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Abstract. The paper concerns the performance of 2D-3D pose estima-
tion algorithm in the algebraic language of kinematics. The pose esti-
mation problem is modelled on the base of several geometric constraint
equations. The dynamic measurements of these constraints are either
points or lines. Instead of using matrix based LMS optimization, the
development of special extended Kalman filters is proposed. The ex-
periments aim to compare the use of different constraints and different
methods of optimal estimating the pose parameters.

1 Introduction

The paper describes the estimation of pose parameters of known rigid objects in
the framework of kinematics. The aim is to experimentally verify the advantages
of extended Kalman filter approaches versus linear least squares optimizations.
Pose estimation is a basic visual task. In spite of its importance it has been iden-
tified for a long time (see e.g. Grimson [3]), and although there is published an
overwhelming number of papers with respect to that topic [7], up to now there is
no unique and general solution of the problem. Pose estimation means to relate
several coordinate frames of measurement data and model data by finding out
the transformations between, which can subsume rotation and translation. Since
we assume our measurement data as 2D and model data as 3D, we are concerned
with a 2D-3D pose estimation problem. The problem can be linearly represented
in motor algebra [6] or dual quaternion algebra [5]. We are using implicit for-
mulations of the geometry as geometric constraints. We will demonstrate that
geometric constraints are well conditioned (in contrast to invariances) and thus,
behave more robust in case of noisy data.

The paper is organized as follows. In section two we will introduce the mo-
tor algebra as representation frame for either geometric entities, geometric con-
straints, and Euclidean transformations. In section three we introduce the geo-
metric constraints and their changes in an observation scenario. In section four
we compare the performance of different algorithms for constraint based pose
estimation.

2 The motor algebra in the frame of kinematics

A geometric algebra G, ,, is a linear space of dimension 2", n = p + ¢ + r,
with a rich subspace structure, called blades, to represent so-called multivectors
as higher order algebraic entities in comparison to vectors of a vector space
as first order entities. A geometric algebra G, , , results in a constructive way
from a vector space R", endowed with the signature (p,q,7), n = p+q+7r by
application of a geometric product. To make it concretly, a motor algebra is the
8D even algebra Q;O’], derived from R*, ie.n =4,p=3,¢g=0, r = 1, with



basis vectors i, k = 1,...,4, and the property v = 73 = 73 = +1 and 7; = 0.
Because 72 = 0, g;o,l is called a degenerate algebra also the unit pseudoscalar,

I = y19279374, squares to zero, i.e. I? = (y1727374)> = 0. Remembering that
the hypercomplex algebra of quaternions IH represents a 4D linear space with
one scalar and three vector components, it can simply be verified that 9;0’1 is

~

isomorphic to the algebra of dual quaternions H [9]. In a general sense, motors
are called all the entities existing in motor algebra. They are constituted by
bivectors and scalars. Thus, any geometric entity as points, lines, and planes
have a motor representation. Changing the sign of the scalar and bivector in the
real and the dual parts of the motor leads to the following variants of a motor
M:(a0+a)+I(bo+b) M:({Ln*a)-FI(bn*b)

M = (ap+a)—I(bo+b) M= (ao—a)—I(bg—b).
These versions will be used to model the motion of points, lines and planes. In
line geometry we represent rotation by a rotation line axis and a rotation angle.
The corresponding entity is called a unit rotor, R, and reads as follows
R =19+ riv273 + r2yay1 + r3yiy2 = €os (%) + sin (%) n = exp (%n)
Here 6 is the rotation angle and m is the unit orientation vector of the rotation
axis, spanned by the bivector basis.

If on the other hand, t = t17y27y3 + tay3y1 + t3y172 is a translation vector in
bivector representation, it will be represented in motor algebra as the dual part
of a motor, called translator T' with

T = 1+I§ = exp (%I)
Thus, a translator is also a special kind of rotor.
Because rotation and translation concatenate multiplicatively in motor alge-
bra, a motor M reads
M=TR=R+I!R=R+IR.
A motor represents a line transformation as a screw transformation. The screw
motion equation as motor transformation reads
L' =T,R,LR,T, = MLM.
For more detailed introductions see [6]. Now we will introduce the description
of the most important geometric entities [6].

A point & € R?, represented in the bivector basis of g;oyl, ie. X € g;jm,
reads X = 14+ 17471 + T2Y4Y2 + x3v4y3 = 1 + Tx.

A line L € 9;071 is represented by L = m + I'm with the line direction
n = N1Y27Y3 +n27Y371 +n37y1y2 and the moment m = myvy2y3 +mMay3y1 +m3y1y2.

A plane P € g;m will be defined by its normal p as bivector and by its
Hesse distance to the origin, expressed as the scalar d = (x - p), in the following
way, P = p + Id.

In case of screw motions M = T R, not only line transformations can
be modelled, but also point and plane transformations. These are expressed as
follows. - .

X' =MXM L'=MLM P =MPM

We will use in this study only point and line transformations because points

and lines are the entities of our object models.

3 Geometric constraints and pose estimation

First, we make the following assumptions. The model of an object is given by
points and lines in the 3D space. Furthermore we extract line subspaces or points



in an image of a calibrated camera and match them with the model of the object.
The aim is to find the pose of the object from observations of points and lines in
the images at different poses. The method of obtaining the line subspaces is out
of scope of this paper. Contemporary we simply got line segments by marking
certain image points by hand. To estimate the pose, it is necessary to relate the
observed lines in the image to the unknown pose of the object using geometric
constraints.

The key idea is that the observed 2D entities together with their correspond-
ing 3D entities are constraint to lie on other, higher order entities which result
from the perspective projection. In our considered scenario there are three con-
straints which are attributed to two classes of constraints:

1. Collinearity: A 3D point has to lie on a line (projection ray) in the space
2. Coplanarity: A 3D point or line has to lie on a plane (projection plane).

With the terms projection ray or projection plane, respectively, we mean the
image-forming ray which relates a 3D point with the projection center or the in-
finite set of image-forming rays which relates all 3D points belonging to a 3D line
with the projection center, respectively. Thus, by introducing these two entities,
we implicitly represent a perspective projection without necessarily formulating
it explicitly. A similar approach of avoiding perspective projection equations by
using constraint observations of lines has been proposed in [1].

%, observed model

Fig. 1. The scenario. The solid lines at the left hand describe the assumptions: the
camera model, the model of the object and the initially extracted lines on the image
plane. The dashed lines at the right hand describe the actual pose of the model, which
leads to the best fit of the object with the actual extracted lines.

To be more detailed, in the scenario of figure 1 we describe the following
situation: We assume 3D points A} and lines L’ 4; of an object model. Further
we extract line subspaces l,; in an image of a calibrated camera and match them
with the model.

Three constraints can be depicted:

1. A transformed point, e.g. A1, of the model point A} must lie on the projec-
tion ray Lg1, given by C and the corresponding image point a;.



constraint entities dual quaternion algebra| motor algebra

point-line (POIN X 711:155 LX-XL=0 |XL-LX=0

int-plane|point X =1+ Iz PX - XP = PX - XP=
point-plane plane P = p + Id 0 0

. lineL=n+1Im - 3
line-pl LP - PL = LP + PL =
ine-plane plane P = p + Id 0 + 0

Table 1. The geometric constraints expressed in motor algebra and dual quatenion
algebra, respectively.

2. A transformed point, e.g. Ay, of the model point A} must lie on the projec-
tion plane Pjq, given by C and the corresponding image line 1,3.

3. A transformed line, e.g. L 43, of the model line L’ 43 must lie on the projec-
tion plane P2, given by C and the the corresponding image line 1,3.

Table 1 gives an overview on the formulations of these constraints in motor alge-
bra, taken from Blaschke [2], who used expressions in dual quaternion algebra.

The meaning of the constraint equations is immediately clear. They represent
the ideal situation, e.g. achieved as the result of the pose estimation procedure
with respect to the observation frame. With respect to the previous reference
frame, indicated by primes, these constraints read

(MX'ﬁ)L - E(Mx’ﬁ) =0
P(Mx'ﬁ) - (Mx'ﬁ)ﬁ =0
(ML'M)P + P(ML'M) = 0.

These compact equations subsume the pose estimation problem at hand: find
the best motor M which satisfies the constraint. We will get a convex optimiza-
tion problem. Any error measure |e|] > 0 of the optimization process as actual
deviation from the constraint equation can be interpreted as a distance measure
of misalignment with respect to the ideal situation of table 1. That means e.g.
that the constraint for a point on a line is almost fulfilled for a point near the
line. The complete analysis of the constraints can be found in [4].

4 Experiments

In our experimental scenario we took a B21 mobile robot equipped with a stereo
camera head and positioned it two meters in front of a calibration cube. We
focused one camera on the calibration cube and took an image. Then we moved
the robot, focused the camera again on the cube and took another image. The
edge size of the calibration cube is 46 cm and the image size is 384 x 288 pixel.
Furthermore, we defined on the calibration cube a 3D object model. Figure 2
shows the scenario. In the first row two perspective views of the 3D object model
are shown. In the left image of the second row the calibration is performed and
the 3D object model is projected onto the image. Then the camera is moved
and corresponding line segments are extracted. To visualize the movement, we
also projected the 3D object model on its original position. In these experiments
we actually selected certain points by hand and from these the depicted line
segments are derived and, by knowing the camera calibration by the cube of
the first image, the actual projection ray and projection plane parameters are
computed. In table 2 we show the results of different algorithms for pose esti-
mation. In the second column of table 2 EKF denotes the use of an extended
Kalman filter. The design of the extended Kalman filters is described in [4].
MAT denotes matrix algebra, SVD denotes the singular value decomposition of



Fig. 2. The scenario of the experiment: In the top row two perspectives of the 3D
object model are shown. In the second row (left) the calibration is performed and the
3D object model is projected on the image. Then the camera moved and corresponding
line segments are extracted.

no. R ¢ Constraint Fxperiment 1 Frror
0.987 0.089 —0.138 —58.21

1 |RtEKF RtEKF| XL-XI. |R = [ —0.117 0.969 —0.218 | t = [ —217.26 5.2
0.115 0.231 0.966 160.60
0.976 0.107 —0.191 —60.12

2 SVD — MAT XL-XL |[R = [ —0.156 0.952 —0.264 | t = [ —212.16 6.7
0.154 0.287 0.945 106.60
0.987 0.092 —0.133 —52.67

3 |RtEKF — RtEKF| XP-XP [R = [ —0.118 0.973 —0.200 | t = | —217.00 5.5
0.111 0.213 0.970 139.00
0.986 0.115 —0.118 —71.44

4 | RtEKF  MAT XP-XP |R = [ —0.141 0.958 —0.247 | t = [ —219.34 3.7
0.085 0.260 0.962 124.71
0.979 0.101 —0.177 —65.55

5 SVD  MAT XP-XP |R = [ —0.144 0.957 —0.251 | £t = [ —221.18 5.3
0.143 0.271 0.952 105.87
0.976 0.109 —0.187 —66.57

6 SVD — MAT LP-XP |[R = [ —0.158 0.950 —0.266 | ¢ = [ —216.18 7.1
0.149 0.289 0.945 100.53
0.985 0.106 —0.134 —50.10

7 | MEKF — MEKF | LP-LP |R = | —0.133 0.969 —0.208 | ¢t = [ —212.60 2.9
0.107 0.229 0.969 142.20
0.985 0.106 —0.134 —67.78

8 | MEKF  MAT LP-LP |R = | —0.133 0.968 —0.213 | t = [ —227.73 2.7
0.108 0.228 0.968 123.90
0.976 0.109 —0.187 —80.58

9 SVD — MAT LP-LP |R = | —0.158 0.950 —0.266 | t = [ —225.59 6.9
0.149 0.289 0.945 93.93

Table 2. The experiment 1 results in different qualities of derived motion parameters,
depending on the used constraints and algorithms to evaluate their validity.

a matrix. In the third column the used constraints, point-line (XL), point-plane
(XP) and line-plane (LP) are indicated. The fourth column shows the results of
the estimated rotation matrix R and the translation vector ¢, respectively. Since
the translation vectors are in mm, the results differ at around 2-3 cm. The fifth
column shows the error of the equation system. Since the error of the equation
system describes the Hesse distance of the entities, the value of the error is an
approximation of the squared average distance of the entities. It is easy to see,
that the results obtained with the different approaches are close to each other,
though the implementation leads to different algorithms. Furthermore the EKF’s
perform more stable than the matrix solution approaches.



Fig. 3. Visualization of some errors. We calculate the motion of the object and project
the transformed object in the image planes. The extracted line segments are also shown.
In the first and second row, the results of nos. 5, 3 and nos. 7, 8 of table 2 are visualised
respectively.

The visualization of some errors is done in figure 3. We calculated the motion
of the object and projected the transformed object in the image plane. The
extracted line segments are overlayed in addition. Figure 3 shows in the first
and second row, the results of nos. 5, 3 and nos. 7, 8 of table 2 respectively.

In a second experiment we also compared the noise sensivity of the algo-
rithms. The experiment is organized as follows. We took the point correspon-
dences of the first experiment and estimated both R and ¢. Then we added a
Gaussian noise error on the extracted image points. The error varied from 0
to 16 Pixels in 0.25 steps and we estimated R’ and t' for each step. Then we
calculated the error between R' and R and between t’ and t. The results are
shown in figure 4. Since R and R’ are rotation matrices, the absolute value of
the error differs in the range 0 < eqp < 1. The error of the translation vector
is evaluated in mm. So the error of the translation vector differs by using the
matrix solution approach at around 0 < ¢ < 10 c¢m, while using the Kalman
filter the corresponding range is 0 < ez < 5 cm. The matrix based solutions look
all very similar. Compared with the EKF results they are very sensitive to noise
and the variances between the noise steps are very high. Though the order of
sensitivity is very similar, it is important to notice that the XL based solution
requires as an extra calculation the estimation of the intersection of the line seg-
ments, whereas the LP based solution is fully separated: The LP constraint can
be partitioned in one constraint on the real part of the motor and one constraint
on the dual part of the motor. The real part can be used to generate equations
with the parameters of the rotation as the only unknowns. The constraint on the
dual part can then be used to determine the unknown translation. So it is possi-
ble to sequentially separate equations on the unknown rotation from equations
on the unknown translation without the limitations, known from the embedding
of the problem in Euclidean space [5]. This is also very useful, since the two
smaller equation systems are easier and faster to solve than one larger equation
system. The EKF based solutions perform all very stable and the behavior of
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Fig. 4. Performance comparison of different methods in case of noisy data. With in-
creasing noise the EKF performs with more accurate and more stable estimates than
the matrix based methods.



the different constraints are also very similar. These results are in agrement with
the well known behavior of error propagation in case of matrix based rotation
estimation. This is a consequence of the estimator themselves and of the fact
that in our approach rotation is represented as rotors. The concatenation of ro-
tors is more robust than that of rotation matrices. It is obvious, that the results
of these experiments are affected by the method to obtain the entities in the im-
age. In this experiment we selected certain points directly by hand and derived
from these the line subspaces. So the quality of the line subspaces is directly
connected to the quality of the point extraction. For comparison purposes be-
tween the algorithms this is necessary and reasonable. But for real applications,
since the extraction of lines is more stable than that of points, the XP or LP
algorithms should be preferred.

5 Conclusions

In this paper we have described a framework for 2D-3D pose estimation. The
aim of the paper is to compare several pose modelling approaches and estima-
tion methods with respect to their performance. The main contribution of the
paper is to formulate 2D-3D pose determination in the language of kinematics
as a problem of estimating rotation and translation from geometric constraint
equations. There are three such constraints which relate the model frame to an
observation frame. The model data are either points or lines. The observation
frame is constituted by lines or planes. Any deviations from the constraint cor-
respond the Hesse distance of the involved geometric entities. From this starting
point as a useful algebraic frame for handling line motion, the motor algebra has
been introduced. The use of the motor algebra allows to subsume the pose esti-
mation problem by compact equations. The experiments show some advantages
of that representation and of the EKF approach in comparison to normal matrix
based LMS algorithms, all applied within the context of constraint based pose
estimation.
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