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he MathematikChristian-Albre
hts-Universit�at zu KielPreu�erstrasse 1-9, 24105 Kiel, Germanybro,yz,gs�ks.informatik.uni-kiel.deAbstra
t. The paper 
on
erns the performan
e of 2D-3D pose estima-tion algorithm in the algebrai
 language of kinemati
s. The pose esti-mation problem is modelled on the base of several geometri
 
onstraintequations. The dynami
 measurements of these 
onstraints are eitherpoints or lines. Instead of using matrix based LMS optimization, thedevelopment of spe
ial extended Kalman �lters is proposed. The ex-periments aim to 
ompare the use of di�erent 
onstraints and di�erentmethods of optimal estimating the pose parameters.1 Introdu
tionThe paper des
ribes the estimation of pose parameters of known rigid obje
ts inthe framework of kinemati
s. The aim is to experimentally verify the advantagesof extended Kalman �lter approa
hes versus linear least squares optimizations.Pose estimation is a basi
 visual task. In spite of its importan
e it has been iden-ti�ed for a long time (see e.g. Grimson [3℄), and although there is published anoverwhelming number of papers with respe
t to that topi
 [7℄, up to now there isno unique and general solution of the problem. Pose estimation means to relateseveral 
oordinate frames of measurement data and model data by �nding outthe transformations between, whi
h 
an subsume rotation and translation. Sin
ewe assume our measurement data as 2D and model data as 3D, we are 
on
ernedwith a 2D-3D pose estimation problem. The problem 
an be linearly representedin motor algebra [6℄ or dual quaternion algebra [5℄. We are using impli
it for-mulations of the geometry as geometri
 
onstraints. We will demonstrate thatgeometri
 
onstraints are well 
onditioned (in 
ontrast to invarian
es) and thus,behave more robust in 
ase of noisy data.The paper is organized as follows. In se
tion two we will introdu
e the mo-tor algebra as representation frame for either geometri
 entities, geometri
 
on-straints, and Eu
lidean transformations. In se
tion three we introdu
e the geo-metri
 
onstraints and their 
hanges in an observation s
enario. In se
tion fourwe 
ompare the performan
e of di�erent algorithms for 
onstraint based poseestimation.2 The motor algebra in the frame of kinemati
sA geometri
 algebra Gp;q;r is a linear spa
e of dimension 2n, n = p + q + r,with a ri
h subspa
e stru
ture, 
alled blades, to represent so-
alled multive
torsas higher order algebrai
 entities in 
omparison to ve
tors of a ve
tor spa
eas �rst order entities. A geometri
 algebra Gp;q;r results in a 
onstru
tive wayfrom a ve
tor spa
e IRn, endowed with the signature (p; q; r), n = p+ q + r byappli
ation of a geometri
 produ
t. To make it 
on
retly, a motor algebra is the8D even algebra G+3;0;1, derived from IR4, i.e. n = 4, p = 3, q = 0, r = 1, with



basis ve
tors 
k, k = 1; :::; 4, and the property 
21 = 
22 = 
23 = +1 and 
24 = 0.Be
ause 
24 = 0, G+3;0;1 is 
alled a degenerate algebra also the unit pseudos
alar,I = 
1
2
3
4, squares to zero, i.e. I2 = (
1
2
3
4)2 = 0. Remembering thatthe hyper
omplex algebra of quaternions IH represents a 4D linear spa
e withone s
alar and three ve
tor 
omponents, it 
an simply be veri�ed that G+3;0;1 isisomorphi
 to the algebra of dual quaternions bIH [9℄. In a general sense, motorsare 
alled all the entities existing in motor algebra. They are 
onstituted bybive
tors and s
alars. Thus, any geometri
 entity as points, lines, and planeshave a motor representation. Changing the sign of the s
alar and bive
tor in thereal and the dual parts of the motor leads to the following variants of a motorM = (a0 + a) + I(b0 + b) fM = (a0 � a) + I(b0 � b)M = (a0 + a)� I(b0 + b) fM = (a0 � a)� I(b0 � b) .These versions will be used to model the motion of points, lines and planes. Inline geometry we represent rotation by a rotation line axis and a rotation angle.The 
orresponding entity is 
alled a unit rotor, R, and reads as followsR = r0 + r1
2
3 + r2
3
1 + r3
1
2 = 
os � �2�+ sin � �2�n = exp � �2n�.Here � is the rotation angle and n is the unit orientation ve
tor of the rotationaxis, spanned by the bive
tor basis.If on the other hand, t = t1
2
3 + t2
3
1 + t3
1
2 is a translation ve
tor inbive
tor representation, it will be represented in motor algebra as the dual partof a motor, 
alled translator T withT = 1 + I t2 = exp�t2I�.Thus, a translator is also a spe
ial kind of rotor.Be
ause rotation and translation 
on
atenate multipli
atively in motor alge-bra, a motorM reads M = TR = R+ I t2R = R+ IR0.A motor represents a line transformation as a s
rew transformation. The s
rewmotion equation as motor transformation readsL0 = T sRsL eRsfT s =MLfM .For more detailed introdu
tions see [6℄. Now we will introdu
e the des
riptionof the most important geometri
 entities [6℄.A point x 2 IR3, represented in the bive
tor basis of G+3;0;1, i.e. X 2 G+3;0;1,reads X = 1 + x1
4
1 + x2
4
2 + x3
4
3 = 1 + Ix.A line L 2 G+3;0;1 is represented by L = n + Im with the line dire
tionn = n1
2
3+n2
3
1+n3
1
2 and the momentm = m1
2
3+m2
3
1+m3
1
2.A plane P 2 G+3;0;1 will be de�ned by its normal p as bive
tor and by itsHesse distan
e to the origin, expressed as the s
alar d = (x � p), in the followingway, P = p+ Id.In 
ase of s
rew motions M = T sRs not only line transformations 
anbe modelled, but also point and plane transformations. These are expressed asfollows. X 0 =MXfM L0 =MLfM P 0 =M P fMWe will use in this study only point and line transformations be
ause pointsand lines are the entities of our obje
t models.3 Geometri
 
onstraints and pose estimationFirst, we make the following assumptions. The model of an obje
t is given bypoints and lines in the 3D spa
e. Furthermore we extra
t line subspa
es or points



in an image of a 
alibrated 
amera and mat
h them with the model of the obje
t.The aim is to �nd the pose of the obje
t from observations of points and lines inthe images at di�erent poses. The method of obtaining the line subspa
es is outof s
ope of this paper. Contemporary we simply got line segments by marking
ertain image points by hand. To estimate the pose, it is ne
essary to relate theobserved lines in the image to the unknown pose of the obje
t using geometri

onstraints.The key idea is that the observed 2D entities together with their 
orrespond-ing 3D entities are 
onstraint to lie on other, higher order entities whi
h resultfrom the perspe
tive proje
tion. In our 
onsidered s
enario there are three 
on-straints whi
h are attributed to two 
lasses of 
onstraints:1. Collinearity: A 3D point has to lie on a line (proje
tion ray) in the spa
e2. Coplanarity: A 3D point or line has to lie on a plane (proje
tion plane).With the terms proje
tion ray or proje
tion plane, respe
tively, we mean theimage-forming ray whi
h relates a 3D point with the proje
tion 
enter or the in-�nite set of image-forming rays whi
h relates all 3D points belonging to a 3D linewith the proje
tion 
enter, respe
tively. Thus, by introdu
ing these two entities,we impli
itly represent a perspe
tive proje
tion without ne
essarily formulatingit expli
itly. A similar approa
h of avoiding perspe
tive proje
tion equations byusing 
onstraint observations of lines has been proposed in [1℄.
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Fig. 1. The s
enario. The solid lines at the left hand des
ribe the assumptions: the
amera model, the model of the obje
t and the initially extra
ted lines on the imageplane. The dashed lines at the right hand des
ribe the a
tual pose of the model, whi
hleads to the best �t of the obje
t with the a
tual extra
ted lines.To be more detailed, in the s
enario of �gure 1 we des
ribe the followingsituation: We assume 3D points A0i and lines L0Ai of an obje
t model. Furtherwe extra
t line subspa
es lai in an image of a 
alibrated 
amera and mat
h themwith the model.Three 
onstraints 
an be depi
ted:1. A transformed point, e.g. A1, of the model point A01 must lie on the proje
-tion ray La1, given by C and the 
orresponding image point a1.




onstraint entities dual quaternion algebra motor algebrapoint X = 1 + Ixpoint-line line L = n+ Im LX �XL = 0 XL�LX = 0point X = 1 + Ixpoint-plane plane P = p+ Id PX �XP = 0 PX �XP = 0line L = n+ Imline-plane plane P = p+ Id LP � PL = 0 LP +PL = 0Table 1. The geometri
 
onstraints expressed in motor algebra and dual quatenionalgebra, respe
tively.2. A transformed point, e.g. A1, of the model point A01 must lie on the proje
-tion plane P12, given by C and the 
orresponding image line la3.3. A transformed line, e.g. LA3, of the model line L0A3 must lie on the proje
-tion plane P12, given by C and the the 
orresponding image line la3.Table 1 gives an overview on the formulations of these 
onstraints in motor alge-bra, taken from Blas
hke [2℄, who used expressions in dual quaternion algebra.The meaning of the 
onstraint equations is immediately 
lear. They representthe ideal situation, e.g. a
hieved as the result of the pose estimation pro
edurewith respe
t to the observation frame. With respe
t to the previous referen
eframe, indi
ated by primes, these 
onstraints read(MX0fM)L�L(MX0fM) = 0P (MX0fM)� (MX0fM)P = 0(ML0fM)P + P (ML0fM) = 0:These 
ompa
t equations subsume the pose estimation problem at hand: �ndthe best motorM whi
h satis�es the 
onstraint. We will get a 
onvex optimiza-tion problem. Any error measure j�j > 0 of the optimization pro
ess as a
tualdeviation from the 
onstraint equation 
an be interpreted as a distan
e measureof misalignment with respe
t to the ideal situation of table 1. That means e.g.that the 
onstraint for a point on a line is almost ful�lled for a point near theline. The 
omplete analysis of the 
onstraints 
an be found in [4℄.4 ExperimentsIn our experimental s
enario we took a B21 mobile robot equipped with a stereo
amera head and positioned it two meters in front of a 
alibration 
ube. Wefo
used one 
amera on the 
alibration 
ube and took an image. Then we movedthe robot, fo
used the 
amera again on the 
ube and took another image. Theedge size of the 
alibration 
ube is 46 
m and the image size is 384� 288 pixel.Furthermore, we de�ned on the 
alibration 
ube a 3D obje
t model. Figure 2shows the s
enario. In the �rst row two perspe
tive views of the 3D obje
t modelare shown. In the left image of the se
ond row the 
alibration is performed andthe 3D obje
t model is proje
ted onto the image. Then the 
amera is movedand 
orresponding line segments are extra
ted. To visualize the movement, wealso proje
ted the 3D obje
t model on its original position. In these experimentswe a
tually sele
ted 
ertain points by hand and from these the depi
ted linesegments are derived and, by knowing the 
amera 
alibration by the 
ube ofthe �rst image, the a
tual proje
tion ray and proje
tion plane parameters are
omputed. In table 2 we show the results of di�erent algorithms for pose esti-mation. In the se
ond 
olumn of table 2 EKF denotes the use of an extendedKalman �lter. The design of the extended Kalman �lters is des
ribed in [4℄.MAT denotes matrix algebra, SVD denotes the singular value de
omposition of



Fig. 2. The s
enario of the experiment: In the top row two perspe
tives of the 3Dobje
t model are shown. In the se
ond row (left) the 
alibration is performed and the3D obje
t model is proje
ted on the image. Then the 
amera moved and 
orrespondingline segments are extra
ted.no. R | t Constraint Experiment 1 Error1 RtEKF | RtEKF XL-XL R = � 0:987 0:089 �0:138�0:117 0:969 �0:2180:115 0:231 0:966 � t = � �58:21�217:26160:60 � 5:22 SVD | MAT XL-XL R = � 0:976 0:107 �0:191�0:156 0:952 �0:2640:154 0:287 0:945 � t = � �60:12�212:16106:60 � 6:73 RtEKF | RtEKF XP-XP R = � 0:987 0:092 �0:133�0:118 0:973 �0:2000:111 0:213 0:970 � t = � �52:67�217:00139:00 � 5:54 RtEKF | MAT XP-XP R = � 0:986 0:115 �0:118�0:141 0:958 �0:2470:085 0:260 0:962 � t = � �71:44�219:34124:71 � 3:75 SVD | MAT XP-XP R = � 0:979 0:101 �0:177�0:144 0:957 �0:2510:143 0:271 0:952 � t = � �65:55�221:18105:87 � 5:36 SVD | MAT LP-XP R = � 0:976 0:109 �0:187�0:158 0:950 �0:2660:149 0:289 0:945 � t = � �66:57�216:18100:53 � 7:17 MEKF | MEKF LP-LP R = � 0:985 0:106 �0:134�0:133 0:969 �0:2080:107 0:229 0:969 � t = � �50:10�212:60142:20 � 2:98 MEKF | MAT LP-LP R = � 0:985 0:106 �0:134�0:133 0:968 �0:2130:108 0:228 0:968 � t = � �67:78�227:73123:90 � 2:79 SVD | MAT LP-LP R = � 0:976 0:109 �0:187�0:158 0:950 �0:2660:149 0:289 0:945 � t = � �80:58�225:5993:93 � 6:9Table 2. The experiment 1 results in di�erent qualities of derived motion parameters,depending on the used 
onstraints and algorithms to evaluate their validity.a matrix. In the third 
olumn the used 
onstraints, point-line (XL), point-plane(XP) and line-plane (LP) are indi
ated. The fourth 
olumn shows the results ofthe estimated rotation matrixR and the translation ve
tor t, respe
tively. Sin
ethe translation ve
tors are in mm, the results di�er at around 2-3 
m. The �fth
olumn shows the error of the equation system. Sin
e the error of the equationsystem des
ribes the Hesse distan
e of the entities, the value of the error is anapproximation of the squared average distan
e of the entities. It is easy to see,that the results obtained with the di�erent approa
hes are 
lose to ea
h other,though the implementation leads to di�erent algorithms. Furthermore the EKF'sperform more stable than the matrix solution approa
hes.



Fig. 3. Visualization of some errors. We 
al
ulate the motion of the obje
t and proje
tthe transformed obje
t in the image planes. The extra
ted line segments are also shown.In the �rst and se
ond row, the results of nos. 5, 3 and nos. 7, 8 of table 2 are visualisedrespe
tively.The visualization of some errors is done in �gure 3. We 
al
ulated the motionof the obje
t and proje
ted the transformed obje
t in the image plane. Theextra
ted line segments are overlayed in addition. Figure 3 shows in the �rstand se
ond row, the results of nos. 5, 3 and nos. 7, 8 of table 2 respe
tively.In a se
ond experiment we also 
ompared the noise sensivity of the algo-rithms. The experiment is organized as follows. We took the point 
orrespon-den
es of the �rst experiment and estimated both R and t. Then we added aGaussian noise error on the extra
ted image points. The error varied from 0to 16 Pixels in 0:25 steps and we estimated R0 and t0 for ea
h step. Then we
al
ulated the error between R0 and R and between t0 and t. The results areshown in �gure 4. Sin
e R and R0 are rotation matri
es, the absolute value ofthe error di�ers in the range 0 � �R � 1. The error of the translation ve
toris evaluated in mm. So the error of the translation ve
tor di�ers by using thematrix solution approa
h at around 0 � �t � 10 
m, while using the Kalman�lter the 
orresponding range is 0 � �t � 5 
m. The matrix based solutions lookall very similar. Compared with the EKF results they are very sensitive to noiseand the varian
es between the noise steps are very high. Though the order ofsensitivity is very similar, it is important to noti
e that the XL based solutionrequires as an extra 
al
ulation the estimation of the interse
tion of the line seg-ments, whereas the LP based solution is fully separated: The LP 
onstraint 
anbe partitioned in one 
onstraint on the real part of the motor and one 
onstrainton the dual part of the motor. The real part 
an be used to generate equationswith the parameters of the rotation as the only unknowns. The 
onstraint on thedual part 
an then be used to determine the unknown translation. So it is possi-ble to sequentially separate equations on the unknown rotation from equationson the unknown translation without the limitations, known from the embeddingof the problem in Eu
lidean spa
e [5℄. This is also very useful, sin
e the twosmaller equation systems are easier and faster to solve than one larger equationsystem. The EKF based solutions perform all very stable and the behavior of
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Fig. 4. Performan
e 
omparison of di�erent methods in 
ase of noisy data. With in-
reasing noise the EKF performs with more a

urate and more stable estimates thanthe matrix based methods.



the di�erent 
onstraints are also very similar. These results are in agrement withthe well known behavior of error propagation in 
ase of matrix based rotationestimation. This is a 
onsequen
e of the estimator themselves and of the fa
tthat in our approa
h rotation is represented as rotors. The 
on
atenation of ro-tors is more robust than that of rotation matri
es. It is obvious, that the resultsof these experiments are a�e
ted by the method to obtain the entities in the im-age. In this experiment we sele
ted 
ertain points dire
tly by hand and derivedfrom these the line subspa
es. So the quality of the line subspa
es is dire
tly
onne
ted to the quality of the point extra
tion. For 
omparison purposes be-tween the algorithms this is ne
essary and reasonable. But for real appli
ations,sin
e the extra
tion of lines is more stable than that of points, the XP or LPalgorithms should be preferred.5 Con
lusionsIn this paper we have des
ribed a framework for 2D-3D pose estimation. Theaim of the paper is to 
ompare several pose modelling approa
hes and estima-tion methods with respe
t to their performan
e. The main 
ontribution of thepaper is to formulate 2D-3D pose determination in the language of kinemati
sas a problem of estimating rotation and translation from geometri
 
onstraintequations. There are three su
h 
onstraints whi
h relate the model frame to anobservation frame. The model data are either points or lines. The observationframe is 
onstituted by lines or planes. Any deviations from the 
onstraint 
or-respond the Hesse distan
e of the involved geometri
 entities. From this startingpoint as a useful algebrai
 frame for handling line motion, the motor algebra hasbeen introdu
ed. The use of the motor algebra allows to subsume the pose esti-mation problem by 
ompa
t equations. The experiments show some advantagesof that representation and of the EKF approa
h in 
omparison to normal matrixbased LMS algorithms, all applied within the 
ontext of 
onstraint based poseestimation.Referen
es1. Shevlin F. Analysis of orientation problems using Pl�u
ker lines. International Con-feren
e on Pattern Re
ognition, Brisbane, 1: 685{689, 1998.2. Blas
hke W. Mathematis
he Monographien 4, Kinematik und Quaternionen.Deuts
her Verlag der Wissens
haften, 1960.3. Grimson W. E. L. Obje
t Re
ognition by Computer. The MIT Press, Cambridge,MA, 1990.4. G. Sommer , B. Rosenhahn and Y. Zhang Pose Estimation Using Geometri
 Con-straints Te
hni
al Report 2003, Institut f�ur Informatik und Praktis
he Mathematik,Christian-Albre
hts-Universit�at zu Kiel5. Daniilidis K. Hand-eye 
alibration using dual quaternions. Int. Journ. Roboti
sRes, 18: 286{298, 1999.6. Bayro-Corro
hano E. The geometry and algebra of kinemati
s. In Sommer G., ed-itor, Geometri
 Computing with Cli�ord Algebra. Springer Verlag, to be published,2000.7. Car
eroni R. L. and C. M. Brown. Numeri
al Methods for Model-Based PoseRe
overy. Te
hn. Rept. 659, Comp. S
i. Dept., The Univ. of Ro
hester, Ro
hester,N. Y., August 1998.8. Walker M. W., L. Shao, and R. A. Volz . Estimating 3-D lo
ation parameters usingdual number quaternions. CVGIP: Image Understanding, 54: 358{367, 1991.9. Hestenes D., Li H. and A. Ro
kwood. New algebrai
 tools for 
lassi
al geometry.In Sommer G., editor, Geometri
 Computing with Cli�ord Algebra. Springer Verlag,to be published, 2000.This arti
le was pro
essed using the LATEX ma
ro pa
kage with LLNCS style


