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Abstract. Spatial reasoning is one of the central tasks in Computer Vision. It
always has to deal with uncertain data. Projective geometry has become the working
horse for modelling multiple view geometry, while modelling uncertainty with statis-
tical tools has become a standard. Geometric reasoning in projective geometry with
uncertain geometric elements has been advocated by Kanatani in the early 90’s, and
recently made transparent and generalized to basic entities in projective geometry
including transformations by Förstner and Heuel, exploiting the multilinearity of
nearly all relations, such as incidence and identity, which results from the underlying
Grassmann-Cayley algebra (cf. [21, 8, 7]). This paper generalizes geometric reasoning
under uncertainty towards circles, spheres and conics, which play a role in many
computer vision applications. In particular it will be shown how within the Clifford
algebra of conformal space, as introduced by Hestenes et al. [11, 16], circles can be
constructed from three uncertain points in 3D-Euclidean space, while propagating
the covariance matrices of the points. This then enables us to obtain and visualize
the uncertainty of the resulting circle. We also introduce the Clifford algebra over
the vector space of 2D-conics, which allows us to apply the same error propagation
procedures as for the Clifford algebra of conformal space.
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1. Introduction

Spatial reasoning is one of the central tasks in Computer Vision. It
always has to deal with uncertain data. Projective geometry has be-
come the working horse for modelling multiple view geometry, while
modelling uncertainty with statistical tools has become a standard.
Geometric reasoning in projective geometry with uncertain geometric
elements has been advocated by Kanatani in the early 90’s, and re-
cently made transparent and generalized to basic entities in projective
geometry including transformations by Förstner and Heuel, exploiting
the multilinearity of nearly all relations, such as incidence and iden-
tity, which results from the underlying Grassmann-Cayley algebra (cf.
[21, 8, 7]).
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2 C. Perwass, W. Förstner

This paper generalizes geometric reasoning under uncertainty to-
wards circles and spheres, which play a role in many computer vision
applications. The basic step is to embed all entities into a more general
algebra, namely the Clifford algebra of conformal space as proposed by
Hestenes et al. [11, 16]. The basic elements in conformal algebra are
spheres in any dimension, including points, straight lines, planes but
also point pairs, i. e. spheres in E1 and circles, i. e. spheres in E2. We
also introduce the Clifford algebra over the vector space of 2D-conics,
which, to the best of our knowledge, has not yet been discussed in the
literature. This allows us to model 2D-conics and their intersections
and thus also apply geometric reasoning under uncertainty to these
entities. Clifford algebra is, for all intents and purposes, equivalent to
Grassmann-Cayley algebra and can thus also cover projective geometry
[13].

Modelling uncertainty of uncertain homogeneous entities is not straight
forward (cf. [3]). In case of good relative accuracy, i. e. directional errors
of less than 1 %, the representation with covariance matrices has been
widely accepted (cf. e. g. [14, 4]). A direct integration into projective
geometry has been proposed by Förstner [9]. For the simple case of
the join l = x × y = S(x)y = −S(y)x, where S(x) = [x]× is the skew
matrix induced by the 3-vector x, we obtain:

Σl,l = S(y)Σx,xST(y) + S(x)Σy,yS
T(x)

for independent 2D points with covariance matrices Σx,x and Σy,y, e. g.

Σx,x =




σ2
x σxy 0

σxy σ2
y 0

0 0 0




This type of uncertainty representation and propagation can be ex-
tended to all types of geoemtric entities and also transformations within
projective geometry, in case the expressions are multilinear in the given
entities.

The paper generalizes these developments towards circles, spheres
and conic sections by embedding all entities in a more general algebra.
The paper is organized as follows: Sect. 2 presents the basic concepts of
Clifford algebra making the multilinearity of the expressions explicit.
Sect. 3 describes the embedding of n-spheres into Clifford algebra via
the special instance of conformal algebra and the versatility of the
concept. Sect. 4 introduces the embedding of 2D-conics in a 6D-vector
space and the Clifford algebra over this vector space. Based on the
statistical error propagation in sect. 5 the uncertainty propagation in
conformal algebra and the algebra of conics is demonstrated for 3D
circles and 2D conics.
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Uncertain Geometry 3

2. Clifford Algebra

Without explaining exactly what it is, we can define a Clifford algebra
on Rn, which is denoted by C̀ (Rn) or simply C̀ n, if it is clear that we
are forming the Clifford algebra over the reals. The latter will in fact
be the case for the whole of this text. For more detailed introductions
to Clifford algebra see e.g. [12, 20, 17, 6, 19]. A Clifford algebra C̀ n

over a vector space Rn has dimension 2n. An algebraic basis of C̀ n

may therefore be denoted by a set {Ei}2n

i=1 of so called basis blades. It
may be shown that these basis blades satisfy a number of constraints
with respect to the algebra product which is also called the geometric or
Clifford product. This product will simply be denoted by juxtaposition,
i.e. the geometric product of two elements A,B ∈ C̀ n is written as AB.
The basis blades of C̀ n have the following properties:

∃E1 such that EiE1 = E1Ei = Ei, ∀i ∈ {1, . . . , 2n},
EiEi = λi E1, λi ∈ {−1, 1}, ∀i ∈ {1, . . . , 2n},

EiEj =
∑2n

k=1 gk
ij Ek, ∀i, j ∈ {1, . . . , 2n}.

(1)

The last condition basically says that the geometric product of basis
blades is invertible. For example, given indices (i, j, k) such that EiEj =
Ek, we find that

EiEj = Ek ⇐⇒ EiEjEj = EkEj ⇐⇒ EkEj = λj Ei,

and thus gi
kj = λj .

A general element of C̀ n is called multivector. In terms of basis
blades a general multivector A ∈ C̀ n may be given by A =

∑2n

i=1 αi Ei.
In the following we will use the Einstein summation convention, that
a superscript index repeated within a product as a subscript index is
implicitly summed over its range. That is, a multivector may be written
as A = αi Ei, if it is clear that i ∈ {1, . . . , 2n}. The geometric product
of two multivectors A, B ∈ C̀ n, with A = αiEi and B = βiEi, is then
given by

AB = (αi Ei) (βj Ej) = αi βj EiEj = αi βj gk
ij Ek. (2)

Writing the result multivector M ∈ C̀ n of M = AB as M = µiEi then
gives

M = AB ⇐⇒ µkEk = αi βj gk
ij Ek ⇐⇒ µk = αi βj gk

ij ∀k. (3)

This shows that if multivectors in C̀ n are expressed as vectors in
R2n

, the geometric product between them becomes a bilinear function.
Therefore, if want to discuss error propagation in Clifford algebra, we
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4 C. Perwass, W. Förstner

can look at the error propagation of bilinear functions. Note that other
products available in Clifford algebra like the inner and outer product,
which will be discussed in the following, may also be expressed in this
way.

As an example for an {Ei}2n

i=1 basis, consider projective space PK3

with orthonormal basis {e1, e2, e3, e4}. A basis for the Clifford algebra
C̀ (PE3) is then be given by

{1, e1, e2, e3, e2e3, e3e1, e1e2, e4e1, e4e2, e4e3,

e2e3e4, e3e1e4, e1e2e4, e1e2e3, e1e2e3e4}
(4)

Each of the elements of this basis may now be denoted by one Ei.
From the associativity of the algebra product (e1(e2e4) = (e1e2)e3) and
the signature of the vector space, in this case eiei = 1, the particular
values of the tensor gk

ij follow. Note that we can obtain an equivalent
structure when using Grassmann-Cayley algebra.

The representation of algebra products in the form of equation (3) al-
lows us to apply standard error propagation directly to Clifford algebra,
as will be seen later on. However, this representation is not particularly
enlightening when it comes to the description of geometry. Geometry
is in fact represented through the null-spaces of algebraic entities with
respect to particular algebra products. In Clifford algebra these are the
inner and the outer product [12] and in Grassmann-Cayley algebra the
meet and join [7].

The outer product is a special operation defined within Clifford alge-
bra and is denoted by ∧. It is, in fact, equivalent to the exterior product
of Grassmann algebra. The outer product is associative and distribu-
tive. For vectors x,y ∈ En it is also anti-commutative, i. e. x ∧ y =
−y∧x. Another important property is that if x∧y = 0, then x and y
are linearly dependent. More generally, for a set {x1, . . . ,xk} ⊂ Rn of
k ≤ n mutually linearly independent vectors, (x1∧x2∧. . .∧xk) ∧ y = 0
if and only if y is linearly dependent on {x1, . . . ,xk}. The outer product
of a number of vectors is also called a blade. The grade of a blade is
simply the number of vectors that ”wedged” together give the blade.
Hence, the outer product of k linearly independent vectors gives a blade
of grade k, a k-blade.

The null space of a k-blade in some C̀ (Rn) with respect to the outer
product, i. e. the outer product null space of a k-blade, is therefore a
k-dimensional subspace of Rn. Geometrically this means for Euclidean
space E3 that a vector represents a line through the origin, a 2-blade
(or bivector) a plane through the origin, and a 3-blade (or trivector)
the whole E3. For more details see [13].

Instead of looking at the null space of algebraic entities with respect
to the outer product, we can do the same for the inner product of

Dag04.tex; 19/06/2004; 20:43; p.4



Uncertain Geometry 5

Clifford algebra. The inner product will be denoted by ·. For vectors
x,y ∈ Rn, their inner product is just the same as their scalar product
denoted by ∗. That is, x·y = x∗y ∈ R. This may be called the ”metric”
property of the inner product, since the result of the scalar product
of two vectors depends on the metric of the vector space they lie in.
However, the inner product also has some purely algebraic properties
for elements in C̀ (Rn), which are independent of the metric of the
vector space Rn. For example, let x,a,b ∈ Rn, then the inner product
of x with a ∧ b gives,

x · (a ∧ b) = (x · a)b− (x · b)a. (5)

Since (x · a) and (x · b) are scalars, we see that the inner product of
a vector with a bivector results in a vector. In terms of the null space
of entities with respect to the inner product, this formula shows that
vector x lies in the inner product null space of a∧b if and only if x lies
in the inner product null space of a and b. That is, the inner product
null space of a∧b is the intersection of the inner product null spaces of a
and b. For example, in the Clifford algebra of projective space C̀ (PE3),
vectors a and b may represent planes w.r.t. their inner product null
space. Hence, the bivector a∧b then represents the intersection line of
the two planes.

3. Conformal Space

In the previous section it was shown how Clifford algebra can be used
to represent geometric entities like lines and planes through the ori-
gin in C̀ (E3). Conformal space extends this idea by embedding a n-
dimensional Euclidean space in a nonlinear manner in a (n+2)-dimensional
space. Conformal space takes its name from the fact that certain types
of reflections in conformal space represent inversion in Euclidean space
and conformal transformations can be represented by combinations of
inversions. See [18, 16] for more details. In this text we cannot go into
all the details relating to conformal space and the Clifford algebra over
this space. We can only state the important formulae and give a basic
idea of how we can use conformal space to work with geometric entities.

In the following we will denote vectors in a 3-dimensional Euclidean
vector space E3 by small, bold faced letters as in x. Note that even
though we will work in the following with the conformal space of
3-dimensional Euclidean space, all formulae extent directly to n dimen-
sions. In order to obtain a conformal space, which we will denote by
PKn, we extent the orthonormal basis {ei}n

i=1 of En by two orthogonal

Dag04.tex; 19/06/2004; 20:43; p.5



6 C. Perwass, W. Förstner

basis vectors {e+, e−} with e2
+ = 1 and e2− = −1. The embedding of a

Euclidean vector x in conformal space is then given by

X = x + 1
2 x2 e∞ + eo, (6)

where e∞ := e− + e+ and eo := 1
2(e− − e+). The properties of e∞ and

eo are therefore e2∞ = e2
o = 0 and e∞ · eo = −1. We use the null basis

{e∞, eo} instead of the Minkowski basis {e+, e−} since e∞ and eo have
a clear semantic meaning as the point at infinity (there is only one)
and the origin, respectively. We can now ask which Euclidean vectors
y ∈ E3 when embedded in conformal space, lie in the inner product
null space of αX, with α ∈ R. Since we know that the embedding of
y in conformal space is Y = y + 1

2y
2 e∞ + eo, the question becomes

for which y the inner product of Y and αX becomes zero. We find
that Y · (αX) = α (Y · X) = α ( − 1

2 (y − x)2), which is clearly zero
if and only if y = x. Similarly, we can ask what a vector of the form
S = X− 1

2 ρ2 e∞, with ρ ∈ R, represents, where X is the same as above.
We find that Y · S = −1

2 (y − x)2 + 1
2 ρ2, which is zero if and only if

(x − a)2 = ρ2. That is, a vector of the form of S in PK2 represents
a circle in E2 centered on x with radius ρ. In PK3, S represents a
sphere centered on x with radius ρ and in even higher dimensional
spaces it would represent a hypersphere. This shows that it is possible
to represent circles and spheres in a linear manner in conformal space,
which is of course due to the non-linear embedding of Euclidean vectors.

Since equation (5) holds in any Clifford algebra, it is also valid for
C̀ (PK3). Given two vectors S1,S2 ∈ PK3 both representing spheres in
E3, their outer product S1 ∧S2 represents the intersection circle of the
spheres with respect to the inner product null space of the bivector.
That is, we can also represent circles in E3 in a linear manner in
conformal space PK3.

While a circle is represented in the inner product null space by the
intersection of two spheres, it may be shown that in terms of the outer
product null space a circle through three points x,y, z ∈ E3 can be
represented by the outer product of the three corresponding conformal
vectors X, Y and Z. Furthermore, four points X1,X2,X3,X4 ∈ PK2

are co-circular if X1 ∧X2 ∧X3 ∧X4 = 0.
As it turns out, within the Clifford algebra over conformal space,

the only geometric entity that can be represented is a sphere, albeit
in any dimension and with any radius. For example, a sphere with
infinite radius, i. e. a plane, can be represented with finite components.
A point, on the other hand, is a sphere with zero radius and a sphere
in E1 is a point pair. The following list shows the geometric entities
in E3 represented by blades of different grades in C̀ (PK3), in terms of
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their outer product null space. The {Xi} ⊂ PK3 are assumed to be the
conformal embeddings of Euclidean vectors {xi} ⊂ E3.

X1 : Point x1

X1 ∧X2 : Point pair (x1, x2)
X1 ∧ e∞ : Point pair (x1, ∞)

X1 ∧X2 ∧X3 : Circle through x1, x2, x3

X1 ∧X2 ∧ e∞ : Line through x1, x2

X1 ∧X2 ∧X3 ∧X4 : Sphere through x1, x2, x3,x4

X1 ∧X2 ∧X3 ∧ e∞ : Plane through x1, x2, x3

X1 ∧X2 ∧X3 ∧X4 ∧X5 : The whole space E3.

(7)

4. The Vector Space of Conic Sections

In conformal space we defined a particular embedding of Euclidean
vectors in a higher dimensional vector space with particular properties.
The Clifford algebra over this conformal vector space then allowed for
the linear representation of circles, spheres, etc. A set of geometric
entities of particular interest in computer vision are conic sections. It
would therefore be advantageous to be able to form a Clifford algebra
over a vector space such that conics and their intersections can be
represented. This is indeed possible and may be done in the following
way.

It is well known that given a symmetric 3 × 3 matrix A, the set of
vectors x = (x, y, 1)T that satisfy xT A x = 0, lie on a conic. This can
also be written using the scalar product of matrices, denoted here by ∗,
as (x xT) ∗ A = 0. It makes therefore sense to define a vector space of
symmetric matrices in the following way. If aij denotes the component
of matrix A at row i and column j, we can define a transformation T
that maps elements of R3×3 to R6 as

T : A ∈ R3×3 7→ (a13, a23,
1√
2
a33,

1√
2
a11,

1√
2
a22, a12)

T ∈ R6. (8)

A vector x ∈ R3 may now be embedded in the same six dimensional
space via x := T (x xT). If we define a := T (A), then xT A x = 0 can be
written as the scalar product

x ·a = 0 ⇐⇒ x2 a11+y2 a22+2xy a12+2x a13+2y a23+a33 = 0. (9)

Finding the vector a that best satisfies the above equation for a set of
points is usually called the algebraic estimation of a conic, see e.g. [1].
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8 C. Perwass, W. Förstner

We will denote the 6D-vector space in which 2D-conics may be
represented by D2 ≡ R6. A 2D-vector (x, y) ∈ R2 is transformed to
D2 by the function

D : (x, y) ∈ R2 7→ (x, y, 1√
2
, 1√

2
x2, 1√

2
y2, xy) ∈ D2. (10)

The Clifford Algebra C̀ (D2) has (algebra) dimension 26 = 64. The inner
product null space of a vector A ∈ D2 is the set of all those vectors
X ∈ D2 that satisfy X ·A = 0. As was shown before, this null space
is a (possibly degenerate) conic. Furthermore, the inner product null
space of the outer product of two vectors A,B ∈ D2, A ∧B, now has
to represent the intersection of the conics represented by A and B. Let
xi ∈ R2 and let Xi ∈ D2 be defined by Xi = D(xi)∀ i. Then the outer
product null space of blades in C̀ (D2) may be shown to represent the
following objects.

X1 : Point x1

X1 ∧X2 : Point pair (x1, x2)
X1 ∧X2 ∧X3 : Point triplet (x1, x2, x3)

X1 ∧X2 ∧X3 ∧X4 : Point quadruplet (x1, x2, x3,x4)
X1 ∧X2 ∧X3 ∧X4 ∧X5 : The conic through x1, x2, x3, x4, x5.

(11)
In particular, it can be shown that the outer product null space of
X1 ∧X2 ∧X3 ∧X4 ∧X5 is the same as the inner product null space of
its dual, which is a vector. Hence, this is also a simple way to construct
the symmetric matrix that represents a conic through five points. Note
that to the best of our knowledge the Clifford algebra C̀ (D2) has not yet
been discussed in the literature. We believe that it offers an intuitive
way to deal with 2D-conics and warrants further investigation.

5. Error Propagation in Clifford Algebra

It was shown previously that operations like the geometric, inner and
outer product in Clifford algebra are basically bilinear functions. This
implies that standard error propagation methods (cf. e. g. [15]) can
be applied in the evaluation of these products. Therefore, we can, for
example, evaluate the mean circle through three points, given the three
points with corresponding covariance and cross-covariance matrices in
conformal space. The same could be done, given two spheres with ap-
propriate covariance and cross-covariance matrices. Before the details
of such calculations are presented, error propagation in Clifford algebra
is introduced from a somewhat more general point of view.
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Uncertain Geometry 9

Let {Ei}2n

i=1 denote again the algebra basis of C̀ (Rn). Given three
multivectors A,B, M ∈ C̀ (Rn), with A = αiEi, B = βiEi and M =
µiEi, we may regard them as vectors in some Rm, with orthonormal
basis {ei}m

i=1, where m = 2n. In this vector space the multivectors may
be written as column vectors a = [α1, . . . , αm]T, b = [β1, . . . , βm]T

and m = [µ1, . . . , µm]T, respectively. We use here sans serif letters to
denote vectors in Rm in order to distinguish them from (multi-)vectors
in C̀ (Rn). The relation between multivectors in C̀ (Rn) and their rep-
resentation in Rm may be regarded as an isomorphism Φ between
these two spaces, whereby Φ(A ∈ C̀ n) = a ∈ Rm and Φ−1(a) = A.
This isomorphism also transforms Clifford algebra products to matrix
products with special matrices. For example, if M = A ∧B then

m = Φ(M) = Φ(A ∧B) = U(Φ(A))Φ(B) = U(a) b,

where U(a) is a matrix whose entries depend on a. In the following
all matrices will be written as capital sans-serif letters. The form of
matrix U is derived through the following considerations. A product in
C̀ (Rn) between two multivectors can be expressed as a bilinear function
g which is a map Rm × Rm → Rm and may be written as g(a, b) :=
αi βj gk

ij ek, where again we have implicit sums over i, j and k. The
object gk

ij is again the 3-valence tensor from equation (1). It encodes
the relation between the basis blades of C̀ n for a particular product.
For example, if gk

ij encodes the outer product, then the equation M =
A ∧B may be written in Rm as

m = g(a, b) ⇐⇒ µk = αiβj gk
ij ∀k. (12)

If we now denote the matrix of derivatives of g(a, b) with respect to
the {βj} as U(a), and with respect to the {αi} as V(b), we can write
M = A ∧B equivalently in Rm as

m = U(a) b = V(b) a. (13)

Note that U and V are basically the Jacobi matrices of g.

5.1. Error Propagation

Suppose now that multivectors A and B cannot be known exactly.
Instead only their expectation value, covariance and cross-covariance
matrices are known. The question is then how general Clifford algebra
operations can be performed while propagating the covariances of the
initial multivectors.

In the following we will denote random variables by underlining
the variable name. That is, A and B denote two random multivector
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10 C. Perwass, W. Förstner

variables with an embedding in Rm as Φ(A) = a = [αi, . . . , αm]T and
Φ(B) = b = [βi, . . . , βm]T. The expectation value of a random variable
will be denoted by overlining the variable name and the expectation
value operator will be denoted by E . The covariance matrix of a and b
will be denoted by Σa,b. Given the expectation values ā, b̄, the covari-
ance matrices Σa,a, Σb,b, and the cross-covariance Σa,b of a and b, we
ask what the expectation and covariance matrix of a bilinear function
g(a, b) as defined in equation (12) is. By expanding g(a, b) with a Taylor
expansion about the expectation values of a and b, we find that

m̄ = E [g(a, b)] = U(ā) b̄ + tr((Hk)T Σa,b)ek, (14)

where Hk is the Hesse matrix of the kth component of g, and tr(U)
denotes the trace of a matrix U. In this case the Hesse matrix is simply
Hk = gk

ij . Note that in most cases the term containing the Hesse matrix
will be negligible. By using the same Taylor expansion of g as before,
it may be shown that the covariance matrix of g(a, b) is approximately
given by

Σm,m = V(b̄) Σa,a, V
T(b̄) + U(ā)Σb,b, U

T(ā)
+ V(b̄) Σa,b, U

T(ā) + U(ā)Σb,a, V
T(b̄),

(15)

where we neglected an additional term tr((Hr)T Σa,b) tr((Hs)T Σa,b) for
each element Σrs

m,m. For most applications it may be assumed that this
is a good approximation. Furthermore, the cross-covariance matrix of
g(a, b) and another random multivector variable c ∈ Rm is given by

Σm,c = U(b̄)Σa,c + V(ā)Σb,c. (16)

Note that in the previous two equations the matrices U and V are the
Jacobean matrices of the bilinear function g. Equations (14), (15) and
(16) do in fact suffice to do error propagation for any combination of
Clifford algebra operations.

5.2. Conformal Space

For any expression we want to obtain in the Clifford algebra of con-
formal space C̀ (PK3), we can now use the equations presented in the
previous section to implement error propagation. Nevertheless, the ini-
tial expectation values and covariance matrices will typically only be
given for vectors in Euclidean space E3 and not for the correspond-
ing embedded vectors in PK3. We therefore first have to do the error
propagation for the embedding of a Euclidean random vector variable
x ∈ E3 into conformal space, where we will denote the corresponding
conformal random vector variable by X ∈ PK3. Note that while x is
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3-dimensional, X is (3 + 2)-dimensional, and therefore also the corre-
sponding covariance matrices will be of different dimensions. We find
that the expectation value of X is given by

X̄ = E [K(x)] = x̄ + 1
2 x̄2 e∞ + eo + 1

2 tr(Σx,x) e∞, (17)

where K is the function describing the embedding of a Euclidean vector
in conformal space. The term tr(Σx,x) is typically very small and may
be neglected. If we denote by JK(x̄) the Jacobi matrix of K evaluated
at x̄, then the covariance matrix ΣX,X of X is given in terms of the
covariance matrix Σx,x of x as

ΣX,X = JK(x̄)Σx,x JT
K(x̄). (18)

Denoting the components of x̄ by {ξ̄i}, the Jacobi matrix is in fact
given by

JK(x̄) =




1 0 0 ξ̄1 0
0 1 0 ξ̄2 0
0 0 1 ξ̄3 0




T

. (19)

The cross-covariance ΣX,Y is simply given in terms of Σx,y as

ΣX,Y = JK(x̄)Σx,y JT
K(ȳ). (20)

5.3. Evaluation of Circles

We mentioned earlier that in conformal space a circle may be repre-
sented by the outer product of three points, where a point is represented
by a vector as given in equation (6). The problem we now want to dis-
cuss is, given three points in Euclidean space with associated covariance
and cross-covariance matrices, what is the expected circle through these
three points and what is its covariance matrix.

Let x̄, ȳ, z̄ ∈ E3 denote the expectation of three Euclidean vec-
tors. Their corresponding covariance and cross-covariance matrices are
Σx,x, Σy,y, Σz,z, and Σx,y, Σy,z, Σz,x. In section 5.2 we have shown
how these three Euclidean vectors together with their covariance and
cross-covariance matrices may be embedded in conformal space. The
corresponding conformal vectors will be denoted by X̄, Ȳ, Z̄ and the
corresponding covariance and cross-covariance matrices likewise. Once
this is done, we can use equations (14) and (15) to first evaluate
P̄ = E [X̄∧ Ȳ] and the corresponding ΣP,P. Then we use equation (16)
to evaluate ΣP,Z. This then enables us to calculate C̄ = E [P̄ ∧ Z̄] and
ΣC,C. We could, of course, also have evaluated the Jacobians directly
for the trilinear product X̄∧Ȳ∧ Z̄ and then found the expectation and
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12 C. Perwass, W. Förstner

Figure 1. Standard deviation circles if vector x̄ has variance in only one component.

covariance. Note that the statistical relation between the components
of the trivector C̄ are linear, while the relation between the actual
radius, center and normal of the circle need not be. That is, due to the
conformal embedding not only the representation of a circle is linearized
but also the statistical relationship between its embedded components.

This allows us to very easily evaluate the standard deviation circles
of the mean circle C̄. We do this by evaluating a singular value de-
composition (SVD) on ΣC,C. The singular vectors that correspond to
non-zero singular values give the principal components of ΣC,C, while
the singular values give the variances along them. If C̄ were a point,
the principal components would give the axes of an ellipsoid which
represents the surface of standard deviation about this point. In the
present case, where C̄ represents a circle, we have to draw for each
point on the ellipsoid a circle. Hence, if ΣC,C only has one principal
component, we obtain two standard deviation circles as shown in figure
1. Here points ȳ and z̄ were held fixed and only point x̄ was taken to
have a variance along one dimension. The central black circle is the
mean circle which goes through all three points. The two gray circles
are the ones that will occur with a likelihood of exp(−1

2), i. e. they give
the standard deviation from the mean.

If we now only hold point z̄ fixed and assume that x̄ and ȳ each have
a variance in one dimension, then ΣC,C has two principal components
that give the axes of an ellipse. If we draw for each point on the ellipse
one circle, we obtain the surface shown in figure 2. That is, each circle
on the surface has a probability of exp(−1

2) to occur. How the actual
circle parameter may be extracted from a trivector C ∈ C̀ (PK3) that
represents it, may be found in some detail, for example, in [16]. Only
a short overview will be given here.
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Figure 2. Standard deviation surface if vectors x̄ and ȳ have each a variance in only
one component.

First of all, evaluate L = C · e∞ and A = C∧ e∞. It turns out that
L represents w.r.t. the inner product null space, the line through the
center of the circle with direction perpendicular to the plane the circle
lies in. A represents w.r.t. the outer product null space, the plane the
circle lies in. The intersection of A and L may simply be evaluated
by P = L · A, whence P is of the form P = X ∧ e∞, if X gives the
center of the circle. The normal of the plane the circle lies in is given
by N = L · (e3 ∧ e2 ∧ e1). However, N still has to be normalized, since
its magnitude is related to the radius of the circle. The radius r can
simply be evaluated by r2 = −(C · C)/(A · A). In fact, S = C/A
results in a vector of the same form as the vector representing a sphere
in section 3. The center and radius of S are then the same as those of the
circle C. Note that error propagation can be applied to all of the above
calculations, such that expectation values and covariance matrices are
available for all of these properties.

5.4. Evaluation of Conics

Constructing a conic from five uncertain points in D2 is very similar
to constructing a circle from three uncertain points in conformal space
PK3. We assume that we are given five points in R2, each with an
associated covariance matrix. These are embedded in D2 using standard
error propagation.

Let D again denote the function embedding vectors from R2 in D2.
A random vector variable x ∈ R2 is embedded in D2 via X = D(x).
The expectation value of X is then given by X̄ = E [D(x)] ≈ D(x̄). If
we denote by JD(x̄) the Jacobi matrix of D evaluated at x̄, then the
covariance matrix ΣX,X of X is given in terms of the covariance matrix
Σx,x of x as

ΣX,X = JD(x̄)Σx,x JT
D(x̄). (21)
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14 C. Perwass, W. Förstner

Denoting the components of x̄ by {ξ̄i}, the Jacobi matrix is given by

JD(x̄) =

[
1 0 0

√
2ξ̄1 0 ξ̄2

0 1 0 0
√

2ξ̄2 ξ̄1

]T

. (22)

The cross-covariance ΣX,Y is simply given in terms of Σx,y as

ΣX,Y = JD(x̄)Σx,y JT
D(ȳ). (23)

Figure 3 shows an example for such a construction. Given are five
points, of which two have a non-zero covariance matrix indicated by
small black bars. Taking the outer product of these five points after
having them embedded in D2, we can evaluate the mean conic, repre-
sented as black conic, and also the covariance matrix of the conic. In
this case the covariance matrix is of rank 2, which generates a whole
set of conics that have probability exp(−1

2) of a occurring, represented
by the gray conics. It can be seen that the area swept by this set of
”standard deviation conics” has a highly non-linear shape. Neverthe-
less, this surface is represented by the covariance matrix of the conic
in D2.

Figure 3. Standard deviation conics if two of the five points have rank 1 covariance
matrices (indicated by small black bars).

6. Fitting of Circles and Conics to Data

There is also a linear solution to find the best circle that passes through
a set of points in E3, or the best conic that passes through a set of points
in E2, in a least squares sense. This follows directly from equation (13).
In both cases the entities we would like to evaluate can be calculated
from a set of linear constraint equations. In conformal space we can
in this way extend the method given, for example, in [5, 1] for fitting
circles in 2D-Euclidean space, to 3D-Euclidean space.
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Figure 4. Result of linear fitting of a circle to a set of slightly scattered points in
E3.

In the space of conics D2, it is not only possible to fit conics but
also the intersection of conics to data by solving a linear system of
equations. For example, if the data consists of four clusters of points,
then fitting the intersection of two conics to the data will return a point
quadruplet whose points specify the centers of the clusters.

6.1. Fitting in Conformal Space

Here is a short description of how a circle may be fitted to a set of 3D-
points using the Clifford algebra of conformal space. It was mentioned
earlier that if a point X lies on a circle C, then X ∧ C = 0. If we
write c = Φ(C) and x = Φ(X), then this condition can be written as
U(x) c = 0. That is, c lies in the null space of the matrix U(x). Given
a set of points {x1, . . . , xk} that all have to lie on a circle, we can
define a matrix W that contains the set of matrices {U(x1), . . . , U(xk)}
stacked on top of each other. The condition a circle passing through all
these points then has to satisfy becomes Wc = 0. We could now simply
find the null space of W using a SVD. However, this would give the
subspace of multivectors and not trivectors that satisfy the constraint.
Therefore, we first remove those columns from W that are not related
to trivector components and only then find the null space. Since a SVD
gives the best solution in a least squares sense, we should obtain a fairly
good solution for the best circle fit, even though we have not taken the
covariance matrix of the {xi} into account. As discussed in [2], this
simple method is therefore only likely to supply a good initial guess for
an iterative algorithm [10]. Figure 4 shows an example of a circle fitted
to a set of artificially generated noisy 3D-points using this method. Of
course, any linear regression method, as for example the Gauss-Helmert
model may be applied here.
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16 C. Perwass, W. Förstner

6.2. Fitting in the Space of Conics

In order to fit a conic to a set of points, the same method as above can
be used, only this time in C̀ (D2). A conic C ∈ C̀ (D2) is represented
by the outer product of five points, and any point represented by a
vector X ∈ D2 that lies on the conic satisfies X ∧ C = 0. The dual
representation of a conic in C̀ (D2) is a vector. This vector can be
evaluated by the dual operation in Clifford algebra. Writing the dual
of C as C∗, the constraint a point satisfies when it lies on the conic is
X ·C∗ = 0. Writing this constraint again as U(Φ(X))Φ(C) = 0 allows
us to apply the same method we used for circles to evaluate the conic.

As mentioned before, this way of fitting a conic to data is well known.
However, using the Clifford algebra representation, we can use the same
linear approach to fit any entity that can be represented in the algebra
to any other representable entity. For example, the outer product of
two vectors X,Y ∈ D2 representing points in R2, represents this pair
of points. Hence, we can also fit a conic to point pairs. Maybe more
interestingly, we can also fit point pairs to a set of data points. Since the
outer product of four vectors in C̀ (D2) represents a point quadruplet, it
is also possible to fit a point quadruplet to a set of points. An example
of this is shown in figure 5. In C̀ (D2) a point quadruplet can also
be regarded as the intersection of two conics, since for every point
quadruplet there exists a whole pencil of conics who all intersect in the
same four points. For better visualization two conics of such a pencil
are drawn in figure 5. As can be seen, the two conics intersect more or
less in the centers of the four clusters. Hence, C̀ (D2) offers a simple,
linear method to find the centers of up to four clusters in a set of data
points.

Figure 5. Result of linear fitting of a point quadruplet represented as the intersection
of two conics to a set of scattered points in E2.

Figure 6 shows the result of fitting point quadruplets to line segment
structures, which are of particular interest in computer vision problems.
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It can be seen that the two conics drawn in each example intersect on
the line structures in such a way that the structures may be further
analyzed. Potentially this offers a method to distinguish between junc-
tions and corners in images and also to evaluate the opening angle
and orientation of corners. This will be investigated further in future
research.

Figure 6. Fitting point quadruplets (represented as intersections of two conics) to
line segment structures.

7. Conclusions

In this text we presented a method of constructing circles in 3D-Euclidean
space and conics in 2D-Euclidean space from a number of uncertain
points using error propagation methods. The main advantage of rep-
resenting circles in E3 and conics in E2 through elements of a Clifford
algebra, is that this representation is (multi-)linear. This allows us to
employ standard error propagation methods to find the mean circle
through three points or the mean conic through five points and also
their respective covariance matrices. These covariance matrices may
then also be used to visualize the standard deviation of the circle and
conics, respectively. In this setting it is also possible to extend the
well known linear model of fitting circles in 2D-Euclidean space, as
presented, for example, in [5, 1], to 3D-Euclidean space. Furthermore,
it is possible to fit the intersection of conics, which may be point
quadruplets, triplets, doublets or single points, to sets of data vectors.
In future work we will investigate the application of standard statistical
estimation models to this problem. Another topic of investigation is to
develop statistical methods in Clifford algebra to test, for example,
whether a line intersects a circle (conic), or whether a point lies on a
circle (conic), etc. Note that a software tool called CLUCalc is available
from www.clucalc.info, for investigating and visualizing the Clifford
algebra expressions and their error propagation as presented here.
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