e∞, eo

Point Pair X ∧ Y 2 10 e23, e31, e12, e1o, e2o, e3o, e1∞, e2∞, e3∞, eo∞
Line X ∧ Y ∧ e∞ 3 6 e23∞, e31∞, e12∞, e1o∞, e2o∞, e3o∞
Circle X ∧ Y ∧ Z 3 10 e23∞, e31∞, e12∞, e23∞, e31∞, e12∞, e1o∞, e2o∞, e3o∞, e123

Plane X ∧ Y ∧ Z ∧ e∞ 4 4 e123∞, e23o∞, e31o∞, e12o∞
Sphere X ∧ Y ∧ Z ∧ U 4 5 e123∞, e123o, e23o∞, e31o∞, e12o∞
Rotor R 0,2 4 1, e23, e31, e12

Translator T 0,2 4 1, e1∞, e2∞, e3∞
Dilator D 0,2 2 1, eo∞
Motor RT 0,2,4 8 1, e23, e31, e12, e1∞, e2∞, e3∞, e123∞
Gen. Rotor TRT̃ 0,2 7 1, e23, e31, e12, e1∞, e2∞, e3∞

Table 1. Entities and their algebra basis. Note that the operators are multivec-
tors of mixed grade.

Apart from representing geometric entities by blades, it is also possible to
define operators in Geometric Algebra. The class of operators we are particularly
interested in are versors. A versor V ∈ Gn is a multivector that satisfies the
following two conditions: V Ṽ = 1 and for any blade A〈k〉 ∈ Gn, V A〈k〉 Ṽ is also
of grade k, i.e. a versor is grade preserving. The expression Ṽ denotes the reverse
of V . The reverse operation changes the sign of the constituent blade elements
depending on their grade, which has an effect similar to complex conjugation in
quaternions. The most interesting versors for our purposes in conformal space
are rotation operators (rotors), translation operators (translators) and scaling
operators (dilators).



If {Ei} denotes the 2n-dimensional algebra basis of Gn, then a multivector
A ∈ Gn can be written as A = ai Ei, where ai denotes the ith component
of a vector a ∈ R2n

and a sum over the repeated index i is implied. We will
use this Einstein summation convention also in the following. If B = bi Ei and
C = ci Ei, then the components of C in the algebra equation C = A ◦B can be
evaluated via ck = ai bj gk

ij . Here ◦ is a placeholder for an algebra product and
gk

ij ∈ R2n×2n×2n

is a tensor encoding this product.
If we define the matrices U, V ∈ R2n×2n

as U(a) := αi gk
ij and V(b) :=

βj gk
ij , then c = U(a) b = V(b) a. Therefore, we can define an isomorphism

Φ, such that for A,B ∈ Gn, Φ(A) ∈ R2n

and Φ(A ◦ B) = U(Φ(A)) Φ(B) =
V(Φ(B))Φ(A), where ◦ is a placeholder for an algebra product. This isomor-
phism allows us to apply standard numerical algorithms to Geometric Algebra
equations. We can also reduce the complexity of the equations considerably by
only mapping those components of multivectors that are actually needed. In the
following we therefore assume that Φ maps to the minimum number of compo-
nents necessary.

3 Stochastic

In this section we give short descriptions of error propagation and the Gauss-
Helmert model, which will be needed for the evaluation of multivectors from
uncertain data. The error propagation we consider here is based on the assump-
tion that the uncertainty of a (vector valued) measurement can be modeled by a
Gaussian distribution. Hence, the probability density function of a random vec-
tor variable is fully described by a mean vector and a covariance matrix. Error
propagation is a method to evaluate the mean and covariance of a function of
random vector variables. In particular, this allows us to evaluate the mean and
covariance of algebra products between multivector valued random variables.
For a detailed introduction see [6, 7].

For example, we have to apply error propagation to the embedding of Eu-
clidean vectors in conformal space. Let a ∈ R3 be a Euclidean random vector
variable with covariance matrix Σa,a, and A ∈ R4,1 be defined by A := K(a). It
may then be shown that Ā = E [K(a)] = ā + 1

2 ā2 e∞ + eo + 1
2 tr(Σa,a) e∞. Typi-

cally the trace of Σa,a is negligible, which leaves us with Ā = K(ā). If we denote
the Jacobi matrix of K evaluated at ā by JK(ā), then the error propagation
equation for the covariance matrix can be written as ΣA,A = JK(ā) Σa,a JT

K(ā).
The Gauss-Helmert model was introduced by Helmert in 1872 as the general

case of least squares adjustment. It is also called the mixed model [6]. The Gauss-
Helmert model is a linear, stochastic model. The idea is to find the smallest
adjustment to the data points, such that a valid parameter vector exists.

Mathematically this is expressed as follows. Given is a set of M data vec-
tors {bi} with corresponding covariance matrices Σbi,bi . The goal is to find a
parameter vector p, such that a given, vector valued constraint function g sat-
isfies g(bi, p) = 0 for all i. Furthermore, the set of valid parameter vectors is
constraint by a function h, which has to satisfy h(p) = 0. Since the Gauss-
Helmert model is linear, the functions g and h have to be linearized. For this



purpose it is assumed that the true data point bi is given by the current esti-
mate b̂i plus an adjustment ∆bi, and similarly for the parameter vector. That
is, bi = b̂i + ∆b and p = p̂ + ∆p, which implies that an initial estimate of
the parameter vector has to be known, before the Gauss-Helmert method can
be applied. Substituting these expressions for bi and p in the constraint equa-
tion g(bi, p) = 0 and considering only its Taylor expansion up to first order
results in Ui ∆p+Vi ∆bi = cgi

, where Ui := (∂p g)(b̂i, p̂), Vi := (∂bi
g)(b̂i, p̂) and

cgi
:= −g(b̂i, p̂). The constraint function h is linearized in a similar way leading

to the constraint equation HT ∆p = ch, where HT := (∂p h)(p̂) and ch := −h(p̂).
We now try to solve for ∆bi and ∆p such that ∆bT

i Σbi,bi
∆bi is minimized

and the linearized constraint equations are satisfied for all i. This may be done
using the method of Lagrange multipliers. This leads to the following equation
system. (

N H

HT 0

) (
∆p

m

)
=

(
cn

ch

)
, (1)

where m is a Lagrange multiplier vector, N :=
∑M

i=1 UT
i (ViΣbi,biV

T
i )+ Ui and

cn :=
∑M

i=1 UT
i (ViΣbi,biV

T
i )+ cgi . The vector ∆p can be evaluated directly equa-

tion (1), while ∆bi has to be evaluated by substituting ∆p into the equation

∆bi = Σbi,biV
T
i (ViΣbi,biV

T
i )+ (cgi − Ui ∆p). (2)

The new estimates for bi and p are then given by p̂′ = p̂+∆p and b̂′i = b̂i+∆bi. If
the constraint functions g and h are linear, then these new estimates are the best
linear unbiased estimators for bi and p, as is for example shown in [6, 7]. If the
constraint functions are not linear, then this is a step in an iterative estimation
procedure.

4 Estimation of Multivectors

In this section we show how Geometric Algebra offers a unified framework to
derive the constraint equations for geometrical problems, so that the Gauss-
Helmert method can be applied. Since the standard algebra operations between
multivectors can be mapped to bilinear functions, the estimation of all algebra
elements is basically the same. This means in particular that operators as well
as geometric entities are represented by vectors and their estimation is therefore
very similar. In order to apply the Gauss-Helmert estimation, we need to define
a constraint function that relates the parameter vector and the data vectors, as
well as a constraint function for the parameter vector alone. Furthermore, we
need to obtain an initial estimate of the parameter vector. Part of the constraints
is that we only use those multivector components that can be non-zero in the
particular elements we consider. For example, table 1 shows that for a line we
only need to consider a subset of those components necessary for a circle, even
though both are blades of grade 3.

Let P ∈ G4,1 represent the geometric entity that is to be estimated and
Bn ∈ G4,1 the nth data point, then g(Bn, P ) = Bn ∧ P , because Bn ∧ P = 0 if



and only if Bn lies on P . Note that this constraint is only valid if Bn and/or P
represents a point. For example, we could evaluate the best line (P ) through a
set of points (Bn), but also the best point (P ) that lies on a set of lines (Bn).
Mapping the g-constraint with Φ gives Φ(Bn ∧ P ) = bi

n pj Ok
ij , where Ok

ij

encodes the appropriate outer product.
The magnitude of Bn ∧ P is only proportional to the Euclidean distance

between a point Bn and the element represented by P , if P represents a point,
line or plane. If P represents a point pair, circle or sphere, this is not the case, in
general. However, the closer points lie to these entities, the better proportionality
is satisfied. In 2D-Euclidean space the fitting of a circle P to a set of points
{Bn} with the constraint Bn ∧ P = 0, is equivalent to the well known algebraic
fitting of circles [2]. However, Bn ∧P = 0 is valid independent of the embedding
dimension, which allows us to readily extract the algebraic constraint equations
for circles in 3D-Euclidean space.

The constraints on P alone depend on the grade of P . If P is of grade 1 or
4, i.e. it represents a point, a plane or a sphere, then the only constraint is that
the scale of P is fixed. This is needed, since we are working in a projective space
and thus all scaled, non-zero versions of P represent the same geometric entity.
If p = Φ(P ), then this constraint can be written as h1(p) = pT p − 1, such that
h1(p) = 0 if ‖p‖ = 1.

If P represents a point pair (grade 2), a line (grade 3) or a circle (grade
3), then there is an additional constraint that ensures that P is in fact a blade.
Recall that a blade of grade k is the outer product of k vectors. However, if k = 2
or k = 3, not all linear combinations of the respective algebra basis elements
form a blade. The constraints that ensure that P is a blade, are the Plücker
constraints. In Geometric Algebra these constraints can be expressed by the
equation P ∧P = 0 if P is of grade 2 and P ∗∧P ∗ = 0 if P is of grade 3, where P ∗

denotes the dual of P . The dual operation in Geometric Algebra is the geometric
product with a constant element of the algebra (cf. [10]). Mapped with Φ we thus
obtain the constraint equation h2(p) = Φ(P ∗ ∧ P ∗) = pp pq Di

p Dj
q Ok

ij , if P is
of grade 3. Here Di

p encodes the dual operation.
For versors V ∈ G4,1 the constraint functions are different. Suppose An, Bn ∈

G4,1 represent pairs of geometric entities of the same type. The problem now is
to find the V that best satisfies Bn = V AnṼ . Since V Ṽ = 1, this can also be
written as V An − BnV = 0. Hence, g(Bn, V ) = V An − BnV . The constraint
function on V alone is h(V ) = V Ṽ −1, which is zero, if V is a versor. Mapping the
latter constraint with Φ gives g(bn, v) = Φ(V An−BnV ) = vi (aj

n Gk
ij−bj

n Gk
ji),

where Gk
ij encodes the appropriate geometric product. The h-constraint be-

comes h(v) = Φ(V Ṽ − 1) = vi vq Rj
q Gk

ij − wk, where Rj
p encodes the reverse

operation and wk is zero everywhere apart from the entry representing the scalar
component, which is unity.

Table 2 summarizes the Jacobi matrices of the constraint equations for the
various entities, as needed in equation 1 in the Gauss-Helmert estimation. Ma-
trices HT

1 and HT
2 have to be combined column-wise to result in HT. These Jacobi

matrices have to be evaluated for current estimates of the parameter and data



vectors as described in section 3. The contractions of the algebra product ten-
sors Ok

ij and Gk
ij with vectors can, for example, be evaluated with the software

CLUCalc [9]. An initial estimate of the parameter vector, i.e. p or v, is given by
the right null space that the respective set of Un matrices have in common. This
can be evaluated by finding the right null space of U :=

∑
n UT

nUn using, for
example, a singular value decomposition (SVD). Note that the matrices Un and
V for points, lines and planes as given in table 2 are equivalent to the matrices
S, Π and Γ as defined by Förstner et al. in [3].

Entity Un V HT
1 HT

2

Point Pair 2 pj Ok
ij

Line, Circle bi
n Ok

ij pj Ok
ij 2 pj 2 pq Di

p Dj
q Ok

ij

Point, Plane, Sphere n/a

Versor aj
n Gk

ij − bj
n Gk

ji −vi Gk
ji 2 vq Rj

q Gk
ij n/a

Table 2. Jacobi matrices used in Gauss-Helmert estimation for different entities. A
repeated index in a product implies summation over its range. The first index of a
tensor denotes the row in matrix representation.

5 Experiments & Conclusions

To show the quality of the proposed estimation method of geometric entities and
operators, we present two synthetic experiments. In the first experiment we fit
3D-circles to uncertain data points and in the second experiment we estimate
general rotations between two 3D-point clouds.

To generate the uncertain data to which a circle is to be fitted, we first
create a ”true” circle C of radius one, oriented arbitrarily in 3D-space. We then
randomly select N points {an ∈ R3} on the true circle within a given angle
range. For each of these points a covariance matrix Σan,an is generated randomly,
within a certain range. For each of the an, Σan,an is used to generate a Gaussian
distributed random error vector rn. The data points {bn} with corresponding
covariance matrices Σbn,bn are then given by bn = an + rn and Σbn,bn = Σan,an .
The standard deviation of the set {‖rn‖} will be denoted by σr. For each angle
range, 30 sets of true points {an} and for each of these sets, 40 sets of data
points {bn} were generated.

A circle is then fitted to each of the data point sets. We will denote a
circle estimate by Ĉ and the shortest vector between a true point an and
Ĉ by dn. For each Ĉ we then evaluate two quality measures: the Euclidean
RMS distance δE :=

√∑
n dT

n dn/N and the Mahalanobis RMS distance δΣ :=√∑
n dT

n Σ−1
an,an dn /N . The latter measure uses the covariance matrices as local

metrics for the distance measure. δΣ is a unit-less value that is > 1, = 1 or < 1 if
dn lies outside, on or inside the standard deviation error ellipsoid represented by
Σan,an . For each true point set, the mean and standard deviation of the δE and
δΣ over all data point sets is denoted by ∆E , σE and ∆Σ , σΣ , respectively. Fi-
nally, we take the mean of the ∆E , σE and ∆Σ , σΣ over all true point sets, which



Angle ∆̄Σ ( σ̄Σ) ∆̄E (σ̄E)

σr Range SVD GH SVD GH

10◦ 2.13 (0.90) 1.26 (0.52) 0.047 (0.015) 0.030 (0.009)

0.07 60◦ 1.20 (0.44) 0.92 (0.31) 0.033 (0.010) 0.028 (0.009)

180◦ 1.38 (0.56) 0.97 (0.36) 0.030 (0.009) 0.025 (0.008)

10◦ 2.17 (0.90) 1.15 (0.51) 0.100 (0.032) 0.057 (0.019)

0.15 60◦ 1.91 (0.99) 1.35 (0.68) 0.083 (0.033) 0.069 (0.028)

180◦ 1.21 (0.44) 0.90 (0.30) 0.070 (0.022) 0.058 (0.018)

Table 3. Results of circle estimation for SVD method (SVD) and Gauss-Helmert
method (GH).

∆̄Σ ( σ̄Σ) ∆̄E (σ̄E)

σr Std SVD GH Std SVD GH

0.09 1.44 (0.59) 1.47 (0.63) 0.68 (0.22) 0.037 (0.011) 0.037 (0.012) 0.024 (0.009)

0.18 1.47 (0.62) 1.53 (0.67) 0.72 (0.25) 0.078 (0.024) 0.079 (0.026) 0.052 (0.019)

Table 4. Result of general rotation estimation for standard method (Std), SVD method
(SVD) and Gauss-Helmert method (GH).

are then denoted by ∆̄E , σ̄E and ∆̄Σ , σ̄Σ . These quality measures are evaluated
for the circle estimates by the SVD and the Gauss-Helmert (GH) method. In
table 3 the results for different values of σr and different angle ranges is given.
In all cases 10 data points are used.

It can be seen that for different levels of noise (σr) the Gauss-Helmert method
always performs better in the mean quality and the mean standard deviation
than the SVD method. It is also interesting to note that the Euclidean measure
∆̄E is approximately doubled when σr is doubled, while the ”stochastic” measure
∆̄Σ , only increases slightly. This is to be expected, since an increase in σr implies
larger values in the Σan,an . Note that ∆̄Σ < 1 implies that the estimated circle
lies mostly inside the standard deviation ellipsoids of the true points.

For the evaluation of a general rotor, the ”true” points {an} are a cloud
of Gaussian distributed points about the origin with standard deviation 0.8.
These points are then transformed by a ”true” general rotation R. Given the
set {a′n} of rotated true points, noise is added to generate the data points {bn}
in just the same way as for the circle. For each of 40 sets of true points, 40
data point sets are generated and a general rotor R̂ is estimated. Using R̂ the
true points are rotated to give {â′n}. The distance vectors {dn} are then defined
as dn := a′n − â′n. From the {dn} the same quality measures as for the circle
are evaluated. In table 4 we compare the results of the Gauss-Helmert (GH)
method with the initial SVD estimate and a standard approach (Std) described
in [1]. Since the quality measures did not give significantly different results for
rotation angles between 3 and 160 degrees, the mean of the respective values
over all rotation angles are shown in the table. The rotation axis always points
along the z-axis and is moved one unit away from the origin along the x-axis.



In all experiments 10 points are used. It can be seen that for different levels
of noise (σr) the Gauss-Helmert method always performs significantly better in
the mean quality and the mean standard deviation than the other two. Just as
for the circle the Euclidean measure ∆̄E is approximately doubled when σr is
doubled, while the ”stochastic” measure ∆̄Σ , only increases slightly. Note that
∆̄Σ < 1 implies that the points {â′n} lie mostly inside the standard deviation
ellipsoids of the {a′n}.

In conclusion it was shown by the synthetic experiments that accounting for
the uncertainty in the data when estimating geometric and kinematic entities,
does improve the results. Geometric Algebra offers a unifying framework where
the constraints on geometric and kinematic entities can be expressed succinctly
and dimension independently in such a way that linear estimation procedures
may be applied. We believe that these properties can be of great value for many
applications in Computer Vision.
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