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4 G. Sommer, B. Rosenhahn and C. PerwassThe literature on shape modelling and appliations is vast. May it bevisualization and animation in omputer graphis or shape and motionreognition in omputer vision. The entral problem for the usefulness ineither �eld is the hosen representation of shape.Here we present a new approah to the modelling of free-form shapeof urves and surfaes whih has some features that make it espeiallyattrative for omputer vision and omputer graphis. In our appliations ofpose estimation of 3D objets we ould easily handle inomplete and noisyimage data for numerially stable estimations with nearly video real-timeapability.That new representation results from the fusion of two onepts:1) Free-form urves and surfaes are modelled as the orbit of a pointunder the ation of the Lie group SE(3), aused by a set of oupledin�nitesimal generators of the group, alled twists (Murray et al., 1994).2) These objet models are embedded in the onformal geometri algebra(CGA) of the Eulidean spae R3 (Li et al., 2001), that is R4;1 . Onlyin onformal geometry the above mentioned modelling of shape unfoldsits rih set of useful features.The onept of fusing a loal with a global algebrai framework has beenproposed already in (Sommer, 1997). But only the pioneering work in (Liet al., 2001) made it feasible to onsider the Lie algebra se(3), the spae oftangents to an objet, embedded in R4;1 , as the soure of our shape modelinstead of using se(3) in R3 .The tight relations of geometry and kinematis are known to the math-ematiians for enturies, see e.g. (Farouki, 2000). But in ontrast to mostappliations in mehanial engineering we are not restrited in our approahby physially feasible motions nor will we get problems in generating spatialurves or surfaes.By embedding our design method into CGA, both primitive geometrientities as points or objets on the one side and ations on the other sidewill have algebrai representations in one single framework. Furthermore,objets are de�ned by ations, and also ations an take on the role ofoperands.Our proposed kinemati de�nition of shape uses in�nitesimal ations togenerate global patterns of low intrinsi dimension. This phenomen orre-sponds to the interpretation of the speial Eulidean group in CGA, SE(3),as a Lie group, where an element g 2 SE(3) performs a transformation ofan entity u 2 R4;1 , u0 = u(�) = g fu(0)g (1)



THE TWIST REPRESENTATION OF FREE-FORM OBJECTS 5with respet to the parameter � of g. Any speial g 2 SE(3) that representsa general rotation in CGA orresponds to a Lie group operator M 2 R+4;1whih is alled a motor and whih is applied by the bilinear spinor produtu0 =MufM ; (2)where fM is the reverse ofM . This produt indiates thatM is an orthogo-nal operator. If g is an element of the Lie group SE(3), than its in�nitesimalgenerator, �, is de�ned in the orresponding Lie algebra, that is � 2 se(3).That Lie algebra element of the rigid body motion is geometrially inter-preted as the rotation axis l in onformal spae. Then the motorM resultsfrom the exponential map of the generator l of the group element, whih isalled a twist: M = exp ���2 l� : (3)While � is the rotation angle as the parameter of the motor, its generatoris de�ned by the �ve degrees of freedom of a line l in spae.In our approah, the motor M is the e�etive operator whih ausesarbitrarily omplex objet shape. This operator may result from the mul-tipliative oupling of a set of primitive motors fM iji = n; :::; 1g ;M =MnMn�1:::M 2M 1: (4)Eah of these motorsM i is representing a irular motion of a point aroundits own axis.Based on that approah rather omplex free-form objets an be de-signed whih behave as algebrai entities. That means, they an be trans-formed by motors in a ovariant and linear way. To handle omplete objetsin that way as unique entities makes sense from both a ognitive and anumeri point of view.The onformal geometri algebra R4;1 makes this possible. This is ausedby two essential fats. First, the representation of the speial Eulideangroup SE(3) in R4;1 as a subgroup of the onformal group C(3) is isomor-phi to the speial orthogonal group SO+(4; 1). Hene, rigid body motionan be performed as rotation in CGA and therefore has a ovariant rep-resentation. Seond, the basi geometri entity of the onformal geometrialgebra of the Eulidean spae is the sphere. All geometri entities derivedby inidene operations from the sphere an be transformed in CGA by anelement g 2 SE(3), that is a motor M 2 R+4;1 , in the same linear way, justas a point in the homogeneous Eulidean spae R4 . Beause there exists adual representation of a sphere (and of all derived entities) in CGA, whihonsiders points as the basi geometri entity of the Eulidean spae in



6 G. Sommer, B. Rosenhahn and C. Perwassthe onformal spae, all the known onepts from Eulidean spae an betransformed to the onformal one.Finally, we an take advantage of the strati�ation of spaes by CGA.Sine the seminal paper (Faugeras, 1995) the purposive use of strati�edgeometries beame an important design priniple of vision systems. Thismeans that an observer in dependene of its possibilities and needs anhave aess to di�erent geometries as projetive, aÆne or metri ones. Sofar this ould hardly be realized. In CGA we have quite another situation.The CGA R4;1 is a linear spae of dimension 32. This mighty spaerepresents not only onformal geometry but also aÆne geometry. Note thatthe speial Eulidean group is a speial aÆne group. Beause R4;1 is derivedfrom the Eulidean spae R3 , it enloses also Eulidean geometry, whihis represented by the geometri algebra R3;0 . In addition, the projetivegeometri algebra R3;1 is enlosed in R4;1 . Thus, we have the strati�ationof the geometri algebras R3;0 � R3;1 � R4;1 . This enables to onsidermetri (Eulidean), projetive and kinemati (aÆne) problems in one singlealgebrai framework.2. Rigid Body Motion in Conformal Geometri AlgebraAfter giving a bird's eye view on the onstrution of a geometri algebraand on the features of the onformal geometri algebra, we will present thepossibilities of representing the rigid body motion in CGA.2.1. SOME CONSTRUCTIVE PRINCIPLES OF A GEOMETRIC ALGEBRAA geometri algebra (GA) Rp;q;r is a linear spae of dimension 2n, n =p + q + r , whih results from a vetor spae Rp;q;r . We all (p; q; r) thesignature of the vetor spae of dimension n. This indiates that there arep=q=r unit vetors ei whih square to +1=� 1=0, respetively. While n = pin ase of the Eulidean spae R3 , Rp;q;r indiates a vetor spae with ametri di�erent than the Eulidean one. In the ase of r 6= 0 there is adegenerate metri. We will omit the signature indexes from right if theinterpretation is unique, as in the ase of R3 .The basi produt of a GA is the geometri produt, indiated by juxta-position of the operands. This produt is assoiative and antiommutative.There an be used a lot of other produt forms in CA too, as the outerprodut (^) and the inner produt (�).The spae Rp;q;r is spanned by a set of 2n linear subspaes of di�erentgrade alled blades. Giving the blades a geometri interpretation makes thedi�erene of a GA from a Cli�ord algebra. A blade of grade k, a k-bladeBhki, results from the outer produt of k independent vetors fa1; :::;akg 2



THE TWIST REPRESENTATION OF FREE-FORM OBJECTS 7Rp;q;r � hRp;q;r i1, Bhki = a1 ^ ::: ^ ak = ha1:::akik; (5)where h�i is the grade operator. There are lk = �nk� di�erent blades of gradek, Bhkij ; j = 1; :::; lk. If e0 2 Rp;q;r , e0 � 1, is the unit salar element ande1:::n 2 Rp;q;r , e1:::n � e1:::en � I, is the unit pseudosalar element ofthe GA, then Bh0i is the salar blade and Bhni � I is the pseudosalarblade. Hene, nPk=0 lk = 2n is the dimension of the GA. Blades are diretednumbers, thus Ihki = ei1 ^ :::^eik gives the diretion of a blade. Any linearombination Ak = l�Xj=1 �jBhkij ; l� � lk ; �j 2 R (6)is alled a k-vetor, Ak 2 hRp;q;r ik. This rih struture of a GA an befurther inreased by the linear ombination of k-vetors,A = k�Xk=k� �kAk ; 0 � k� < k� � n ; �k 2 R (7)Here A is alled a (general) multivetor. It is omposed of omponents ofdi�erent grade. The multivetor may result from the geometri produt ofan r-vetor Ar with an s-vetor Bs,A = ArBs = hArBrijr�sj + hArBsijr�sj+2 + :::+ hArBsir+s (8)with the pure inner produtAr �Bs = hArBsijr�sj (9)and the pure outer produtAr ^Bs = hArBsir+s: (10)All other omponents of A result from a mixture of inner and outer prod-uts. The produt of two multivetors,A andB, an always be deomposedin the sum of an even and an odd omponent,AB = 12(AB +BA) + 12(AB �BA): (11)In the ase of the produt of two vetors, a and b, a; b 2 hRp;q;ri1, we getab = 12(ab+ ba) + 12(ab� ba) = a � b+ a ^ b (12)= habi0 + habi2 = �+A2 (13)



8 G. Sommer, B. Rosenhahn and C. Perwasswith � 2 hRp;q;r i0 and A2 2 hRp;q;r i2.An important onept of a GA is that of duality. This means that it ispossible to hange the blade base of a multivetor A 2 Rp;q;r . Its dual iswritten as A� and is de�ned asA� = A � I�1; (14)where I is the unit pseudosalar of Rp;q;r . In the ase where Ak 2 hRp;q;rikthe dual is given by A�k = An�k 2 hRp;q;rin�k. The duality expresses therelations between the inner produt null spae, IPNS, and the outer produtnull spae, OPNS, of a multivetor, see (Perwass and Hildenbrand, 2003).The OPNS de�nes a ollinear subspae of dimension k to a k-blade Bhki �Rp;q;r whih is given by all x 2 Rp;q;r so thatx ^Bhki = 0: (15)The IPNS de�nes a subspae of Rp;q;r whih is orthogonal to a k-bladeBhki � Rp;q;r and, hene x �Bhki = 0: (16)2.2. CGA OF THE EUCLIDEAN SPACEThe onformal geometry of Eulidean and non-Eulidean spaes is knownfor a long time (Yaglom, 1988) without giving strong impat on the mod-elling in engineering with the exeption of eletrial engineering. There aredi�erent representations of the onformal geometry. Most disseminated isa omplex formulation (Needham, 1997). Based on an idea in (Hestenes,1984), in (Li et al., 2001) and in two other papers of the same authors in(Sommer, 2001), the onformal geometries of the Eulidean, spherial andhyperboli spaes have been worked out in the framework of GA.The basi approah is that a onformal geometri algebra (CGA) Rp+1;q+1is built from a pseudo-Eulidean spae Rp+1;q+1 . If we start with an Eu-lidean spae Rn , the onstrution Rn+1;1 = Rn � R1;1 , � being the diretsum, uses a plane with Minkowski signature for augmenting the basis ofRn by the additional basis vetors fe+;e�g with e2+ = 1 and e2� = �1.Beause that model an be interpreted as a homogeneous stereographiprojetion of all points x 2 Rn to points x 2 Rn+1;1 , this spae is alled thehomogeneous model of Rn . Furthermore, by replaing the basis fe+;e�gwith the basis fe;e0g, the homogeneous stereographi representation willbeome a representation of null vetors. This is aused by the propertiese2 = e20 = 0 and e � e0 = �1. The relation between the null basis fe;e0gand the basis fe+;e�g is given bye := (e� + e+) and e0 := 12(e� � e+): (17)



THE TWIST REPRESENTATION OF FREE-FORM OBJECTS 9Any point x 2 Rn transforms to a point x 2 Rn+1;1 aording tox = x+ 12x2e+ e0 (18)with x2 = 0. In fat, any point x 2 Rn+1;1 is lying on an n-dimensionalsubspae Nne � Rn+1;1 , alled horosphere (Li et al., 2001). The horosphereis a non-Eulidean model of the Eulidean spae Rn .It must be mentioned that the basis vetors e and e0 have a geometriinterpretation. In fat, e orresponds the north pole and e0 orresponds thesouth pole of the hypersphere of the stereographi projetion, embedded inRn+1;1 . Thus, e is representing the points at in�nity and e0 is representingthe origin of Rn in the spae Rn+1;1 .By setting apart these two points from all others of the Rn makes Rn+1;1a homogeneous spae in the sense that eah x 2 Rn+1;1 is a homogeneousnull vetor without having referene to the origin. This enables oordinate-free omputing to a large extent. Hene, x 2 Nne onstitutes an equivalenelass f�x; � 2 Rg on the horosphere. The redution of that equivalene lassto a unique entity with metrial equivalene to the point x 2 Rn needs anormalization.The CGA R4;1 , derived from the Eulidean spae R3 , o�ers 32 bladesas basis of that linear spae. This rih struture enables one to representlow order geometri entities in a hierarhy of grades. These entities anbe derived as solutions of either the IPNS or the OPNS depending onwhat we assume as the basis geometri entity of the onformal spae, see(Perwass and Hildenbrand, 2003). So far we only onsidered the mappingof an Eulidean point x 2 R3 to a point x 2 N3e � R4;1 . But the nullvetors on the horosphere are only a speial subset of all the vetors ofR4;1 . All the vetors of R4;1 are representing spheres as the basi entitiesof the onformal spae. A sphere s 2 R4;1 is de�ned by its enter position, 2 R3 , and its radius � 2 R aording tos = + 12(� �)2e+ e0: (19)And beause s2 = �2 > 0; it must be a non-null vetor. A point x 2 N3ean be onsidered as a degenerate sphere of radius zero. Hene, spheres sand points x are entities of grade 1. By taking the outer produt of spheressi, other entities of higher grade an be onstruted. So we get a irle z(grade 2), whih exists outside the null one in R4;1 ,z = s1 ^ s2 (20)as solution of the IPNS. If we onsider the OPNS on the other hand, we arestarting with points xi 2 N3e and an proeed similarly to de�ne a irle Z



10 G. Sommer, B. Rosenhahn and C. Perwassand a sphere S as entities of grade 3 and 4 derived from points xi on thenull one of R4;1 aording toZ = x1 ^ x2 ^ x3 (21)S = x1 ^ x2 ^ x3 ^ x4: (22)These sets of entities are obviously related by the duality u� = U .Finally, X = e ^ xis alled the aÆne representation of a point (Li et al., 2001). This represen-tation of a point is used if the interplay of the projetive with the onformalrepresentation is of interest in appliations as in (Rosenhahn, 2003). Withrespet to lines l and planes p or L and P we refer the reader to (Sommeret al., 2004).Let us ome bak to the strati�ation of spaes mentioned in Setion1. Let be x 2 Rn a point of the Eulidean spae, X 2 Rn;1 a point of theprojetive spae and X 2 Rn+1;1 a point of the onformal spae. Then theoperations whih transform the representation between the spaes are forR3 �! R3;1 �! R4;1 X = e ^X = e ^ (x+ e�); (23)and for R4;1 �! R3;1 �! R3x = � XX � e� = ((e+ �X) ^ e�) � e�(e+ �X) � e� � (24)2.3. THE SPECIAL EUCLIDEAN GROUP IN CGAA geometry is de�ned by its basi entity, the geometri transformationgroup whih is ating in a linear and ovariant manner on all the entitieswhih are onstruted from the basi entity by inidene operations, andthe resulting invarianes with respet to that group. The searh for suh ageometry was motivated in Setion 1. Next we want to speify the requiredfeatures of the speial Eulidean group in CGA.To make a geometry a proper one, we have to require that any ationA of that group on an entity, say u, is grade preserving, or in other wordsstruture preserving. This makes it neessary that the operator A appliesas versor produt (Perwass and Sommer, 2002)Afug = AuA�1: (25)



THE TWIST REPRESENTATION OF FREE-FORM OBJECTS 11This means that the entity u should transform ovariantly (Dorst andFontijne, 2004). If u is omposed by e.g. two representants u1 and u2of the basis entities of the geometry, then u should transform aording toAfug = Afu1 Æ u2g = (Au1A�1) Æ (Au2A�1) = AuA�1: (26)The invariants of the onformal group C(3) in R3 are angles. The onformalgroup C(3) is mighty (Needham, 1997), but other than (25) and (26) it isnonlinear and transforms not ovariantly in R3 . Besides, in R3 there existno entities other than points whih ould be transformed.As we have shown in Setion 2.2, in R4;1 the situation is quite di�erentbeause all the geometri entities derived there an be seen also as algebraientities in the sense of Setion 1. Not only the elements of the null onetransform ovariantly but also those of the dual spae of R4;1 . Furthermore,the representation of the onformal group C(3) in R4;1 has the requiredproperties of (25) and (26), see (Li et al., 2001). All vetors with positivesignature in R4;1 , that is a sphere, a plane as well as the omponentsinversion and reetion of C(3) ompose a multipliative group. That isalled the versor representation of C(3). This group is isomorphi to theLorentz group of R4;1 . The subgroup, whih is omposed by produts of aneven number of these vetors, is the spin group Spin+(4; 1), that is the spinrepresentation of O+(4; 1). To that group belong the subgroups of rotation,translation, dilatation, and transversion of C(3). They are applied as aspinor S, S 2 R+4;1 and SeS = jSj2. A rotor R;R 2 hR4;1i2 and RR2 = 1,is a speial spinor. Rotation and translation are represented in R4;1 asrotors.The speial Eulidean group SE(3) is de�ned by SE(3) = SO(3)�R3 .Therefore, the rigid body motion g = (R; t), g 2 SE(3) of a point x 2 R3writes in Eulidean spaex0 = g fxg = Rx+ t: (27)Here R is a rotation matrix and t is a translation vetor. Beause SE(3) �C(3), in our hoie of a speial rigid body motion the representation ofSE(3) in CGA is isomorphi to the speial orthogonal group, SO+(4; 1).Hene, suh g 2 SE(3) does not represent the full srew, but a generalrotation in R4;1 , that is the rotation axis in R3 is shifted out of the originby the translation vetor t.That transformation g 2 SE(3) is represented in CGA by a speialrotor M , alled a motor, M 2 hR4;1i2. The motor may be written as inequation (3). To speify the line l 2 hR4;1i2 by the rotation and translationin R3 , the motor has to be deomposed into its rotation and translation



12 G. Sommer, B. Rosenhahn and C. Perwassomponents. The normal rotation in CGA is given by the rotorR = exp ���2 l� (28)with l 2 hR3i2 indiating the rotation plane whih passes the origin. Thetranslation in CGA is given by a speial rotor, alled a translator,T = exp �et2 � (29)with t 2 hR3 i1 as the translation vetor. Rotors onstitute a multipliativegroup. If we interprete the rotor R as that entity of R4;1 whih should betransformed by translation in a ovariant manner, thenM = TReT : (30)We all this speial motor representation the twist representation. Its ex-ponential form is given byM = exp �12et� exp ���2 l� exp ��12et� : (31)This equation expresses the shift of the rotation axis l� in the plane l bythe vetor t to perform the normal rotation and �nally shifting bak theaxis.Beause SE(3) is a Lie group, the line l 2 hR4;1i2 is the representa-tion of the in�nitesimal generator of M , � 2 se(3). We all the generatorrepresentation a twist beause it represents rigid body motion as generalrotation. It is parameterized by the position and orientation of l whih arethe Pl�uker oordinates, represented by the rotation plane l and the innerprodut (t � l), (Rosenhahn, 2003),l = l+ e(t � l): (32)The twist model of the rigid body motion, equation (30), is that one weare using in that paper. The most general formulation of the rigid bodymotion is the srew motion (Rooney, 1978). But instead of presenting thatin detail, we refer the reader to the report (Sommer et al., 2004).A motor M transforms ovariantly any entity u 2 R4;1 aording tou0 =MufM (33)with u0 2 R4;1 . An equivalent equation is valid for the dual entity U 2 R4;1 .Beause motors onatenate multipliatively, a multiple-motor transforma-tion of u resolves reursively. Let be M =M2M1, thenu00 =MufM =M2M1ufM1fM2 =M2u0fM2: (34)



THE TWIST REPRESENTATION OF FREE-FORM OBJECTS 13It is a feature of any GA that also omposed entities, whih are built bythe outer produt of other ones, transform ovariantly by a linear transfor-mation. This is alled outermorphism (Hestenes, 1991) and it means thepreservation of the outer produt under linear transformations. FollowingSetion 1, this is an important feature of the hosen algebrai embeddingthat will be demonstrated in Setion 3.3. Shape Models from Coupled TwistsIn this setion we will approah step by step the kinemati design of alge-brai and transendental urves and surfaes by oupling a ertain set oftwists as generators of a multiple-parameter Lie group ation.3.1. THE KINEMATIC CHAIN AS MODEL OF CONSTRAINED MOTIONIn the preeding setion we argued that eah entity ui ontributing to therigid model of another entity u is performing the same transformation,represented by the motor M . Now we assume an ordered set of non-rigidlyoupled rigid omponents of an objet. Suh model is alled a kinematihain (Murray et al., 1994). In a kinemati hain the task is to formulatethe net movement of the end-e�etor at the n-th joint by movements ofthe j-th joints, j = 1; :::; n � 1, if the 0-th joint is �xed oupled witha world oordinate system. These movements are disribed by the motorsM j. Let Tj be the transformation of an attahed joint j with respet to thebase oordinate system, then for j = 1; :::; n the point xj;ij ; ij = 1; :::;mj ,transforms aording toTj(xj;ij ;M j) =M1:::M jxj;ijfM j:::fM 1 (35)and T0(x0;i0) = x0;i0 : (36)The motors M j are representing the exible geometry of the kinematihain very eÆiently. This results in an objet model O de�ned by akinemati hain with n segments and desribed by any geometri entityuj;ij 2 R4;1 attahed to the j-th segment,O = �T0(u0;i0);T1(u1;i1 ;M1); :::;Tn(un;in ;Mn)jn; i0; :::; in 2 N	 : (37)If uj;ij is performing a motion aused by the motor M , thenu0j;ij = M �Tj(uj;ij ;M j)� fM (38)= M(M 1:::M juj;ijfM j :::fM 1)fM : (39)



14 G. Sommer, B. Rosenhahn and C. Perwass3.2. THE OPERATIONAL MODEL OF SHAPEWe will now introdue another type of onstrained motion, whih an berealized by physial systems only in speial ases but should be understoodas a generalization of a kinemati hain. This is our proposed model ofoperational or kinemati shape (Rosenhahn, 2003). An operational shapemeans that a shape results from the net e�et, that is the orbit, of a pointunder the ation of a set of oupled operators. So the operators at the endare the representations of the shape. A kinemati shape means the shape forwhih these operators are the motors as representations of SE(3) in R4;1 .The priniple is simple. It goes bak to the interpretation of any g 2 SE(3)as a Lie group ation (Murray et al., 1994), see equation (1). But only inR4;1 we an take advantage of its representation as rotation around the axisl, see equations (3), (30) and (31).In Setion 2.2 we introdued the sphere and the irle from IPNS andOPNS, respetively. We all these de�nitions the anonial ones. On theother hand, a irle has an operational de�nition whih is given by thefollowing. Let x� be a point whih is a mapping of another point x0 byg 2 SE(3) in R4;1 . This may be written asx� =M�x0fM� (40)with M� being the motor whih rotates x0 by an angle �,M� = exp ���2	� : (41)Here again is 	 the twist as a generator of the rotation around the axis l, seeequation (3). Note that 	 = �l; � 2 R. If � overs densely the whole span[0; :::; 2�℄, then the generated set of points �x�	 is also dense. The in�niteset �x�	 is the orbit of a rotation aused by the in�nite set fM�g, whihhas the shape of a irle in R3 . The set fx�g represents the well-knownsubset onept in a vetor spae of geometri objets in analyti geometry.In fat, that irle is on the horosphere N3e beause it is omposed onlyby points. We will write for the irle zf1g instead of �x�	 to indiate thedi�erent nature of that irle in omparison to either z or Z of Setion2.2. The index f1g means that the irle is generated by one twist from aontinuous argument �. So the irle, embedded in R4;1 , is de�ned byzf1g = �x�j for all � 2 [0; :::; 2�℄	 : (42)Its radius is given by the distane of the hosen point x0 to the axis l whoseorientation and position in spae depends on the parameterization of l. Thatzf1g is de�ned by an in�nite set of arguments is no real problem in the ase



THE TWIST REPRESENTATION OF FREE-FORM OBJECTS 15of omputational geometry or appliations where only disretized shape isof interest. More interesting is the fat that in the anonial de�nitionsof Setion 2.2 the geometri entities are all derived from either spheres orpoints. In the ase of the operational de�nition of shape, the irle is thebasi geometri entity instead, respetively rotation is the basi operation.A sphere results from the oupling of two motors,M�1 andM�2 , whosetwist axes meet at the enter of the sphere and whih are perpendiularlyarranged.The resulting onstrained motion of a point x0;0 performs a rotation ona sphere given by �1 2 [0; :::; 2�℄ and �2 2 [0; :::; �℄,x�1;�2 =M�2M�1x0;0fM�1fM�2 : (43)The omplete orbit of a sphere is given bysf2g = �x�1;�2 j for all �1 2 [0; :::; 2�℄ ; �2 2 [0; :::; �℄	 : (44)Let us ome bak to the point of generalization of the well-knownkinemati hains. These models of linked bar mehanisms have to be phys-ially feasible. Instead, our model of oupled twists is not limited by thatonstraint. Therefore, the sphere expresses a virtual oupling of twists.This inludes both loation and orientation in spae, and the possibility of�xating several twists at the same loation, for any dimension of the spaeRn . There are several extensions of the introdued kinemati model whihare only possible in CGA.First, while the group SE(3) an only at on points, its representationin R4;1 may at in the same way on any entity u 2 R4;1 derived from eitherpoints or spheres. This results in high omplex free-form shapes ausedfrom the motion of relatively simple generating entities and low order setsof oupled twists.Seond, only by oupling a ertain set of twists, high omplex free-formshapes may be generated from a omplex enough onstrained motion of apoint.Let ufng be the shape generated by n motors M�1 ; :::;M�n . We all itthe n-twist model,ufng = �x�1;:::;�nj for all �1; :::; �n 2 [0; :::; 2�℄	 (45)with x�1;:::;�n =M�n :::M�1x0;:::;0fM�1 :::fM�n : (46)



16 G. Sommer, B. Rosenhahn and C. Perwass3.3. FREE-FORM OBJECTSThere are a lot of more degrees of freedom to design free-form objetsembedded in R4;1 by the motion of a point aused by oupled twists.While a single rotation-like motor generates a irle, a single translation-likemotor generates a line as a root of non-urved objets. Of ourse, several ofboth variants an be mixed. Other degrees of freedom of the design resultfrom the following extensions:� Introduing an individual angular frequeny �i to the motor M�i alsoinuenes the synhronization of the rotation angles �i.� Rotation within limited angular segments �i 2 [�i1 ; :::; �i2 ℄ with 0 ��i1 < �i2 � 2� is possible.Let us onsider the simple example of a 2-twist model of shape,uf2g = �x�1;�2 j for all �1; �2 2 [0; :::; 2�℄	 (47)with x�1;�2 =M�2�2M�1�1x0fM�1�1fM�2�2 ; (48)�1; �2 2 R and �1 = �2 = � 2 [0; :::; 2�℄.That model an generate not only a sphere, but an ellipse (�1 = �2; �2 =1), several well-known algebrai urves (in spae), see (Rosenhahn, 2003),suh as ardioid, nephroid or deltoid, transendental urves like a spiral, orsurfaes. For the list of examples see Table I.Interestingly, the order of nonlinearity of algebrai urves grows fasterthan the number of the generating motors.3.4. EXTENSIONS OF THE CONCEPTSBy replaing the initial point x0 by any other geometri entity, u0, builtfrom either points or spheres by applying the outer produt, the oneptsremain the same. This makes the kinemati objet model in onformal spaea reursive one.The in�nite set of arguments �i of the motorM�i to generate the entityufng will in pratie redue to a �nite one, whih results in a disrete entityu[n℄. The index [n℄ indiates that n twists are used with a �nite set ofarguments f�i;ji jji 2 f0; :::;migg.The previous formulations of free-form shape did assume a rigid model.As in the ase of the kinemati hain, the model an be made exible. Thishappens by enapsulating the entity u[n℄ into a set of motors �Mdj jj = J; :::; 1	,whih results in a deformation of the objet.ud[n℄ =MdJ :::M d1u[n℄fMd1:::fM dJ (49)



THE TWIST REPRESENTATION OF FREE-FORM OBJECTS 17TABLE I. Simple geometri entities generated from up to three twistsEntity Generation Classpoint twist axis interseted with a point 0twist urveirle twist axis non-ollinear with a point 1twist urveline twist axis is at in�nity 1twist urveoni 2 parallel non-ollinear twists 2twist urve �1 = 1; �2 = �2line segment 2 twists, building a degenerate oni 2twist urve �1 = 1; �2 = �2ardioid 2 parallel non-ollinear twists 2twist urve �1 = 1; �2 = 1nephroid 2 parallel non-ollinear twists 2twist urve �1 = 1; �2 = 2rose 2 parallel non-ollinear twists, j loops 2twist urve �1 = 1; �2 = �jspiral 1 �nite and 1 in�nite twist 2twist urve �1 = 1; �2 = 1sphere 2 perpendiular twists 2twist surfae �1 = 1; �2 = 1plane 2 parallel twists at in�nity 2twist surfaeylinder 2 twists, one at in�nity 2twist surfaeone 2 twists, one at in�nity 2twist surfaequadri a oni rotated with a third twist 3twist surfaeFinally, the entity ud[n℄ may perform a motion under the ation of a motorM , whih itself may be omposed by a set of motors fM iji = I; :::; 1gaording to equation (4), ud0[n℄ =Mud[n℄fM : (50)But a twist is not only an operator but it may play in CGA also the roleof an operand, 	0 =M	M : (51)This auses a dynami shape model as an alternative to (49).So far, the entity ufng was embedded in the Eulidean spae. Lifting upthe entity to the onformal spae, ufng 2 R4;1 , is simply done byufng = e ^ �ufng + e�� = e ^Ufng (52)with Ufng being the shape in the projetive spae R3;1 .



18 G. Sommer, B. Rosenhahn and C. Perwass4. Twist Models and Fourier RepresentationsThe message of the last subsetion is the following. A �nite set of oupledtwist (or nested motors) performs a onstrained motion of any set of ge-ometri entities, whose orbit uniquely represents either a urve, a surfaeor a volume of arbitrary omplexity. This needs a parameterized modelof the generators of the shape. In some appliations the reverse problemmay be of interest. That is to �nd a parameterized twist model for a givenshape. That task an be solved: Any urve, surfae or volume of arbitraryomplexity an be mapped to a �nite set of oupled twists, but in a non-unique manner. That means, that there are di�erent models whih generatethe same shape.We will show here that there is a diret and intuitive relation betweenthe twist model of shape and the Fourier representations. The Fourier seriesdeomposition and the Fourier transforms in their di�erent representationsare well-known tehniques of signal analysis and image proessing. Theinteresting fat that this equivalene of representations results in a fusionof onepts from geometry, kinematis, and signal theory is of great im-portane in engineering. Furthermore, beause the presented modelling ofshape is embedded in a onformal spae, there is also a single aess forembedding the Fourier representations in either onformal or projetivegeometry. This is quite di�erent from the reent publiation (Turski, 2004).4.1. THE CASE OF A CLOSED PLANAR CURVELet us onsider a losed urve  2 R2 in a parametri representation witht 2 R. Then its Fourier series representation is given by(t) = 1X�=�1 � exp �j2��tT � (53)with the Fourier oeÆients � , � 2 Z as frequeny and j, j2 = �1, as theimaginary unit and T as the urve length.This model of a urve has been used for a long time in image proessingfor shape analysis by Fourier desriptors (these are the Fourier oeÆients)(Zahn and Roskies, 1972).We will translate this spetral representation into the model of anin�nite number of oupled twists by following the method presented in(Rosenhahn et al., 2004). Beause equation (53) is valid in an Eulideanspae, the twist model has to be reformulated aordingly. This will beshown for the ase of a 2-twist urve f2g based on equation (27). Then



THE TWIST REPRESENTATION OF FREE-FORM OBJECTS 19equation (48) an be written in R3 for �1 = �2 = � asx� = R�2� �(R�1�(x0 � t1)eR�1� + t1)� t2� eR�2� + t2 (54)= p0 + V 1;�p1 eV 1;� + V 2;�p2 eV 2;�: (55)Here the translation vetors have been absorbed by the vetors pi and theV i are built by ertain produts of the rotors R�i�. We all the pi the phasevetors. Next, for the aim of interpreting that equation as a Fourier seriesexpansion, we rewrite the Fourier basis funtions as rotors of an angularfrequeny i 2 Z, in the plane l 2 R2 ; l2 = �1,R�i� = exp ���i�2 l� = exp ���i�T l� : (56)All rotors of a planar urve lie in the same plane as the phase vetors pi.After some algebra, see (Rosenhahn et al., 2004), we get for the transformedpoint x� = 2Xi=0 pi exp �2�i�T l� (57)and for the urve as subspae of R3 the in�nite set of pointsf2g = fx�j for all � 2 [0; :::; 2�℄ and for all i 2 f0; 1; 2gg : (58)A general (planar) urve is given byf1g = fx�j for all � 2 [0; :::; 2�℄ and for all i 2 Zg ; (59)respetively as Fourier series expansion, written in the language of kine-matis f1g = ( limn�!1 nXi=�npi exp �2�i�T l�) (60)= ( limn�!1 nXi=�nR�i�pi eR�i�) : (61)A disretized urve is alled a ontour. In that ase equation (60) has toonsider a �nite model of n twists and the Fourier series expansion beomesthe inverse disrete Fourier transform. Hene, a planar ontour is givenby the �nite sequene [n℄ with the ontour points k;�n � k � n, inparametri representationk = nXi=�npi exp � 2�ik2n+ 1 l� ; (62)



20 G. Sommer, B. Rosenhahn and C. Perwassand the phase vetors are omputed as a disrete Fourier transform of theontour pi = 12n+ 1 nXk=�n k exp �� 2�ik2n+ 1 l� : (63)These equations imply that the angular argument �k is replaed by k.4.2. EXTENSIONS OF THE CONCEPTSThe extension of the modelling of a planar urve, embedded in R3 , to a 3Durve is easily done. This happens by taking its projetions to either e12,e23, or e31 as periodi planar urves. Hene, we get the superposition ofthese three omponents. Let j[n℄ be these omponents in the ase of a 3Dontour with the rotation axes l�j perpendiular to the rotation planes lj.Then [n℄ = 3Xj=1 j[n℄ (64)with the ontour points of the projetions jk, j = 1; 2; 3 and �n � k � n,jk = nXi=�npji exp � 2�ik2n+ 1 lj� : (65)Another useful extension is with respet to surfae representations, see(Rosenhahn et al., 2004). If this surfae is a 2D funtion orthogonal to aplane spanned by the bivetors eij, then the twist model orresponds tothe 2D inverse FT. In the ase of an arbitrary orientation of the rotationplanes lj instead, or in the ase of the surfae of a 3D objet, the proedureis omparable to that of equation (65). The surfae is represented as atwo-parametri surfae s(t1; t2) as superposition of the three projetionssj(t1; t2).In the ase of a disrete surfae in a two-parametri representation wehave the �nite surfae representation s[n1;n2℄,s[n1;n2℄ = 3Xj=1 sj[n1;n2℄ (66)with the surfae points of the projetions sjk1;k2 , j = 1; 2; 3 and �n1 � k1 �n1, �n2 � k2 � n2,sjk1;k2 = n1Xi1=�n1 n2Xi2=�n2 pji1;i2 exp � 2�i1k12n1 + 1 lj� exp � 2�i2k22n2 + 1 lj� (67)



THE TWIST REPRESENTATION OF FREE-FORM OBJECTS 21and the phase vetorspji1;i2 = 12n1 + 1 12n2 + 1pj0i1;i2 (68)pj0i1;i2 = n1Xk1=�n1 n2Xk2=�n2 sjk1;k2 exp�� 2�i1k12n1 + 1 lj� exp�� 2�i2k22n2 + 1 lj� (69)Finally, we will give the hint to an alternative model of a urve  2 R4;1 , see(Rosenhahn, 2003). While equation (60) expresses the additive superposi-tion of rotated phase vetors in Eulidean spae, the multipliative ouplingof the twists diretly in onformal spae is possible.The disussed equivalene of the twist model and the Fourier repre-sentation has several advantages in pratial use of the model. The mostimportant may be the appliability to low-frequeny approximations of theshape. For instane in pose estimation (Rosenhahn, 2003) the estimations ofthe motion parameters of non-onvex objets an be regularized eÆientlyin that way. Instead of estimating motors, the parameters of the twists areestimated beause of numeri reasons.5. Summary and ConlusionsWe presented an operational or kinemati model of shape in R3 . This modelis based on the Lie group SE(3), embedded in the onformal geometri alge-bra R4;1 of the Eulidean spae. While the modelling of shape in R3 ausedby ations of SE(3) is limited, a lot of advantages result from the hosenalgebrai embedding in real appliations. As one of these the possibility ofonformal (and projetive) shape models should be mentioned. We did notdisuss any appliations in detail. Instead, we refer the reader to the websitehttp://www.ks.informatik.uni-kiel.de with respet to the problem of poseestimation. In that work we ould show that the pose estimation based onthe presented shape model an ope with inomplete and noisy data. Inaddition to that robustness the pose estimation is numerially stable andfast.Beause the hosen twist model is equivalent to the Fourier representa-tion (in some aspets it overomes that), the proposed shape representationuni�es geometry, kinematis, and signal theory. It an be expeted that thiswill have a great impat on both theory and pratie in omputer vision,omputer graphis and modelling of mehanisms.An extended version of this paper an be found as report (Sommer etal., 2004).
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