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t. The paper 
on
erns 2D-3D pose estimation in the algebrai
language of kinemati
s. The pose estimation problem is modelled on thebase of several geometri
 
onstraint equations. In that way the proje
tivegeometri
 aspe
t of the topi
 is only impli
itly represented and thus, poseestimation is a pure kinemati
 problem. The dynami
 measurements ofthese 
onstraints are either points or lines. The authors propose theuse of motor algebra to introdu
e 
onstraint equations, whi
h keep anatural distan
e measurement, the Hesse distan
e. The motor algebra isa degenerate geometri
 algebra in whi
h line transformations are linearones. The experiments aim to 
ompare the use of di�erent 
onstraintsand di�erent methods of optimal estimating the pose parameters.1 Introdu
tionThe paper des
ribes the estimation of pose parameters of known rigid obje
ts inthe framework of kinemati
s. Pose estimation is a basi
 visual task. In spite ofits importan
e it has been identi�ed for a long time (see e.g. Grimson [5℄), andalthough there is published an overwhelming number of papers with respe
t tothat topi
 [9℄, up to now there is no unique and general solution of the problem.Pose estimation means to relate several 
oordinate frames of measurement dataand model data by �nding out the transformations between, whi
h 
an subsumerotation and translation. Sin
e we assume our measurement data as 2D andmodel data as 3D, we are 
on
erned with a 2D-3D pose estimation problem.Camera self-lo
alization and navigation are typi
al examples of su
h types ofproblems. The 
oupling of proje
tive and Eu
lidean transformations, both withnonlinear representations in Eu
lidean spa
e, is the main reason for the diÆ-
ulties to solve the pose problem. In this paper we attend to a pose estimationrelated to estimations of line motion as a problem of kinemati
s. The problem
an be linearly represented in motor algebra [8℄ or dual quaternion algebra [7℄.Instead of using invarian
es as an expli
it formulation of geometry as often hasbeen done in proje
tive geometry, we are using impli
it formulations of geom-etry as geometri
 
onstraints. We will demonstrate that geometri
 
onstraintsare well 
onditioned, in 
ontrast to invarian
es.The paper is organized as follows. In se
tion two we will introdu
e the mo-tor algebra as representation frame for either geometri
 entities, geometri
 
on-straints, and Eu
lidean transformations. In se
tion three we introdu
e the geo-metri
 
onstraints and their 
hanges in an observation s
enario. Se
tion four isdedi
ated to the geometri
 analysis of these 
onstraints. In se
tion �ve we showsome results for 
onstraint based pose estimation with real images.2 The motor algebra in the frame of kinemati
sA geometri
 algebra Gp;q;r is a linear spa
e of dimension 2n, n = p + q + r,with a ri
h subspa
e stru
ture, 
alled blades, to represent so-
alled multive
tors



as higher order algebrai
 entities in 
omparison to ve
tors of a ve
tor spa
eas �rst order entities. A geometri
 algebra Gp;q;r results in a 
onstru
tive wayfrom a ve
tor spa
e IRn, endowed with the signature (p; q; r), n = p + q + r byappli
ation of a geometri
 produ
t. The geometri
 produ
t 
onsists of an outer(^) and an inner (�) produ
t, whose role is to in
rease or to de
rease the orderof the algebrai
 entities, respe
tively.To make it 
on
retly, a motor algebra is the 8D even algebra G+3;0;1, derivedfrom IR4, i.e. n = 4, p = 3, q = 0, r = 1, with basis ve
tors 
k, k = 1; :::; 4, andthe property 
21 = 
22 = 
23 = +1 and 
24 = 0. Be
ause 
24 = 0, G+3;0;1 is 
alled adegenerate algebra. The motor algebra G+3;0;1 is of dimension eight and spannedby qualitative di�erent subspa
es with the following basis multive
tors:one s
alar : 1six bive
tors : 
2
3; 
3
1; 
1
2; 
4
1; 
4
2; 
4
3one pseudos
alar : I � 
1
2
3
4.Be
ause 
24 = 0, also the unit pseudos
alar squares to zero, i.e. I2 = 0. Re-membering that the hyper
omplex algebra of quaternions IH represents a 4Dlinear spa
e with one s
alar and three ve
tor 
omponents, it 
an simply beveri�ed that G+3;0;1 is isomorphi
 to the algebra of dual quaternions bIH [11℄.The geometri
 produ
t of bive
tors A, B 2 hG+3;0;1i2, AB, splits into AB =A � B + A � B + A ^ B, where A � B is the inner produ
t, whi
h results ina s
alar A � B = �, A ^ B is the outer produ
t, whi
h in this 
ase results ina pseudos
alar A ^ B = I�, and A � B is the 
ommutator produ
t, whi
hresults in a bive
tor C, A �B = 12 (AB �BA) = C. In a general sense, mo-tors are 
alled all the entities existing in motor algebra. They are 
onstitutedby bive
tors and s
alars. Thus, any geometri
 entity as points, lines, and planeshave a motor representation. Changing the sign of the s
alar and bive
tor in thereal and the dual parts of the motor leads to the following variants of a motorM = (a0 + a) + I(b0 + b) fM = (a0 � a) + I(b0 � b)M = (a0 + a)� I(b0 + b) fM = (a0 � a)� I(b0 � b) .We will use the term motor in a more restri
ted sense to 
all with it a s
rewtransformation, that is an Eu
lidean transformation embedded in motor alge-bra. Its 
onstituents are rotation and translation (and dilation in 
ase of non-unitmotors). In line geometry we represent rotation by a rotation line axis and a ro-tation angle. The 
orresponding entity is 
alled a unit rotor, R, and reads asfollowsR = r0 + r1
2
3 + r2
3
1 + r3
1
2 = 
os � �2�+ sin � �2�n = exp � �2n�.Here � is the rotation angle and n is the unit orientation ve
tor of the rotationaxis, spanned by the bive
tor basis.If on the other hand, t = t1
2
3 + t2
3
1 + t3
1
2 is a translation ve
tor inbive
tor representation, it will be represented in motor algebra as the dual partof a motor, 
alled translator T withT = 1 + I t2 = exp�t2I�.Thus, a translator is also a spe
ial kind of rotor.Be
ause rotation and translation 
on
atenate multipli
atively in motor alge-bra, a motor M reads M = TR = R+ I t2R = R+ IR0.A motor represents a line transformation as a s
rew transformation. The line Lwill be transformed to the line L0 by means of a rotation Rs around a line Ls



by angle �, followed by a translation ts parallel to Ls. Then the s
rew motionequation as motor transformation readsL0 = T sRsL eRsfT s =MLfM .For more detailed introdu
tions see [8℄ and [10℄. Now we will introdu
e the de-s
ription of the most important geometri
 entities [8℄.A point x 2 IR3, represented in the bive
tor basis of G+3;0;1, i.e. X 2 G+3;0;1,reads X = 1 + x1
4
1 + x2
4
2 + x3
4
3 = 1 + Ix.A line L 2 G+3;0;1 is represented by L = n + Im with the line dire
tionn = n1
2
3+n2
3
1+n3
1
2 and the momentm = m1
2
3+m2
3
1+m3
1
2.A plane P 2 G+3;0;1 will be de�ned by its normal p as bive
tor and by itsHesse distan
e to the origin, expressed as the s
alar d = (x � p), in the followingway, P = p+ Id.In 
ase of s
rew motions M = T sRs not only line transformations 
anbe modelled, but also point and plane transformations. These are expressed asfollows. X 0 =MXfM L0 =MLfM P 0 =MP fMWe will use in this study only point and line transformations be
ause pointsand lines are the entities of our obje
t models.3 Geometri
 
onstraints and pose estimationFirst, we make the following assumptions. The model of an obje
t is given bypoints and lines in the 3D spa
e. Furthermore we extra
t line subspa
es or pointsin an image of a 
alibrated 
amera and mat
h them with the model of the obje
t.The aim is to �nd the pose of the obje
t from observations of points and linesin the images at di�erent poses. Figure 1 shows the s
enario with respe
t toobserved line subspa
es. The method of obtaining the line subspa
es is out ofs
ope of this paper. Contemporary we simply got line segments by marking
ertain image points by hand. To estimate the pose, it is ne
essary to relate theobserved lines in the image to the unknown pose of the obje
t using geometri

onstraints.The key idea is that the observed 2D entities together with their 
orrespond-ing 3D entities are 
onstraint to lie on other, higher order entities whi
h resultfrom the perspe
tive proje
tion. In our 
onsidered s
enario there are three 
on-straints whi
h are attributed to two 
lasses of 
onstraints:1. Collinearity: A 3D point has to lie on a line (proje
tion ray) in the spa
e2. Coplanarity: A 3D point or line has to lie on a plane (proje
tion plane).With the terms proje
tion ray or proje
tion plane, respe
tively, we mean theimage-forming ray whi
h relates a 3D point with the proje
tion 
enter or the in-�nite set of image-forming rays whi
h relates all 3D points belonging to a 3D linewith the proje
tion 
enter, respe
tively. Thus, by introdu
ing these two entities,we impli
itly represent a perspe
tive proje
tion without ne
essarily formulatingit expli
itly. The most important 
onsequen
e of impli
itly representing proje
-tive geometry is that the pose problem is in that framework a pure kinemati
problem. A similar approa
h of avoiding perspe
tive proje
tion equations byusing 
onstraint observations of lines has been proposed in [2℄.To be more detailed, in the s
enario of �gure 1 we des
ribe the followingsituation: We assume 3D points A0i and lines L0Ai of an obje
t model. Furtherwe extra
t line subspa
es lai in an image of a 
alibrated 
amera and mat
h themwith the model.Three 
onstraints 
an be depi
ted:
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Fig. 1. The s
enario. The solid lines at the left hand des
ribe the assumptions: the
amera model, the model of the obje
t and the initially extra
ted lines on the imageplane. The dashed lines at the right hand des
ribe the a
tual pose of the model, whi
hleads to the best �t of the obje
t with the a
tual extra
ted lines.1. A transformed point, e.g. A1, of the model point A01 must lie on the proje
-tion ray La1, given by C and the 
orresponding image point a1.2. A transformed point, e.g. A1, of the model point A01 must lie on the proje
-tion plane P12, given by C and the 
orresponding image line la3.3. A transformed line, e.g. LA3, of the model line L0A3 must lie on the proje
-tion plane P12, given by C and the the 
orresponding image line la3.
onstraint entities dual quaternion algebra motor algebrapoint X = 1 + Ixpoint-line line L = n+ Im LX �XL = 0 XL�LX = 0point X = 1 + Ixpoint-plane plane P = p+ Id PX �XP = 0 PX �XP = 0line L = n+ Imline-plane plane P = p+ Id LP � PL = 0 LP +PL = 0Table 1. The geometri
 
onstraints expressed in motor algebra and dual quatenionalgebra, respe
tively.Table 1 gives an overview on the formulations of these 
onstraints in mo-tor algebra, taken from Blas
hke [4℄, who used expressions in dual quaternionalgebra. Here we adopt the terms from se
tion 2.The meaning of the 
onstraint equations is immediately 
lear. In se
tion 4we will pro
eed to analyse them in detail. They represent the ideal situation,e.g. a
hieved as the result of the pose estimation pro
edure with respe
t to theobservation frame. With respe
t to the previous referen
e frame, indi
ated byprimes, these 
onstraints read(MX0fM)L�L(MX0fM) = 0



P (MX0fM)� (MX0fM)P = 0(ML0fM)P +P (ML0fM) = 0:These 
ompa
t equations subsume the pose estimation problem at hand: �ndthe best motorM whi
h satis�es the 
onstraint. We will get a 
onvex optimiza-tion problem. Any error measure j�j > 0 of the optimization pro
ess as a
tualdeviation from the 
onstraint equation 
an be interpreted as a distan
e measureof misalignment with respe
t to the ideal situation of table 1. That means e.g.that the 
onstraint for a point on a line is almost ful�lled for a point near theline. This will be made 
lear in the following se
tion 4.4 Analysis of the 
onstraintsIn this se
tion we will analyse the geometry of the 
onstraints introdu
ed in thelast se
tion. We want to show that the relations between di�erent entities are
ontrolled by their orthogonal distan
e, the Hesse distan
e.4.1 Point-line 
onstraintEvaluating the 
onstraint of a point X = 1+ Ix 
ollinear to a line L = n+ Imleads to 0 = XL�LX = (1 + Ix)(n+ Im)� (n� Im)(1 + Ix)= n+ Im+ Ixn�n+ Im� Inx = I(2m+ xn� nx)= 2I(m�n� x), 0 = I(m� n� x):Sin
e I 6= 0, although I2 = 0, the aim is to analyze the bive
tor m � n � x.Suppose X =2 L. Then, nonetheless, there exists a de
omposition x = x1 + x2withX1 = (1+Ix1) 2 L andX2 = (1+Ix2) ? L. Figure 2 shows the s
enario.
1
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n

Lx

v

x

xFig. 2. The line L 
onsists of the dire
tion n and the momentm = n�v. Further, thereexists a de
omposition x = x1+x2 withX1 = (1+Ix1) 2 L andX2 = (1+Ix2) ? L,so that m = n� v = n� x1.Then we 
an 
al
ulatekm� n� xk = km� n� (x1 + x2)k = km� n� x1 � n� x2k= k � n� x2k = kx2k:Thus, satisfying the point-line 
onstraint means to equate the bive
torsm andn � x, respe
tively making the Hesse distan
e kx2k of the point X to the lineL to zero.



4.2 Point-plane 
onstraintEvaluating the 
onstraint of a point X = 1+Ix 
oplanar to a plane P = p+Idleads to 0 = PX �XP = (p+ Id)(1 + Ix)� (1� Ix)(p� Id)= p+ Ipx+ Id� p+ Id+ Ixp = I(2d+ px+ xp), 0 = I(d+ p � x):Sin
e I 6= 0, although I2 = 0, the aim is to analyze the s
alar d+p �x. SupposeX =2 P . The value d 
an be interpreted as a sum so that d = d01+ d02 and d01pis the orthogonal proje
tion of x onto p. Figure 3 shows the s
enario. Then we
p
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Fig. 3. The value d 
an be interpreted as a sum d = d01+d02 so that d01p 
orrespondsto the orthogonal proje
tion of x onto p.
an 
al
ulate d+ p � x = d01 + d02 + p � x = d01 + p � x+ d02 = d02.The value of the expression d + p � x 
orresponds to the Hesse distan
e of thepoint X to the plane P .4.3 Line-plane 
onstraintEvaluating the 
onstraint of a line L = n+ Im 
oplanar to a plane P = p+ Idleads to 0 = LP +PL = (n+ Im)(p+ Id) + (p+ Id)(n� Im)= np+ Imp+ Ind+ pn+ Ind� Ipm= np+ pn+ I(2dn� pm+mp), 0 = n � p+ I(dn� p�m)Thus, the 
onstraint 
an be partitioned in one 
onstraint on the real part of themotor and one 
onstraint on the dual part of the motor. The aim is to analyzethe s
alar n � p and the bive
tor dn� (p�m) independently. Suppose L =2 P .If n 6? p the real part leads ton � p = �knkkpk 
os(�) = � 
os(�),where � is the angle between L and P , see �gure 4. If n ? p, we have n �p = 0.Sin
e the dire
tion of the line is independent of the translation of the rigid bodymotion, the 
onstraint on the real part 
an be used to generate equations withthe parameters of the rotation as the only unknowns. The 
onstraint on the dualpart 
an then be used to determine the unknown translation. In other words,sin
e the motor to be estimated, M = R + IRT = R + IR0, is determined in



its real part only by rotation, the real part of the 
onstraint allows to estimatethe rotor R, while the dual part of the 
onstraint allows to estimate the rotorR0. So it is possible to sequentially separate equations on the unknown rotationfrom equations on the unknown translation without the limitations, known fromthe embedding of the problem in Eu
lidean spa
e [7℄. This is very useful, sin
ethe two smaller equation systems are easier to solve than one larger equationsystem. To analyse the dual part of the 
onstraint, we interpret the moment mof the line representation L = n + Im as m = n � s and 
hoose a ve
tor swith S = (1 + Is) 2 L and s ? n. By expressing the inner produ
t as the anti-
ommutator produ
t, it 
an be shown ([1℄) that �(p�m) = (s �p)n� (n � p)s.Now we 
an evaluatedn� (p�m) = dn� (n � p)s+ (s � p)n.Figure 4 shows the s
enario. Further, we 
an �nd a ve
tor s1 k s with
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Fig. 4. The plane P 
onsists of its normal p and the Hesse distan
e d. Furthermore we
hoose S = (1+ Is) 2 L with s ? n. The angle of n and p is � and the angle of s andp is �. We 
hoose the ve
tor s1 with s k s1 so that dp is the orthogonal proje
tion of(s+ s1) onto p.0 = d� (ksk+ ks1k) 
os(�). The ve
tor s1 might also be antiparallel to s. Thisleads to a 
hange of the sign, but does not a�e
t the 
onstraint itself. Now we
an evaluatedn� (n � p)s+ (s � p)n = dn� ksk 
os(�)n+ 
os(�)s = ks1k 
os(�)n+ 
os(�)s.The error of the dual part 
onsists of the ve
tor s s
aled by the angle � and thedire
tion n s
aled by the norm of s1 and the angle �.If n ? p, then p k s and thus, we will �ndkdn� (p�m)k = kdn+ (s � p)n� (n � p)sk = k(d+ s � p)nk = j(d+ s � p)j.This means, in agreement to the point-plane 
onstraint, that (d+s �p) des
ribesthe Hesse distan
e of the line to the plane. This analysis shows that the 
onsid-ered 
onstraints are not only qualitative 
onstraints, but also quantitative ones.This is very important, sin
e we want to measure the extend of ful�llment ofthese 
onstraints in the 
ase of noisy data.5 ExperimentsIn this se
tion we present some experiments with real images. We expe
t thatboth the spe
ial 
onstraint and the algorithmi
 approa
h of using it may in-
uen
e the results. In our experimental s
enario we took a B21 mobile robotequipped with a stereo 
amera head and positioned it two meters in front of a



Fig. 5. The s
enario of the experiment: In the top row two perspe
tives of the 3Dobje
t model are shown. In the se
ond row (left) the 
alibration is performed and the3D obje
t model is proje
ted on the image. Then the 
amera moved and 
orrespondingline segments are extra
ted.
alibration 
ube. We fo
used one 
amera on the 
alibration 
ube and took animage. Then we moved the robot, fo
used the 
amera again on the 
ube and tookanother image. The edge size of the 
alibration 
ube is 46 
m and the image sizeis 384� 288 pixel. Furthermore, we de�ned on the 
alibration 
ube a 3D obje
tmodel. Figure 5 shows the s
enario. In the �rst row two perspe
tive views of the3D obje
t model are shown. In the left image of the se
ond row the 
alibrationis performed and the 3D obje
t model is proje
ted onto the image. Then the
amera is moved and 
orresponding line segments are extra
ted. To visualizethe movement, we also proje
ted the 3D obje
t model on its original position.The aim is to �nd the pose of the model and so the motion of the 
amera. Inthis experiment we a
tually sele
ted 
ertain points by hand and from these thedepi
ted line segments are derived and, by knowing the 
amera 
alibration bythe 
ube of the �rst image, the a
tual proje
tion ray and proje
tion plane pa-rameters are 
omputed. In table 2 we show the results of di�erent algorithmsfor pose estimation. In the se
ond 
olumn of table 2 EKF denotes the use of anextended Kalman �lter. The design of the extended Kalman �lters is des
ribedin [6℄. MAT denotes matrix algebra, SVD denotes the singular value de
ompo-sition of a matrix to ensure a rotation matrix as a result. In the third 
olumnthe used 
onstraints, point-line (XL), point-plane (XP) and line-plane (LP) areindi
ated. The fourth 
olumn shows the results of the estimated rotation matrixR and the translation ve
tor t, respe
tively. Sin
e the translation ve
tors arein mm, the results di�er at around 2-3 
m. The �fth 
olumn shows the error ofthe equation system. Sin
e the error of the equation system des
ribes the Hessedistan
e of the entities, the value of the error is an approximation of the squaredaverage distan
e of the entities. It is easy to see, that the results obtained withthe di�erent approa
hes are 
lose to ea
h other, though the implementation leadsto di�erent algorithms. Furthermore the EKF's perform more stable than thematrix solution approa
hes.



no. R | t Constraint Experiment 1 Error1 RtEKF | RtEKF XL-XL R = � 0:987 0:089 �0:138�0:117 0:969 �0:2180:115 0:231 0:966 � t = � �58:21�217:26160:60 � 5:22 SVD | MAT XL-XL R = � 0:976 0:107 �0:191�0:156 0:952 �0:2640:154 0:287 0:945 � t = � �60:12�212:16106:60 � 6:73 RtEKF | RtEKF XP-XP R = � 0:987 0:092 �0:133�0:118 0:973 �0:2000:111 0:213 0:970 � t = � �52:67�217:00139:00 � 5:54 RtEKF | MAT XP-XP R = � 0:986 0:115 �0:118�0:141 0:958 �0:2470:085 0:260 0:962 � t = � �71:44�219:34124:71 � 3:75 SVD | MAT XP-XP R = � 0:979 0:101 �0:177�0:144 0:957 �0:2510:143 0:271 0:952 � t = � �65:55�221:18105:87 � 5:36 SVD | MAT LP-XP R = � 0:976 0:109 �0:187�0:158 0:950 �0:2660:149 0:289 0:945 � t = � �66:57�216:18100:53 � 7:17 MEKF | MEKF LP-LP R = � 0:985 0:106 �0:134�0:133 0:969 �0:2080:107 0:229 0:969 � t = � �50:10�212:60142:20 � 2:98 MEKF | MAT LP-LP R = � 0:985 0:106 �0:134�0:133 0:968 �0:2130:108 0:228 0:968 � t = � �67:78�227:73123:90 � 2:79 SVD | MAT LP-LP R = � 0:976 0:109 �0:187�0:158 0:950 �0:2660:149 0:289 0:945 � t = � �80:58�225:5993:93 � 6:9Table 2. The experiment 1 results in di�erent qualities of derived motion parameters,depending on the used 
onstraints and algorithms to evaluate their validity.

Fig. 6. Visualization of some errors. We 
al
ulate the motion of the obje
t and proje
tthe transformed obje
t in the image planes. The extra
ted line segments are also shown.In the �rst and se
ond row, the results of nos. 5, 3 and nos. 7, 8 of table 2 are visualisedrespe
tively.The visualization of some errors is done in �gure 6. We 
al
ulated the motionof the obje
t and proje
ted the transformed obje
t in the image plane. Theextra
ted line segments are overlayed in addition. Figure 6 shows in the �rstrow, left the results of nos. 5, 3 and nos. 7, 8 of table 2 respe
tively. The resultsof no. 7 and 8 are very good, 
ompared with the results of the other algorithms.These results are in agrement with the well known behavior of error prop-agation in 
ase of matrix based rotation estimation. The EKF performs morestable. This is a 
onsequen
e of the estimator themselves and of the fa
t thatin our approa
h rotation is represented as rotors. The 
on
atenation of rotors is



more robust than that of rotation matri
es.6 Con
lusionsThe main 
ontribution of the paper is to formulate 2D-3D pose determination inthe language of kinemati
s as a problem of estimating rotation and translationfrom geometri
 
onstraint equations. There are three su
h 
onstraints whi
h re-late the model frame to an observation frame. The model data are either pointsor lines. The observation frame is 
onstituted by lines or planes. Any deviationsfrom the 
onstraint 
orrespond the Hesse distan
e of the involved geometri
entities. From this starting point as a useful algebrai
 frame for handling linemotion, the motor algebra has been introdu
ed. This is an eight-dimensional lin-ear spa
e with the property of representing rigid movements in a linear manner.The use of the motor algebra allows to subsume the pose estimation problem by
ompa
t equations, sin
e the entities, the transformation of the entities and the
onstraints for 
ollinearity or 
oplanarity of entities 
an be des
ribed very e
o-nomi
ally. Furthermore the introdu
ed 
onstraints 
ontain a natural distan
emeasurement, the Hesse distan
e. This is the reason why the geometri
 
on-straints are well 
onditioned (in 
ontrast to invarian
es) and, thus behave morerobust in 
ase of noisy data.Referen
es1. C. Perwass and J. Lasenby. A novel axiomati
 derivation of geometri
 algebra.Te
hni
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