
Performane of Constraint Based PoseEstimation AlgorithmsBodo Rosenhahn, Yiwen Zhang, Gerald SommerInstitut f�ur Informatik und Praktishe MathematikChristian-Albrehts-Universit�at zu KielPreu�erstrasse 1-9, 24105 Kiel, Germanybro,yz,gs�ks.informatik.uni-kiel.deAbstrat. The paper onerns the performane of 2D-3D pose estima-tion algorithm in the algebrai language of kinematis. The pose esti-mation problem is modelled on the base of several geometri onstraintequations. The dynami measurements of these onstraints are eitherpoints or lines. Instead of using matrix based LMS optimization, thedevelopment of speial extended Kalman �lters is proposed. The ex-periments aim to ompare the use of di�erent onstraints and di�erentmethods of optimal estimating the pose parameters.1 IntrodutionThe paper desribes the estimation of pose parameters of known rigid objets inthe framework of kinematis. The aim is to experimentally verify the advantagesof extended Kalman �lter approahes versus linear least squares optimizations.Pose estimation is a basi visual task. In spite of its importane it has been iden-ti�ed for a long time (see e.g. Grimson [3℄), and although there is published anoverwhelming number of papers with respet to that topi [7℄, up to now there isno unique and general solution of the problem. Pose estimation means to relateseveral oordinate frames of measurement data and model data by �nding outthe transformations between, whih an subsume rotation and translation. Sinewe assume our measurement data as 2D and model data as 3D, we are onernedwith a 2D-3D pose estimation problem. The problem an be linearly representedin motor algebra [6℄ or dual quaternion algebra [5℄. We are using impliit for-mulations of the geometry as geometri onstraints. We will demonstrate thatgeometri onstraints are well onditioned (in ontrast to invarianes) and thus,behave more robust in ase of noisy data.The paper is organized as follows. In setion two we will introdue the mo-tor algebra as representation frame for either geometri entities, geometri on-straints, and Eulidean transformations. In setion three we introdue the geo-metri onstraints and their hanges in an observation senario. In setion fourwe ompare the performane of di�erent algorithms for onstraint based poseestimation.2 The motor algebra in the frame of kinematisA geometri algebra Gp;q;r is a linear spae of dimension 2n, n = p + q + r,with a rih subspae struture, alled blades, to represent so-alled multivetorsas higher order algebrai entities in omparison to vetors of a vetor spaeas �rst order entities. A geometri algebra Gp;q;r results in a onstrutive wayfrom a vetor spae IRn, endowed with the signature (p; q; r), n = p+ q + r byappliation of a geometri produt. To make it onretly, a motor algebra is the8D even algebra G+3;0;1, derived from IR4, i.e. n = 4, p = 3, q = 0, r = 1, with



basis vetors k, k = 1; :::; 4, and the property 21 = 22 = 23 = +1 and 24 = 0.Beause 24 = 0, G+3;0;1 is alled a degenerate algebra also the unit pseudosalar,I = 1234, squares to zero, i.e. I2 = (1234)2 = 0. Remembering thatthe hyperomplex algebra of quaternions IH represents a 4D linear spae withone salar and three vetor omponents, it an simply be veri�ed that G+3;0;1 isisomorphi to the algebra of dual quaternions bIH [9℄. In a general sense, motorsare alled all the entities existing in motor algebra. They are onstituted bybivetors and salars. Thus, any geometri entity as points, lines, and planeshave a motor representation. Changing the sign of the salar and bivetor in thereal and the dual parts of the motor leads to the following variants of a motorM = (a0 + a) + I(b0 + b) fM = (a0 � a) + I(b0 � b)M = (a0 + a)� I(b0 + b) fM = (a0 � a)� I(b0 � b) .These versions will be used to model the motion of points, lines and planes. Inline geometry we represent rotation by a rotation line axis and a rotation angle.The orresponding entity is alled a unit rotor, R, and reads as followsR = r0 + r123 + r231 + r312 = os � �2�+ sin � �2�n = exp � �2n�.Here � is the rotation angle and n is the unit orientation vetor of the rotationaxis, spanned by the bivetor basis.If on the other hand, t = t123 + t231 + t312 is a translation vetor inbivetor representation, it will be represented in motor algebra as the dual partof a motor, alled translator T withT = 1 + I t2 = exp�t2I�.Thus, a translator is also a speial kind of rotor.Beause rotation and translation onatenate multipliatively in motor alge-bra, a motorM reads M = TR = R+ I t2R = R+ IR0.A motor represents a line transformation as a srew transformation. The srewmotion equation as motor transformation readsL0 = T sRsL eRsfT s =MLfM .For more detailed introdutions see [6℄. Now we will introdue the desriptionof the most important geometri entities [6℄.A point x 2 IR3, represented in the bivetor basis of G+3;0;1, i.e. X 2 G+3;0;1,reads X = 1 + x141 + x242 + x343 = 1 + Ix.A line L 2 G+3;0;1 is represented by L = n + Im with the line diretionn = n123+n231+n312 and the momentm = m123+m231+m312.A plane P 2 G+3;0;1 will be de�ned by its normal p as bivetor and by itsHesse distane to the origin, expressed as the salar d = (x � p), in the followingway, P = p+ Id.In ase of srew motions M = T sRs not only line transformations anbe modelled, but also point and plane transformations. These are expressed asfollows. X 0 =MXfM L0 =MLfM P 0 =M P fMWe will use in this study only point and line transformations beause pointsand lines are the entities of our objet models.3 Geometri onstraints and pose estimationFirst, we make the following assumptions. The model of an objet is given bypoints and lines in the 3D spae. Furthermore we extrat line subspaes or points



in an image of a alibrated amera and math them with the model of the objet.The aim is to �nd the pose of the objet from observations of points and lines inthe images at di�erent poses. The method of obtaining the line subspaes is outof sope of this paper. Contemporary we simply got line segments by markingertain image points by hand. To estimate the pose, it is neessary to relate theobserved lines in the image to the unknown pose of the objet using geometrionstraints.The key idea is that the observed 2D entities together with their orrespond-ing 3D entities are onstraint to lie on other, higher order entities whih resultfrom the perspetive projetion. In our onsidered senario there are three on-straints whih are attributed to two lasses of onstraints:1. Collinearity: A 3D point has to lie on a line (projetion ray) in the spae2. Coplanarity: A 3D point or line has to lie on a plane (projetion plane).With the terms projetion ray or projetion plane, respetively, we mean theimage-forming ray whih relates a 3D point with the projetion enter or the in-�nite set of image-forming rays whih relates all 3D points belonging to a 3D linewith the projetion enter, respetively. Thus, by introduing these two entities,we impliitly represent a perspetive projetion without neessarily formulatingit expliitly. A similar approah of avoiding perspetive projetion equations byusing onstraint observations of lines has been proposed in [1℄.
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Fig. 1. The senario. The solid lines at the left hand desribe the assumptions: theamera model, the model of the objet and the initially extrated lines on the imageplane. The dashed lines at the right hand desribe the atual pose of the model, whihleads to the best �t of the objet with the atual extrated lines.To be more detailed, in the senario of �gure 1 we desribe the followingsituation: We assume 3D points A0i and lines L0Ai of an objet model. Furtherwe extrat line subspaes lai in an image of a alibrated amera and math themwith the model.Three onstraints an be depited:1. A transformed point, e.g. A1, of the model point A01 must lie on the proje-tion ray La1, given by C and the orresponding image point a1.



onstraint entities dual quaternion algebra motor algebrapoint X = 1 + Ixpoint-line line L = n+ Im LX �XL = 0 XL�LX = 0point X = 1 + Ixpoint-plane plane P = p+ Id PX �XP = 0 PX �XP = 0line L = n+ Imline-plane plane P = p+ Id LP � PL = 0 LP +PL = 0Table 1. The geometri onstraints expressed in motor algebra and dual quatenionalgebra, respetively.2. A transformed point, e.g. A1, of the model point A01 must lie on the proje-tion plane P12, given by C and the orresponding image line la3.3. A transformed line, e.g. LA3, of the model line L0A3 must lie on the proje-tion plane P12, given by C and the the orresponding image line la3.Table 1 gives an overview on the formulations of these onstraints in motor alge-bra, taken from Blashke [2℄, who used expressions in dual quaternion algebra.The meaning of the onstraint equations is immediately lear. They representthe ideal situation, e.g. ahieved as the result of the pose estimation proedurewith respet to the observation frame. With respet to the previous refereneframe, indiated by primes, these onstraints read(MX0fM)L�L(MX0fM) = 0P (MX0fM)� (MX0fM)P = 0(ML0fM)P + P (ML0fM) = 0:These ompat equations subsume the pose estimation problem at hand: �ndthe best motorM whih satis�es the onstraint. We will get a onvex optimiza-tion problem. Any error measure j�j > 0 of the optimization proess as atualdeviation from the onstraint equation an be interpreted as a distane measureof misalignment with respet to the ideal situation of table 1. That means e.g.that the onstraint for a point on a line is almost ful�lled for a point near theline. The omplete analysis of the onstraints an be found in [4℄.4 ExperimentsIn our experimental senario we took a B21 mobile robot equipped with a stereoamera head and positioned it two meters in front of a alibration ube. Wefoused one amera on the alibration ube and took an image. Then we movedthe robot, foused the amera again on the ube and took another image. Theedge size of the alibration ube is 46 m and the image size is 384� 288 pixel.Furthermore, we de�ned on the alibration ube a 3D objet model. Figure 2shows the senario. In the �rst row two perspetive views of the 3D objet modelare shown. In the left image of the seond row the alibration is performed andthe 3D objet model is projeted onto the image. Then the amera is movedand orresponding line segments are extrated. To visualize the movement, wealso projeted the 3D objet model on its original position. In these experimentswe atually seleted ertain points by hand and from these the depited linesegments are derived and, by knowing the amera alibration by the ube ofthe �rst image, the atual projetion ray and projetion plane parameters areomputed. In table 2 we show the results of di�erent algorithms for pose esti-mation. In the seond olumn of table 2 EKF denotes the use of an extendedKalman �lter. The design of the extended Kalman �lters is desribed in [4℄.MAT denotes matrix algebra, SVD denotes the singular value deomposition of



Fig. 2. The senario of the experiment: In the top row two perspetives of the 3Dobjet model are shown. In the seond row (left) the alibration is performed and the3D objet model is projeted on the image. Then the amera moved and orrespondingline segments are extrated.no. R | t Constraint Experiment 1 Error1 RtEKF | RtEKF XL-XL R = � 0:987 0:089 �0:138�0:117 0:969 �0:2180:115 0:231 0:966 � t = � �58:21�217:26160:60 � 5:22 SVD | MAT XL-XL R = � 0:976 0:107 �0:191�0:156 0:952 �0:2640:154 0:287 0:945 � t = � �60:12�212:16106:60 � 6:73 RtEKF | RtEKF XP-XP R = � 0:987 0:092 �0:133�0:118 0:973 �0:2000:111 0:213 0:970 � t = � �52:67�217:00139:00 � 5:54 RtEKF | MAT XP-XP R = � 0:986 0:115 �0:118�0:141 0:958 �0:2470:085 0:260 0:962 � t = � �71:44�219:34124:71 � 3:75 SVD | MAT XP-XP R = � 0:979 0:101 �0:177�0:144 0:957 �0:2510:143 0:271 0:952 � t = � �65:55�221:18105:87 � 5:36 SVD | MAT LP-XP R = � 0:976 0:109 �0:187�0:158 0:950 �0:2660:149 0:289 0:945 � t = � �66:57�216:18100:53 � 7:17 MEKF | MEKF LP-LP R = � 0:985 0:106 �0:134�0:133 0:969 �0:2080:107 0:229 0:969 � t = � �50:10�212:60142:20 � 2:98 MEKF | MAT LP-LP R = � 0:985 0:106 �0:134�0:133 0:968 �0:2130:108 0:228 0:968 � t = � �67:78�227:73123:90 � 2:79 SVD | MAT LP-LP R = � 0:976 0:109 �0:187�0:158 0:950 �0:2660:149 0:289 0:945 � t = � �80:58�225:5993:93 � 6:9Table 2. The experiment 1 results in di�erent qualities of derived motion parameters,depending on the used onstraints and algorithms to evaluate their validity.a matrix. In the third olumn the used onstraints, point-line (XL), point-plane(XP) and line-plane (LP) are indiated. The fourth olumn shows the results ofthe estimated rotation matrixR and the translation vetor t, respetively. Sinethe translation vetors are in mm, the results di�er at around 2-3 m. The �ftholumn shows the error of the equation system. Sine the error of the equationsystem desribes the Hesse distane of the entities, the value of the error is anapproximation of the squared average distane of the entities. It is easy to see,that the results obtained with the di�erent approahes are lose to eah other,though the implementation leads to di�erent algorithms. Furthermore the EKF'sperform more stable than the matrix solution approahes.



Fig. 3. Visualization of some errors. We alulate the motion of the objet and projetthe transformed objet in the image planes. The extrated line segments are also shown.In the �rst and seond row, the results of nos. 5, 3 and nos. 7, 8 of table 2 are visualisedrespetively.The visualization of some errors is done in �gure 3. We alulated the motionof the objet and projeted the transformed objet in the image plane. Theextrated line segments are overlayed in addition. Figure 3 shows in the �rstand seond row, the results of nos. 5, 3 and nos. 7, 8 of table 2 respetively.In a seond experiment we also ompared the noise sensivity of the algo-rithms. The experiment is organized as follows. We took the point orrespon-denes of the �rst experiment and estimated both R and t. Then we added aGaussian noise error on the extrated image points. The error varied from 0to 16 Pixels in 0:25 steps and we estimated R0 and t0 for eah step. Then wealulated the error between R0 and R and between t0 and t. The results areshown in �gure 4. Sine R and R0 are rotation matries, the absolute value ofthe error di�ers in the range 0 � �R � 1. The error of the translation vetoris evaluated in mm. So the error of the translation vetor di�ers by using thematrix solution approah at around 0 � �t � 10 m, while using the Kalman�lter the orresponding range is 0 � �t � 5 m. The matrix based solutions lookall very similar. Compared with the EKF results they are very sensitive to noiseand the varianes between the noise steps are very high. Though the order ofsensitivity is very similar, it is important to notie that the XL based solutionrequires as an extra alulation the estimation of the intersetion of the line seg-ments, whereas the LP based solution is fully separated: The LP onstraint anbe partitioned in one onstraint on the real part of the motor and one onstrainton the dual part of the motor. The real part an be used to generate equationswith the parameters of the rotation as the only unknowns. The onstraint on thedual part an then be used to determine the unknown translation. So it is possi-ble to sequentially separate equations on the unknown rotation from equationson the unknown translation without the limitations, known from the embeddingof the problem in Eulidean spae [5℄. This is also very useful, sine the twosmaller equation systems are easier and faster to solve than one larger equationsystem. The EKF based solutions perform all very stable and the behavior of
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Fig. 4. Performane omparison of di�erent methods in ase of noisy data. With in-reasing noise the EKF performs with more aurate and more stable estimates thanthe matrix based methods.



the di�erent onstraints are also very similar. These results are in agrement withthe well known behavior of error propagation in ase of matrix based rotationestimation. This is a onsequene of the estimator themselves and of the fatthat in our approah rotation is represented as rotors. The onatenation of ro-tors is more robust than that of rotation matries. It is obvious, that the resultsof these experiments are a�eted by the method to obtain the entities in the im-age. In this experiment we seleted ertain points diretly by hand and derivedfrom these the line subspaes. So the quality of the line subspaes is diretlyonneted to the quality of the point extration. For omparison purposes be-tween the algorithms this is neessary and reasonable. But for real appliations,sine the extration of lines is more stable than that of points, the XP or LPalgorithms should be preferred.5 ConlusionsIn this paper we have desribed a framework for 2D-3D pose estimation. Theaim of the paper is to ompare several pose modelling approahes and estima-tion methods with respet to their performane. The main ontribution of thepaper is to formulate 2D-3D pose determination in the language of kinematisas a problem of estimating rotation and translation from geometri onstraintequations. There are three suh onstraints whih relate the model frame to anobservation frame. The model data are either points or lines. The observationframe is onstituted by lines or planes. Any deviations from the onstraint or-respond the Hesse distane of the involved geometri entities. From this startingpoint as a useful algebrai frame for handling line motion, the motor algebra hasbeen introdued. The use of the motor algebra allows to subsume the pose esti-mation problem by ompat equations. The experiments show some advantagesof that representation and of the EKF approah in omparison to normal matrixbased LMS algorithms, all applied within the ontext of onstraint based poseestimation.Referenes1. Shevlin F. Analysis of orientation problems using Pl�uker lines. International Con-ferene on Pattern Reognition, Brisbane, 1: 685{689, 1998.2. Blashke W. Mathematishe Monographien 4, Kinematik und Quaternionen.Deutsher Verlag der Wissenshaften, 1960.3. Grimson W. E. L. Objet Reognition by Computer. The MIT Press, Cambridge,MA, 1990.4. G. Sommer , B. Rosenhahn and Y. Zhang Pose Estimation Using Geometri Con-straints Tehnial Report 2003, Institut f�ur Informatik und Praktishe Mathematik,Christian-Albrehts-Universit�at zu Kiel5. Daniilidis K. Hand-eye alibration using dual quaternions. Int. Journ. RobotisRes, 18: 286{298, 1999.6. Bayro-Corrohano E. The geometry and algebra of kinematis. In Sommer G., ed-itor, Geometri Computing with Cli�ord Algebra. Springer Verlag, to be published,2000.7. Careroni R. L. and C. M. Brown. Numerial Methods for Model-Based PoseReovery. Tehn. Rept. 659, Comp. Si. Dept., The Univ. of Rohester, Rohester,N. Y., August 1998.8. Walker M. W., L. Shao, and R. A. Volz . Estimating 3-D loation parameters usingdual number quaternions. CVGIP: Image Understanding, 54: 358{367, 1991.9. Hestenes D., Li H. and A. Rokwood. New algebrai tools for lassial geometry.In Sommer G., editor, Geometri Computing with Cli�ord Algebra. Springer Verlag,to be published, 2000.This artile was proessed using the LATEX maro pakage with LLNCS style


