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Abstract. The paper concerns 2D-3D pose estimation in the algebraic
language of kinematics. The pose estimation problem is modelled on the
base of several geometric constraint equations. In that way the projective
geometric aspect of the topic is only implicitly represented and thus, pose
estimation is a pure kinematic problem. The dynamic measurements of
these constraints are either points or lines. The authors propose the
use of motor algebra to introduce constraint equations, which keep a
natural distance measurement, the Hesse distance. The motor algebra is
a degenerate geometric algebra in which line transformations are linear
ones. The experiments aim to compare the use of different constraints
and different methods of optimal estimating the pose parameters.

1 Introduction

The paper describes the estimation of pose parameters of known rigid objects in
the framework of kinematics. Pose estimation is a basic visual task. In spite of
its importance it has been identified for a long time (see e.g. Grimson [5]), and
although there is published an overwhelming number of papers with respect to
that topic [9], up to now there is no unique and general solution of the problem.
Pose estimation means to relate several coordinate frames of measurement data
and model data by finding out the transformations between, which can subsume
rotation and translation. Since we assume our measurement data as 2D and
model data as 3D, we are concerned with a 2D-3D pose estimation problem.
Camera self-localization and navigation are typical examples of such types of
problems. The coupling of projective and Euclidean transformations, both with
nonlinear representations in Euclidean space, is the main reason for the diffi-
culties to solve the pose problem. In this paper we attend to a pose estimation
related to estimations of line motion as a problem of kinematics. The problem
can be linearly represented in motor algebra [8] or dual quaternion algebra [7].
Instead of using invariances as an explicit formulation of geometry as often has
been done in projective geometry, we are using implicit formulations of geom-
etry as geometric constraints. We will demonstrate that geometric constraints
are well conditioned, in contrast to invariances.

The paper is organized as follows. In section two we will introduce the mo-
tor algebra as representation frame for either geometric entities, geometric con-
straints, and Euclidean transformations. In section three we introduce the geo-
metric constraints and their changes in an observation scenario. Section four is
dedicated to the geometric analysis of these constraints. In section five we show
some results for constraint based pose estimation with real images.

2 The motor algebra in the frame of kinematics

A geometric algebra G, ,, is a linear space of dimension 2", n = p + ¢ + 7,
with a rich subspace structure, called blades, to represent so-called multivectors



as higher order algebraic entities in comparison to vectors of a vector space
as first order entities. A geometric algebra G, ,, results in a constructive way
from a vector space R", endowed with the signature (p,q,7), n = p+q+7r by
application of a geometric product. The geometric product consists of an outer
(A) and an inner (-) product, whose role is to increase or to decrease the order
of the algebraic entities, respectively.

To make it concretly, a motor algebra is the 8D even algebra 9307], derived

from R*, ie.n=4,p=3,¢=0, r =1, with basis vectors v, k = 1,...,4, and
the property 77 = 73 = 7§ = +1 and 7§ = 0. Because 7§ = 0, G5, is called a
degenerate algebra. The motor algebra g;o 1 is of dimension eight and spanned
by qualitative different subspaces with the following basis multivectors:

one scalar 01

six bivectors D Y27Y3, Y31, Y12, V4V, Y42, Y43

one pseudoscalar : I = y17vy2y374.
Because 72 = 0, also the unit pseudoscalar squares to zero, i.e. I’ = 0. Re-
membering that the hypercomplex algebra of quaternions IH represents a 4D
linear space with one scalar and three vector components, it can simAply be

verified that g;m is isomorphic to the algebra of dual quaternions IH [11].

The geometric product of bivectors A, B € (G1,,)2, AB, splits into AB =
A-B+ Ax B+ AAB, where A - B is the inner product, which results in
a scalar A- B = a, A A B is the outer product, which in this case results in
a pseudoscalar A A B = I3, and A x B is the commutator product, which
results in a bivector C, A x B = { (AB — BA) = C. In a general sense, mo-
tors are called all the entities existing in motor algebra. They are constituted
by bivectors and scalars. Thus, any geometric entity as points, lines, and planes
have a motor representation. Changing the sign of the scalar and bivector in the
real and the dual parts of the motor leads to the following variants of a motor
M:(a0+a)+I(bo+b) ,‘M:((Ln*a)-FI(bn*b)
M = (ap+a)—I(bo+b) M= (ao—a)—I(bg—b).
We will use the term motor in a more restricted sense to call with it a screw
transformation, that is an Euclidean transformation embedded in motor alge-
bra. Its constituents are rotation and translation (and dilation in case of non-unit
motors). In line geometry we represent rotation by a rotation line axis and a ro-
tation angle. The corresponding entity is called a unit rotor, R, and reads as
follows
R =19+ riv2773 + r2yay1 + r3yiy2 = cos (%) + sin (%) n = exp (%n)

Here 6 is the rotation angle and 7 is the unit orientation vector of the rotation
axis, spanned by the bivector basis.

If on the other hand, t = t17y27y3 + tay3y1 + t3y172 is a translation vector in
bivector representation, it will be represented in motor algebra as the dual part
of a motor, called translator T with

T:1+I% = exp (%I)
Thus, a translator is also a special kind of rotor.
Because rotation and translation concatenate multiplicatively in motor alge-
bra, a motor M reads
M=TR=R+I!R=R+IR.
A motor represents a line transformation as a screw transformation. The line L
will be transformed to the line L' by means of a rotation R, around a line L,



by angle 6, followed by a translation t, parallel to Ls. Then the screw motion
equation as motor transformation reads

L' =T.R,LR.T,= MLM.
For more detailed introductions see [8] and [10]. Now we will introduce the de-
scription of the most important geometric entities [8].

A point € R?, represented in the bivector basis of 9;071, ie. X € g;jm,
reads X = 14+ 19471 + T2Yay2 + 237473 = 1 + Tx.

A line L € 9;0,1 is represented by L = n 4+ Im with the line direction
n = ni7y27y3 +n27y3y1 + 137172 and the moment m = mqy2y3 +may3y1 +msy17y2.

A plane P € 9;071 will be defined by its normal p as bivector and by its
Hesse distance to the origin, expressed as the scalar d = (x - p), in the following
way, P =p+ Id.

In case of screw motions M = T R, not only line transformations can
be modelled, but also point and plane transformations. These are expressed as
follows. - -

X' =MXM L'=MLM P=-=MPM

We will use in this study only point and line transformations because points

and lines are the entities of our object models.

3 Geometric constraints and pose estimation

First, we make the following assumptions. The model of an object is given by
points and lines in the 3D space. Furthermore we extract line subspaces or points
in an image of a calibrated camera and match them with the model of the object.
The aim is to find the pose of the object from observations of points and lines
in the images at different poses. Figure 1 shows the scenario with respect to
observed line subspaces. The method of obtaining the line subspaces is out of
scope of this paper. Contemporary we simply got line segments by marking
certain image points by hand. To estimate the pose, it is necessary to relate the
observed lines in the image to the unknown pose of the object using geometric
constraints.

The key idea is that the observed 2D entities together with their correspond-
ing 3D entities are constraint to lie on other, higher order entities which result
from the perspective projection. In our considered scenario there are three con-
straints which are attributed to two classes of constraints:

1. Collinearity: A 3D point has to lie on a line (projection ray) in the space

2. Coplanarity: A 3D point or line has to lie on a plane (projection plane).
With the terms projection ray or projection plane, respectively, we mean the
image-forming ray which relates a 3D point with the projection center or the in-
finite set of image-forming rays which relates all 3D points belonging to a 3D line
with the projection center, respectively. Thus, by introducing these two entities,
we implicitly represent a perspective projection without necessarily formulating
it explicitly. The most important consequence of implicitly representing projec-
tive geometry is that the pose problem is in that framework a pure kinematic
problem. A similar approach of avoiding perspective projection equations by
using constraint observations of lines has been proposed in [2].

To be more detailed, in the scenario of figure 1 we describe the following
situation: We assume 3D points A% and lines L’ 4; of an object model. Further
we extract line subspaces l,; in an image of a calibrated camera and match them
with the model.

Three constraints can be depicted:



>, observed model

Fig. 1. The scenario. The solid lines at the left hand describe the assumptions: the
camera model, the model of the object and the initially extracted lines on the image
plane. The dashed lines at the right hand describe the actual pose of the model, which
leads to the best fit of the object with the actual extracted lines.

1. A transformed point, e.g. Aq, of the model point A} must lie on the projec-
tion ray L1, given by C and the corresponding image point a;.

2. A transformed point, e.g. A4, of the model point A} must lie on the projec-
tion plane Pjq, given by C and the corresponding image line 1,3.

3. A transformed line, e.g. L 43, of the model line L’ 43 must lie on the projec-
tion plane Pjq, given by C and the the corresponding image line l,3.

constraint entities dual quaternion algebra| motor algebra

point-line POt X 21:;: LX-XL=0 |XL-LX=0

s point X =1+ Iz X _ XP — _XP —
point-plane plane P — p + Id PX -XP=0 PX -XP=0

. lineL=n+1Im - -
line-pl LP - PL = LP + PL =
ine-plane plane P — p + Id 0 + 0

Table 1. The geometric constraints expressed in motor algebra and dual quatenion
algebra, respectively.

Table 1 gives an overview on the formulations of these constraints in mo-
tor algebra, taken from Blaschke [4], who used expressions in dual quaternion
algebra. Here we adopt the terms from section 2.

The meaning of the constraint equations is immediately clear. In section 4
we will proceed to analyse them in detail. They represent the ideal situation,
e.g. achieved as the result of the pose estimation procedure with respect to the
observation frame. With respect to the previous reference frame, indicated by
primes, these constraints read

(MX'ﬁ)L - E(Mx'ﬁ) =0



P(Mx'ﬁ) - (Mx'ﬁ)ﬁ =0
(ML'M)P + P(ML'M) = 0.

These compact equations subsume the pose estimation problem at hand: find
the best motor M which satisfies the constraint. We will get a convex optimiza-
tion problem. Any error measure || > 0 of the optimization process as actual
deviation from the constraint equation can be interpreted as a distance measure
of misalignment with respect to the ideal situation of table 1. That means e.g.
that the constraint for a point on a line is almost fulfilled for a point near the
line. This will be made clear in the following section 4.

4 Analysis of the constraints

In this section we will analyse the geometry of the constraints introduced in the
last section. We want to show that the relations between different entities are
controlled by their orthogonal distance, the Hesse distance.

4.1 Point-line constraint

Evaluating the constraint of a point X = 1+ Iz collinear to a line L =n+ Im
leads to

0=XL-LX =(1+1Iz)(n+Im)—(n—Im)(1+Iz)

=n+Im+Ien—n+Im—Inzx=I2m+ xzn— nc)
=2I(m—n x x)
S0=I(m-nxx).

Since I # 0, although I* = 0, the aim is to analyze the bivector m — n X x.
Suppose X ¢ L. Then, nonetheless, there exists a decomposition & = x1 + x2
with X1 = (14 Ixq) € L and X2 = (14 Ix2) L L. Figure 2 shows the scenario.

Fig. 2. The line L consists of the direction n and the moment m = n xwv. Further, there
exists a decomposition £ = 1 +x2 with X1 = (14+Ix,) € L and X2 = (1+Ixz2) L L,
sothat m=mxv=mnXx.

Then we can calculate

lm-—mnxz|=|m-nx(z1+x2)|| =||m—nxx1 — 1N X 22|

= - nx 22 = [z

Thus, satisfying the point-line constraint means to equate the bivectors m and
n x x, respectively making the Hesse distance ||xz]|| of the point X to the line
L to zero.



4.2 Point-plane constraint
Evaluating the constraint of a point X = 14 Iz coplanar to a plane P = p+ Id
leads to
0=PX -XP=(p+Id)(1+TIx)—(1-Izx)(p—Id)
=p+Ipx+Id—p+Id+ Izp=1I(2d+ px+ zp)
S0=I(d+p-z).

Since I # 0, although I? = 0, the aim is to analyze the scalar d+ p - . Suppose
X ¢ P. The value d can be interpreted as a sum so that d = dg; + do2 and do1p
is the orthogonal projection of @ onto p. Figure 3 shows the scenario. Then we

dp

—— X

Fig. 3. The value d can be interpreted as a sum d = do1 + do2 so that doi1p corresponds
to the orthogonal projection of & onto p.

can calculate

d+p-x=dor+do2o+p-x=doi +p-x+ do> = doo2.
The value of the expression d + p -  corresponds to the Hesse distance of the
point X to the plane P.

4.3 Line-plane constraint

Evaluating the constraint of a line L = n + I'm coplanar to a plane P = p + Id
leads to

0=LP+ PL=(n+Im)(p+1Id+ (p+Id)(n—Im)
=np+ Imp+ Ind+pn+ Ind — Ipm
=np+ pn + I(2dn — pm + mp)
S0=n-p+I(dn—pxm)

Thus, the constraint can be partitioned in one constraint on the real part of the
motor and one constraint on the dual part of the motor. The aim is to analyze
the scalar n - p and the bivector dn — (p x m) independently. Suppose L ¢ P.
If n / p the real part leads to
n - p = —||nf|[|p|| cos(a) = — cos(a),

where « is the angle between L and P, see figure 4. If n L p, we have n-p = 0.
Since the direction of the line is independent of the translation of the rigid body
motion, the constraint on the real part can be used to generate equations with
the parameters of the rotation as the only unknowns. The constraint on the dual
part can then be used to determine the unknown translation. In other words,
since the motor to be estimated, M = R+ IRT = R+ IR’, is determined in



its real part only by rotation, the real part of the constraint allows to estimate
the rotor R, while the dual part of the constraint allows to estimate the rotor
R'. So it is possible to sequentially separate equations on the unknown rotation
from equations on the unknown translation without the limitations, known from
the embedding of the problem in Euclidean space [7]. This is very useful, since
the two smaller equation systems are easier to solve than one larger equation
system. To analyse the dual part of the constraint, we interpret the moment m
of the line representation L = n + I'm as m = n x s and choose a vector s
with § = (1 + Is) € L and s L n. By expressing the inner product as the anti-
commutator product, it can be shown ([1]) that —(p x m) = (s-p)n — (n - p)s.
Now we can evaluate
dn — (pxm)=dn— (n-p)s+ (s-p)n.
Figure 4 shows the scenario. Further, we can find a vector s1 || s with

Fig. 4. The plane P consists of its normal p and the Hesse distance d. Furthermore we
choose S = (1+ Is) € L with s 1. n. The angle of n and p is @ and the angle of s and
p is 3. We choose the vector 81 with s || 81 so that dp is the orthogonal projection of
(s + s1) onto p.

0=d— (]|s]] + ||s1]]) cos(B). The vector s; might also be antiparallel to s. This
leads to a change of the sign, but does not affect the constraint itself. Now we
can evaluate

dn — (n-p)s+ (s -p)n =dn — ||s|| cos(8)n + cos(a)s = ||s1]| cos(8)n + cos(a)s.
The error of the dual part consists of the vector s scaled by the angle a and the
direction n scaled by the norm of s; and the angle 3.
If n L p, then p || s and thus, we will find

ldn — (p x m)|| = [ldn + (s - p)n — (n-p)s|| = [|[(d + s - p)n|| = |(d+ s - p)|.

This means, in agreement to the point-plane constraint, that (d+ s-p) describes
the Hesse distance of the line to the plane. This analysis shows that the consid-
ered constraints are not only qualitative constraints, but also quantitative ones.
This is very important, since we want to measure the extend of fulfillment of
these constraints in the case of noisy data.

5 Experiments

In this section we present some experiments with real images. We expect that
both the special constraint and the algorithmic approach of using it may in-
fluence the results. In our experimental scenario we took a B21 mobile robot
equipped with a stereo camera head and positioned it two meters in front of a



Fig. 5. The scenario of the experiment: In the top row two perspectives of the 3D
object model are shown. In the second row (left) the calibration is performed and the
3D object model is projected on the image. Then the camera moved and corresponding
line segments are extracted.

calibration cube. We focused one camera on the calibration cube and took an
image. Then we moved the robot, focused the camera again on the cube and took
another image. The edge size of the calibration cube is 46 cm and the image size
is 384 x 288 pixel. Furthermore, we defined on the calibration cube a 3D object
model. Figure 5 shows the scenario. In the first row two perspective views of the
3D object model are shown. In the left image of the second row the calibration
is performed and the 3D object model is projected onto the image. Then the
camera is moved and corresponding line segments are extracted. To visualize
the movement, we also projected the 3D object model on its original position.
The aim is to find the pose of the model and so the motion of the camera. In
this experiment we actually selected certain points by hand and from these the
depicted line segments are derived and, by knowing the camera calibration by
the cube of the first image, the actual projection ray and projection plane pa-
rameters are computed. In table 2 we show the results of different algorithms
for pose estimation. In the second column of table 2 EKF denotes the use of an
extended Kalman filter. The design of the extended Kalman filters is described
in [6]. MAT denotes matrix algebra, SVD denotes the singular value decompo-
sition of a matrix to ensure a rotation matrix as a result. In the third column
the used constraints, point-line (XL), point-plane (XP) and line-plane (LP) are
indicated. The fourth column shows the results of the estimated rotation matrix
R and the translation vector ¢, respectively. Since the translation vectors are
in mm, the results differ at around 2-3 cm. The fifth column shows the error of
the equation system. Since the error of the equation system describes the Hesse
distance of the entities, the value of the error is an approximation of the squared
average distance of the entities. It is easy to see, that the results obtained with
the different approaches are close to each other, though the implementation leads
to different algorithms. Furthermore the EKF’s perform more stable than the
matrix solution approaches.



no. R ¢ Constraint Fxperiment 1 Frror
0.987 0.089 —0.138 —58.21

1 |RtEKF RtEKF| XL-XL |R = [ —0.117 0.969 —0.218 | t = [ —217.26 5.2
0.115 0.231 0.966 160.60
0.976 0.107 —0.191 —60.12

2 SVD  MAT XIL-XL |[R = [ —0.156 0.952 —0.264 | £t = [ —212.16 6.7
0.154 0.287 0.945 106.60
0.987 0.092 —0.133 —52.67

3 |RtEKF — RtEKF| XP-XP [R = [ —0.118 0.973 —0.200 | t = [ —217.00 5.5
0.111 0.213 0.970 139.00
0.986 0.115 —0.118 —71.44

4 | RtEKF — MAT | XP-XP [R = [ —0.141 0.958 —0.247 | t = | —219.34 3.7
0.085 0.260 0.962 124.71
0.979 0.101 —0.177 —65.55

5 SVD  MAT XP-XP |R = [ —0.144 0.957 —0.251 | t = [ —221.18 5.3
0.143 0.271 0.952 105.87
0.976 0.109 —0.187 —66.57

6 SVD  MAT LP-XP |[R = [ —0.158 0.950 —0.266 | ¢t = [ —216.18 7.1
0.149 0.289 0.945 100.53
0.985 0.106 —0.134 —50.10

7 | MEKF — MEKF | LP-LP |R = | —0.133 0.969 —0.208 | t = [ —212.60 2.9
0.107 0.229 0.969 142.20
0.985 0.106 —0.134 —67.78

8 | MEKF — MAT LP-LP |R = | —0.133 0.968 —0.213 | t = [ —227.73 2.7
0.108 0.228 0.968 123.90
0.976 0.109 —0.187 —80.58

9 SVD  MAT LP-LP |R = | —0.158 0.950 —0.266 | t = [ —225.59 6.9
0.149 0.289 0.945 93.93

Table 2. The experiment 1 results in different qualities of derived motion parameters,
depending on the used constraints and algorithms to evaluate their validity.

Fig. 6. Visualization of some errors. We calculate the motion of the object and project
the transformed object in the image planes. The extracted line segments are also shown.
In the first and second row, the results of nos. 5, 3 and nos. 7, 8 of table 2 are visualised
respectively.

The visualization of some errors is done in figure 6. We calculated the motion
of the object and projected the transformed object in the image plane. The
extracted line segments are overlayed in addition. Figure 6 shows in the first
row, left the results of nos. 5, 3 and nos. 7, 8 of table 2 respectively. The results
of no. 7 and 8 are very good, compared with the results of the other algorithms.

These results are in agrement with the well known behavior of error prop-
agation in case of matrix based rotation estimation. The EKF performs more
stable. This is a consequence of the estimator themselves and of the fact that
in our approach rotation is represented as rotors. The concatenation of rotors is



more robust than that of rotation matrices.

6 Conclusions

The main contribution of the paper is to formulate 2D-3D pose determination in
the language of kinematics as a problem of estimating rotation and translation
from geometric constraint equations. There are three such constraints which re-
late the model frame to an observation frame. The model data are either points
or lines. The observation frame is constituted by lines or planes. Any deviations
from the constraint correspond the Hesse distance of the involved geometric
entities. From this starting point as a useful algebraic frame for handling line
motion, the motor algebra has been introduced. This is an eight-dimensional lin-
ear space with the property of representing rigid movements in a linear manner.
The use of the motor algebra allows to subsume the pose estimation problem by
compact equations, since the entities, the transformation of the entities and the
constraints for collinearity or coplanarity of entities can be described very eco-
nomically. Furthermore the introduced constraints contain a natural distance
measurement, the Hesse distance. This is the reason why the geometric con-
straints are well conditioned (in contrast to invariances) and, thus behave more
robust in case of noisy data.
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