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t. In this paper we apply a novel pose estimation algorithm tothe tra
king problem. We make use of error measures of the algorithmwhi
h enable us to 
hara
terize the quality of an estimated pose. The keyidea of the tra
king algorithm is random start lo
al sear
h. The prin
i-ple of the heuristi
 relies upon a 
ombination of iterative improvementand random sampling. While in many approa
hes a manually designedobje
t representation is assumed, we over
ome this 
ondition by usinga

umulated obje
t representations and 
ombine these su

essfully withthe tra
king algorithm.1 Introdu
tionIn this work we apply a novel 2D-3D pose estimation algorithm [12℄ to thetra
king problem. This algorithm shows some interesting 
hara
teristi
s whi
hmakes it espe
ially useful for this purpose. Beside features su
h as stability inthe presen
e of noise and online{
apabilities its main advantage in the tra
k-ing 
ontext is that it 
an unify di�erent kinds of 
orresponden
es within onealgebrai
 framework.To apply the pose estimation algorithm to the tra
king problem we intendto solve two problems whi
h were avoided in [12℄ but are important for furtherappli
ations like robot navigation or obje
t re
ognition:1. Corresponden
es: Corresponden
es between model data and image datahave been de�ned manually.2. Obje
t Representation: A manually designed representation of the obje
tto be tra
ked has been presupposed.In this paper we des
ribe an automati
 pro
edure to �nd 
orresponden
es be-tween an obje
t model and its image proje
tion whi
h makes use of features ofthe pose estimation algorithm [12℄ and of the spe
i�
 tra
king 
ondition. Wesuppose a 3D model of the obje
t 
onsisting of 3D points and 3D lines and weextra
t lines in the image sequen
e by a Hough transformation 
ombined with anew algorithm to extra
t lines from the Hough array. We �nd 
orresponden
esbetween 3D lines and 2D lines by a lo
al sear
h. The essential attribute is thata dis
rete lo
al neighborhood of states is de�ned with respe
t to the 
urrentstate, in this 
ontext the Hamming distan
e n{neighborhood [11℄. Further, weallow 
orresponden
es only for entities with small distan
e. This assumption isjusti�ed by the spe
i�
 tra
king situation. The pose estimation algorithm is able



to use 
orresponden
es as 3D point to 2D point, 3D point to 2D line and 3D lineto 2D line to estimate the rotation and translation between two frames. In thispaper only line 
orresponden
es are used. Note that this kind of 
orresponden
eallows to avoid the so 
alled appertur problem, i.e. the impossibility to de�ne
orresponden
es between a point on a line in two frames.To avoid a manually designed obje
t representation we also applied the tra
k-ing algorithm with an a

umulated obje
t representation 
onsisting of lo
al 3Dline segments. The obje
t a

umulation is based on a s
heme whi
h a

umulates
on�den
es for entities representing the obje
t and whi
h allows to extra
t rep-resentations in even quite 
ompli
ated environments [4℄. We 
ould show, thatwith su
h a representation tra
king is possible and therefore both assumptionsof manual intervention in [12℄ 
an be substituted by automati
 pro
edures.2 Des
ription of the Tra
kingIn this 
ontext tra
king means to minimize a mat
hing error by solving twoproblems:1. The 
orresponden
e problem: Determine the mapping between model ele-ments (here 3D model lines) and image features (extra
ted Hough lines).2. The spatial �tting problem (pose estimation): For ea
h 
orresponden
e de-termine the best parameters (here rotation R and translation t), so that thespatial �t error of the model lines to image lines is minimized.In the following se
tions we des
ribe the automati
 extra
tion of lines (se
tion2.1), the pose estimation algorithm (se
tion 2.2), the automati
 �nding of 
orre-sponden
es (se
tion 2.3), and the a

umulating of obje
t representations (se
tion2.4).2.1 Hough TransformationTo extra
t lines in an image we apply the well known Hough transformation[3℄. The robustness of the Hough transformation 
an be in
reased by using notonly information about the presen
e of edges but by also 
he
king the agreementof lines and lo
al orientation, i.e. by applying the orientation sele
tive Houghtransformation [9℄. The Hough transformation results in an a

umulator array(see �gure 1) from whi
h the representative lines show up as peaks. These areeasily dete
table for 'simple' images su
h as the one in �gure 1 but diÆ
ult toextra
t in more 
omplex situations.To avoid the extra
tion of additional lines 
aused by lo
ally neighbored peaksin the a

umulator array (often o

urring in the presen
e of noise in the imagedata) usually some kind of metri
 on the a

umulator array is de�ned to allowonly lines 
orresponding to peaks with 
ertain distan
e. A problem of thesemethods is that important lines may have small distan
e in the Hough spa
e(see e.g., narrow parallel lines in �gure 2). To extra
t the signi�
ant lines wealso use information about the areas whi
h do support lines, i.e. we evaluatealso image information. This allows us to extra
t lines with small distan
e inthe a

umulator array whi
h are usually not extra
table by other methods (fordetails see [1℄).



Fig. 1. Standard-Hough-transformation and Orientation sele
tive Hough-transformation
Fig. 2. Representative Hough lines extra
ted by di�erent methodsFigure 2 shows extra
ted Hough lines using di�erent kind of metri
s. In theleft image our method has been used, in the middle image for ea
h sele
ted peaka neighborhood in the a

umulator array is set to zero (as, e.g. in [8℄), while inthe right image 
onne
ted areas whi
h o

ur after thresholding the a

umulatorarray are treated as one line (as e.g., in [6℄). Note that the narrow parallel lines
ould only be extra
ted by our method. The pro
edure used in the middle imageextra
ts the most signi�
ant lines but not the narrow parallel lines be
ause the
orresponding peaks are too 
lose in the a

umulator array. The pro
edure usedfor the right image has great diÆ
ulties with lo
ally neighbored peaks whi
h areabove threshold.2.2 Pose EstimationThe problem of pose estimation means to estimate the transformation (the rigidbody motion) between the two 
oordinate frames of measured data and modeldata. In [12, 10℄ the problem of 2D-3D pose estimation is des
ribed in the al-gebrai
 language of kinemati
s. The key idea is that the observed 2D entitiestogether with their 
orresponding 3D entities are 
onstraint to lie on other,higher order entities whi
h result from the perspe
tive proje
tion. The observed2D entities in this 
ontext are extra
ted Hough lines.To be more detailed, in the s
enario of �gure 3 we des
ribe the followingsituation: We assume 3D points Yi, and lines Si of an obje
t or referen
e model.Further, we extra
t line subspa
es li in an image of a 
alibrated 
amera andmat
h them with the model. Three 
onstraints 
an be depi
ted:



1. 3D point 2D point 
orresponden
e: A transformed point, e.g. X1, ofthe model point Y1 must lie on the proje
tion ray Lb1, given by 
 and the
orresponding image point b1.2. 3D point 2D line 
orresponden
e: A transformed point, e.g. X1, of themodel point Y1 must lie on the proje
tion plane P12, given by 
 and the
orresponding image line l1.3. 3D line 2D line 
orresponden
e: A transformed line, e.g. L1, of themodel line S1 must lie on the proje
tion plane P12, given by 
 and the the
orresponding image line l1.

l

a

X

Y

Y

Y

P

L

b

c

S

a

b b

X

a

b

X

L

2

reference model

observed model

  R , t

12

3

1

2

1
1

2

31

1

2

31

3
1

1Fig. 3. The s
enario. The solid lines at the left des
ribe the assumptions: the 
ameramodel, the model of the obje
t and the initially extra
ted lines on the image plane.The dashed lines at the right des
ribe the a
tual pose of the model, whi
h leads to thebest �t of the obje
t with the a
tual extra
ted lines.The use of the motor algebra [2℄ allows to subsume the pose estimation problemby 
ompa
t 
onstraint equations sin
e the entities, the transformation of theentities and the 
onstraints 
an be des
ribed e
onomi
ally in one unifying lan-guage. Furthermore the 
onstraint equations express a natural distan
e measure,in this 
ase the Hesse distan
e between the entities, whi
h is also explained in[12℄. This property is important for the robustness of our algorithms sin
e wework with digital images and noisy data. To solve these 
onstraint equations aspe
ial extended motor Kalman �lter was developed [13℄.2.3 Testing of Corresponden
esIt is well known, that for l = m � n potential pairs, there are S = 2jlj 
or-responden
es. This means, the sear
h spa
e is in general very large and notpra
ti
able for appli
ations. The tra
king assumption allows to use lo
al 
riterialike distan
es and angles to redu
e the sear
h spa
e signi�
antly, depending onthe error boundaries. In this 
ontext the 
orresponden
e spa
e for m model lines
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Fig. 4.Mat
h example for a re
tangle. The model lines are labeled with letters and theextra
ted image lines are labeled with numbers. The table indi
ates the 
orresponden
espa
e with the allowed possibilities (white/bla
k), the impossible mat
hes (
ross) andthe 
urrent mat
h (bla
k).and n image lines is represented by a m� n �t-matrix. In this matrix 
ags rep-resent the needed information for a mat
h, mismat
h or potential mat
h, �gure4 shows an example. In this example the model lines are labeled with lettersand the extra
ted image lines are labeled with numbers. The table indi
atesthe 
orresponden
e spa
e with the allowed mat
hes (white/bla
k), the impos-sible mat
hes (
ross) and the 
urrent mat
h (bla
k). See also [11℄ for furtherinformation.
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 random model lines,

result: correspondences and poseFig. 5. A s
heme of the tra
king algorithm.Random start lo
al sear
h [11℄ is the basis for our algorithm, whi
h is sum-marized in �gure 5. The prin
iple of the heuristi
 relies upon a 
ombinationof iterative improvement and random sampling. Iterative improvement refers toa repeated generate-and-test prin
iple by whi
h the algorithm moves from aninitial state to its lo
al optimum. So the algorithm 
onsists of two main steps:First �nd an initial state for a minimum of 
orresponden
es and then re�ne theresult by the other 
orresponden
es. For the �rst step we 
hoose �ve random



Fig. 6. A

umulation of an obje
t representation (�rst and �fth iteration). The robothas physi
al 
ontrol over the obje
t. Line segments 
orresponding to the ba
kgroundvanish after a few iterations. Left: the stereo images of left and right 
amera. Middle:Representation extra
ted from one stereo image pair. Right: A

umulated representa-tion.model lines and try every 
ombination of the obje
t lines to the allowed imagelines to estimate an optimal pose and use the error fun
tion to 
hara
terize thequality of the pose. This is possible sin
e the error measure 
orresponds dire
tlyto the Hesse distan
e and leads to a suitable error measure. On
e the initial poseis estimated, in the se
ond step an additional model line will be tried to mat
han allowed image line to stabilize and re�ne the result. Note, that this part ofthe algorithm is linear, sin
e the use of the Kalman �lter leads to re
ognizablepeaks for the dete
tion of mismat
hes [14℄. So the �rst assumption of [12℄, i.e.the knowledge of the 
orresponden
es 
an be solved by the algorithm, whi
h issummarized in �gure 5.2.4 Obje
t a

umulationThe se
ond assumption, i.e., a manually designed obje
t model 
an be avoidedby applying the methods des
ribed above with a model extra
ted from a stereoimage sequen
e. The key idea of the algorithm (des
ribed more pre
isly in [4℄ and[5℄) is to a

umulate eviden
es for entities used to represent an obje
t over time.In our 
ase the obje
t was manipulated by a robot (see �gure 6). This allows usto solve the 
orresponden
e problem during a

umulation sin
e the knowledgeof the parameters of motion 
ould be used in the a

umulation s
heme. Herethe entities used to represent an obje
t are lo
al 3D line segments. However, thea

umulation s
heme 
an be applied for a wide range of visual entities. Afterforty iterations the obje
t model was good enough to be applied in our tra
kingalgorithm.3 ExperimentsIn our �rst experimental s
enario we use a manually designed model of a housefor tra
king. Figure 7 shows some results of the sequen
e with the superimposedmodel of the house. The slight displa
ements between the model and the house



Fig. 7. Tra
king with a manually designed obje
t representation.on the image in some of the frames emerge from 
alibration errors, extra
tionerrors and mat
h errors.In our se
ond experimental s
enario we a

umulate an obje
t representationof a model house by the algorithm des
ribed in se
tion 2.4. Our a

umulatedobje
t model 
onsists of 130 line segments.1 Though the a

umulated represen-tation also 
onsists of noisy line segments, whi
h do not belong to the house, thealgorithm is able to estimate the transformations, whi
h are ne
essary to get agood �t of the obje
t model with the image lines. Sin
e our algorithm is alsoable to negle
t obje
t lines, our algorithm is able to deal with hidden or not ex-tra
ted obje
t features in the image, or noisy line segments of the obje
t model.Some results of the required and estimated movements are visualized in �gure 8.The performan
e of our algorithm is not optimized yet and the main steps, theHough transformation and the testing of 
orresponden
es are not in real time.The Hough transformation itself needs about two se
onds, and the testing ofthe 
orresponden
es needs about 5 se
onds to 15 se
onds in arti�
ial designedobje
ts and 3 to 5 minutes with the a

umulated obje
t (be
ause of its 130 linesegments). But still the algorithm is heuristi
 and we also had 
ases where it1 Our obje
t representation 
onsists of a large number of satisti
ally very dependententities. For mat
hing it would be advantageous if these entities be
ome 
onne
tedby some kind of grouping pro
ess to a
hieve a representation with a smaller set ofmore 
omplex features to speed up mat
hing. The formalization of su
h groupingpro
esses is part of our resear
h.



Fig. 8. Tra
king with an a

umulated obje
t model. In this sequen
e we show theresults before tra
king and after tra
king for ea
h image to visualize the movements.never 
onverged. The time performan
e is also dependend on the parameters ofthe tra
king assumptions and the parameters of the Hough transformation.4 Con
lusion and OutlookWe applied the novel pose estimation algorithm des
ribed in [12℄ to the tra
k-ing problem. For tra
king we 
ould automati
ally �nd 
orresponden
es betweenmodel data and Hough lines by a lo
al sear
h algorithm. Furthermore, we 
oulddemonstrate that tra
king is even possible with an a

umulated obje
t repre-sentation.In this paper we only used 2D line to 3D line 
orresponden
es. However,with a more elaborated obje
t representation 
onsisting of point features (su
has 
orners) as well as line features, other kind of 
orresponden
es 
ould be appliedfor tra
king as well. The possibility to deal with these di�erent entities withinone framework as in the pose estimation algorithm in [12℄ would be an interestingextension of the tra
king algorithm introdu
ed here.In this paper tra
king and a

umulation are distin
t 
ompeten
es, for obje
ta

umulation it was ne
essary to have physi
al 
ontrol over the obje
t by a robotto solve the 
orresponden
e problem. With the tra
king algorithm introdu
edhere we aim to repla
e the need of physi
al 
ontrol. The pose estimation gives usthe parameters of obje
t motion whi
h are needed in our a

umulation s
hemeand whi
h were granted by the knowledge of the motor 
ommands of the robot.Therefore, by 
ombining tra
king and a

umulation we might a
hieve learningwhile doing obje
t tra
king.All algorithms introdu
ed here were implemented in the C++{software li-brary KiViGraP [7℄ whi
h allows us to 
ombine 
ompeten
es as the one intro-du
ed in this paper into one system. In [5℄ a framework of su
h a system is



dis
ussed in whi
h basi
 
ompeten
es 
an be 
ombined to more 
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