
Traking with a Novel Pose EstimationAlgorithmBodo Rosenhahn, Norbert Kr�uger, Torge Rabsh, Gerald SommerInstitut f�ur Informatik und Praktishe MathematikChristian-Albrehts-Universit�at zu KielPreu�erstrasse 1-9, 24105 Kiel, Germanyfbro,nkr,tr,gsg�ks.informatik.uni-kiel.deAbstrat. In this paper we apply a novel pose estimation algorithm tothe traking problem. We make use of error measures of the algorithmwhih enable us to haraterize the quality of an estimated pose. The keyidea of the traking algorithm is random start loal searh. The prini-ple of the heuristi relies upon a ombination of iterative improvementand random sampling. While in many approahes a manually designedobjet representation is assumed, we overome this ondition by usingaumulated objet representations and ombine these suessfully withthe traking algorithm.1 IntrodutionIn this work we apply a novel 2D-3D pose estimation algorithm [12℄ to thetraking problem. This algorithm shows some interesting harateristis whihmakes it espeially useful for this purpose. Beside features suh as stability inthe presene of noise and online{apabilities its main advantage in the trak-ing ontext is that it an unify di�erent kinds of orrespondenes within onealgebrai framework.To apply the pose estimation algorithm to the traking problem we intendto solve two problems whih were avoided in [12℄ but are important for furtherappliations like robot navigation or objet reognition:1. Correspondenes: Correspondenes between model data and image datahave been de�ned manually.2. Objet Representation: A manually designed representation of the objetto be traked has been presupposed.In this paper we desribe an automati proedure to �nd orrespondenes be-tween an objet model and its image projetion whih makes use of features ofthe pose estimation algorithm [12℄ and of the spei� traking ondition. Wesuppose a 3D model of the objet onsisting of 3D points and 3D lines and weextrat lines in the image sequene by a Hough transformation ombined with anew algorithm to extrat lines from the Hough array. We �nd orrespondenesbetween 3D lines and 2D lines by a loal searh. The essential attribute is thata disrete loal neighborhood of states is de�ned with respet to the urrentstate, in this ontext the Hamming distane n{neighborhood [11℄. Further, weallow orrespondenes only for entities with small distane. This assumption isjusti�ed by the spei� traking situation. The pose estimation algorithm is able



to use orrespondenes as 3D point to 2D point, 3D point to 2D line and 3D lineto 2D line to estimate the rotation and translation between two frames. In thispaper only line orrespondenes are used. Note that this kind of orrespondeneallows to avoid the so alled appertur problem, i.e. the impossibility to de�neorrespondenes between a point on a line in two frames.To avoid a manually designed objet representation we also applied the trak-ing algorithm with an aumulated objet representation onsisting of loal 3Dline segments. The objet aumulation is based on a sheme whih aumulateson�denes for entities representing the objet and whih allows to extrat rep-resentations in even quite ompliated environments [4℄. We ould show, thatwith suh a representation traking is possible and therefore both assumptionsof manual intervention in [12℄ an be substituted by automati proedures.2 Desription of the TrakingIn this ontext traking means to minimize a mathing error by solving twoproblems:1. The orrespondene problem: Determine the mapping between model ele-ments (here 3D model lines) and image features (extrated Hough lines).2. The spatial �tting problem (pose estimation): For eah orrespondene de-termine the best parameters (here rotation R and translation t), so that thespatial �t error of the model lines to image lines is minimized.In the following setions we desribe the automati extration of lines (setion2.1), the pose estimation algorithm (setion 2.2), the automati �nding of orre-spondenes (setion 2.3), and the aumulating of objet representations (setion2.4).2.1 Hough TransformationTo extrat lines in an image we apply the well known Hough transformation[3℄. The robustness of the Hough transformation an be inreased by using notonly information about the presene of edges but by also heking the agreementof lines and loal orientation, i.e. by applying the orientation seletive Houghtransformation [9℄. The Hough transformation results in an aumulator array(see �gure 1) from whih the representative lines show up as peaks. These areeasily detetable for 'simple' images suh as the one in �gure 1 but diÆult toextrat in more omplex situations.To avoid the extration of additional lines aused by loally neighbored peaksin the aumulator array (often ourring in the presene of noise in the imagedata) usually some kind of metri on the aumulator array is de�ned to allowonly lines orresponding to peaks with ertain distane. A problem of thesemethods is that important lines may have small distane in the Hough spae(see e.g., narrow parallel lines in �gure 2). To extrat the signi�ant lines wealso use information about the areas whih do support lines, i.e. we evaluatealso image information. This allows us to extrat lines with small distane inthe aumulator array whih are usually not extratable by other methods (fordetails see [1℄).



Fig. 1. Standard-Hough-transformation and Orientation seletive Hough-transformation
Fig. 2. Representative Hough lines extrated by di�erent methodsFigure 2 shows extrated Hough lines using di�erent kind of metris. In theleft image our method has been used, in the middle image for eah seleted peaka neighborhood in the aumulator array is set to zero (as, e.g. in [8℄), while inthe right image onneted areas whih our after thresholding the aumulatorarray are treated as one line (as e.g., in [6℄). Note that the narrow parallel linesould only be extrated by our method. The proedure used in the middle imageextrats the most signi�ant lines but not the narrow parallel lines beause theorresponding peaks are too lose in the aumulator array. The proedure usedfor the right image has great diÆulties with loally neighbored peaks whih areabove threshold.2.2 Pose EstimationThe problem of pose estimation means to estimate the transformation (the rigidbody motion) between the two oordinate frames of measured data and modeldata. In [12, 10℄ the problem of 2D-3D pose estimation is desribed in the al-gebrai language of kinematis. The key idea is that the observed 2D entitiestogether with their orresponding 3D entities are onstraint to lie on other,higher order entities whih result from the perspetive projetion. The observed2D entities in this ontext are extrated Hough lines.To be more detailed, in the senario of �gure 3 we desribe the followingsituation: We assume 3D points Yi, and lines Si of an objet or referene model.Further, we extrat line subspaes li in an image of a alibrated amera andmath them with the model. Three onstraints an be depited:



1. 3D point 2D point orrespondene: A transformed point, e.g. X1, ofthe model point Y1 must lie on the projetion ray Lb1, given by  and theorresponding image point b1.2. 3D point 2D line orrespondene: A transformed point, e.g. X1, of themodel point Y1 must lie on the projetion plane P12, given by  and theorresponding image line l1.3. 3D line 2D line orrespondene: A transformed line, e.g. L1, of themodel line S1 must lie on the projetion plane P12, given by  and the theorresponding image line l1.
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1Fig. 3. The senario. The solid lines at the left desribe the assumptions: the ameramodel, the model of the objet and the initially extrated lines on the image plane.The dashed lines at the right desribe the atual pose of the model, whih leads to thebest �t of the objet with the atual extrated lines.The use of the motor algebra [2℄ allows to subsume the pose estimation problemby ompat onstraint equations sine the entities, the transformation of theentities and the onstraints an be desribed eonomially in one unifying lan-guage. Furthermore the onstraint equations express a natural distane measure,in this ase the Hesse distane between the entities, whih is also explained in[12℄. This property is important for the robustness of our algorithms sine wework with digital images and noisy data. To solve these onstraint equations aspeial extended motor Kalman �lter was developed [13℄.2.3 Testing of CorrespondenesIt is well known, that for l = m � n potential pairs, there are S = 2jlj or-respondenes. This means, the searh spae is in general very large and notpratiable for appliations. The traking assumption allows to use loal riterialike distanes and angles to redue the searh spae signi�antly, depending onthe error boundaries. In this ontext the orrespondene spae for m model lines
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Fig. 4.Math example for a retangle. The model lines are labeled with letters and theextrated image lines are labeled with numbers. The table indiates the orrespondenespae with the allowed possibilities (white/blak), the impossible mathes (ross) andthe urrent math (blak).and n image lines is represented by a m� n �t-matrix. In this matrix ags rep-resent the needed information for a math, mismath or potential math, �gure4 shows an example. In this example the model lines are labeled with lettersand the extrated image lines are labeled with numbers. The table indiatesthe orrespondene spae with the allowed mathes (white/blak), the impos-sible mathes (ross) and the urrent math (blak). See also [11℄ for furtherinformation.
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result: correspondences and poseFig. 5. A sheme of the traking algorithm.Random start loal searh [11℄ is the basis for our algorithm, whih is sum-marized in �gure 5. The priniple of the heuristi relies upon a ombinationof iterative improvement and random sampling. Iterative improvement refers toa repeated generate-and-test priniple by whih the algorithm moves from aninitial state to its loal optimum. So the algorithm onsists of two main steps:First �nd an initial state for a minimum of orrespondenes and then re�ne theresult by the other orrespondenes. For the �rst step we hoose �ve random



Fig. 6. Aumulation of an objet representation (�rst and �fth iteration). The robothas physial ontrol over the objet. Line segments orresponding to the bakgroundvanish after a few iterations. Left: the stereo images of left and right amera. Middle:Representation extrated from one stereo image pair. Right: Aumulated representa-tion.model lines and try every ombination of the objet lines to the allowed imagelines to estimate an optimal pose and use the error funtion to haraterize thequality of the pose. This is possible sine the error measure orresponds diretlyto the Hesse distane and leads to a suitable error measure. One the initial poseis estimated, in the seond step an additional model line will be tried to mathan allowed image line to stabilize and re�ne the result. Note, that this part ofthe algorithm is linear, sine the use of the Kalman �lter leads to reognizablepeaks for the detetion of mismathes [14℄. So the �rst assumption of [12℄, i.e.the knowledge of the orrespondenes an be solved by the algorithm, whih issummarized in �gure 5.2.4 Objet aumulationThe seond assumption, i.e., a manually designed objet model an be avoidedby applying the methods desribed above with a model extrated from a stereoimage sequene. The key idea of the algorithm (desribed more preisly in [4℄ and[5℄) is to aumulate evidenes for entities used to represent an objet over time.In our ase the objet was manipulated by a robot (see �gure 6). This allows usto solve the orrespondene problem during aumulation sine the knowledgeof the parameters of motion ould be used in the aumulation sheme. Herethe entities used to represent an objet are loal 3D line segments. However, theaumulation sheme an be applied for a wide range of visual entities. Afterforty iterations the objet model was good enough to be applied in our trakingalgorithm.3 ExperimentsIn our �rst experimental senario we use a manually designed model of a housefor traking. Figure 7 shows some results of the sequene with the superimposedmodel of the house. The slight displaements between the model and the house



Fig. 7. Traking with a manually designed objet representation.on the image in some of the frames emerge from alibration errors, extrationerrors and math errors.In our seond experimental senario we aumulate an objet representationof a model house by the algorithm desribed in setion 2.4. Our aumulatedobjet model onsists of 130 line segments.1 Though the aumulated represen-tation also onsists of noisy line segments, whih do not belong to the house, thealgorithm is able to estimate the transformations, whih are neessary to get agood �t of the objet model with the image lines. Sine our algorithm is alsoable to neglet objet lines, our algorithm is able to deal with hidden or not ex-trated objet features in the image, or noisy line segments of the objet model.Some results of the required and estimated movements are visualized in �gure 8.The performane of our algorithm is not optimized yet and the main steps, theHough transformation and the testing of orrespondenes are not in real time.The Hough transformation itself needs about two seonds, and the testing ofthe orrespondenes needs about 5 seonds to 15 seonds in arti�ial designedobjets and 3 to 5 minutes with the aumulated objet (beause of its 130 linesegments). But still the algorithm is heuristi and we also had ases where it1 Our objet representation onsists of a large number of satistially very dependententities. For mathing it would be advantageous if these entities beome onnetedby some kind of grouping proess to ahieve a representation with a smaller set ofmore omplex features to speed up mathing. The formalization of suh groupingproesses is part of our researh.



Fig. 8. Traking with an aumulated objet model. In this sequene we show theresults before traking and after traking for eah image to visualize the movements.never onverged. The time performane is also dependend on the parameters ofthe traking assumptions and the parameters of the Hough transformation.4 Conlusion and OutlookWe applied the novel pose estimation algorithm desribed in [12℄ to the trak-ing problem. For traking we ould automatially �nd orrespondenes betweenmodel data and Hough lines by a loal searh algorithm. Furthermore, we oulddemonstrate that traking is even possible with an aumulated objet repre-sentation.In this paper we only used 2D line to 3D line orrespondenes. However,with a more elaborated objet representation onsisting of point features (suhas orners) as well as line features, other kind of orrespondenes ould be appliedfor traking as well. The possibility to deal with these di�erent entities withinone framework as in the pose estimation algorithm in [12℄ would be an interestingextension of the traking algorithm introdued here.In this paper traking and aumulation are distint ompetenes, for objetaumulation it was neessary to have physial ontrol over the objet by a robotto solve the orrespondene problem. With the traking algorithm introduedhere we aim to replae the need of physial ontrol. The pose estimation gives usthe parameters of objet motion whih are needed in our aumulation shemeand whih were granted by the knowledge of the motor ommands of the robot.Therefore, by ombining traking and aumulation we might ahieve learningwhile doing objet traking.All algorithms introdued here were implemented in the C++{software li-brary KiViGraP [7℄ whih allows us to ombine ompetenes as the one intro-dued in this paper into one system. In [5℄ a framework of suh a system is
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