
Stochastically Optimal Epipole Estimation in
Omnidirectional Images with Geometric Algebra

Christian Gebken and Gerald Sommer

Institute of Computer Science
Chair of Cognitive Systems

Christian-Albrechts-University of Kiel, Germany

{chg,gs}@ks.informatik.uni-kiel.de

Abstract. We consider the epipolar geometry between two omnidirec-
tional images acquired from a single viewpoint catadioptric vision sensor
with parabolic mirror. This work in particular deals with the estimation
of the respective epipoles. We use conformal geometric algebra to show
the existence of a 3×3 essential matrix, which describes the underlying
epipolar geometry. The essential matrix is preferable to the 4×4 funda-
mental matrix, which comprises the fixed intrinsic parameters, as it can
be estimated from less data. We use the essential matrix to obtain a prior
for a stochastic epipole computation being a key aspect of our work. The
computation uses the well-tried amalgamation of a least-squares adjust-
ment (LSA) technique, called the Gauss-Helmert method, with conformal
geometric algebra. The imaging geometry enables us to assign distinct
uncertainties to the image points which justifies the considerable ad-
vantage of our LSA method over standard estimation methods. Next to
the stochastically optimal position of the epipoles, the method computes
the rigid body motion between the two camera positions. In addition,
our text demonstrates the effortlessness and elegance with which such
problems integrate into the framework of geometric algebra.

1 Introduction

Epipolar geometry is one way to model stereo vision systems. In general, epipolar
geometry considers the projection of projection rays from different cameras. The
resulting image curve is called epipolar line. The projection of a focal point of
another camera is called epipole. Certainly, all epipolar lines must pass through
the epipoles. The advantage of epipolar geometry is the search space reduction
when doing stereo correspondence analysis: given a pixel in one image the cor-
responding pixel (if not occluded) must be located on the respective epipolar
line. This relation is also expressed by the singular fundamental matrix F, the
quadratic form of which attains zero in case a left-image pixel lies on the epipolar
line belonging to the right-image pixel, and vice versa. The fundamental matrix
contains all geometric information necessary, that is intrinsic and extrinsic pa-
rameters, for establishing correspondences between two images. If the intrinsic
parameters as focal length, CCD-chip size or the coordinates of the optical cen-
ter are known, the so-called essential matrix E describes the imaging in terms



of normalized image coordinates, cf. [10]. The aim of this work is to recover the
epipoles, which includes the epipolar geometry, in case of an omnidirectional
stereo vision system.

Single viewpoint catadioptric vision sensors combine a conventional camera
with one or two mirrors and provide a panoramic view of 360◦. Our device
is a folded system consisting of two parabolic mirrors and a lens to provide a
scaled, approximately orthographic projection from the main mirror, see section
4. According to the work of Nayar et al [8] we can equivalently treat our vision
sensor as a single mirror device.

Our initial motivation was to compute a dense 3D-reconstruction from two
omnidirectional images. This requires an exact knowledge of the underlying
epipolar geometry. We decided on the least-squares adjustment technique called
Gauss-Helmert method to account for the invariable uncertainties in observa-
tional data. In this way the drawback of nonuniform sampling of the vision
sensor turns into an advantage as we can assign distinct uncertainties to the
image points depending on their position. Specifically, we do motion estimation
from which we ultimately infer the positions of the epipoles. They may then
be used for a stereo matching with subsequent 3D-reconstruction. Due to the
linearity in the stochastic estimation we have to provide a rough initial estimate
for the motion which we refer to as rigid body motion (RBM): in section 5 we
derive a formula for the essential matrix E for the omnidirectional case. In the
following we do not explicitly evaluate E but estimate it from a set of pairs of cor-
responding image pixels1. As the essential matrix reflects the epipolar geometry,
we can construct the required first approximation of the RBM from E.

It is vital to notice that we use conformal geometric algebra (CGA) in every
part of this text. The omnidirectional imaging can be ideally described in terms
of an inversion being a fundamental operation in CGA. At the same time it pro-
vides a favorable framework for the mentioned computation of the uncertainties.
Our derivation of E is founded on geometric concepts deduced in and expressed
with CGA, which is a new result. Eventually, the underlying tensor notation of
CGA enables the (well-tried) amalgamation of the Gauss-Helmert method and
geometry, cf. [11]. Before we explain our proposed method in detail, we give an
overview of conformal geometric algebra.

2 Geometry with Geometric Algebra

Recently it has been shown [12, 13] that the conformal geometry [9] is very at-
tractive for robot vision. Conformal geometric algebra delivers a representation
of the Euclidean space with remarkable features: first, the basic geometric enti-
ties of conformal geometry are spheres of dimension n. Other geometric entities
as points, planes, lines, circles, . . . may be constructed easily. These entities are
no longer set concepts of a vector space but elements of CGA. Second, the special

1 We initially perform a feature point based stereo matching yielding 50 correspon-
dences on average.



Euclidean group is a subgroup of the conformal group, which is in CGA an or-
thogonal group. Therefore, its action on the above mentioned geometric entities
is linear. Third, the inversion operation is another subgroup of the conformal
group which can be advantageously used in robot vision. Fourth, CGA gener-
alizes the incidence algebra of projective geometry with respect to the above
mentioned geometric entities.

For a detailed introduction to geometric algebra (GA) see e.g. [5, 2]. Here we
only convey a minimal framework. We consider the geometric algebra G4,1 =
C̀ (R4,1) ⊃ R4,1 of the 5D conformal space, cf. [1, 7]. Let {e1, e2, e3, e+, e−}
denote the basis of the underlying Minkowski space R4,1, where e2

1 = e2
2 =

e2
3 = e2

+ = 1 = −e2
−. We use the common abbreviations e∞ = e− + e+ and

eo = 1
2 (e− − e+) for the point at infinity and the origin, respectively. The alge-

bra elements are termed multivectors, which we symbolize by capital bold letters,
e.g. A. A juxtaposition of algebra elements, like CR, indicates their geometric
product, being the associative, distributive and noncommutative algebra prod-
uct. We denote ‘·’ and ‘∧’ the inner and outer (exterior) product, respectively. A
point x ∈ R3 ⊂ G4,1 of the Euclidian 3D-space is mapped to a conformal point
(null vector) X, with X2 = 0, by the embedding operator K

K(x) = X = x + 1
2 x2e∞ + eo . (1)

A geometric object, say O, can now be defined in terms of its inner product
null space I(O) = {X ∈ R4,1|X ·O = 0}. This implies an invariance to scalar
multiples I(O) = I(λ O), λ ∈ R\{0}. Bear in mind that the object definitions
given here remain variable in this respect. Verify that S = s+ 1

2 (s2−r2)e∞+ eo

favorably represents a 2-sphere centered at s ∈ R3 with radius r. Similarly, if n ∈
R3, with n2 = 1, then P = n+d e∞ represents a plane at a distance d from the
origin with orientation n. Using these vector valued geometric primitives higher
order entities can be built: given two objects, e.g. the planes P1 and P2, their line
of intersection L is simply the outer product L = P1 ∧ P2. The outer product
of linearly independent points leads to an alternative representation of CGA
entities which is literally dual to the inner product null space representation.
The term K = A1 ∧ A2 ∧ A3 ∧ A4, for example, represents the sphere that
passes through the points {A1, A2,A3, A4} in that a point X ∈ R4,1 lies on
the sphere iff X ∧K = 0. Now let S be the element dual2 to K. It may then
be shown that X ∧ K = 0 iff X · S = 0 and hence X ∈ I(S); especially
{A1, A2, A3, A4} ⊂ I(S). Depending on the points the outer product may also
yield circles, planes, lines, . . .

An important GA operation is the reflection. The reflection of A in a vector
valued object O is given by the sandwiching product B = OAO. The most
general case is the reflection in a sphere, which actually represents an inversion.
Note that any RBM can be represented by consecutive reflections in planes. In
CGA the resulting elements, for example M = P1P2, are generally referred to as
2 Although the role of the dual operation is paramount in GA, cf. [2, 5], it is only

touched on in this text. Building the dual of a multivector amounts to a multiplica-
tion with the pseudoscalar I = e1e2e3e+e−, I2 = −1.



motors, cf. [12]. Some object C would then be subjected to MCM̃ , whereby the
symbol ‘˜ ’ stands for an order reversion, i.e. the reverse of M is M̃ = P2P1. In
case of only two involved planes we distinguish between a translator T (parallel
planes) and a rotor R (intersecting planes). Note that every motor satisfies
the unitarity condition MM̃ = 1. Since reflection is an involution, a double
reflection O(OAO)O must be the identity w.r.t I(A), therefore O2 ∈ R by
associativity. It looks like a conclusion, but in GA every vector valued element
X ∈ R4,1 squares to a scalar by definition X2 := X ·X ∈ R. Using the above
definitions, we have S2 = r2 and P 2 = 1.

2.1 Geometric Algebra and its Tensor Notation

We take a look beyond the symbolic level and question how we can realize the
structure of geometric algebra numerically. We show a way that makes direct
use of the tensor representation inherent in GA.

If {E1, E2, . . . , E2n} denotes the 2n-dimensional algebra basis of Gn, then
a multivector A ∈ Gn can be written as A = ai Ei, where ai denotes the ith

component of a vector3 a ∈ R2n

and a sum over the repeated index i is implied.
We use this Einstein summation convention also in the following. If B = bi Ei

and C = ci Ei, then the components of C in the algebra equation C = A ◦B
can be evaluated via ck = ai bj Gk

ij . Here ◦ is a placeholder for the algebra
product and Gk

ij ∈ R2n×2n×2n

is a tensor encoding this product (we use sans
serif letters as a, g or G to denote vectors, matrices, tensors or generally any
regular arrangement of numbers). If we define the matrices U,V ∈ R2n×2n

as
U(a) := ai Gk

ij and V(b) := bj Gk
ij , then c = U(a) b = V(b) a. This perfectly

reveals the bilinearity of algebra products.
We define a mapping Φ and can then write Φ(A) = a, Φ(A◦) = U, Φ(A◦B) =

ai bj Gk
ij or if a = aiei is an element of a Euclidian vector space, Φ(a) = a as well.

Note that we reduce the complexity of equations considerably by only mapping
those components of multivectors that are actually needed. As an example, a
vector inGn can have at most n non-zero components. Also, the outer product of
two vectors will not produce 3-vector components, which can thus be disregarded.
In the following we assume that Φ maps to the minimum number of components
necessary.

2.2 Conformal Embedding - the Stochastic Supplement

We have to obey the rules of error propagation when we embed points by means
of function K, equation (1). Assume that point x is a random vector with a
Gaussian distribution and x̄ is its mean value. Furthermore, we denote the 3×3
covariance matrix of x by Σx. Let E denote the expectation value operator,
such that E [x] = x̄. The uncertain representative in conformal space, i.e. the

3 At least numerically, there is no other way than representing multivectors as vectors.



stochastic supplement for X = K(x̄), is determined by a sphere with imaginary
radius

E[K(x)
]

= x̄ + 1
2 x̄2 e∞ + eo + 1

2 trace
(
Σx

)
e∞ (2)

rather than the pure conformal point K(E [x]
)
. However, in accordance with [11]

we refrain from using the exact term since the advantages of conformal points
over spheres with imaginary radius outbalance the numerical error.

We evaluate the corresponding 5×5 covariance matrix ΣX for X = K(x̄) by
means of error propagation and find

ΣX = JK(x̄) Σx JT
K(x̄) , (3)

where we used the Jacobian of K

JK(x̄) :=
∂K
∂X

=




1 0 0
0 1 0
0 0 1
x̄1 x̄2 x̄3

0 0 0




. (4)

3 Stochastic Estimation Method

In the field of parameter estimation one usually parameterizes some physical
process P in terms of a model M and a suitable parameter vector p. The com-
ponents of p are then to be estimated from a set of observations originating from
P.

Here, we introduce our two parameter estimation methods, the common
Gauss-Markov method and the most generalized case of least squares adjust-
ment, the Gauss-Helmert method. Both are founded on the respective homonymic
linear models, cf. [6]. The word ’adjustment’ puts emphasis on the fact that an
estimation has to handle redundancy in observational data appropriately, i.e.
to weight unreliable data to a lesser extent. In order to overcome the inher-
ent noisiness of measurements one typically introduces a redundancy by taking
much more measurements than necessary to describe the process. Each observa-
tion must have its own covariance matrix describing the corresponding Gaussian
probability density function that is assumed to model the observational error.
The determination of which is inferred from the knowledge of the underlying
measurement process. The matrices serve as weights and thereby introduce a
local error metric.

The principle of least squares adjustment, i.e. to minimize the sum of squared
weighted errors ∆yi, is often denoted as

∑

i

∆yT
i Σyi

−1∆yi −→ min , (5)

where Σyi is a covariance matrix assessing the confidence of yi.
Let {b1, b2, . . . , bN} be a set of N observations, for which we introduce the

abbreviation {b1...N }. Each observation bi is associated with an appropriate co-
variance matrix Σbi . An entity, parameterized by a vector p, is to be fitted to the



observational data. Consequently, we define a condition function g(bi, p) which is
supposed to be zero if the observations and the entity in demand fit algebraically.
Besides, it is often inevitable to define constraints h(p) = 0 on the parameter
vector p. This is necessary if there are functional dependencies within the param-
eters. Consider, for example, the parameterization of a Euclidean normal vector
n using three variables n = [n1, n2, n3]T. A constraint nTn = 1 could be avoided
using spherical coordinates θ and φ, i.e. n = [cos θ cos φ, cos θ sin φ, sin θ]T. In
the following sections, we refer to the functions g and h as G-constraint and
H-constraint, respectively.

Note that most of the fitting problems in these sections are not linear but
quadratic, i.e. the condition equations require a linearization and estimation
becomes an iterative process. An important issue is thus the search for an initial
estimate (starting point). If we know an already good estimate p̂, we can make
a linearization of the G-constraint yielding (∂p g)(bi,p̂)∆p+ g(bi, p̂) ≈ 0. Hence,
with Ui = (∂p g)(bi,p̂) and yi = −g(bi, p̂): Ui∆p = yi + ∆yi, which exactly
matches the linear Gauss-Markov model. The minimization of equation (5) in
conjunction with the Gauss-Markov model leads to the best linear unbiased
estimator. Note that we have to leave the weighting out in equation (5), since
our covariance matrices Σbi do not match the Σyi . Subsequently, we consider a
model which includes the weighting.

If we take our observations as estimates, i.e. {b̂1...N } = {b1...N }, we can make
a Taylor series expansion of first order at (b̂i, p̂) yielding

(∂p g)(b̂i,p̂)∆p + (∂b g)(b̂i,p̂)∆bi + g(b̂i, p̂) ≈ 0 . (6)

Similarly, with Vi = (∂b g)(b̂i,p̂) we obtain Ui∆p + Vi∆bi = yi, which exactly
matches the linear Gauss-Helmert model. Note that the error term ∆yi has been
replaced by the linear combination ∆yi = −Vi∆bi; the Gauss-Helmert differs
from the Gauss-Markov model in that the observations have become random
variables and are thus allowed to undergo small changes ∆bi to compensate for
errors. But changes have to be kept minimal, as observations represent the best
available. This is achieved by replacing equation (5) with

∑

i

∆bT
i Σbi

−1∆bi −→ min , (7)

where ∆bi is now considered as error vector.
The minimization of (7) subject to the Gauss-Helmert model can be done

using Lagrange multipliers. By introducing ∆b = [∆bT
1 , ∆bT

2 , . . . ,∆bT
N ]T, Σb =

diag([Σb1 , Σb2 , . . . , ΣbN ]), U = [UT
1 , UT

2 , . . . , UT
N ]T, V = diag([V1,V2, . . . , VN ])

and y = [yT
1 , yT

2 , . . . , yT
N ]T the Lagrange function Ψ , which is now to be minimized,

becomes

Ψ(∆p, ∆b, u, v) =
1

2
∆bT Σb

−1 ∆b −
(

U ∆p+V ∆b−y
)T

u +
(

H ∆p − z
)T

v . (8)

The last summand in Ψ corresponds to the linearized H-constraint, where H =
(∂ph)(p̂) and z = − h(p̂) was used. That term can be omitted, if p has no func-
tional dependencies. A differentiation of Ψ with respect to all variables gives an



extensive matrix equation, which could already be solved. Nevertheless, it can
be considerably reduced with the substitutions N =

∑
i UT

i

(
Vi Σbi

VT
i

)−1
Ui

and zN =
∑

i UT
i

(
Vi Σbi VT

i

)−1
y. The resultant matrix equation is free from

∆b and can be solved for ∆p
[

N HT

H 0

] [
∆p
v

]
=

[
zN

z

]
. (9)

For the corrections {∆b1...N }, which are now minimal with respect to the Ma-
halanobis distance (7), we compute

∆bi = Σbi
VT

i

(
ViΣbi

VT
i

)−1 (
yi − Ui ∆p

)
. (10)

It is an important by-product that the (pseudo-) inverse of the quadratic matrix
in equation (9) contains the covariance matrix Σ∆p = Σp belonging to p. The
similar solution for the Gauss-Markov model and the corresponding proofs and
derivations can be found in [6].

4 Omnidirectional Imaging

Consider a camera, focused at infinity, which looks upward at a parabolic mirror
centered on its optical axis. This setup is shown in figure 1. A light ray emitted

Fig. 1. Left: mapping (cross-section) of a world point Pw: the image planes π1 and π2

are identical. Right: mapping of line L to Lπ via great circle LS on S.

from world point Pw that would pass through the focal point F of the parabolic
mirror M , is reflected parallel to the central axis of M , to give point p2 on image
plane π2. Now we use the simplification that a projection to sphere S with a
subsequent stereographic projection to π1 produces a congruent image on π1.
Accordingly, point Pw maps to PS and further to p1, see figure 1. Together



with the right side of figure 1 it is intuitively clear that infinitely extended lines
form great circles on S. Moreover, a subsequent stereographic projection, being
a conformal mapping, results in circles on the image plane which then are no
more concentric. For details refer to [4].

Note that the stereographic projection can also be done in terms of an inver-
sion in a suitable sphere SI centered at the North Pole N of S. For the scenario
depicted in figure 1 one can easily verify that the radius of SI must be

√
2 r, if

r denotes the radius of S. Using CGA we have PS = SIp1SI .

5 Discovering Catadioptric Stereo Vision with CGA

We now formulate a condition for the matching of image points. This enables
the derivation of the fundamental matrix F and the essential matrix E for the
parabolic catadioptric case.

Consider the stereo setup of figure 2 in which the imaging of world point Pw

is depicted. Each of the projection spheres S and S′ represents the catadiop-
tric imaging device. The interrelating 3D-motion is denoted RBM (rigid body
motion). Note that the left coordinate system is also rotated about the vertical
axis.

The two projections of Pw are X and Y ′. Let x and y be their respective
image points (on the image plane). The inverse stereographic projection of x and
y yields the points X and Y , which here share the camera coordinate system
centered at F . In order to do stereo our considerations must involve the RBM,
that we denote by the motor M from now on. Hence we can write Y ′ = MY M̃

and so {S′, F ′} = M{S, F }M̃ .

Fig. 2. Omnidirectional stereo vision: the projection of ray LX (LY ′) is the great circle
CY ′ (CX). The 3D-epipole E (E′) is the projection of the focal point F ′ (F ).

As we already know from section 4, lines project to great circles; the projec-
tion of LX on S′, for example, is the circle CY ′ including Y ′. This motivates the



underlying epipolar geometry since all those great circles must pass through the
point E′ being the projection of F . This must be the case because independent
of Pw all triangles FPwF ′ have the line connecting F and F ′, called baseline,
in common. Subsequently we refer to the 3D-points E and E′ as 3D-epipoles.

Intelligibly, the two projection rays LX and LY ′ intersect if the four points
F ′, Y ′, X and F are coplanar. We express this condition in terms of CGA. The
outer product of four conformal points, say A1, A2, A3 and A4, results in the
sphere KA = A1∧A2∧A3∧A4 comprising the points. If these are coplanar the
sphere degenerates to the special sphere with infinite radius - which is a plane.
Recall from section 2 that a plane lacks the eo-component in contrast to a sphere.
The explanation is that the eo-component carries the value (a2−a1)∧(a3−a1)∧
(a4−a1) which amounts to the triple product (a2−a1) · ((a3−a1)× (a4−a1)),
where Ai = K(ai ∈ R3), 1 ≤ i ≤ 4. Our condition must therefore ensure the
e∗o-component4 to be zero

G = F ∧X∧F ′∧Y ′ = (F ∧X) ∧ M
(
F ∧ Y

)
M̃

e∗o= 0 . (11)

Using the abbreviations X = F ∧X and Y = F ∧ Y the upper formula reads

G = X ∧MY M̃
e∗o= 0. We now exploit the tensor representation introduced in

section 2.1 and obtain

gt(m, x, y) = xk Ot
kc (mi Ga

il yl Gc
ab Rb

j mj) , (12)

where Φ(G) = g, Φ(X) = x, Φ(Y ) = y and Φ(M) = m. Note that we only have
to take a particular t = t∗ into account which indexes to the e∗o-component of
the result. After setting F = eo it can be shown that x and y in fact denote
the Euclidean 3D-coordinates on the projection spheres, i.e. x, y ∈ R3. For the
motor M we have m ∈ R8 in CGA, which is an overparameterization as an RBM
has six degrees of freedom. The product tensors O, G and R denote the outer
product, the geometric product and the reverse, respectively. If we fix a motor
m we get the bilinear form g(x, y) = xk Ekl y

l with Ekl = Ot∗
kc mi Ga

il G
c
ab Rb

j mj .
The condition is linear in X and linear in Y as expected by the bilinearity of
the geometric product. Its succinct matrix notation is

xTE y = 0 , (13)

where E ∈ R3×3 denotes the essential matrix of the epipolar geometry. We do
not give a proof but mention that equation (13), which ultimately reflects a
triple product, is zero if and only if there is coplanarity between the four points
F ′, Y ′, X and F . Next, if we set Y ′ = E′ or X = E we get E y = 0 and xTE = 0,
respectively. Otherwise, say E y = n ∈ R3, we could choose an X such that the
corresponding x is not orthogonal to n and get xTE y 6= 0. This would imply
that the points F ′,E′,F and the chosen X are not coplanar, which must be a

4 The component dual to eo-component (denoted e∗o) must be zero as the outer
product representation is dual to the sphere representation given in section 2.



contradiction since F ′, E′ and F are already collinear. Hence the 3D-epipoles
reflect the left and right nullspace of E and we can infer that the rank of E can
be at most two.

Because E does solely depend on the motor M , comprising the extrinsic
parameters, it can not be a fundamental matrix, which must include the intrinsic
parameters as well. Fortunately, we can easily extend our previous derivations
to obtain the fundamental matrix F. Recall the image points x and y. They are
related to X and Y in terms of a stereographic projection. As already stated in
section 4, a stereographic projection is equal to an inversion in a certain sphere,
but inversion is the most fundamental operation in CGA. In accordance with
figure 1 we can write

X = SIXπSI ,

where Xπ = K(x) denotes the conformal embedding of point x on the image
plane π. Note that the inversion sphere SI depends on the focal length of the
parabolic mirror and on the CCD-chip size, i.e. a scaling factor. In this way

equation (11) becomes G = F ∧ (SIXπSI) ∧ F ′ ∧ (SIY
′

πSI)
e∗o= 0. In addition,

the principal point offset (the coordinates of the pixel where the optical axis hits
the image plane) can be included by introducing a suitable translator TC . We
then would have to replace SI by the compound operator Z = SITC . We would
finally obtain

G = F ∧ (ZXπZ̃) ∧ F ′ ∧ (ZY ′
πZ̃)

e∗o= 0 . (14)

However, equation (14) is still linear in the points Xπ and Yπ. We refrain from
specifying the corresponding tensor representation or the fundamental matrix,
respectively. Instead we show a connection to the work of Geyer and Daniilidis
[3]. They have derived a catadioptric fundamental matrix of dimension 4 × 4
for what they call lifted image points which live in a 4D-Minkowski space (the
fourth basis vector squares to −1). The lifting raises an image point p = [u, v]T

onto a unit sphere centered at the origin such that the lifted point p̃ ∈ R3,1 is
collinear with p and the North Pole N of the sphere. Thus the lifting corresponds
to a stereographic projection. The lifting of p is defined as

p̃ = [2u, 2v, u2 + v2 − 1, u2 + v2 + 1]T . (15)

Compare the conformal embedding P = K(p) = u e1+v e2+ 1
2 (u2+v2) e∞+1 eo

in the e∞- eo-coordinate system (Φ discards the e3-coordinate being zero)

Φ(P ) = [u, v, 1
2 (u2 + v2), 1]T .

We can switch back to the e+-e−-coordinate system of the conformal space with
the linear (basis) transformation B

B Φ(P ) =




1 0 0 0
0 1 0 0
0 0 1 − 1

2
0 0 1 + 1

2







u
v

1
2 (u2 + v2)

1


 =




u
v

1
2 (u2 + v2 − 1)
1
2 (u2 + v2 + 1)


 .



The lifting in equation (15) is therefore identical to the conformal embedding
up to a scalar factor 2. At first, this implies that x̃ = 2B Φ(Xπ) = 2B Φ(K(x)).
Second, if F̃ ∈ R4×4 denotes a fundamental matrix for lifted points then, by
analogy, F = 4 BTF̃B is the fundamental matrix that we would obtain from
equation (14).

6 Estimating Epipoles

The results of the previous section are now to be applied to the epipole esti-
mation. We use the essential matrix E to estimate the epipoles for two reasons.
First, the intrinsic parameters do not change while the imaging device moves;
one initial calibration is enough. Second, the rank-2 essential matrix is only of
dimension 3× 3 and one needs at least eight points for the estimation.

We choose nine pairs of corresponding image points. For each image point
x we compute x = Φ( eo ∧ K(x)) ∈ R3. We finally have X = {x1...9 } and
Y = {y1...9 }. Every x-y-pair must satisfy equation (13) which can be rephrased
as vec(xyT)Tvec(E) = 0, where vec(·) reshapes a matrix into a column vector.
Hence the best least-squares approximation of vec(E) is the right-singular vec-
tor to the smallest singular value of the matrix consisting of the row vectors
vec(xiy

T
i
)T, 1 ≤ i ≤ 9. Let Ě be the estimated essential matrix. The left- and

right-singular vectors to the smallest singular value of Ě are then our approx-
imations to the 3D-epipoles, as described above. The epipoles then serve as a
prior for the stochastic epipole estimation explained in the following section.

7 Stochastic Epipole Estimation

Here we describe the second key contribution of our work. The epipoles com-
puted via the essential matrix are now to be refined. We do so by estimating
the interrelating motor M , parameterized by m ∈ R8. The direction to the
3D-epipoles can then be extracted from the points MFM̃ and M̃FM . Note
that the former point equals F ′. In order to apply the Gauss-Helmert method
introduced in section 3 we have to provide the G-constraint, the H-constraint,
the observations with associated uncertainties and a rough initial estimate.

As input data we use all N pairs of corresponding points, i.e. we use X =
{x1...N } and Y = {y1...N }. An observation is a pair (xi, y

i
), 1 ≤ i ≤ N . In our

case the G-constraint is simply equation (12) with t = t∗

gt(m, x, y) = xk
n Ot

kc (mi Ga
il yl

n
Gc

ab Rb
j mj), 1 ≤ n ≤ N , (16)

Hence differentiating with respect to x, y and m yields the required matrices V
and U, respectively. Since an RBM is defined by six rather than eight parameters,
we need the H-constraint. To ensure that m encodes a motor it is sufficient to
constrain the unitarity of M by demanding that MM̃ = 1. We also have to
constrain that M does not converge to the identity element M = 1. Otherwise
the condition equation (11) would become G = F ∧X ∧ F ∧ Y being zero at



all times. This is achieved by constraining the e∞-component of F ′ = MFM̃ ,
F = eo, to be 0.5. Thus the distance between F and F ′ is set to one5. The
initial estimate m̂ is the unit length translator TE along the direction of the
3D-epipole E, i.e. m̂ = Φ(TE).

We assume that all image points initially have the same 2D-uncertainty given
by a 2×2 identity covariance matrix, i.e. we assume an pixel error of one in row
and column. The conformal embedding then adjusts the covariance matrices as
explained in section 2.2. Recall that the computation of our observations, say x,
involves a stereographic projection that we perform by means of an inversion.
The points thereby obtain distinct 3D-uncertainties accounting for the imaging
geometry. The mapping of a far image point to a point close to the North Pole
N of S, for example, is less affected by noise and will thus inhere with a higher
confidence, see figure 1. Mathematically, the uncertainties are computed using
standard error propagation, where we profit from the inversion being an element
ofG4,1. Note that the obtained inhomogeneity in the uncertainties is one of main
justifications for the use of the Gauss-Helmert method.

Fig. 3. The distance between the images is 3.5m. The distance and the ground truth
epipoles were measured with a laser device. The red circles symbolize the epipoles
found via the essential matrix. The green epipoles reflect the improved solutions of
the Gauss-Helmert method. The difference seems to be small but an exact epipole is
crucial for further processing.

The results of the Gauss-Helmert method can be seen in figure 3, which
shows our most challenging scenario with a translation of 3.5m in between the
camera positions. The red circles indicate the epipoles found via the essential

5 This can be done as the true distance between F and F ′ cannot be recovered from
the image data.



matrix approach described in section 5. The green circles show the stochastically
optimal solution provided by the Gauss-Helmert method which exactly agree
with the ground truth epipoles. These were determined with a laser along which
the camera was moved. However, the uncertainty in the laser measured epipole
positions is too big compared to the variation in the Gauss-Helmert results,
which is why we do not state numerical results.

8 Conclusion

The objective of this work was to estimate the epipoles in omnidirectional im-
ages. The expression derived for the essential matrix is a new result and was
shown to be correct. It gives some new insight into the structure of the essen-
tial matrix and enables a geometric interpretation. Concerning the fundamental
matrix we identified an important connection to the work of Geyer and Dani-
ilidis. We use the Gauss-Helmert method for the estimation of the stochastically
optimal epipoles. As a byproduct we obtain the motion estimation between two
omnidirectional images. The experimental results demonstrate that our method
does provide exact results. Evidently, this work is also a valuable contribution
to the field of (conformal) geometric algebra, which turned out to be the ideal
framework to deal with geometry.
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