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Abstract

Omnidirectional vision is highly beneficial for robot nav-
igation. We present a novel perspective pose estimation for
omnidirectional vision involving a parabolic central cata-
dioptric sensor using small data sets. We incorporate an
appropriate and approved stochastic method to deal with
uncertainties in the data. Our approach is robust in that it
is more accurate than recent methods while using less pre-
cise hardware without rigorous calibration.

1. Introduction

Roughly speaking, rigidly moving an object in 3D such
that it comes into agreement with 2D-sensory data of a cam-
era, is called 2D-3D pose estimation [3]. It is a well-studied
subject in the case of pinhole cameras where sophisticated
methods exist, see e.g. [15].

Single viewpoint catadioptric vision sensors combine a
conventional camera with one or two mirrors and provide a
panoramical view of 360◦. Our device is a folded system
consisting of two parabolic mirrors and a lens to provide
a scaled, approximately orthographic projection from the
main mirror. It can equivalently be treated as a single mirror
device, see Nayar et al [13].

The most significant advantages of omnidirectional vi-
sion are related to navigation. For example, methods of
movement estimation from triangulation, topology map
and feature flow based methods [1, 4, 7] for localisation
give good results on the estimation of movements between
frames and the localisation from the visual information.
Apart from those methods, 2D-3D pose estimation gives the
complete pose information, that is more than a 2D-position
in a plane. Since it includes all six possible DOF, it can ac-
count for effects like pitch, roll and yaw. Therefore, it repre-
sents an appropriate method for navigation, also on uneven
surfaces. Furthermore, in the case of omnidirectional pose
estimation, the object does not need to be observed within

some narrow spatial angle, but may surround the visual sen-
sor itself. This implies a number of advantages. Firstly, an
object remains on the image plane under most movements,
which is desirable for tasks such as tracking. Secondly, the
accuracy of the estimated pose should be superior, as for
example in triangulation, which performs best if the used
landmarks are seen at right angles. Still, surprisingly few
works focus on omnidirectional pose estimation.

It is important to note that the achievable quality from
omnidirectional vision sensors ultimately depends on the
resolution of the CCD image sensor and on the calibration
accuracy; but the major drawback is the small vertical field
of view and its non-uniform sampling.

Our objective was to develop accurate pose estima-
tion for omnidirectional vision given few imprecise image
points, i.e. 2D-sensory data. By using stochastic estima-
tion, we account for uncertain observations. Besides, one
motivation was to take the opportunity to extend approved
pinhole methods to the omnidirectional case by exploiting
simple existing geometrical relations for parabolic mirrors.
In addition, the mathematical framework was already given
by an ideally matching algebra.

In the next section, we discuss the pose estimation in
some detail. In section 3 we present experimental results.
Finally, we give conclusions in section 4.

2. Omnidirectional 2D-3D Pose Estimation

In general, perspective 2D-3D pose estimation consists
of determining the orientation and position of an internally
calibrated camera (see e.g.[5]), given a 3D-model of an ob-
ject in a scene and a set of 2D-correspondence points from
an image of that scene. The model serves as a reference to
an external (world) coordinate system. If we determine the
model’s position and orientation with respect to the camera
coordinate system, we are able to infer the pose of the cam-
era, given by a rigid body motion (RBM). Specifically, we
estimate the RBM, such that the model points come to lie
on the projection rays of the corresponding image points.
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Figure 1. Mapping (cross-section) of a point
P : the image planes π1 and π2 are identical.

Our method consists of three steps: from those pixels
corresponding to model points, we compute the projection
rays. As a second step, we use a conventional pose esti-
mation algorithm yielding an initial RBM, which is then
improved using a stochastic estimation method. We explain
these steps in the following.

2.1. Omnidirectional Projection Rays

The omnidirectional camera setup we consider consists
of a camera focussed at infinity, which looks at a parabolic
mirror centered on its optical axis. This setup is shown in
figure 1. A light ray emitted from point P that would pass
through the focal point F of the parabolic mirror M , is re-
flected parallel to the central axis of the parabolic mirror, to
give point p2. Since all such reflected rays are parallel, a
camera placed beneath the mirror focussed at infinity will
generate a sharp image on plane π2. Here, we use the sim-
plification that a projection to sphere S with a subsequent
stereographic projection to π1 produces an identical image
on π1. Accordingly, point P maps to ps and further to p1,
see figure 1. For details refer to [8, 16].

Given image points, we can now apply these steps in
reverse order to obtain the corresponding projection rays.
Consider for instance figure 2: three image points form
the triangle Tπ , which is stereographically back-projected
to the triangle TS on S. In conjunction with F , we obtain
the projection rays. The correct RBM then moves the model
triangle T ′, so that it comes to lie on the projection rays.

2.2. Initial Pose Estimation

We compute initial RBM estimates using a 3-point (3P-)
technique, which merely considers three model points and
associated projection rays. Note that there exist a vast
number of 3P-algorithms; in [9] Haralick et al provide a

Figure 2. Pose estimation: fitting three model
points to the respective projection rays in 3D.

thorough overview of six methods. An example setup is
depicted in figure 2, where the model T ′ has been fitted
to the projection rays, yielding T . The desired RBM be-
tween T ′ and T is unique and can be computed easily. The
well-known ambiguity in the 3P-fitting itself can usually be
lifted, if we consider at least one additional correspondence
pair for validation. Fischler et al, for example, used a simi-
lar strategy in [6]. Besides, we do multiple 3P-runs on dif-
ferent subsets and build the mean of the respective RBMs.
This then serves as a starting value for the stochastic esti-
mation described in the next section.

2.3. Stochastic Estimation Method

In the final pose estimation step we improve on the ini-
tial RBM estimate by taking into account the uncertainties
of the image points. This can be done using the Gauss-
Helmert method from the area of least squares adjustment,
which is founded on the homonymic linear model, intro-
duced by Helmert [10] in 1872. As a by-product, one ob-
tains a covariance matrix for the estimated parameters, cf.
[12]. Details on this parameter estimation method can be
found in [14].

The geometric constraint equation used is derived from
the Geometric Algebra of conformal space G4,1 [2, 11]. A
similar methodology was chosen by Rosenhahn et al [15].
The products used in the following are the geometric prod-
uct, which is the main algebra product, and the outer prod-
uct, which is in no way related to the outer product of matri-
ces. The geometric product is denoted by juxtaposition and
the outer product by ∧.

A similar pose estimation could also be done solely in
Euclidian 3D-space, but we obtain certain advantages when
working in G4,1 : points, spheres, lines and RBMs are ba-
sic elements of G4,1 and have thus a natural representation
in terms of (sparse) vectors ofR25

. Moreover, incidence re-
lations, as needed to decide whether a point lies on a projec-
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tion ray, can be expressed by means of a nullspace regarding
a bilinear algebra product.

In order to obtain the point ps from the image point p1,
we need to perform the stereographic back-projection onto
the sphere S. With respect to figure 1, this can also be mod-
eled by performing an inversion in the sphere centered on
N with radius

√
2 r, where r denotes the radius of S. In

G4,1 this can be written as ps = SI p1 SI , where SI de-
notes the inversion sphere and the product between the en-
tities is the geometric product. The projection ray R can
now be constructed as R = F ∧ ps ∧ e∞, where e∞ is a
particular basis vector of G4,1 . Since point P lies on R,
we have R ∧ P = 0 ∈ G4,1. A model point P ′ is trans-
formed by an RBM represented by V , say, via the opera-
tion V P ′ Ṽ , where the reverse Ṽ is similar to conjugation
in quaternions. Therefore, if we have estimated the correct
RBM V , a model point P ′ with corresponding image point
p1 has to satisfy F ∧ (SI p1 SI) ∧ e∞ ∧ (V P ′ Ṽ ) = 0.

Each algebra product is a bilinear function and can be
formulated equivalently using a certain tensor. By contract-
ing the constituent tensors the constraint equation can be
written in terms of eight particular components (v1, . . . , v8)
of V in the following way.

8∑
i=1

8∑
j=1

vi vj Qk
ij = 0, k ∈ {1, . . . , 5}. (1)

There exists one tensor Qk
ij for each pair of correspond-

ing image and model points. Algebraically, the constraint
R ∧ P may only be nonzero in five of its 25 = 32 compo-
nents, which explains k’s range. Note that the eight compo-
nents of V are an overparameterization of the six DOF of
an RBM, such that we need to include the RBM-constraint
V Ṽ = 1 in the minimization process, which also turns out
to be a bilinear function of the components of V . Such ad-
ditional constraints can be readily included in the Gauss-
Helmert method. The pixel uncertainties are incorporated
in terms of 2×2 covariance matrices. Note that due to the
linear nature of the underlying stochastic model, the con-
straints, which are quadratic in the components of V , have
to be linearized. Hence, the estimation becomes an iterative
process, and we start from the initial 3P-pose, which needs
not be particularly accurate for converging stably.

3. Experimental results

Two sets of real world experiments were performed us-
ing an imaging system consisting of a Sony DXC-151AP
camera and Remote Reality Netvision 360
catadioptrics mirror device. As intrinsic calibration
parameters we used the 40 mm mirror radius given by
the manufacturer and 18.05 mm focal length for the main
mirror given by calibration in the experimental setup. The

Figure 3. Examples from the experiments:
the model house (left) and the room naviga-
tion (right) experiment. The respective model
points are graphically highlighted.

projection was assumed to be ideal orthographic. Images
were acquired in 768 × 576 resolution where the actual
size of the omnidirectional image is 570 × 540 pixels.
The markers’ pixel coordinates were extracted manually,
where we assumed a standard deviation of one pixel. The
respective 2× 2 covariance matrices, as required by the
stochastic estimation, were set accordingly.

In the first set of experiments we rotated a model house
with 35.1 cm (A) and 52.4 cm (B) orthogonal distances
from the optical axis. The house dimensions in cm are
21×15×21, see left in figure 3. Note that only a quarter
of the image is shown. In order to simplify the acquisition
of ground truths the rotation plane was perpendicular to the
optical axis. The house was rotated in 10◦ steps from 60◦

to 0◦. We measured the respective errors relative to the 60◦-
rotation. The results are listed in table 1. Note that the house
appears flat in the 0◦-image, i.e. the usable 3D-model points
are nearly coplanar affecting the estimation result. The
mean error in the rotation was 1.65◦ and the mean error in
the planar distance was 0.43 cm. The estimated height of the
sensor w.r.t. the house was 27.5 ± 0.4 cm, which is within
the measurement error of ground truth 27.55± 0.4 cm.

Rotation Abs. error angle Abs. error distance
[◦] A, [◦] B, [◦] A, [cm] B, [cm]

50 to 60 2.8 0.4 0.65 0.10
40 to 60 2.6 0.2 0.40 0.30
30 to 60 1.3 0.5 0.54 0.33
20 to 60 0.3 0.8 0.70 0.04
10 to 60 0.7 6.4 0.90 1.12
0 to 60 3.0 6.3 3.90 1.20

Table 1. Results of the house pose estima-
tion. Distance A= 35.1 cm, B= 52.4 cm.
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Figure 4. Pose estimation inside the object
(room navigation). Units in meters.

In the second set of experiments the sensor was moved to
six positions inside a 5.3× 2.2 m2 room. The room model,
as indicated by white crosses in figure 3, was defined by
four vertical pairs of markers. In each of the six positions
the sensor was rotated by 0◦, 30◦ and 70◦. The results are
illustrated in figure 4. The error regarding the planar dis-
tances to the ground truth positions was 2.45±1.74 cm. The
estimated height of the sensor had an error of 3.22±1.0 cm.
These are comparable results to those given by Aliaga [1];
he obtained an average planar error of 2.8 cm within a room
being very similar in size. Nevertheless, Aliaga made a
thorough calibration and used a high-precision 3-CCD chip
camera, the resolution of which was 1360×1024. Cauchois
et el [4] obtained as good results as we taking the room
size into account, which was noticeably smaller. Further
sensible comparisons are hard due to the limited number of
usable publications.

In addition to the large movements, we studied the ac-
curacy in estimating smaller displacements and rotations in
the center of the room separately. The sensor was translated
on a line in 1, 5 and 10 cm steps giving a mean error of
0.5 cm. The error did not depend on the length of the trans-
lation. The camera was rotated in 5◦ steps from a starting
position to 90◦ giving a mean error of 0.4◦.

4. Conclusions

The aim of this work was to realize 2D-3D pose esti-
mation for omnidirectional vision. We combined geom-
etry and stochastics such that we obtain precise estimates
from few image points. Our experiments substantiated that
the achieved accuracy in 2D-navigation is somewhat better
than those of comparable approaches [1, 4]; in contrast to
those we used an of-the-shelf catadioptric device and a low-
resolution camera without rigorous calibration. Due to the
promising results of our house experiments, it is likely that
central catadioptric sensors may be used instead of pinhole
cameras in many pose estimation applications. In future re-
search, a robot will be equipped with a state-of-the-art om-
nidirectional vision sensor for autonomous navigation ex-
periments.
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