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Abstract. Omnidirectional vision is highly beneficial for robot naviga-
tion. We present a novel perspective pose estimation for omnidirectional
vision involving a parabolic central catadioptric sensor using line-plane
correspondences. We incorporate an appropriate and approved stochastic
method to deal with uncertainties in the data.

1 Introduction

Roughly speaking, rigidly moving an object in 3D such that it comes into agree-
ment with 2D-sensory data of a camera, is called 2D-3D pose estimation [3]. It
is a well-studied subject in the case of pinhole cameras for which sophisticated
methods exist, see e.g. [13].

Single viewpoint catadioptric vision sensors combine a conventional camera
with one or two mirrors and provide a panoramical view of 360◦. Our device is a
folded system consisting of two parabolic mirrors and a lens to provide a scaled,
approximately orthographic projection from the main mirror. It can equivalently
be treated as a single mirror device, see Nayar et al [10].

The most significant advantages of omnidirectional vision are related to navi-
gation. For example, methods of movement estimation from triangulation, topol-
ogy map and feature flow based methods [1, 4, 6] for localization give good results
on the estimation of movements between frames and the localization from the
visual information. Apart from those methods, 2D-3D pose estimation gives the
complete pose information, that is more than a 2D-position in a plane. Since
it includes all six possible degrees of freedom (DOF), it can account for effects
like pitch, roll and yaw. Therefore, it represents an appropriate method for nav-
igation, also on uneven surfaces. Furthermore, in the case of omnidirectional
pose estimation, the object does not need to be observed within some narrow
spatial angle, but may surround the visual sensor itself. This implies a number
of advantages. First, an object remains on the image plane under most move-
ments, which is desirable for tasks such as tracking. Second, the accuracy of
the estimated pose should be superior, as for example in triangulation, which
performs best if the used landmarks are seen at right angles. Still, surprisingly
little research was done on omnidirectional pose estimation.

Our objective was to develop accurate pose estimation for omnidirectional
vision given imprecise image features, i.e. 2D-sensory data. The motivation was



to take the opportunity to extend approved pinhole methods to the omnidi-
rectional case by exploiting simple existing geometrical relations for parabolic
mirrors. The stochastic is one of the fundamental aspects of this work; to account
for invariable uncertainties in observational data we consequently decided on a
least squares adjustment parameter estimation. The concept of our approach is
a well-tried amalgamation of geometry with stochastic via Geometric Algebra.

One assumption we make is to have 3D-models of the interesting objects we
observe in the images. This can be an ordinary object like a table or it is a
model describing the environment. Secondly, we assume to know the one-to-one
correspondences between the model features and the image features.

Note that with this contribution we extend our previous work by using line
models instead of point models. The matching image entities are therefore lines.
Recognition and localization is simpler for lines than for points, since those are
intrinsically higher-dimensional structures. Localization is more precise for lines,
as well. Regarding regular structures, like a skyscraper, it is more efficient to have
line models than to store the corners of each single window. We can state that
the existence of key points, e.g. corners, mostly inheres with the existence of
lines which are then the preferable entities.

In the next section, we discuss the pose estimation and all related topics
in some detail. In section 3 we present experimental results. Finally, we give
conclusions in section 4.

2 Omnidirectional 2D-3D Pose Estimation

In general, perspective 2D-3D pose estimation consists of determining the orien-
tation and position of an internally calibrated camera [5], given a 3D-model of an
object in a scene and a set of 2D-correspondence features (points, lines, curves)
from an image of that scene. The model serves as a reference to an external
(world) coordinate system. If we determine the model’s position and orientation
with respect to the camera coordinate system, we are able to infer the pose of
the camera, given by a rigid body motion (RBM). Specifically, we estimate the
RBM, such that the model lines come to lie on the projection planes of the
underlying image lines.

We use the Geometric Algebra G4,1 of the conformal embedding of Eu-
clidean 3D-space as introduced in [2, 8]. A similar pose estimation could also
be done solely in Euclidian 3D-space, but we obtain certain advantages when
working in G4,1 : geometric entities as points, spheres, planes or lines and geo-
metric operators as an inversion or an RBM are basic elements of G4,1 . They
have thus a natural representation in terms of (sparse) vectors of R25

. More-
over, incidence relations, as needed to decide whether a line lies on a projection
plane, can be evaluated by means of bilinear algebra products. Nevertheless, for
understandability to unfamiliar readers, and since it is not the main subject of
this work, we make explicit use of Geometric Algebra in just one passage. In
practice we employ the framework of Geometric Algebra throughout all steps of



our method. A general introduction to the estimation of geometric entities and
operators from uncertain data using Geometric Algebra can be found in [12].

Our method consists of three steps: from those pixels corresponding to model
lines, we compute the projection planes with associated uncertainties. In a second
step, a simple algorithm is used to do prior rotation estimation being a first and
rough guess at the rotational part of the desired RBM. As a result the model
will be aligned such that its lines are nearly parallel to the respective projection
planes. Next, an iterative method estimates the entire pose now taking also the
plane uncertainties into account.

Before we explain those steps we give an overview regarding catadioptric
imaging with a parabolic mirror.

2.1 Omnidirectional Imaging

Despite our interest in the mapping of lines to the image we begin with the
point case. The omnidirectional camera setup we consider consists of a camera
focused at infinity, which looks at a parabolic mirror centered on its optical
axis. This setup is shown in figure 1. A light ray emitted from point P that

Fig. 1. Left: Mapping (cross-section) of a point P : the image planes π1 and π2 are
identical. Right: Mapping of line L to Lπ via great circle LS on S. As an example,
scattered image data belonging to Lπ is shown.

would pass through the focal point F of the parabolic mirror M , is reflected
parallel to the central axis of the parabolic mirror, to give point p2. Since all
such reflected rays are parallel, a camera placed beneath the mirror focused at
infinity will generate a sharp image on plane π2. Here, we use the simplification
that a projection to sphere S with a subsequent stereographic projection to π1

produces an identical image on π1. Accordingly, point P maps to ps and further
to p1, see figure 1. Together with the right side of figure 1 it is intuitively clear
that infinitely extended lines form great circles on S. Moreover, a subsequent



stereographic projection, being a conformal mapping, results in circles1 on the
image plane, which are then no more concentric. For details refer to [7, 14].

Note that given image points we can apply all mentioned steps in reverse
order to obtain the corresponding projection rays. Similarly, we can compute
the corresponding projection plane from two image points, since their back-
projections on sphere S can always be taken to form a great circle, the plane of
which represents the projection plane.

Fig. 2. Pose estimation: fitting a triangle model to respective projection rays/planes
in 3D.

To illustrate the whole pose estimation process consider figure 2: three im-
age points build the triangle-like2 object Tπ, which is stereographically back-
projected to TS on S. In conjunction with F , we obtain the projection rays or
planes, respectively. The correct RBM then moves the model triangle T ′, so that
either the model points comes to lie on the projection rays or in our case, the
model lines come to lie on the projection planes.

2.2 Estimating Projection Planes

In order to perform the line-plane fitting artificial plane observations are built
from our initial image point observations: for each set of image points that
corresponds to a model line, the respective projection plane is evaluated. This is
done in very much the same way as the circle estimation described in [12], where
the stochastic estimation method underlying this work applies as well. A circle
can be defined in terms of a plane, a center and a radius; the plane estimation

1 An often occurring special case is a (vertical) line parallel to the optical axis, which
is mapped to an image line, i.e. a circle with infinite radius, passing the origin F .

2 In the figure Tπ and TS are drawn as triangles, although their sides are supposed to
be arcs rather than lines.



can thus be restricted to three components representing the normal of the circle
plane.

We assume that all image points initially have the same 2D-uncertainty given
by a 2×2 identity covariance matrix, i.e. we assume an pixel error of one in row
and column. Since the planes have to be estimated from the stereographically
back-projected image points, see figure 1, we must move the involved image
points to the projection sphere S. This is done by an inversion of the image
points in a certain sphere. The points thereby obtain distinct 3D-uncertainties
accounting for the imaging geometry. The mapping of a far image point to a
point close to the North Pole N of S, for example, is less affected by noise
and will thus inhere with a higher confidence, see figure 1. Mathematically, the
uncertainties are computed using standard error propagation, where we profit
from the inversion being an element of G4,1 .

Since our estimation method is capable of providing a covariance matrix
regarding the estimated entity, we obtain a 3×3 covariance matrix for each
plane. Those are then to be reinput to our pose estimation algorithm.

2.3 Prior Model Alignment

Estimation problems mostly require a linearization of condition or constraint
functions and one usually ends up with an iterative method, as we do. This
raises the need for a sufficiently good initial estimate regarding the iterations.
The prior model alignment provides such a starting point at very low costs.
Moreover, it shortens the overall computation time. We like to rotate the model
such that the unit direction vectors {r̂1..N } of its lines lie on the respective
planes. Here, a prerequisite is to have the normal vectors {n̂1..N } of all planes
belonging to visible model lines. We search for a rotation matrix R such that
(∀i) : n̂T

i R r̂i = 0.
By Rodrigues’s formula (1840) we know that the rotation matrix R regarding

a rotation of angle θ around unit vector â = (a1, a2, a3)T can be expressed by an
exponential map of A = ((0, a3,−a2)T(−a3, 0, a1)T(a2,−a1, 0)T): R = exp(θA)
which is R = I3 + sin θ A + (1− cos θ)A2. For small angles we obtain R = I3 + θA.
With this relation and due to the skew symmetric structure of A′ = θA it is
possible to solve for a′ = (θa1, θa2, θa3)T, where each line-plane pair gives one
line n̂T

i A′ r̂i = −n̂T
i r̂i in an overdetermined system of linear equations. Every run

of this procedure yields a rotation matrix, the concatenation of which gives the
desired rotation matrix R. Once, the rotated lines are close enough to the planes
w.r.t. some threshold the procedure can be stopped.

2.4 Stochastic Estimation Method

In this section we concisely introduce our two parameter estimation methods, the
common Gauss-Markov method and the most generalized case of least squares
adjustment, the Gauss-Helmert method. Both are founded on the respective
homonymic linear models, cf. [9]. The word ’adjustment’ puts emphasis on the



fact that an estimation has to handle redundancy in observational data appro-
priately, e.g. to weight unreliable data to a lesser extend. The principle of least
squares adjustment, i.e. to minimize the sum of squared weighted errors ∆yi, is
often denoted as ∑

i

∆yT
i Σyi

−1∆yi −→ min , (1)

where Σyi is a covariance matrix assessing the confidence of yi.
Let {b1..N }3 denote a set of N observations. Each observation bi is asso-

ciated with an appropriate covariance matrix Σbi denoting the confidence. An
entity, parameterized by a vector p, is to be fitted to the observational data.
Consequently, we define a condition function g(bi, p), which is supposed to be
zero if the observations and the entity in demand fit. If we know an already good
estimate p̂ we can make a linearization yielding (∂p g)(bi,p̂)∆p + g(bi, p̂) ≈ 0,
hence with Ui = (∂p g)(bi,p̂) and yi = −g(bi, p̂): Ui∆p = yi + ∆yi, which ex-
actly matches the linear Gauss-Markov model. The minimization of equation (1)
in conjunction with the Gauss-Markov model leads to the best linear unbiased
estimator4. Note that we have to leave the weighting out in equation (1), since
our covariance matrices Σbi do not match the Σyi . Subsequently, we derive a
model which includes the weighting.

If we take our observations as estimates, i.e. {b̂1..N } = {b1..N }, we can make
a complete Taylor series expansion of first order at (b̂i, p̂) yielding

(∂p g)(b̂i,p̂)∆p + (∂b g)(b̂i,p̂)∆bi + g(b̂i, p̂) ≈ 0 .

Similarly, with Vi = (∂b g)(b̂i,p̂) we obtain Ui∆p + Vi∆bi = yi, which exactly
matches the linear Gauss-Helmert model. Note, that the error term ∆yi has been
replaced by the linear combination ∆yi = −Vi∆bi: the Gauss-Helmert differs
from the Gauss-Markov model, because the observations have become random
parameters and are thus allowed to undergo small changes ∆bi to compensate
for errors. But changes have to be kept minimal, as observations represent the
best available. This is achieved by replacing equation (1) with∑

i

∆bT
i Σbi

−1∆bi −→ min , (2)

where ∆bi is now considered as error vector. The minimization of (2) subject to
the Gauss-Helmert model can be done using Lagrange multipliers, cf. [9].

Due to outstanding convergence properties we start iterating with the Gauss-
Markov method. At the optimum we start the slower Gauss-Helmert method
which ultimately adjusts the estimate according to the given uncertainties Σbi .

3 We use the abbreviation {b1..N } for a set {b1, b2, . . . , bN}.
4 It has been shown in [9] that different approaches, namely least squares, maximum

likelihood and the linear approach, equally lead to the best linear unbiased estimator.



2.5 Perspective Line-Plane Pose Estimation

Here we derive geometric constraint equations for the stochastic estimation
methods presented in the previous section. The respective expressions come from
the Geometric Algebra of conformal space G4,1 . A similar methodology was
chosen by Rosenhahn et al [13]. The products used in the following are the geo-
metric product, which is the main algebra product, and the outer product, which
is in no way related to the outer product of matrices. The geometric product is
denoted by juxtaposition and the outer product by ∧.

Let P be a projection plane, see section 2.2. For any line L lying on P , we
have P ∧ L = 0 ∈ G4,1. A model line L′ is transformed by an RBM represented
by V , say, via the operation V L′ Ṽ , where the reverse Ṽ is similar to conjugation
in quaternions. Therefore, if we have estimated the correct RBM V , a model line
L′ with corresponding projection plane P has to satisfy P ∧ (V L′ Ṽ ) = 0.

Due to the numerical representation of G4,1, we can identify our elements P ,
L′ and V with particular vectors p ∈ R3, l′ ∈ R6 and v ∈ R8. For example, p
simply denotes the normal vector of the plane represented by P . Moreover, each
algebra product is a bilinear function and can be formulated equivalently using
a certain tensor, cf. [12]. By contracting the constituent tensors the condition
function g of the previous section can be written in the following way

gt(p, v) :=
∑

i,j,k,l

vi vj pk l′
l
Qt

ijkl = 0 , t ∈ {1 . . . 4} . (3)

Algebraically, the constraint P ∧ L may only be nonzero in four of its 25 = 32
components, i.e. we have t ∈ {1 . . . 4}. The observations and parameters are p and
v, respectively. Hence, differentiating would yield the matrices V and U required
in section 2.4. Note that the eight components of V are an overparameterization
of the six DOF of an RBM, such that we need to include the RBM-constraint
V Ṽ = 1 in the minimization process, which also turns out to be a bilinear
function of the components of V . Such additional constraints can be readily
included in our parameter estimation methods.

3 Experimental Results

Two real world experiments were performed using an imaging system consisting
of a Kamerawerk Dresden Loglux i5 camera and Remote Reality Netvision
360 catadioptric sensor with a parabolic mirror. The aim of the experiments was
to test object pose estimation and navigation and the robustness of the used
methods in these tasks. As intrinsic calibration parameters we used the 40 mm
mirror radius and 16.7 mm focal length for the main mirror given by the man-
ufacturer. The projection of the sensor was assumed to be exactly orthographic
and the whole mirror was assumed to be visible in the image. Images were ac-
quired in 1280 × 1024 resolution where the actual size of the omnidirectional
image is the area of a circle with 492 pixel radius corresponding to the 40 mm
mirror radius. The radius and the center of the image were determined from



the sum of images used in the experiments. No other calibration was done. The
image lines were extracted manually with seven points/line.

In the first experiment a model house was moved with a robot arm to 21 dif-
ferent locations. The robot arm gives ground truth of the translations between
the different locations with millimeter accuracy. The magnitude of these transla-
tions was between 7.7 cm and 62.4 cm and the distance of the model house to the
optical center of the catadioptric sensor was between 31.4 cm and 82.8 cm. The
house dimensions in cm are 21×15×21. From the 21 acquired images the RBMs
of the model house from the optical center were estimated. These estimates were
used to get the relative translation estimates between the different model house
positions. The results are given in table 1.

Table 1. The errors of the house pose estimation.

Abs. error [mm] Rel. error [%] Angle error [◦]

mean 10.4 3.5 0.9

std 4.8 1.7 0.4

min 0.9 0.4 0.12

max 21.3 11.5 2.4

In the second experiment the sensor was moved to 25 different positions in
a hallway. The model was defined by lines clearly visible in most of the images.
The other criterion was reasonable measurability needed to create the model.
The walls were assumed to be perpendicular to the floor and all corners to be
right angled. With these assumptions we get roughly 2 cm accuracy for positions
of the model lines. The model consisted of total 51 lines from which on average
20 lines were visible in an image. The maximum orthogonal distance of these
lines was 18.1 m, minimum 3.8 m and the sensor movements were made on 8×2
m2 area inside the model. The results for the error in the position are given in
table 2 for Gauss-Markov (G-M) and Gauss-Helmert (G-H) methods in 2D and
3D. Figure 3 on left represents the results for G-M and G-H methods and the
groundtruth (Truth) in 3D. In addition to the pose estimation with the given
parameters we studied the robustness of the used methods in respect to the
change of the focal length of the mirror (see figure 3 on right). It can be seen
that the G-H method is always better than G-M and slightly more robust. 2D
estimation works always better as the error source is one dimension smaller and
the estimation relies mostly on the vertical world lines whose image remains
almost unchanged with the change of focal length. Using 0.1 mm steps for the
focal length gives the most accurate results for G-M 3D 5.8 cm with focal length
16.8 mm and for G-H 3D 4.2 cm with focal length 16.9 mm.

Comparisons for 3D results are hard due to the limited number of usable
publications. The results in 2D are comparable results to those given by Aliaga



Table 2. The errors of the navigation.

Mean error [cm] RMS error [cm] min [cm] max [cm]

G-M 3D 7.6 9.4 3.6 32.2

G-M 2D 5.1 7.7 0.4 32.0

G-H 3D 6.4 6.5 2.7 8.3

G-H 2D 3.5 3.9 0.5 5.7
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Fig. 3. Left: navigation results. The 3D positions are also projected to plane for clarity.
Right: focal length vs. mean error.

[1]; he obtained an average planar error of 2.8 cm within a room of 5 meters
diameter using a triangulation method and with exact calibration of the system.
Cauchois et el [4] reached about 1 cm accuracy in 2D using an image database
method with a conical mirror and a room of 2× 3 m2.

4 Conclusions

The objective of this work was to realize 2D-3D pose estimation for omnidi-
rectional vision using line-plane correspondences. The pose was computed by
a stochastic estimation method, which accounts for uncertainties in the image
data.

The experimental results clearly demonstrate that our combination of 2D-3D
pose estimation with omnidirectional vision does provide exact results for navi-
gation within relatively big environments. The results of our house experiments
show that we still obtain good results, if we utilize our method for conventional
2D-3D object pose estimation.

Especially the 2D-navigation was found out to be very robust in respect to
changes of focal length. The change of the focal length scales the image radially.
Since the images of vertical world lines are radial lines in the image they are



invariant in this scaling. On the other hand the positions of image points on the
radial lines are not invariant. This motivates studies on the differences in the
robustness of point-line and line-plane pose estimation in 2D-navigation.

In the future we would like to automate the point extraction from the image
in order to construct a ready to use method for robotics. This is plausible as the
calculation time for the pose estimation (including 3D-visualization) is under 1
second using a scripting language (CLUCalc, see [11] ) on a 3 GHz Pentium 4
computer.
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