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Abstract. A novel method which entirely resides inside conformal geometric algebra (CGA) is presented estimating the pose
of a camera from one image of a known object. At first, subproblems covering only three feature points are solved and globally
assessed. The object model is accordingly pruned and rigidly fitted to corresponding projection rays by evaluating a succinct
CGA expression which emerged from a purely geometric approach. It results a set of 3-point poses each given by a motor.
These spinor elements of CGA embody rigid body motions from the manifold SE(3). The poses are then to be averaged
according to their quality. This is the second aspect of this work as the respective motors do not come from a linear space and
averaging must be carried out appropriately. For this purpose, a technique called weighted intrinsic mean is used.
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INTRODUCTION

In pose estimation the orientation and position of an internally calibrated camera is recovered from its images. For
this purpose, the 3D point-model of at least one pictured object is assumed to be known together with a set of
correspondences, which interrelate model points and image points. This kind of pose estimation is often referred
to as ‘perspective n-point problem’ (PnP).

The classic but challenging task of pose estimation is from the field of computer vision. Most approaches to that
subject are iterative, highly nonlinear or require an initialization. Closed form solutions to the 3-point problem (P3P),
where the number of correspondences is three, exist [1] but may result in up to four distinct solutions because P3P
is not necessarily unique. As extension to P3P it is also possible to consider four points. Fischler and Bolles [2], for
example, take subsets and perform consistency checks to eliminate the P3P ambiguity for most point configurations.
In [3] Quan and Lan present an algorithm capable of finding the unique solution to PnP. They first generate a global
system of linear equations based on all correspondences. Next, the exact 3D-vectors to the object points w.r.t. the
camera coordinate system are estimated. Finally, camera orientation and position are evaluated one after another. But
this class of techniques is shown in [4] to improperly model the physical imaging, i.e. a perspective projection must
be considered. Rosenhahn and Sommer [5] formulate algebraic constraints with CGA. They obtain a hybrid system
of linear equations based on correspondences between points, lines and between point and line. Starting from an
initialization the pose is iteratively estimated in 3D. It is to mention that such global PnP approaches are not able to
spot and disregard false or noisy correspondences.

In this text we derive a vivid geometric formulation of P3P with CGA. At the same time, this motivates a sound
selection strategy for point triplets, i.e. not all possible 3-combinations in the correspondences must be considered.
Solutions of PnP are rigid body motions (RBM) from the manifold SE(3). We show that the respective P3P-solution
is fully determined by a certain angle θ ∗. Our geometric approach further leads to an algebraic function h(θ) ∈ R,
with θ ∗ being a root of which. For each root the corresponding RBM is globally assessed regarding its effect on the
entire n-point scenario. The set of 3-point candidate solutions can then be reduced by solutions from obviously false
correspondences. The remaining RBMs, at most one for every triplet considered, are finally averaged by means of the
weighted intrinsic mean, which is tailored to elements of SE(3).

Geometry with Geometric Algebra

For a detailed introduction to geometric algebra (GA) see e.g. [6, 7]. Here we only convey a minimal framework.
We consider the geometric algebra G4,1 = C`(R4,1) ⊃ R4,1 of the 5D conformal space (CGA), cf. [8, 9]. Let
{e1,e2,e3,e+,e−} denote the basis of the underlying Minkowski spaceR4,1, where e2

1 = e2
2 = e2

3 = e2
+ = 1 =−e2−. We



use the common abbreviations e∞ = e−+e+ and eo = 1
2 (e−−e+) for the point at infinity and the origin, respectively.

The algebra elements are termed multivectors, which we symbolize by capital bold letters, e.g. AAA. A juxtaposition of
algebra elements, like CCCRRR, indicates their geometric product, being the associative, distributive and noncommutative
algebra product. We denote ‘·’ and ‘∧’ the inner and outer (exterior) product, respectively. A point xxx ∈ R3 ⊂ G4,1

of the 3D Euclidian space is mapped to a conformal point (null vector) XXX , with XXX2 = 0, by XXX = xxx + 1
2 xxx2e∞ + eo. A

geometric object, say OOO, can now be defined in terms of its inner product null space X(OOO) = {XXX ∈R4,1|XXX ·OOO = 0}.
This implies an invariance to scalar multiples X(OOO) = X(λ OOO), λ ∈ R\{0}. Verify that SSS = sss + 1

2 (sss2− r2)e∞ + eo

represents a 2-sphere centered at sss ∈R3 with radius r. Similarly, if nnn ∈R3, with nnn2 = 1, then PPP = nnn+d e∞ represents
a plane at a distance d from the origin with orientation nnn. Using this vector valued geometric primitives higher order
entities can be build: given two objects, e.g. the planes PPP1 and PPP2, their line of intersection LLL is simply the outer product
LLL = PPP1∧PPP2. An important GA operation is the reflection. The reflection of AAA in OOO is given by the sandwiching product
BBB = OOOAAAOOO. The most general case is the reflection in a sphere, which actually represents an inversion. Note that any
RBM can be represented by consecutive reflections in planes. In CGA the resulting elements, for example MMM = PPP1PPP2,
are referred to as motors, cf. [5]. Some object CCC would then be subjected to MMMCCCM̃MM, whereby the symbol ‘˜’ stands for
an order reversion, i.e. the reverse of MMM is M̃MM = PPP2PPP1. Since reflection is an involution, a double reflection OOO(OOOAAAOOO)OOO
must be the identity w.r.t X(AAA), therefore OOO2 ∈R by associativity. It looks like a conclusion, but in GA every vector
valued element XXX ∈ R4,1 squares to a scalar by definition XXX2 := XXX ·XXX ∈ R. Using the above definitions, we have
SSS2 = r2 and PPP2 = 1.

THALES’ THEOREM REVISITED

In this section we demonstrate how a simple geometric theorem motivates a solution to P3P. Our considerations refer
to the left and middle part of figure 1.

The generalization of Thales’ theorem states that, given a circle KKK, the centric angle ∠(xxx′1,mmm,xxx1) at mmm is twice the
peripheral angle ∠(xxx′1,OOO,xxx1) at OOO. We use this fact and define two successive rotations: the first rotates xxx1 to xxx′1 and
the second rotates xxx′1 back onto the straight line connecting OOO and xxx1. We obtain point xxx′′1 . It is crucial, that any second
point xxx2 on KKK will also move towards OOO. Moreover, the distance from xxx1 to xxx2 stays constant since rotations are
distance preserving.

Before we enlighten the value of this observation we work out the general transformation, that we denote RRRθ , in
terms of CGA. We therefore replace each rotation with two reflections in suitable planes. We have to take care that
the dihedral angle between the planes equals half of the rotation angle. Further, the planes’ line of intersection must
coincide with the rotation axis. The two rotations can ultimately be realized by four reflections in the three planes
PPP1, PPP2 and PPP3. The order of application must be PPP1, PPP2, PPP3 and PPP1 again. We obtain the motor RRRθ = PPP1PPP3PPP2PPP1. For
the derivation we take a canonical coordinate system as a basis. The whole setup is depicted in figure 1. We define
PPP1 = e1, PPP2 = cos(θ)e1 + sin(θ)(e2 + r e∞) and PPP3 = cos(θ/2)e1 + sin(θ/2)e2, whereby r denotes the radius of
circle KKK. After some algebra we obtain

RRRθ = cos(θ/2)+ sin(θ/2)
[

e1e2 + r
(
(cos(θ)+1)e1e∞ + sin(θ)e2e∞

)

︸ ︷︷ ︸
LLLθ

]
= exp

(
θ/2 LLLθ

)
. (1)

The element LLLθ is a line representing the rotation axis of RRRθ and plays the role of the imaginary unit i of complex
numbers, for LLL2

θ = −1. By noting that RRRθ = PPP1(PPP3PPP2)PPP1 it can be recognized that RRRθ is the reflection of RRR′θ := PPP3PPP2
in plane PPP1. Hence RRRθ rotates by an angle θ being twice the dihedral angle between PPP3 and PPP2.

Regarding pose estimation this result can be interpreted as a way to rigidly move two 3D model points on their
respective projection rays. The latter can be computed from the internal calibration and the corresponding image
points. The point OOO represents the optical center of the camera. Unfortunately, it is not sufficient to consider two
points, but the above result leads to a 3-point approach.

THE PERSPECTIVE 3-POINT PROBLEM

In this section, we concentrate on the subproblem of determining the pose of point triplets. We thus consider three 3D
model points {xxx1,xxx2,xxx3} and their corresponding image points. From these we compute the respective projection rays



FIGURE 1. Left: the generalization of Thales’ theorem explains why two successive rotations form a translation. Middle:
the transformation can be realized by a sequence of four reflections in three well-chosen planes PPP1, PPP2 and PPP3. The overall
transformation is then RRRθ = PPP1PPP3PPP2PPP1. Right: Distance d between circle CCCθ and the third projection ray LLL3.

{LLL1,LLL2,LLL3}.
The aim is to find a position and orientation for the model such that each model point coincides with its respective

projection ray. This problem is referred to as fitting. It enables the computation of an RBM that interrelates the external
(world) coordinate system (WCS) of the 3D model and the camera coordinate system (CCS). Note that the RMB, which
we encode in a motor, constitutes the camera pose.

The solution arises from the question where the third point xxx3 might be while we use RRRθ to move xxx1 and xxx2 along
their projection rays. Clearly the mutual distances between the three points must me retained. The locus of the third
point must therefore be a circle CCC which has to be subjected to RRRθ along with xxx1 and xxx2, see figure 1. Note1 that
we have reached our aim if CCCθ = RRRθCCCR̃RRθ intersects ray LLL3. The CGA expression CCCθ ∧LLL represents a sphere which
degenerates to the point of intersection in case LLL3 hits CCCθ . Hence a suitable function is h(θ) = (CCCθ ∧LLL)2 ∈R which
has to attain zero.

Since the derivatives of h(θ) are analytically available, we employ the Newton-Raphson method for the computation
of the at most four roots Θ = {θ1,θ2, . . . ,θk}, k ≤ 4. The application of the respective motor RRRθ∈Θ to the points
{xxx1,xxx2,xxx3} yields the fitted points {xxx′1,xxx

′
2,xxx

′
3}, being the connection between CCS and WCS. For each angle θ ∈ Θ

we estimate the interrelating motor MMMθ by means of standard methods, see [10]. The application of the MMMθ∈Θ to the
entire n-point problem assesses their quality and ultimately reveals inappropriate pose candidates.

It remains to specify a selection strategy for triplets in order to put a limit on the computational complexity
(n

3

)
: we

select those triplets the image points of which form maximum area triangles on the image plane. In this way the impact
of noise in the coordinates of the image points is minimized, i.e. the fitting is more constrained as the noise induced
jittering of the model does not carry much weight.

THE PERSPECTIVE n-POINT PROBLEM

The issue regarding the fusion of the P3P motors {MMM1,MMM2, . . . ,MMMN} is the second key aspect of this work. Since any
motor is from the Lie group SE(3), being a manifold, the customary arithmetic mean may not be used: A,B∈ SE(3) 6⇒
A + B ∈ SE(3). The Lie group SE(3) is connected to its Lie algebra se(3) (tangent space to the identity element of
SE(3)) by the exp/log map. Note that in se(3) any customary mean can be built as the algebra elements form a vector
space. This is exploited by the ‘weighted intrinsic mean’, in which the log map is used to compute first-order mean
approximations via the tangent space, see [11, 12]. The N motors are input to the outlined algorithm below, whereby

1 The three original model points were initially subjected to an RBM such that xxx1 and xxx2 of the resulting points {xxx1,xxx2,xxx3} already lie on their
corresponding projection rays. We then use {xxx1,xxx2,xxx3} to determine KKK and CCC = CCC0.



the weights wi, 1≤ i≤ N, reflect the motor assessments. Starting from the motor MMM = identity the subsequent three
steps are repeated until ||log(∆MMM)|| falls below a certain threshold ε .

1. ∆AAAi = log
(
MMM−1MMMi

)
1≤ i≤ N

2. ∆MMM = exp
(

1
W ∑N

i=1 wi ∆AAAi

)
W = ∑N

i=1 wi

3. MMM = MMM ∆MMM

(2)

Notice that the motor MMM is repeatedly updated by the residuals ∆MMM, which originate from the weighted averaging of
algebra elements ∆AAAi, 1≤ i≤ N. The term MMM−1MMMi in step 1 moves the input closer to the identity element of SE(3) in
order to minimize the averaging error in step 2. A derivation of the algorithm and a uniqueness proof is given in [13].

Here we do not report experimental results but state that our pose estimation has already been vastly used. Besides,
in synthetic experiments the method has proven to produce results competitive to the ground truth or to a stochastically
optimal solution.

CONCLUSION

Starting from a clear geometric concept, we have proposed a solution to the perspective n-point problem which is free
from initialization. Our method is consistent since it always yields the correct solution in the absence of noise. The
involved 3-point problem has been streamlined to a scalar valued function solely depending on an angle. Our approach
enables the rejection of solution candidates which stem from false correspondences. We have introduced a selection
strategy for point triplets which reduces the computational effort and improves the accuracy at the same time. In the
final weighted averaging of rigid body motions we have taken their algebraic nature into account using the intrinsic
mean. Evidently, this work is also a valuable contribution to the field of (conformal) geometric algebra, which turned
out to be the ideal framework to deal with geometric objects and transformations.
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