
Pose Estimation in the Language of KinematisBodo Rosenhahn, Yiwen Zhang, Gerald SommerInstitut f�ur Informatik und Praktishe MathematikChristian-Albrehts-Universit�at zu KielPreu�erstrasse 1-9, 24105 Kiel, Germanybro,yz,gs�ks.informatik.uni-kiel.deAbstrat. The paper onerns 2D-3D pose estimation in the algebrailanguage of kinematis. The pose estimation problem is modelled on thebase of several geometri onstraint equations. In that way the projetivegeometri aspet of the topi is only impliitly represented and thus, poseestimation is a pure kinemati problem. The dynami measurements ofthese onstraints are either points or lines. The authors propose theuse of motor algebra to introdue onstraint equations, whih keep anatural distane measurement, the Hesse distane. The motor algebra isa degenerate geometri algebra in whih line transformations are linearones. The experiments aim to ompare the use of di�erent onstraintsand di�erent methods of optimal estimating the pose parameters.1 IntrodutionThe paper desribes the estimation of pose parameters of known rigid objets inthe framework of kinematis. Pose estimation is a basi visual task. In spite ofits importane it has been identi�ed for a long time (see e.g. Grimson [5℄), andalthough there is published an overwhelming number of papers with respet tothat topi [9℄, up to now there is no unique and general solution of the problem.Pose estimation means to relate several oordinate frames of measurement dataand model data by �nding out the transformations between, whih an subsumerotation and translation. Sine we assume our measurement data as 2D andmodel data as 3D, we are onerned with a 2D-3D pose estimation problem.Camera self-loalization and navigation are typial examples of suh types ofproblems. The oupling of projetive and Eulidean transformations, both withnonlinear representations in Eulidean spae, is the main reason for the diÆ-ulties to solve the pose problem. In this paper we attend to a pose estimationrelated to estimations of line motion as a problem of kinematis. The probleman be linearly represented in motor algebra [8℄ or dual quaternion algebra [7℄.Instead of using invarianes as an expliit formulation of geometry as often hasbeen done in projetive geometry, we are using impliit formulations of geom-etry as geometri onstraints. We will demonstrate that geometri onstraintsare well onditioned, in ontrast to invarianes.The paper is organized as follows. In setion two we will introdue the mo-tor algebra as representation frame for either geometri entities, geometri on-straints, and Eulidean transformations. In setion three we introdue the geo-metri onstraints and their hanges in an observation senario. Setion four isdediated to the geometri analysis of these onstraints. In setion �ve we showsome results for onstraint based pose estimation with real images.2 The motor algebra in the frame of kinematisA geometri algebra Gp;q;r is a linear spae of dimension 2n, n = p + q + r,with a rih subspae struture, alled blades, to represent so-alled multivetors



as higher order algebrai entities in omparison to vetors of a vetor spaeas �rst order entities. A geometri algebra Gp;q;r results in a onstrutive wayfrom a vetor spae IRn, endowed with the signature (p; q; r), n = p + q + r byappliation of a geometri produt. The geometri produt onsists of an outer(^) and an inner (�) produt, whose role is to inrease or to derease the orderof the algebrai entities, respetively.To make it onretly, a motor algebra is the 8D even algebra G+3;0;1, derivedfrom IR4, i.e. n = 4, p = 3, q = 0, r = 1, with basis vetors k, k = 1; :::; 4, andthe property 21 = 22 = 23 = +1 and 24 = 0. Beause 24 = 0, G+3;0;1 is alled adegenerate algebra. The motor algebra G+3;0;1 is of dimension eight and spannedby qualitative di�erent subspaes with the following basis multivetors:one salar : 1six bivetors : 23; 31; 12; 41; 42; 43one pseudosalar : I � 1234.Beause 24 = 0, also the unit pseudosalar squares to zero, i.e. I2 = 0. Re-membering that the hyperomplex algebra of quaternions IH represents a 4Dlinear spae with one salar and three vetor omponents, it an simply beveri�ed that G+3;0;1 is isomorphi to the algebra of dual quaternions bIH [11℄.The geometri produt of bivetors A, B 2 hG+3;0;1i2, AB, splits into AB =A � B + A � B + A ^ B, where A � B is the inner produt, whih results ina salar A � B = �, A ^ B is the outer produt, whih in this ase results ina pseudosalar A ^ B = I�, and A � B is the ommutator produt, whihresults in a bivetor C, A �B = 12 (AB �BA) = C. In a general sense, mo-tors are alled all the entities existing in motor algebra. They are onstitutedby bivetors and salars. Thus, any geometri entity as points, lines, and planeshave a motor representation. Changing the sign of the salar and bivetor in thereal and the dual parts of the motor leads to the following variants of a motorM = (a0 + a) + I(b0 + b) fM = (a0 � a) + I(b0 � b)M = (a0 + a)� I(b0 + b) fM = (a0 � a)� I(b0 � b) .We will use the term motor in a more restrited sense to all with it a srewtransformation, that is an Eulidean transformation embedded in motor alge-bra. Its onstituents are rotation and translation (and dilation in ase of non-unitmotors). In line geometry we represent rotation by a rotation line axis and a ro-tation angle. The orresponding entity is alled a unit rotor, R, and reads asfollowsR = r0 + r123 + r231 + r312 = os � �2�+ sin � �2�n = exp � �2n�.Here � is the rotation angle and n is the unit orientation vetor of the rotationaxis, spanned by the bivetor basis.If on the other hand, t = t123 + t231 + t312 is a translation vetor inbivetor representation, it will be represented in motor algebra as the dual partof a motor, alled translator T withT = 1 + I t2 = exp�t2I�.Thus, a translator is also a speial kind of rotor.Beause rotation and translation onatenate multipliatively in motor alge-bra, a motor M reads M = TR = R+ I t2R = R+ IR0.A motor represents a line transformation as a srew transformation. The line Lwill be transformed to the line L0 by means of a rotation Rs around a line Ls



by angle �, followed by a translation ts parallel to Ls. Then the srew motionequation as motor transformation readsL0 = T sRsL eRsfT s =MLfM .For more detailed introdutions see [8℄ and [10℄. Now we will introdue the de-sription of the most important geometri entities [8℄.A point x 2 IR3, represented in the bivetor basis of G+3;0;1, i.e. X 2 G+3;0;1,reads X = 1 + x141 + x242 + x343 = 1 + Ix.A line L 2 G+3;0;1 is represented by L = n + Im with the line diretionn = n123+n231+n312 and the momentm = m123+m231+m312.A plane P 2 G+3;0;1 will be de�ned by its normal p as bivetor and by itsHesse distane to the origin, expressed as the salar d = (x � p), in the followingway, P = p+ Id.In ase of srew motions M = T sRs not only line transformations anbe modelled, but also point and plane transformations. These are expressed asfollows. X 0 =MXfM L0 =MLfM P 0 =MP fMWe will use in this study only point and line transformations beause pointsand lines are the entities of our objet models.3 Geometri onstraints and pose estimationFirst, we make the following assumptions. The model of an objet is given bypoints and lines in the 3D spae. Furthermore we extrat line subspaes or pointsin an image of a alibrated amera and math them with the model of the objet.The aim is to �nd the pose of the objet from observations of points and linesin the images at di�erent poses. Figure 1 shows the senario with respet toobserved line subspaes. The method of obtaining the line subspaes is out ofsope of this paper. Contemporary we simply got line segments by markingertain image points by hand. To estimate the pose, it is neessary to relate theobserved lines in the image to the unknown pose of the objet using geometrionstraints.The key idea is that the observed 2D entities together with their orrespond-ing 3D entities are onstraint to lie on other, higher order entities whih resultfrom the perspetive projetion. In our onsidered senario there are three on-straints whih are attributed to two lasses of onstraints:1. Collinearity: A 3D point has to lie on a line (projetion ray) in the spae2. Coplanarity: A 3D point or line has to lie on a plane (projetion plane).With the terms projetion ray or projetion plane, respetively, we mean theimage-forming ray whih relates a 3D point with the projetion enter or the in-�nite set of image-forming rays whih relates all 3D points belonging to a 3D linewith the projetion enter, respetively. Thus, by introduing these two entities,we impliitly represent a perspetive projetion without neessarily formulatingit expliitly. The most important onsequene of impliitly representing proje-tive geometry is that the pose problem is in that framework a pure kinematiproblem. A similar approah of avoiding perspetive projetion equations byusing onstraint observations of lines has been proposed in [2℄.To be more detailed, in the senario of �gure 1 we desribe the followingsituation: We assume 3D points A0i and lines L0Ai of an objet model. Furtherwe extrat line subspaes lai in an image of a alibrated amera and math themwith the model.Three onstraints an be depited:
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Fig. 1. The senario. The solid lines at the left hand desribe the assumptions: theamera model, the model of the objet and the initially extrated lines on the imageplane. The dashed lines at the right hand desribe the atual pose of the model, whihleads to the best �t of the objet with the atual extrated lines.1. A transformed point, e.g. A1, of the model point A01 must lie on the proje-tion ray La1, given by C and the orresponding image point a1.2. A transformed point, e.g. A1, of the model point A01 must lie on the proje-tion plane P12, given by C and the orresponding image line la3.3. A transformed line, e.g. LA3, of the model line L0A3 must lie on the proje-tion plane P12, given by C and the the orresponding image line la3.onstraint entities dual quaternion algebra motor algebrapoint X = 1 + Ixpoint-line line L = n+ Im LX �XL = 0 XL�LX = 0point X = 1 + Ixpoint-plane plane P = p+ Id PX �XP = 0 PX �XP = 0line L = n+ Imline-plane plane P = p+ Id LP � PL = 0 LP +PL = 0Table 1. The geometri onstraints expressed in motor algebra and dual quatenionalgebra, respetively.Table 1 gives an overview on the formulations of these onstraints in mo-tor algebra, taken from Blashke [4℄, who used expressions in dual quaternionalgebra. Here we adopt the terms from setion 2.The meaning of the onstraint equations is immediately lear. In setion 4we will proeed to analyse them in detail. They represent the ideal situation,e.g. ahieved as the result of the pose estimation proedure with respet to theobservation frame. With respet to the previous referene frame, indiated byprimes, these onstraints read(MX0fM)L�L(MX0fM) = 0



P (MX0fM)� (MX0fM)P = 0(ML0fM)P +P (ML0fM) = 0:These ompat equations subsume the pose estimation problem at hand: �ndthe best motorM whih satis�es the onstraint. We will get a onvex optimiza-tion problem. Any error measure j�j > 0 of the optimization proess as atualdeviation from the onstraint equation an be interpreted as a distane measureof misalignment with respet to the ideal situation of table 1. That means e.g.that the onstraint for a point on a line is almost ful�lled for a point near theline. This will be made lear in the following setion 4.4 Analysis of the onstraintsIn this setion we will analyse the geometry of the onstraints introdued in thelast setion. We want to show that the relations between di�erent entities areontrolled by their orthogonal distane, the Hesse distane.4.1 Point-line onstraintEvaluating the onstraint of a point X = 1+ Ix ollinear to a line L = n+ Imleads to 0 = XL�LX = (1 + Ix)(n+ Im)� (n� Im)(1 + Ix)= n+ Im+ Ixn�n+ Im� Inx = I(2m+ xn� nx)= 2I(m�n� x), 0 = I(m� n� x):Sine I 6= 0, although I2 = 0, the aim is to analyze the bivetor m � n � x.Suppose X =2 L. Then, nonetheless, there exists a deomposition x = x1 + x2withX1 = (1+Ix1) 2 L andX2 = (1+Ix2) ? L. Figure 2 shows the senario.
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4.2 Point-plane onstraintEvaluating the onstraint of a point X = 1+Ix oplanar to a plane P = p+Idleads to 0 = PX �XP = (p+ Id)(1 + Ix)� (1� Ix)(p� Id)= p+ Ipx+ Id� p+ Id+ Ixp = I(2d+ px+ xp), 0 = I(d+ p � x):Sine I 6= 0, although I2 = 0, the aim is to analyze the salar d+p �x. SupposeX =2 P . The value d an be interpreted as a sum so that d = d01+ d02 and d01pis the orthogonal projetion of x onto p. Figure 3 shows the senario. Then we
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Fig. 3. The value d an be interpreted as a sum d = d01+d02 so that d01p orrespondsto the orthogonal projetion of x onto p.an alulate d+ p � x = d01 + d02 + p � x = d01 + p � x+ d02 = d02.The value of the expression d + p � x orresponds to the Hesse distane of thepoint X to the plane P .4.3 Line-plane onstraintEvaluating the onstraint of a line L = n+ Im oplanar to a plane P = p+ Idleads to 0 = LP +PL = (n+ Im)(p+ Id) + (p+ Id)(n� Im)= np+ Imp+ Ind+ pn+ Ind� Ipm= np+ pn+ I(2dn� pm+mp), 0 = n � p+ I(dn� p�m)Thus, the onstraint an be partitioned in one onstraint on the real part of themotor and one onstraint on the dual part of the motor. The aim is to analyzethe salar n � p and the bivetor dn� (p�m) independently. Suppose L =2 P .If n 6? p the real part leads ton � p = �knkkpk os(�) = � os(�),where � is the angle between L and P , see �gure 4. If n ? p, we have n �p = 0.Sine the diretion of the line is independent of the translation of the rigid bodymotion, the onstraint on the real part an be used to generate equations withthe parameters of the rotation as the only unknowns. The onstraint on the dualpart an then be used to determine the unknown translation. In other words,sine the motor to be estimated, M = R + IRT = R + IR0, is determined in



its real part only by rotation, the real part of the onstraint allows to estimatethe rotor R, while the dual part of the onstraint allows to estimate the rotorR0. So it is possible to sequentially separate equations on the unknown rotationfrom equations on the unknown translation without the limitations, known fromthe embedding of the problem in Eulidean spae [7℄. This is very useful, sinethe two smaller equation systems are easier to solve than one larger equationsystem. To analyse the dual part of the onstraint, we interpret the moment mof the line representation L = n + Im as m = n � s and hoose a vetor swith S = (1 + Is) 2 L and s ? n. By expressing the inner produt as the anti-ommutator produt, it an be shown ([1℄) that �(p�m) = (s �p)n� (n � p)s.Now we an evaluatedn� (p�m) = dn� (n � p)s+ (s � p)n.Figure 4 shows the senario. Further, we an �nd a vetor s1 k s with
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Fig. 4. The plane P onsists of its normal p and the Hesse distane d. Furthermore wehoose S = (1+ Is) 2 L with s ? n. The angle of n and p is � and the angle of s andp is �. We hoose the vetor s1 with s k s1 so that dp is the orthogonal projetion of(s+ s1) onto p.0 = d� (ksk+ ks1k) os(�). The vetor s1 might also be antiparallel to s. Thisleads to a hange of the sign, but does not a�et the onstraint itself. Now wean evaluatedn� (n � p)s+ (s � p)n = dn� ksk os(�)n+ os(�)s = ks1k os(�)n+ os(�)s.The error of the dual part onsists of the vetor s saled by the angle � and thediretion n saled by the norm of s1 and the angle �.If n ? p, then p k s and thus, we will �ndkdn� (p�m)k = kdn+ (s � p)n� (n � p)sk = k(d+ s � p)nk = j(d+ s � p)j.This means, in agreement to the point-plane onstraint, that (d+s �p) desribesthe Hesse distane of the line to the plane. This analysis shows that the onsid-ered onstraints are not only qualitative onstraints, but also quantitative ones.This is very important, sine we want to measure the extend of ful�llment ofthese onstraints in the ase of noisy data.5 ExperimentsIn this setion we present some experiments with real images. We expet thatboth the speial onstraint and the algorithmi approah of using it may in-uene the results. In our experimental senario we took a B21 mobile robotequipped with a stereo amera head and positioned it two meters in front of a



Fig. 5. The senario of the experiment: In the top row two perspetives of the 3Dobjet model are shown. In the seond row (left) the alibration is performed and the3D objet model is projeted on the image. Then the amera moved and orrespondingline segments are extrated.alibration ube. We foused one amera on the alibration ube and took animage. Then we moved the robot, foused the amera again on the ube and tookanother image. The edge size of the alibration ube is 46 m and the image sizeis 384� 288 pixel. Furthermore, we de�ned on the alibration ube a 3D objetmodel. Figure 5 shows the senario. In the �rst row two perspetive views of the3D objet model are shown. In the left image of the seond row the alibrationis performed and the 3D objet model is projeted onto the image. Then theamera is moved and orresponding line segments are extrated. To visualizethe movement, we also projeted the 3D objet model on its original position.The aim is to �nd the pose of the model and so the motion of the amera. Inthis experiment we atually seleted ertain points by hand and from these thedepited line segments are derived and, by knowing the amera alibration bythe ube of the �rst image, the atual projetion ray and projetion plane pa-rameters are omputed. In table 2 we show the results of di�erent algorithmsfor pose estimation. In the seond olumn of table 2 EKF denotes the use of anextended Kalman �lter. The design of the extended Kalman �lters is desribedin [6℄. MAT denotes matrix algebra, SVD denotes the singular value deompo-sition of a matrix to ensure a rotation matrix as a result. In the third olumnthe used onstraints, point-line (XL), point-plane (XP) and line-plane (LP) areindiated. The fourth olumn shows the results of the estimated rotation matrixR and the translation vetor t, respetively. Sine the translation vetors arein mm, the results di�er at around 2-3 m. The �fth olumn shows the error ofthe equation system. Sine the error of the equation system desribes the Hessedistane of the entities, the value of the error is an approximation of the squaredaverage distane of the entities. It is easy to see, that the results obtained withthe di�erent approahes are lose to eah other, though the implementation leadsto di�erent algorithms. Furthermore the EKF's perform more stable than thematrix solution approahes.



no. R | t Constraint Experiment 1 Error1 RtEKF | RtEKF XL-XL R = � 0:987 0:089 �0:138�0:117 0:969 �0:2180:115 0:231 0:966 � t = � �58:21�217:26160:60 � 5:22 SVD | MAT XL-XL R = � 0:976 0:107 �0:191�0:156 0:952 �0:2640:154 0:287 0:945 � t = � �60:12�212:16106:60 � 6:73 RtEKF | RtEKF XP-XP R = � 0:987 0:092 �0:133�0:118 0:973 �0:2000:111 0:213 0:970 � t = � �52:67�217:00139:00 � 5:54 RtEKF | MAT XP-XP R = � 0:986 0:115 �0:118�0:141 0:958 �0:2470:085 0:260 0:962 � t = � �71:44�219:34124:71 � 3:75 SVD | MAT XP-XP R = � 0:979 0:101 �0:177�0:144 0:957 �0:2510:143 0:271 0:952 � t = � �65:55�221:18105:87 � 5:36 SVD | MAT LP-XP R = � 0:976 0:109 �0:187�0:158 0:950 �0:2660:149 0:289 0:945 � t = � �66:57�216:18100:53 � 7:17 MEKF | MEKF LP-LP R = � 0:985 0:106 �0:134�0:133 0:969 �0:2080:107 0:229 0:969 � t = � �50:10�212:60142:20 � 2:98 MEKF | MAT LP-LP R = � 0:985 0:106 �0:134�0:133 0:968 �0:2130:108 0:228 0:968 � t = � �67:78�227:73123:90 � 2:79 SVD | MAT LP-LP R = � 0:976 0:109 �0:187�0:158 0:950 �0:2660:149 0:289 0:945 � t = � �80:58�225:5993:93 � 6:9Table 2. The experiment 1 results in di�erent qualities of derived motion parameters,depending on the used onstraints and algorithms to evaluate their validity.

Fig. 6. Visualization of some errors. We alulate the motion of the objet and projetthe transformed objet in the image planes. The extrated line segments are also shown.In the �rst and seond row, the results of nos. 5, 3 and nos. 7, 8 of table 2 are visualisedrespetively.The visualization of some errors is done in �gure 6. We alulated the motionof the objet and projeted the transformed objet in the image plane. Theextrated line segments are overlayed in addition. Figure 6 shows in the �rstrow, left the results of nos. 5, 3 and nos. 7, 8 of table 2 respetively. The resultsof no. 7 and 8 are very good, ompared with the results of the other algorithms.These results are in agrement with the well known behavior of error prop-agation in ase of matrix based rotation estimation. The EKF performs morestable. This is a onsequene of the estimator themselves and of the fat thatin our approah rotation is represented as rotors. The onatenation of rotors is



more robust than that of rotation matries.6 ConlusionsThe main ontribution of the paper is to formulate 2D-3D pose determination inthe language of kinematis as a problem of estimating rotation and translationfrom geometri onstraint equations. There are three suh onstraints whih re-late the model frame to an observation frame. The model data are either pointsor lines. The observation frame is onstituted by lines or planes. Any deviationsfrom the onstraint orrespond the Hesse distane of the involved geometrientities. From this starting point as a useful algebrai frame for handling linemotion, the motor algebra has been introdued. This is an eight-dimensional lin-ear spae with the property of representing rigid movements in a linear manner.The use of the motor algebra allows to subsume the pose estimation problem byompat equations, sine the entities, the transformation of the entities and theonstraints for ollinearity or oplanarity of entities an be desribed very eo-nomially. Furthermore the introdued onstraints ontain a natural distanemeasurement, the Hesse distane. This is the reason why the geometri on-straints are well onditioned (in ontrast to invarianes) and, thus behave morerobust in ase of noisy data.Referenes1. C. Perwass and J. Lasenby. A novel axiomati derivation of geometri algebra.Tehnial Report CUED/F - INFENG/TR.347, Cambridge University EngineeringDepartment, 1999.2. Shevlin F. Analysis of orientation problems using Pl�uker lines. International Con-ferene on Pattern Reognition, Brisbane, 1: 685{689, 1998.3. Horaud R., Phong T.Q. and P.D. Tao. Objet pose from 2-d to 3-d point and lineorrespondenes. International Journal of Computer Vision, 15: 225{243, 1995.4. Blashke W. Mathematishe Monographien 4, Kinematik und Quaternionen.Deutsher Verlag der Wissenshaften, 1960.5. Grimson W. E. L. Objet Reognition by Computer. The MIT Press, Cambridge,MA, 1990.6. Sommer G., Rosenhahn B. and Zhang Y. Pose Estimation Using Geometri Con-straints Tehnial Report 2003, Institut f�ur Informatik und Praktishe Mathematik,Christian-Albrehts-Universit�at zu Kiel7. Daniilidis K. Hand-eye alibration using dual quaternions. Int. Journ. RobotisRes, 18: 286{298, 1999.8. Bayro-Corrohano E. The geometry and algebra of kinematis. In Sommer G., ed-itor, Geometri Computing with Cli�ord Algebra. Springer Verlag, to be published,2000.9. Careroni R. L. and C. M. Brown. Numerial Methods for Model-Based PoseReovery. Tehn. Rept. 659, Comp. Si. Dept., The Univ. of Rohester, Rohester,N. Y., August 1998.10. Zhang Y., Sommer G., and E. Bayro-Corrohano. The motor extended Kalman�lter for dynami rigid motion estimation from line observations. In G. Sommer, ed-itor, Geometri Computing with Cli�ord Algebra. Springer Verlag, to be published,2000.11. Hestenes D., Li H. and A. Rokwood. New algebrai tools for lassial geometry.In Sommer G., editor, Geometri Computing with Cli�ord Algebra. Springer Verlag,to be published, 2000.This artile was proessed using the LATEX maro pakage with LLNCS style


