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Abstract. We show how standard parameter estimation methods can be ap-
plied to Geometric Algebra in order to fit geometric entities and operators to
uncertain data. These methods are applied to three selected problems. One
of which is the perspective pose estimation problem. We show experiments
with synthetic data and compare the results of our algorithm with standard
approaches.

In general, our aim is to find multivectors that satisfy a particular con-
straint, which depends on a set of uncertain measurements. The specific prob-
lem and the type of multivector, representing a geometric entity or a geometric
operator, determine the constraint. We consider the case of point measure-
ments in Euclidian 3D-space, where the respective uncertainties are given by
covariance matrices. We want to find a best fitting circle or line together with
their uncertainty. This problem can be expressed in a linear manner, when
it is embedded in the corresponding conformal space. In this space, it is also
possible to evaluate screw motions and their uncertainty, in very much the
same way.

The parameter estimation method we use is a least-squares adjustment
method, which is based on the so-called Gauss-Helmert model, also known
as mixed model with constraints. For this linear model, we benefit from the
implicit linearization when expressing our constraints in conformal space. The
multivector representation of the entities we are interested in also allows their
uncertainty to be expressed by covariance matrices. As a by-product, this
method provides such covariance matrices.

Keywords. Geometric Algebra, conformal space, parameter estimation, least
squares adjustment, pose estimation, fitting, Mahalanobis distance.

1. Introduction

Uncertain data occurs almost invariably, especially in Computer Vision applica-
tions. It is hence a necessity to develop and use methods, which account for the
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errors in observational data. Here, we discuss a parameter estimation from uncer-
tain data in a unified mathematical framework, namely Geometric Algebra. We
use the Geometric Algebra of the conformal space of Euclidean 3D-space as intro-
duced in [1]. Consequently, the estimation is applicable to geometric entities and
geometric operators. In particular, it can be shown that evaluating points, lines,
planes, circle, spheres and their covariance matrices from a set of uncertain points
can be done in much the same way as the evaluation of rotation, translation and
dilation operators with corresponding covariance matrices. Using standard error
propagation, further calculations can be performed with these uncertain entities,
while keeping track of the uncertainty.

This text builds on previous works by Förstner et al. [3] and Heuel [5] where
uncertain points, lines and planes were treated in a unified manner. The linear
estimation of rotation operators in Geometric Algebra was previously discussed in
[13], albeit without taking account of uncertainty. In the scope of perspective pose
estimation Rosenhahn and Sommer [15] also derived an estimation method for
rotation/translation operators employing conformal Geometric Algebra. Their ap-
proach is mainly based on the stratification hierarchy of Euclidean, projective and
affine spaces. In [11] the estimation of uncertain general operators was introduced.

The structure of this text is as follows. First, we give an introduction to pa-
rameter estimation using least squares adjustment in an ordinary vector space.
Next, we provide a concise overview of Geometric Algebra and explain our re-
spective notation. We then show in which way observations of Euclidian 3D-space
can be embedded into 5D conformal space and how smoothly error propagation
integrates into that process. We present three fields of application for the proposed
Gauss-Helmert method. For each, we make clear in which way we profit from the
expressiveness of Geometric Algebra and we explain how our method can be ap-
plied within that framework. We conclude the text with synthetic experiments
regarding the three examples and give the conclusions.

2. Least Squares Adjustment

In the field of parameter estimation one usually tries to parametrize some physical
process P in terms of a model M and a corresponding parameter vector p. The
components of p are then to be estimated from a set of N observations {b1..N }1,
stemming from P. In order to overcome the inherent noisiness of measurements,
one typically introduces redundancy by taking much more measurements than
necessary to describe the process.

The term ‘adjustment’ in ‘least squares adjustment’ emphasizes that this
method focuses on the way in which redundant observational data influences the
least squares minimization. The prerequisite for this is that each observation bi is
associated with an appropriate covariance matrix Σbi

. It describes the respective
Gaussian probability density function that is assumed to model the origination of

1We use the abbreviation {b1..N } for a set {b1, b2, . . . , bN}.
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the observational error. The matrices are taken as weights and introduce a local
error metric.

Classically, the method of least squares consists in finding estimates {b̂1..N }
for the observations {b1..N }, such that the sum of squared errors is minimized

∑
i

‖bi − b̂i‖2 =
∑

i

∆bT
i∆bi −→ min . (2.1)

The minimization has to be done in conjunction with a condition function g(bi) =
0, to avoid the trivial solution b̂i = bi. The condition function reflects the model
M and usually also depends on the parameter vector p : g(bi, p) = 0. Besides,
it is often inevitable to define constraints h(p) = 0 on the parameter vector p.
This is necessary if there are functional dependencies within the parameters. As an
example consider the parametrization of a Euclidian normal vector n, using three
variables n = (n1, n2, n3)T, in which case a constraint like nTn = 1 would be
needed. This can be avoided by using the spherical coordinates θ and φ, i.e. n =
(cos θ cos φ, cos θ sinφ, sin θ)T. In the following sections, we refer to the functions
g and h as G-constraint and H-constraint, respectively. Next, we give a derivation
of our method for a general vector space.

In practice constraint functions are usually nonlinear. In order to work with
them, we have to make a linearization at a distinct point. The new linear function
will only be valid and applicable within a certain region around that tangent
point. This implies two things: we are required to provide an initial point and
we are supposed to stay in its vicinity. The latter is unintentionally enforced by
equation (2.1). If the initial point was chosen poorly, the procedure has to be
iterated. For now, parameter estimation turns into an iterative gradient descent
method. Subsequently, we assume to have a fairly good initial point, which we
denote by (b̂i, p̂). Especially, we take the uncertain observations {b1..N } as initial
estimates, i.e. {b̂1..N } = {b1..N }. We refer to p̂ and b̂i as the initial estimates. A
Taylor series expansion of first order for g(bi, p) at (b̂i, p̂) yields

g(b̂i + ∆bi, p̂ + ∆p) = 0

⇐⇒ (∂p g)(b̂i,p̂)︸ ︷︷ ︸
Ui(b̂i, p̂)

∆p + (∂bi g)(b̂i,p̂)︸ ︷︷ ︸
Vi(b̂i, p̂)

∆bi + g(b̂i,p̂)︸ ︷︷ ︸
− cgi

≈ 0 , (2.2)

where Ui(b̂i, p̂) and Vi(b̂i, p̂) are the Jacobians with respect to the parameters and
the observations, respectively. For each observation b̂i we obtain a matrix equation

Ui ∆p + Vi ∆bi = cgi
. (2.3)
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If we define b = (bT
1 , bT

2 , . . . , bT
n)T, we can combine all observational condition

equations into U1

...
Un


︸ ︷︷ ︸

U

∆p +

 V1 0
. . .

0 Vn


︸ ︷︷ ︸

V

 ∆b1

...
∆bn


︸ ︷︷ ︸

∆b

=

 cg1

...
cgn


︸ ︷︷ ︸

cg

and eventually get a block matrix representation

U ∆p + V ∆b = cg . (2.4)

Similarly, a Taylor series expansion of first order for the constraint function h(p) =
0 at p̂ yields

(∂ph)(p̂)︸ ︷︷ ︸
H(p̂)

∆p + h(p̂)︸︷︷︸
− ch

≈ 0 =⇒ H∆p = ch .

Condition equation (2.3) matches the Gauss-Helmert model, which was intro-
duced by Helmert in 1872 as a general linear model, [4]. In the theory of parameter
estimation, it is the starting point for deriving and computing the best linear un-
biased estimator for the parameter vector p. Besides, it has been shown in [6] that
different approaches, namely least squares, maximum likelihood and the approach
using the Gauss-Helmert model, equally lead to the best linear unbiased estimator.
The Gauss-Helmert model is also know as mixed model with constraints, since the
observations (here ∆bi) represent unfixed variables, too. It differs from the famous
Gauss-Markov model, which is commonly used for regression problems, because
the observations appear indirectly, i.e. affinely transformed (in our case Vi ∆bi).
Details can be found in [6, 8].

In the following sections, we refer to our parameter estimation method as the
‘Gauss-Helmert method ’.

It is crucial to note that we simultaneously search for corrections {∆b1..N }
and ∆p, such that

bi = b̂i + ∆bi and p = p̂ + ∆p ,

where p denotes a valid parameter vector for all {b1..N }, i.e. (∀i) : g(bi, p) = 0 and
h(p) = 0. Moreover, in case of least squares adjustment, the corrections {∆b1..N }
should be minimal with respect to the covariance matrices {Σb1..N }. Using block
matrix notation, we thus have the adjustment condition for the correction ∆b

D2 = ∆bTΣb
−1∆b −→ min , (2.5)

where Σb is the appropriate block diagonal matrix, build up of the individual
{Σb1..N }. Equation (2.5) defines the so-called Mahalanobis distance D. To meet
all conditions and constraints while minimizing, we make use of the Lagrange
multiplier method, where the vectors u and v denote the multipliers. We can thus
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define a new function Φ(∆p, ∆b, u, v), which has to be minimized

Φ(∆p, ∆b, u, v) := 1
2 ∆bT Σb

−1 ∆b

−
[

U ∆p + V ∆b− cg

]T
u

+
[

H ∆p− ch

]T
v

.

Differentiation with respect to all variables gives us the subsequent equation sys-
tem, which could already be solved

Σb
−1 0 VT 0

0 0 UT −HT

V U 0 0
0 H 0 0




∆b
∆p
u
v

 =


0
0
cg

ch

 . (2.6)

Nevertheless, the system can be considerably reduced by a sequence of substi-

tutions: N =
n∑

i=1

UT
i

(
Vi Σbi

VT
i

)−1
Ui and cn =

n∑
i=1

UT
i

(
Vi Σbi

VT
i

)−1
cgi

. The

resultant matrix equation(
N HT

H 0

)
︸ ︷︷ ︸

Q

(
∆p
v

)
=

(
cn

ch

)
(2.7)

is free of ∆b and can be solved for ∆p. As an important by-product, the (pseudo-)
inverse Q−1 contains the covariance matrix Σ∆p = Σp, belonging to the estimated
parameter vector p. This is proven in [6].

The correction ∆bi has to be evaluated by substituting ∆p into the equation

∆bi = Σbi
VT

i (ViΣbi
VT

i )−1 (cgi
− Ui ∆p).

The new estimates for bi and p are then given by p̂′ = p̂ + ∆p and b̂′i = b̂i + ∆bi.
If the constraint functions g(bi, p) and h(p) are linear, then these new estimates
are the best linear unbiased estimates for bi and p. If the constraint functions are
not linear, then this is a step in an iterative estimation procedure.

3. Geometric Algebra

The Geometric Algebra over an n-dimensional Euclidean vector space Rn has
dimension 2n and is denoted by G(Rn) or simply Gn.

The corresponding 2n-dimensional basis of Gn contains the n basis vectors
{e1..n } of Rn, representing elements of grade one. An Euclidian vector a =
(a1, . . . , an)T has therefore an equivalent in Gn that we denote a =

∑n
i aiei as

well. Elements of different grade of the algebra can be constructed by the outer
product of linearly independent vectors. For example, if {a1..k } are a set of linearly
independent vectors, then A〈k〉 := a1 ∧ . . . ∧ ak is an element of Gn of grade k,
which is called a blade, where ‘∧’ denotes the outer product. A general element of
the algebra, called multivector, can always be expressed as a linear combination
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of blades of possibly different grades. Blades can be used to represent geometric
entities. Apart from representing geometric entities by blades, it is also possible to
define operators in Geometric Algebra. The class of operators we are particularly
interested in are called versors. A versor V ∈ Gn is a multivector that satisfies the
following condition: for any blade A〈k〉 ∈ Gn, V A〈k〉 Ṽ is also of grade k, i.e. a
versor is grade preserving. Especially, if V Ṽ = 1 holds, then V is called unitary.
The expression Ṽ denotes the reverse of V . The reverse operation changes the
sign of the constituent blade elements depending on their grade, which has an
effect similar to conjugation in quaternions. The most interesting versors for our
purposes in conformal space are rotation operators (rotors), translation operators
(translators) and scaling operators (dilators). All of them share the property that
they can be applied to all geometric entities in the same way. That is, it does
not matter whether a blade A〈k〉 represents a point, line, plane, circle or sphere;
applying, for example, a rotor R to it, as in R A〈k〉 R̃, results in a blade that
represents the rotated geometric entity.

3.1. Transferring Algebra Expressions to R2n

Subsequently, we show how Geometric Algebra expressions can be transferred to
a matrix algebra, where we make use of the inherent tensor representation of
Geometric Algebra.

If {E1..2n } ⊃ {e1..n } denotes the 2n-dimensional algebra basis of Gn, then
a multivector A ∈ Gn can be written as A = ai Ei, where ai denotes the ith

component of a vector a ∈ R2n

and a sum over the repeated index i is implied.
We use this Einstein summation convention also in the following. If B = bi Ei and
C = ci Ei, then the components of C in the algebra equation C = A ◦B can be
evaluated via ck = ai bj Gk

ij . Here ◦ is a placeholder for an algebra product and
Gk

ij ∈ R2n×2n×2n

is a tensor encoding this product.
If we define the matrices U,V ∈ R2n×2n

as U(a) := ai Gk
ij and V(b) :=

bj Gk
ij , then c = U(a) b = V(b) a. Therefore, we can define an isomorphism Φ,

such that for A,B ∈ Gn, Φ(A) ∈ R
2n

and Φ(A ◦ B) = U(Φ(A))Φ(B) =
V(Φ(B))Φ(A). In particular, using Φ we can write Φ(a) = a and Φ(b) = b.
The isomorphism allows us to apply standard numerical algorithms to Geometric
Algebra equations. We can also reduce the complexity of the equations consider-
ably by only mapping those components of multivectors that are actually needed.
In the following we therefore assume that Φ maps to the minimum number of
components necessary.

4. Estimation in Geometric Algebra

In order to benefit from the variety of geometric entities, we use the well known
Geometric Algebra of the (projective) conformal space of Euclidean 3D-space, see
[7, 1].
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The embedding function2 K is defined as (cf. [7, 12])

K : x = (x1, x2, x3)T 7−→ X := x + 1
2 x2 e∞ + eo , (4.1)

K maps x ∈ R3 to X ∈ R4,1, the basis of which can be written as {e1, e2, e3,
e∞, eo}. Note that the linear combinations e∞ = e− + e+ and eo = 1

2 (e− − e+)
substitute the basis vectors e− and e+, respectively. Due to e2

− = −1 and e2
+ = +1,

we have e2
∞ = e2

o
!= 0.

In the scope of parameter estimation in conformal space, we have to obey
the rules of error propagation when embedding the Euclidian observations into
conformal space. Assume that vector x is a random vector variable with a Gaussian
distribution and x̄ is its mean value. Furthermore, we denote the 3× 3 covariance
matrix of x by Σx. Let E denote the expectation value operator, i.e. E [x] = x̄.
Then we make the approximation that

E
[
K(x)

]
= x̄ + 1

2 x̄2 e∞ + eo + 1
2 trace

(
Σx

)
e∞ ≈ K

(
E [x]

)
. (4.2)

We still need to know what the corresponding covariance matrix for X = K(x̄) is.
This is easily done employing Gaussian error propagation, which is, for the case
of matrix notation, shown in [8]. We first evaluate the Jacobian of K,

JK(x̄) :=
∂K
∂X

=


1 0 0
0 1 0
0 0 1
x̄1 x̄2 x̄3

0 0 0

 . (4.3)

The covariance matrix ΣX of X for the conformal space is then given by

ΣX = JK(x̄) Σx JT
K(x̄). (4.4)

Next, we show exemplarily that Geometric Algebra offers a unified framework
to derive the constraint equations for geometrical problems, so that the Gauss-
Helmert method can be applied. Since the standard algebra operations between
multivectors can be mapped to bilinear functions, the estimation of all algebra
elements is basically the same. This means in particular that operators as well as
geometric entities are represented by vectors and their estimation is therefore very
similar. In order to apply the Gauss-Helmert method as described in section 2, we
need to define a G-constraint function that relates the parameter vector and the
data vectors, as well as a H-constraint function for the parameter vector p alone.
Subsequently, we assume to have an initial estimate p̂ of the parameter vector.

2Vectors of Gn, representing conformal points, are symbolized by capital letters, like general

multivectors.
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4.1. Fitting a Circle in 3D

Now we show how the Gauss-Helmert method can be used in Geometric Algebra to
fit a circle in 3D-space to a set of N data points {b1..N }. Each data point is given
with its mean bi and covariance matrix Σbi

, assuming a Gaussian distribution.
We represent a circle in conformal space by the inner product null space X

of a 2-blade C. That space consists of all conformal points X, the inner product
of which with the circle C is equal zero, i.e. X = {X = K(x) |X · C = 0}.
To understand this relationship, consider the inner product null space of a sphere
Sr with radius r and center m. It can be created from a point S0 = K(m) =
m + 1

2 m2 e∞ + eo by subtracting the term ‘ 12 r2 e∞’. The sphere is thus given
by Sr = m + 1

2 (m2 − r2) e∞ + eo. Given some vector x, it can be verified that
K(x) · Sr = 0 ⇐⇒ ‖x−m‖2 = r.

Intuitively speaking, given two intersecting spheres S1 and S2, the set of
circle points consists of all points X that lie on sphere S1 and S2. In Conformal
Geometric Algebra intersection can mostly be expressed by simply taking the outer
product; the intersection circle is thus defined by C = S1 ∧S2. According to the
above discussion we build the inner product with a point X

X · (S1 ∧ S2) = (X · S1︸ ︷︷ ︸
∈R

)S2 − (X · S2︸ ︷︷ ︸
∈R

)S1 . (4.5)

The terms cannot cancel each other, if S1 and S2 are linearly independent, i.e. if
they do not represent the same sphere. The upper equation is therefore zero, iff
X is located on S1 and S2, as well.

Remarkably, we have found an appropriate G-constraint right from the defi-
nition of the circles inner product null space itself. With the help of isomorphism
Φ, introduced at the end of section 3, it remains to transfer the inner product
expression X ·C to an equivalent matrix expression. Note that the inner product
of a vector with a bivector results in a vector. Since a vector has five components,
there are five constraints for each point that has to lie on a circle.

We use a ten component parameter vector p to represent circle C, since
all ten basis blades of grade two in G5 contribute to the definition of a circle:
Φ(C) = p ∈ R10. The observed points {b1..N } are embedded by K and then
mapped by Φ as follows: Φ(K(bi) = Bi) = bi ∈ R5. Similarly and according to
equation (4.4), the covariance matrices are embedded to 5×5 matrices.

The application of Φ to our constraint results in

Φ(Bi ·C) = U(bi) p = V(p) bi (4.6)

= g(bi, p) , (4.7)

which can be differentiated easily. The Jacobians U and V, which are required by
equation (2.2) for the Gauss-Helmert method, follow therefore implicitly from the
bilinearity of Geometric Algebra products.

A circle in Euclidian space can be described by a minimum number of six
parameters (three for the center, two for the circle plane and one for the radius).
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Figure 1. Metric induced by the inner product between a circle
and points. Each of the concentric curves visualizes a locus of
constant distance regarding the inner product.

Hence, we deal with a functional dependency of grade 4 = 10 − 6 within the
parameter vector p. As mentioned in section 2, we have to introduce constraints
on the parameters, namely the H-constraint h(p). We enforce C to be a circle by
requiring that C ∧ C = 0, which can be shown to be sufficient. In almost the
same way as for the G-constraint, the usage of Φ allows us to infer matrix H.

Having computed the matrices U, V and H we are able to apply the Gauss-
Helmert method to solve for the corrections ∆p and ∆b. Experimental results for
the circle fit problem are given in section 5.1.

It is worth noting that the described approach uses algebraic fitting, where
the inner product of the G-constraint imposes a non-Euclidian metric. The latter
is visualized in figure 1 with the software CLUCalc, [10]. Note that the curves
are equidistant with respect to the inner product. Points inside the circle disc, for
example, seem to be subject to the smallest gradient. The metric resembles only
locally, close to the circle, a Euclidian one.

As mentioned earlier, our method provides the covariance matrix Σp of the
estimated entity p, as well. It shows, up to which degree the model fits the ob-
servations and how advantageously they were distributed. It does not reflect to
which extend the estimate deviates from a potentially perfect fit, i.e. it is no qual-
ity measure for our method. Figures 2 and 3 exemplarily show the uncertainty of
an estimated circle and an estimated line (a circle with radius infinity). The sur-
rounding tubes, indicated by slices, show the standard deviation of the estimates.

4.2. Fitting two Point Clouds in 3D

In this subsection, we describe how the Gauss-Helmert method can be used to
estimate a rigid body motion. Those operations are given by motors in Geometric
Algebra. A motor extends a rotation (→ rotor) by a translational component along
the axis of rotation. Hence, we can think of motors as screw motions (cf. [14]).
In the scope of pose estimation, a pose is uniquely characterized by a rigid body
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Figure 2. Fitting a circle: the uncertainty, i.e. standard devia-
tion, of an estimated circle in four different views. The image in
the lower left depicts a top view of the circle.

Figure 3. The uncertainty of a line, indicated by a twisted el-
liptic tube.
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Figure 4. Fitting two point clouds: the rotation of the interre-
lating motor is indicated by the partial disc, whereas the axis of
rotation with translation is given by the arrow attached to the
disc.

motion and can thus be represented by a motor. The estimation of motors is the
first step towards the perspective pose estimation problem.

Subsequently , we assume to have two sets of N Euclidian points {a1..N } and
{b1..N }. The latter represent the observations, the covariance matrices of which
are given by {Σb1..N }. The set {a1..N } is assumed to have no uncertainty3. Let
Ai = K(ai) and Bi = K(bi) denote the embeddings of ai and bi, respectively.
Besides, we set Φ(Ai) = ai, Φ(Bi) = bi and Φ(M) = p. We search for the
motor M , which best transforms the corresponding conformal points {A1..N } to
{B1..N }. The scenario is shown in figure 4. Using Geometric Algebra, we can easily
write MAiM̃ = Bi, cf. [13]. Note that a motor is a unitary versor, i.e. it has
to satisfy MM̃ = 1. Exploiting this fact, we rearrange the previous formula and
obtain the G-constraint

(M Ai) − (Bi M) = 0
↓ ↓ ↓ ↓ ↓
pk Gt

kl ai
l − bi

l Gt
lk pk = 0t

. (4.8)

The tensor G encodes the geometric product. In order to evaluate the matrices U
and V, we differentiate equation (4.8) with respect to p and b, respectively. Hence,
we get U(bi) = Gt

klai
l − bi

lGt
lk and V(p) = − pkGt

lk.
We parametrize M in terms of vector p ∈ R8 (a motor is compounded of a

scalar part, six bivectors and one quadvector). Since a rigid body motion is defined

3For example, it can be regarded as a wire frame model of some object, the observations stem

from.
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by at least six parameters, we need to have constraints on the parameters, again.
We choose h(p) = Φ(MM̃ − 1) = pk pl Rm

l G
t
km − δt,1 to be the H-constraint.

The tensor R encodes the reverse operation and δt,1 is zero, except for t = 1.
Differentiation yields H(p) = pl (Rm

l G
t
km + Rm

k Gt
lm).

By simply substituting the matrices U, V and H into the respective equations
given in the theoretical part dealing with the Gauss-Helmert method, we can
compute the estimate for M . Experimental results regarding the motor estimation
are presented in section 5.2.

4.3. Perspective Pose Estimation

Perspective Pose estimation consists of determining the orientation and position
of an internally calibrated camera (see e.g. [9]), given a 3D-model in a scene and a
set of N correspondence points from an image of that scene. The model serves as
a reference to an external (world) coordinate system. If we determine the models
position and orientation with respect to the camera coordinates, we are able to
infer the pose of the camera. The interrelation is a rigid body motion. Thus, we
describe the pose in terms of a motor M [14, 15]. A typical setup is shown in
figure 5; three model points are fitted to their respective projection rays.

Let {a1..N } be a set of N Euclidian points. They are assumed to have no
uncertainty, for they represent a known 3D-model of some object O. Furthermore,
let {B1..N } be an equal set of corresponding projection rays. They are evaluated
by Bi = (e∞ ∧ eo ∧ K(bi))I, where {b1..N } denotes the set of observed image
points of O. Here, element I ∈ G5 is the pseudoscalar and basis vector eo plays
the role of the origin, i.e. K((0,0,0)T) = eo. Note that the projection rays are taken
as new observations. In order to provide covariance matrices for them, we have
to embed the covariance matrices belonging to the image points {b1..N }. This is
done using equation (4.4). Next, we have to compute the covariance matrices for
the lines {B1..N }, which can be achieved easily employing error propagation of
first order.

Using K(ai) = Ai, we formulate the G-constraint

(MAiM̃) ·Bi = 0 , (4.9)

where we use the fact that the inner product of a point and a line is zero, iff the
point is located on the line. Again, we set Φ(M) = p. The preceding equation
can then be translated to the tensor expression

pk pl ai
r bi

s Πt
klrs = 0t , (4.10)

where the product tensor Π is given by Πt
klrs = Ga

kr Gc
ab Rb

l N
t
cs. Here, G, R

and N denote the tensors encoding the geometric product, the reverse operation
and the inner product, respectively. We do not give explicit expressions for U(bi),
V(p) and H(p), but state that we obtain a set of different matrices {V1..N } and
that matrix U depends on p, as well. We can again use the H-constraint given in
the previous subsection.
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Figure 5. Pose estimation: fitting model points to corresponding
projection rays in 3D. An image plane and a motor M , fitting the
triangle to the rays, are drawn as well.

In section 5.3 we report results for the pose estimation concerning synthetic
setups.

5. Experimental Results

To show the quality of the proposed estimation method of geometric entities and
operators, we present three synthetic experiments. In the first experiment we fit
3D-circles to uncertain data points and in the second experiment we estimate
general rotations between two 3D-point clouds. The third experiment deals with
the perspective pose estimation problem. Note that the presented values were
obtained from an iterative application of the Gauss-Helmert method. Usually four
iterations were needed to reach a stable result, but never more than ten. If the
magnitude of the correction vector ∆p for the parameters falls below 10−11, we
call the estimate a stable result.

In two experiments, we compare the Gauss-Helmert method with a singular
value decomposition (SVD) based approach 4. It is a purely algebraic approach,
which implicitly arises from the G-constraint, if the latter is merely linear depen-
dent on the parameter vector p; the differentiation of g(bi, p) with respect to p
results then in matrix U(bi), see e.g. equation (4.7). We obtain

(∀i, 1≤i≤N) : g(bi, p) = U(bi)p
!= 0 .

4Besides, the SVD approach provides the respective initial estimates for the Gauss-Helmert method
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Figure 6. True circle with five randomly selected points on it.
The generated noisy points are drawn with their respective un-
certainty ellipsoids. The angle range was set to 180◦.

Hence, p has to be a common element of the right null spaces of each matrix
Ui := U(bi). This is equivalent to p being part of the right null space of the matrix
S =

∑N
i=1 UT

i Ui. Such null space vectors can be computed easily using an SVD.
Note that in the presence of noise, the column vector in Kr corresponding to the
smallest singular value in D has to be selected, if S = KlDKT

r . Next, we report our
results.

5.1. Fitting a Circle in 3D

To generate the uncertain data to which a circle is to be fitted, we first create a
“true” circle C of radius one, oriented arbitrarily in 3D-space. We then randomly
select N points {a1..N } on the true circle within a given angle range (please note
that in this section, we only work with Euclidian points). For each of these points
a covariance matrix is generated randomly, within a certain range. This yields
{Σa1..N }. For each of the ai, Σai

is used to generate a Gaussian distributed
random error vector ri. The data points {b1..N } with corresponding covariance
matrices {Σb1..N } are then given by bi = ai + ri and Σbi = Σai , see figure 6.
The standard deviation of the set {‖r‖1..N } will be denoted by σr. For each angle
range, 30 sets of true points {a1..N } and for each of these sets, 40 sets of data
points {b1..N } were generated.

A circle is then fitted to each of the data point sets. We will denote a cir-
cle estimate by Ĉ and the shortest Euclidian vector between a true point ai

and Ĉ by di. For each Ĉ we then evaluate two quality measures: the Euclid-

ean RMS distance δE :=
√∑N

i=1 dT
i di/N and the Mahalanobis RMS distance

δΣ :=
√∑N

i=1 dT
i Σbi

di/N . The latter measure uses the covariance matrices as lo-
cal metrics for the distance measure. δΣ is a unit-less value that is > 1, = 1 or < 1
if dn lies outside, on or inside the standard deviation error ellipsoid represented by
Σbi

. For each true point set, the mean and standard deviation of the δE and δΣ

over all data point sets is denoted by ∆E , σE and ∆Σ, σΣ, respectively. Finally,
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Angle ∆̄Σ ( σ̄Σ) ∆̄E (σ̄E)
σr Range SVD GH SVD GH

10◦ 2.13 (0.90) 1.26 (0.52) 0.047 (0.015) 0.030 (0.009)
0.07 60◦ 1.20 (0.44) 0.92 (0.31) 0.033 (0.010) 0.028 (0.009)

180◦ 1.38 (0.56) 0.97 (0.36) 0.030 (0.009) 0.025 (0.008)
10◦ 2.17 (0.90) 1.15 (0.51) 0.100 (0.032) 0.057 (0.019)

0.15 60◦ 1.91 (0.99) 1.35 (0.68) 0.083 (0.033) 0.069 (0.028)
180◦ 1.21 (0.44) 0.90 (0.30) 0.070 (0.022) 0.058 (0.018)

Table 1. Results of circle estimation for SVD method (SVD) and
Gauss-Helmert method (GH).

∆̄Σ ( σ̄Σ) ∆̄E (σ̄E)

σr Std SVD GH Std SVD GH

0.09 1.44 (0.59) 1.47 (0.63) 0.68 (0.22) 0.037 (0.011) 0.037 (0.012) 0.024 (0.009)

0.18 1.47 (0.62) 1.53 (0.67) 0.72 (0.25) 0.078 (0.024) 0.079 (0.026) 0.052 (0.019)

Table 2. Result of general rotation estimation for standard
method (Std), SVD method (SVD) and Gauss-Helmert method
(GH).

we take the mean of the ∆E , σE and ∆Σ, σΣ over all true point sets, which are
then denoted by ∆̄E , σ̄E and ∆̄Σ, σ̄Σ. These quality measures are evaluated for
the circle estimates by the SVD and the Gauss-Helmert (GH) method. In table 1
the results for different values of σr and different angle ranges is given. In all cases
10 data points are used.

It can be seen that for different levels of noise (σr) the Gauss-Helmert method
always performs better in the mean quality and the mean standard deviation than
the SVD method. It is also interesting to note that the Euclidean measure ∆̄E is
approximately doubled when σr is doubled, while the “stochastic” measure ∆̄Σ,
only increases slightly. This is to be expected, since an increase in σr implies larger
values in the {Σb1..N }. Note that ∆̄Σ < 1 implies that the estimated circle lies
mostly inside the standard deviation ellipsoids of the true points.

5.2. Fitting two Point Clouds in 3D

For the evaluation of a general rotor, the “true” points {a1..N } are a cloud of
Gaussian distributed points about the origin with standard deviation 0.8. These
points are then transformed by a “true” general rotation R. Given the set {a′1..N }
of rotated true points, noise is added to generate the data points {b1..N } in just
the same way as for the circle. For each of 40 sets of true points, 40 data point
sets are generated and a general rotor R̂ is estimated. Using R̂ the true points
are rotated to give {â′1..N }. The distance vectors {d1..N } are then defined as
di := a′i − â′i. From the {d1..N } the same quality measures as for the circle are
evaluated. In table 2 we compare the results of the Gauss-Helmert (GH) method
with the initial SVD estimate and a standard approach (Std) described in [2]. Since
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the quality measures did not give significantly different results for rotation angles
between 3 and 160 degrees, the mean of the respective values over all rotation
angles are shown in the table. The rotation axis always points along the z-axis
and is moved one unit away from the origin along the x-axis. In all experiments
10 points are used.

It can be seen that for different levels of noise (σr) the Gauss-Helmert method
always performs significantly better in the mean quality and the mean standard
deviation than the other two. Just as for the circle the Euclidean measure ∆̄E is
approximately doubled when σr is doubled, while the “stochastic” measure ∆̄Σ,
only increases slightly. Note that ∆̄Σ < 1 implies that the points {â′1..N } lie
mostly inside the standard deviation ellipsoids of the {a′1..N }.

5.3. Perspective Pose Estimation

The assumed imaging geometry, in case of the pose estimation, basically resembles
a normalized one [9]: the optical axis is aligned to the x-coordinate, the focal
point is supposed to be at the origin (0, 0, 0) and the image plane is centered at
(1, 0, 0), i.e. it has unit distance to the focal point. In the beginning we create a
motor Mt, which we use to form our scenarios. Next, we generate a cloud of N
Gaussian distributed points {b1..N } with a standard deviation of

√
2 and a bias

of (7, 0, 0). We use M̃t to transform {b1..N }, yielding the cloud {a1..N }, which
can be thought of as our reference model. Like in the preceding experiments, we
randomly generate a set of N covariance matrices {Σb1..N } to account for image
noise. For each bi the corresponding Σbi is used to generate a Gaussian distributed
random error vector ri. Eventually, we build the noisy values b′i = bi + ri. They
are then taken for computing the projection rays {B1..N } and the image points,
respectively. It is important, that the {Σb1..N } are generated, such that none of
them introduces an uncertainty parallel to the optical axis. Hence, there is no
uncertainty perpendicular to the image plane, as desired for image points. We
estimate the motor M̂ , which fits the {a1..N } to the corresponding {B1..N }.
Notice that Mt already represents a good choice. We refer to it as ground truth5,
although it is not the optimum.

In the pose estimation experiments, we vary the rotational angle ω of Mt

and its enclosed angle φ with the optical axis, separately. Here, we use three levels
of noise µr, denoting the arithmetic mean of the set {‖r‖1..N }. For each scenario,
N = 15 points and 100 trials are used. We consider three motors: the motor
Mt (TRUE) and the motor estimated by the Gauss-Helmert method (GH). In
case of the pose estimation no SVD estimate is available, since the G-constraint
is quadratically dependent on the parameter vector p. Therefore, an (so far un-
published) geometrical method (GEM), representing the third motor, is used to
provide an initial estimate for the Gauss-Helmert method. We assess the quality
of a motor M̂ by applying it to the problem setup, i.e. by rotating the model
{a1..N } to the point set {b̂1..N }. Next, we measure the distances between the

5This only holds in the noiseless case.
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transformed model points {b̂1..N } and their respective projection rays {B1..N }.
The N distances are then combined by means of the RMS distance. For a set of
100 trials, we compute the Euclidian RMS distance of the 100 respective motors
and denote it by µ. Its variance is denoted by σ.

It became obvious, that there is almost no impact on the results if we switch
the angle φ from 20◦ to 50◦ and vice versa. We thus merged the results. Besides,
there was no noticeable trend when we varied angle ω, as depicted in table 3.

Angle ω 10◦ 40◦ 70◦ 100◦

TRUE 0.223 0.230 0.229 0.226
Method GEM 0.229 0.237 0.235 0.230

GH 0.215 0.219 0.215 0.213
Table 3. Results of the pose estimation: means µ for µr = 0.2
and varying rotation angles ω. The angles were initially used to
create the synthetic setups.

TRUE GEM GH
µr µ σ µ σ µ σ

0.200 0.227 0.037 0.233 0.045 0.215 0.040
0.283 0.320 0.051 0.330 0.066 0.304 0.055
0.416 0.470 0.074 0.476 0.095 0.441 0.081

Table 4. Results of the pose estimation for the proposed Gauss-
Helmert method (GH), the geometric method (GEM) and the
ground truth regarding the noiseless case (TRUE).

Also, the results of the third experiment substantiated the performance of the
Gauss-Helmert method. If we compare the results of table 3, it can be seen that
the overall fit quality improved reliably regarding the geometric approach (GEM).
Moreover, the results are even better than the results of the true motor (TRUE),
which is supposed to be superior, in case the number of observations would tend to
infinity. Besides, table 4 shows that the standard deviation improves with respect
to the input given by the GEM method.

6. Conclusion

In this paper it was shown by synthetic experiments that taking the uncertainty in
the data into account, when estimating geometric entities and operators, does im-
prove the results. Geometric Algebra offers a unifying framework where the mostly
linear constraints on geometric entities and geometric operators are provided in an
implicit manner. Especially, constraints can be expressed succinctly and dimension
independently in such a way that linear estimation procedures may be applied.
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