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Abstract. Part II uses the foundations of Part I [35] to define constraint equations for 2D-3D pose estimation of
different corresponding entities. Most articles on pose estimation concentrate on specific types of correspondences,
mostly between points, and only rarely use line correspondences. The first aim of this part is to extend pose estimation
scenarios to correspondences of an extended set of geometric entities. In this context we are interested to relate the
following (2D) image and (3D) model types: 2D point/3D point, 2D line/3D point, 2D line/3D line, 2D conic/3D
circle, 2D conic/3D sphere. Furthermore, to handle articulated objects, we describe kinematic chains in this context
in a similar manner. We ensure that all constraint equations end up in a distance measure in the Euclidean space,
which is well posed in the context of noisy data. We also discuss the numerical estimation of the pose. We propose
to use linearized twist transformations which result in well conditioned and fast solvable systems of equations.
The key idea is not to search for the representation of the Lie group, describing the rigid body motion, but for the
representation of their generating Lie algebra. This leads to real-time capable algorithms.
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1. Introduction

This contribution concerns the 2D-3D pose estimation
problem of different corresponding entities. Pose es-
timation itself is one of the oldest computer vision
problems and algebraic solutions with different cam-
era models have been proposed for several variations of
this problem. Pioneering work was done in the 80’s and
90’s by Lowe [22, 23], Grimson [12] and others. In their
work point correspondences are used. Other works con-
cerning lines or line segments can be found in e.g. [19,
42]. Works concerning extensions to kinematic chains
can be found in [4, 13]. Nearly all papers concentrate
on one specific type of correspondences. But many sit-
uations are conceivable in which a system has to gather
information from different hints or has to consider dif-
ferent reliabilities of measurements. This is the main
aspect of this work: We describe a scenario for adaptive
pose estimation of simultaneously used different enti-

ties, without loosing linearity, well conditioned equa-
tions and real-time capability. This work contains the
second part of our research on pose estimation. The first
part [35] discussed the scenario and the mathematical
foundations for the pose problem. This part uses these
foundations to deal with the pose estimation problem.

Section 2 starts with the pose constraints to relate
3D point, line and plane features. In Section 3 we ex-
tend this formalization to kinematic chains, 3D circles
and 3D spheres. The aim is to model all different kinds
of entities, their transformations and relations in one
algebraic framework to get constraint equations which
can be used in a similar manner and can be solved si-
multaneously. Furthermore, we explain how to use the
constraints in a noise adaptive way. This means, we
control the influence of a constraint to the whole sys-
tem of equations. This is only possible if the constraints
describe (in their implicit formulations) equivalent ge-
ometries. In this context every constraint results in a
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Hesse distance error measure between the involved en-
tities. In the experimental part, Section 4, we present
several experiments which visualize the properties of
our algorithms.

1.1. Notations

This part uses the foundations of Part I [35] to deal
with the 2D-3D pose estimation problem in a geomet-
ric context. The language we use are Clifford or ge-
ometric algebras [38]. Euclidean, projective and con-
formal geometry find in geometric algebra the frame
where they can reconcile and express their potential.
This opens for example a new alternative for the math-
ematical treatment of the stratification of the 3D visual
space. Therefore we will first repeat the notations in-
troduced in Part I so that the reader can more easily
follow this work.

The term G p,q,r denotes a geometric algebra with p,
q and r basis vectors which square to +1, −1, and 0
respectively. We further use G3 to model 3D Euclidean
geometry, G3,1 to model 3D projective geometry and
G4,1 to model 3D conformal geometry. Multivectors
are written boldface and the geometric product of two
multivectors A and B is denoted by juxtaposition, AB.
Special products defined on the geometric product are
the outer (∧), inner (·), commutator ( × ) and anticom-
mutator (×) product. The dual of an entity X is written
as X� and the reverse of a blade A as Ã. The join of
two blades A and B is denoted as A ∧̇ B and the meet
as A ∨ B. 3D Euclidean entities are written in small
boldface letters, e.g. a point x ∈ G3. Projective en-
tities are written in big boldface letters, e.g. a point
X = x + e− ∈ G3,1 and conformal entities are writ-
ten big boldface underlined, e.g. X = x + 1

2 x2e + e0.
Rigid motions are handled as screw transformations. A
motor M = exp(− θ

2 (l + em)) formalizes a screw mo-
tion. A conformal entity, e.g. a point X, can be trans-
formed in space by calculating X′ = MXM̃.

2. Collinearity and Coplanarity Constraints
in Conformal Geometric Algebra

So far we have introduced (see Part I) the representa-
tion of entities, their transformations and the interaction
of entities between Euclidean, projective and confor-
mal geometry. The aim is now to formalize the pose
estimation problem in an implicit way using a set of
geometric constraints which describe an error measure
to be minimized.

Note: As can be seen from Part I [35], the transfor-
mation of an entity given in the projective geometric al-
gebra to the conformal geometric algebra always leads
to a dual representation of the entity since

e ∧ X = X�

e ∧ L = L� (2.1)

e ∧ P = P�.

In the next sections we will only work in the dual rep-
resentation of the entities and therefore, from now on
we will neglect the �-sign in the equations.

In this section, we will derive constraints for
collinearity and coplanarity to relate points, lines and
planes. The constraints will be given in the conformal
space. They are then translated in an error measure of
the Euclidean space. While this section only concerns
the relation of points, lines and planes, the following
sections will regard the constraints to relate the other
entities as circles and spheres.

Table 1 gives an overview of the formulations of the
constraints for collinearity and coplanarity of points,
lines and planes in conformal geometric algebra. In-
deed there is no unique representation to model inci-
dence of entities. Therefore we searched for an expres-
sion of collinearity and coplanarity which is not only
compact and linear, but also contains a geometric dis-
tance measure which can numerically stable and fast
applied to the pose problem. The reason why we use
these equations is the fact, that they express such a
geometric distance measure without introducing non-
linearities within the unknowns. The constraints are in-
spired by Blaschke [3] who formalized three constraint
equations for incidence of points, lines and planes in
the dual-quaternions. We then translated the equations
in [32, 39] to the motor algebra and the conformal geo-
metric algebra, respectively. So far we found no better
equations for our scenario which are compact, linear,
contain a geometric distance measure, can be applied
to a perspective camera model and are suited for the
use of different entities simultaneously.

Table 1. The geometric constraints for collinearity and
coplanarity of points, lines and planes expressed in conformal
geometric algebra.

Entities Constraint in conformal geometric algebra

Point-line X × L = 0

Point-plane X × P = 0

Line-plane L×P = 0
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Now we will analyze the geometry of the constraints
introduced in table 1.

2.1. Point-Line Constraint

Evaluating the point-line-constraint of a point X ∈
G4,1, X = E + ex, collinear with a line L ∈ G4,1,
L = Er + em leads to

0 = X × L

= 1

2
(XL − LX)

= 1

2
((E + ex)(Er + em)

− (Er + em)(E + ex))

= 1

2
(exEr + Eem + E2r − emE − r Eex − r )

= 1

2
(exr − me − me − r xe)

= 1

2
(−(2m − (xr − r x))e)

= −(m − x × r )e

⇔ 0 = (m − x × r )e · e+ = m − x × r (2.2)

The product X × L is an element of the null space,
since e2 = 0. By calculating the inner product with
e+, we can change this expression to an equation in
the non-null space. Note, that this is consistent with
Table 6 of Part I. Estimating the inner product with
e+ leads to an error direction in the projective space
and since the homogeneous component is zero it is
simultaneously a vector expression in G3,0, the algebra
of the 3D Euclidean space.

The term m − x × r means that the moment m of
a line, which is generated by the outer product of the
direction r of the line with a point x on the line, is
independent of the chosen point of the line. This is a
clear fact from Plücker representation of lines [3].

So far the constraint equation is given unscaled. Fol-
lowing Part I, we have to apply a scaling parameter
λ ∈ R to express a distance measure in the Euclidean
space. In this case let λ = 1

‖r‖ . That means we scale
the equation with the inverse norm of the direction of
the line. Then we get

0 = m − x × r

⇔ 0 = λ(m − x × r )

⇔ 0 = λm − x × (λr )

⇔ 0 = m′ − x × r ′. (2.3)

Figure 1. The Euclidean line l ′ consists of the direction r ′ and the
moment m′ = v × r ′. Further, there exists a decomposition x =
x1 + x2 with x1 ∈ l ′ and x2 ⊥ r ′ so that m′ = v × r ′ = x1 × r ′.

The aim is to analyze the bivector m′ −x × r ′. Suppose
X /∈ L′. Then, nonetheless, there exists a decomposi-
tion x = x1 + x2 with X1 ∈ L′, X1 = (E + ex1) and
X2 ⊥ L′, X2 = (E+ex2). Figure 1 shows the scenario.
Then we can calculate

‖m′ − x×r ′‖ = ‖m′ − (x1 + x2) × r ′‖
= ‖m′ − x1 × r ′ − x2 × r ′‖
= ‖x2 × r ′‖ = ‖x2‖. (2.4)

Thus, satisfying the scaled point-line constraint means
to equate the bivectors m′ and x×r ′, respectively mak-
ing the Hesse distance ‖x2‖ of the Euclidean point x to
the Euclidean line l ′ to zero.

2.2. Point-Plane Constraint

Evaluating the point-plane-constraint of a point X ∈
G4,1, X = E + ex, coplanar to a plane P ∈ G4,1,
P = En + ed I E , leads to1

0=X × P

=1

2
(X P − P X)

=1

2
((E + ex)(En + ed I E ) − (En + ed I E )

× (E + ex))

=1

2
(exEn + Eed I E + n − ed I E E − Enex − n)

=1

2
(−xne + d I E e + n + d I E e − nxe − n)

=1

2
(2d I E − (xn + nx)) e

=(d I E − x × n)e

⇔ 0=(d I E − (x×n))e · e+ = d I E − (x × n).

(2.5)



52 Rosenhahn and Sommer

Figure 2. The Euclidean plane p′ is represented by the normal n′ (as
bivector) and the Hesse distance d ′. The value d ′ can be interpreted
as a sum d ′ = d ′

01 + d ′
02 so that d ′

01n′ corresponds to the orthogonal
projection of x onto n′.

Note here that the anticommutator product of the
bivector n and the vector x results in a trivector, which
is subtracted from d I E . Again the constraint equation
is given in the null space which is then transformed to
the non-null space by calculating the dot-product with
e+. This leads directly to a scalar value as element of
the Euclidean geometric algebra. To express a distance
measure in the Euclidean space, let λ = 1

‖n‖ , the inverse
of the norm of the bivector n. Then we get

0 = d I E − (x×n)

⇔ 0 = λ(d I E − x×n)

⇔ 0 = λd I E − x×(λn)

⇔ 0 = d ′ I E − x×n′. (2.6)

Suppose X /∈ P ′. The value d ′ can be interpreted as
the sum of distances, so that d ′ = d ′

01 +d ′
02 and d ′

01n′ is
the orthogonal projection of x onto n′. Figure 2 shows
the scenario. Then we can calculate

d ′ I E − x×n′ = (d ′
01 + d ′

02)I E − x×n′

= d ′
02 I E . (2.7)

The value of the expression d ′ I E − x×n′ corresponds
to the Hesse distance of the Euclidean point x to the
Euclidean plane p′.

2.3. Line-Plane Constraint

Evaluating the line-plane-constraint of a line L ∈ G4,1,
L = Er + em, coplanar to a plane P ∈ G4,1, P =

En + e I E d, leads to

0 = L × P

= 1

2
(LP + P L)

= 1

2
((Er + em)(En + ed I E ) + (En + ed I E )

× (Er + em))

= 1

2
(emEn + r Ee I E d + rn + e I E dr E + Enem

+ Enr E)

= 1

2
(mne + r I E de + rn + I E dre − nme + nr )

= 1

2
((rn + nr ) + (2r I E d + mn − nm)e)

= 1

2
((rn + nr ) + 2(r I E d + m × n)e)

= r×n + (r I E d + m × n)e (2.8)

Thus, the constraint of coplanarity of a line to a plane
can be partitioned into a constraint on the non-null part
of the motor and a constraint on the null part of the
motor. This can directly seen in Eq. (2.8) since e2 = 0.

Again the constraint equation is given unscaled. Let
be λ = 1

‖n‖‖r‖ . Then we get

0 = r×n + (r I E d + m × n)e

⇔ 0 = λ(r×n + (r I E d + m × n)e)

⇔ 0 = r ′×n′ + (r ′ I E d ′ + m′ × n′)e, (2.9)

with

r ′ = 1

‖r‖r n′ = 1

‖n‖n m′ = 1

‖r‖m d ′ = 1

‖n‖d.

Suppose L′ /∈ P ′. If r ′ �⊥ n′�, the non-null part leads
to

r ′×n′ = ‖r ′‖‖n′‖ cos(α) = cos(α), (2.10)

where α is the angle between L′ and P ′, see Fig. 3. If
r ′ ⊥ n′�, we have r ′×n′ = 0. Since the direction of the
line is independent of the translation of the rigid body
motion, the constraint on the non-null part can be used
to generate equations with the parameters of the rota-
tion as the only unknowns. The constraint on the null
part can then be used to determine the unknown trans-
lation. In other words, since the motor to be estimated,
M = R′

1 + e R′
2, is determined in its non-null part only

by rotation, the non-null part of the constraint allows
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Figure 3. The Euclidean plane p′ is represented by its normal n′ (as
bivector) and the Hesse distance d ′. Furthermore, we choose s ∈ l ′
with s ⊥ r ′. The angle of r ′ and n′� is α and the angle of s and n′� is
β. We choose the vector s1 with s ‖ s1 so that dn′� is the orthogonal
projection of (s + s1) onto n′�.

to estimate the rotor R′
1, while the null part of the con-

straint allows to estimate the rotor R′
2. So it is possible

to sequentially separate equations of the unknown ro-
tation from equations of the unknown translation with-
out the limitations known from the embedding of the
problem in Euclidean space [6]. This is useful since
the two smaller systems of equations are faster to solve
than one larger system of equations. To analyze the null
part of the constraint we interpret the moment m′ of the
line representation L′ = Er ′ + em′ as m′ = s × r ′ by
choosing a vector s with s ∈ l ′ and s ⊥ r ′. Following
[28], we can calculate

n′ × m′ = −(s × r ′) × n′

= (s × n′) × r ′ − s × (r ′ × n′). (2.11)

Now we can evaluate

d I Er ′ − (n′ × m′) = d I Er ′ − (s × n′) × r ′

+ s × (r ′ × n′). (2.12)

Figure 3 shows the scenario. Further, we can find a
vector s1 ‖ s with 0 = d ′ − (‖s‖ + ‖s1‖) cos(β). The
vector s1 might also be anti-parallel to s. This leads to
a change of the sign, but does not affect the constraint
itself. Now we can evaluate

d ′ I Er ′ − (n′ × m′) = d ′ I Er ′ − ‖s‖ cos(β)r ′ + cos(α)s

= ‖s1‖ cos(β)r ′ + cos(α)s. (2.13)

Thus, the error of the null part of the motor is con-
stituted by the sum of the vector s, scaled by the angle
α, and the direction vector r ′, scaled by the norm of s1

and the angle β.
If r ′ ⊥ n′�, then n′� ‖ s and, thus, we will find

‖d ′ I Er ′ − (n′ × m′)‖ = ‖d ′ I Er ′ + s × (r ′ × n′)

− (s × n′) × r ′‖
= ‖d ′ I E × r ′ − (s × n′) × r ′‖
= ‖d ′ I E − (s × n′)‖. (2.14)

This means, in agreement with the point-plane con-
straint, that the above difference measure corresponds
the Hesse distance of the line to the plane. Since
Eq. (2.13) contains the error vector s, its error value
is dependent on the chosen origin of the vector space.
This effect is indeed unwanted and can lead to bad
conditioned equations, but if n′� is nearly parallel to s
good conditioned equations can be assured since they
are then related to the point-plane constraint.

This analysis shows that the considered constraints
are not only qualitative constraints, but also quantitative
ones. This is very important, since we want to measure
the extend of fulfillment of these constraints in the case
of noisy data.

2.4. Constraint Equations for Pose Estimation

Now it is possible to express the 2D-3D pose estima-
tion problem in a quantitative manner. The aim is to ex-
press that a rigidly transformed object entity has to lie
on a projectively reconstructed image entity in the con-
formal geometric algebra. Let X ∈ G4,1 be an object
point and L ∈ G4,1 be an object line. The (unknown)
transformed entities can be written as X′ = MXM̃
and L′ = MLM̃. Let x ∈ G2,1 be an image point and
l ∈ G2,1 be an image line. Note, that we denote the 2D
projective image features also with small bold letters,
similar to 3D Euclidean points. The reason is, that both
algebras are built from three basis vectors, they can not
be confounded in the scenario and it avoids extra fonds.
The projective reconstruction of these entities can be
written as Lx = O ∧ x ∈ G3,1 and P l = O ∧ l ∈ G3,1.
The point O ∈ G3,1 denotes the optical center of the
camera. Then we can apply the e∧-operator to change
the representations from the projective to the conformal
space, and combine it with the commutator and anti-
commutator products to express the collinearity and
coplanarity of the involved entities.
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Thus, the constraint equations of pose estimation
read as follows, a) Point-line constraint:

λ ((M X︸︷︷︸
object point

M̃)

︸ ︷︷ ︸
rigid motion of the object point

× e ∧ (O ∧ x)︸ ︷︷ ︸
projection ray,

reconstructed from the image point︸ ︷︷ ︸
collinearity of the transformed object

point with the reconstructed line

) · e+ = 0.

(2.15)

b) Point-plane constraint:

λ((M X︸︷︷︸
object point

M̃)

︸ ︷︷ ︸
rigid motion of the object point

× e ∧ (O ∧ l)︸ ︷︷ ︸
3D plane,

reconstructed from the image line︸ ︷︷ ︸
coplanarity of the transformed object

point with the reconstructed plane

) · e+ = 0.

(2.16)

c) Line-plane constraint:

λ((M L︸︷︷︸
object line

M̃)

︸ ︷︷ ︸
rigid motion of the object libe

× e ∧ (O ∧ l)︸ ︷︷ ︸
3D plane,

reconstructed from the image line

)

︸ ︷︷ ︸
coplanarity of the transformed object

line with the reconstructed plane

= 0.

(2.17)

Note, that there is no ·e+ operation involved in the
line-plane constraint. The reason is, that the constraint
equation is partitioned into one equation on the non-
null part and one equation on the null part of the con-
straint equation as explained in the last section.

The involved mathematical spaces are exemplarily
shown for the point-line constraint,

λ((M X︸︷︷︸
C S

M̃)

︸ ︷︷ ︸
C S

× e ∧ ( O︸︷︷︸
P S

∧ x︸︷︷︸
P P︸ ︷︷ ︸

P S

)

︸ ︷︷ ︸
C S

) · e+

︸ ︷︷ ︸
E S

= 0.

(2.18)

Here does PP abbreviate projective plane, PS projec-
tive space, CS conformal space and E S the Euclidean
space. These compact equations subsume the pose es-
timation problem at hand: find the best motor M which

satisfies the constraint. The 2D-3D pose estimation
problem is described in an implicit way. Note, that
the stratification hierarchy of the involved entities is
strictly kept within these equations. Furthermore are
the equations compact and therefore easy to interpret.
Additionally, the geometric analysis of the constraints
assure well conditioned equations and help to inter-
pret effects of the constraints discussed in the experi-
mental part. The constraints behave robust in case of
noisy data, and linearization and iteration enables the
design of fast (real-time capable) algorithms. In con-
trast to other approaches, where the minimization of
errors has to be computed directly on the manifold of
geometric transformations [5, 41], in our approach a
distance in the Euclidean space constitutes the error
measure.

This is the now the complete formulation and analy-
sis of the constraint equations already shown in Part I,
Section 4.

3. Pose Estimation with Extended
Object Concepts

This section concerns the development of constraint
equations to relate 3D kinematic chains, circles and
spheres with corresponding extracted 2D image fea-
tures. Similar to the previous section we will formalize
constraint equations in the 3D space, which contain a
geometric distance measure.

3.1. Pose Estimation of Kinematic Chains

So far we have parameterized the 3D pose constraint
equations of a rigid object. Let be given a rigid object
by a set of entities as points and lines. Assume that
a second rigid object is attached to the first one by a
joint. The joint can be formalized as an axis of rota-
tion and/or translation in the object frame. If the joint
j is only dependent on a variable angle θ j , it is called
a revolute joint, and it is called a prismatic joint if the
degree of freedom is only a variable length d j . This
parameterization of joints is also called the Denavit-
Hartenberg parameterization [7]. Each joint defines a
new coordinate system, and the coordinate transfor-
mations between joints can be expressed by suitable
motors M j . This means, an entity given in the coor-
dinate system of the j-th joint can be translated in an
entity of the base coordinate system by transforming it
with the motors M0, . . . , M j .
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Figure 4. The RX-90 robot arm. The internal joint transformations
M j and the global transformations T j are visualized.

Such objects are also called kinematic chains. With
kinematic chains we mean flexible linked rigid ob-
jects which can only change their pose in mutual
dependence. Examples are robot arms [40] or human
body movements, see e.g. Fig. 4. Kinematic chains can
be parameterized by their including joints. Every joint
defines a new coordinate system. To estimate the po-
sition of an end-effector entity of a kinematic chain in
terms of an other base coordinate system, all involved
joint coordinate systems must traced. This is visualized
in Fig. 4. For short notations of the single transforma-
tions in CGA between the joints we define

T0{X0,i0
} := M0 X0,i0

M̃0 = X0,i0

T j {X j,i j
, M j }

:= T j−1{M j X j,i j
M̃ j , M j−1} : j = 1, . . . , n

= M1 . . . M j X j,i j
M̃ j . . . M̃1 : j = 1, . . . , n. (3.1)

The function T0 with the motor M0 describes the iden-
tity for points which are not subject to internal trans-
formations. We call them base points. Since the motor
M0 is just the identity it will be neglected in the further
equations. The function T j formalizes the transforma-
tion of an attached joint j with respect to the basis co-
ordinate system in an inductive manner. In the general

case, the transformation of a point X j,i j
of a j-th joint

to the base coordinate system is represented by a se-
quence of such motors M1, . . . , M j . An object model
O of a kinematic chain with n segments can now be
represented by a set of n + 1 such functions T j ,

O = {
T0

{
X0,i0

}
, T1

{
X1,i1

, M1
}
, . . . ,

Tn
{

Xn,in
, Mn

} | n, i0, . . . , in ∈ N
}
.

3.2. Constraint Equations of Kinematic Chains

Now we will combine the introduced representation of
kinematic chains in CGA with the pose estimation con-
straints derived in Section 2. This is very simple now
because everything is formulated in the same algebra.
Note, that the constraints are presented unscaled, so the
λ(·) · e+ operation is not extra written.

The general unknown pose corresponds to a motor
M. For the base points X0,i0

the constraint equations
reduce for a suitable projection ray L0,i0

= e ∧ (O ∧
x0,i0 ) to

(
M

(
T0

{
X0,i0

})
M̃

) × e ∧ (
O ∧ x0,i0

) = 0

⇔ (
MX0,i0

M̃
) × e ∧ (

O ∧ x0,i0

) = 0. (3.2)

The general constraint equation for a point X j,i j
at the

j-th joint leads to

(
M

(
T j

{
X j,i j

, M j
})

M̃
) × e ∧ (

O ∧ x j,i j

) = 0

⇔ (
M

(
M1 . . . M j X j,i j

M̃ j . . . M̃1
)
M̃

) × e

∧ (
O ∧ x j,i j

) = 0. (3.3)

It is also simple to use extracted image lines l j,i j and
their reconstructed projection planes P j,i j

= e ∧ (O ∧
l j,i j ). For such situations, the constraint equations re-
duce to

(
M

(
T0

{
X0,i0

})
M̃

) × e ∧ (
O ∧ l0,i0

) = 0

⇔ (
MX0,i0

M̃
) × e ∧ (

O ∧ l0,i0

) = 0 (3.4)

for the base points, and the general constraint equation
for a point at the j th joint leads to

(
M

(
T j

{
X j,i j

, M j
})

M̃
) × e ∧ (

O ∧ l j,i j

) = 0

⇔ (
M

(
M1 . . . M j X j,i j

M̃ j . . . M̃1
)
M̃

) × e

∧ (
O ∧ l j,i j

) = 0. (3.5)
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We can also describe kinematic chains by lines and
combine them with the line-plane-constraint. For this,
only lines L j,i j

and projection planes P j,i j
= e ∧ (O ∧

l j,i j ) have to be substituted and combined with the an-
ticommutator product. For the base lines we get

(M(T0{L0,i0
})M̃) × e ∧ (O ∧ l0,i0 ) = 0

⇔ (ML0,i0
M̃) × e ∧ (O ∧ l0,i0 ) = 0, (3.6)

and for a line on the j-th joint we get

(
M

(
T j

{
L j,i j

, M j
})

M̃
) × e ∧ (

O ∧ l j,i j

) = 0

⇔ (
M

(
M1 . . . M j L j,i j

M̃ j . . . M̃1
)
M̃

)
× e ∧ (

O ∧ l j,i j

) = 0. (3.7)

A description of kinematic chains in CGA and the
construction of pose estimation constraints can also be
found in [30].

3.3. Pose Estimation Using Constraints for Circles
and Spheres

In this section constraint equations are derived to relate
3D circles to 2D conics and 3D spheres to 2D conics.
We start with an analysis of involved problems and then
present a suitable solution approach.

3.3.1. The Problem of Tangentiality Constraints.
Since also the constraints for circles and spheres have
to be derived in the 3D space, the aim is to reconstruct
certain entities from image information and to compare
the reconstructed entities with the 3D model entities.
The reconstruction based on an image conic (the im-
age of a circle or sphere) leads to a cone. Indeed, we
can not formalize cones as single entities in conformal
geometric algebra. But to enable the above mentioned
comparison, we formalize constraint equations for tan-
gentiality of 3D circles or spheres to projection rays,
reconstructed from image points of the corresponding
image entity. We denote the spatial tangentiality of a
3D circle Z to a 3D line L as circle-line constraint and
the tangentiality of a 3D sphere S to a 3D line L as
sphere-line constraint. Figure 5 visualizes the idea.

It is very easy in CGA to express e.g. tangential-
ity of a non-coplanar line L to a circle Z: The point
Xz := L ∨ Z is a null vector (this means X2

z = 0) iff
the entities intersect. But this only holds in ideal geom-
etry. In reality, there are several cases how a line can
be related to a circle: it can intersect, be coplanar or

Figure 5. Visualization of the circle-line and sphere-line constraint
in conformal geometric algebra.

perpendicular. The line can pass outside or inside the
circle, etc. By defining a line in a parameterized man-
ner, it is easy to see that the error function of points on
a line to a circle can contain one global minimum, two
global minima, one local and one global minima or no
minimum in non-degenerate and degenerate cases. In
Fig. 6 three example lines are shown: Two lines are par-
allel to the plane, in which the circle lies. One of these
lines passes the circle outside, the other one inside. This
leads to error functions, containing one global mini-
mum or two global minima. The third line is passing
the inside of the circle and is not parallel to the plane in
which the circle lies. This results in one global and one
local minimum. From that relations result two possible
strategies: First, we make a case decision, depending
on the geometric situation. This is hard to implement
and to combine with our previous derived constraint
equations. Second, we can parameterize the circle in a
suitable way. This will be done in the following section.

Comparing spheres with lines is in ideal geometry
also no problem. One short way to formalize tangen-
tiality is to estimate the distance from the center of the
sphere to the line and to subtract the radius: Let L′ be
the scaled line, as described in Section 2. The line L′

is tangential to S = P − ρ2e iff

‖(L′ × P) · e+‖ − ρ = 0. (3.8)

The main problem in this formulation is the square root
term of the norm containing the unknowns in quadratic
terms since ‖x‖ = √∑

(xi )2. This leads to equations,
which are not nice to handle if we want to estimate the
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Figure 6. Different geometric relations of lines to circles leads to different kinds of error functions for parameterized lines.

unknown motor M in the equation

√
((MP M̃ × L′) · e+)2 − ρ = 0. (3.9)

We made experiments with these kind of equations and
implemented a Newton-Raphson method to solve the
equations. But there are two main problems: First, the
convergence rate is very slow and the algorithm often
converges against the wrong minimum (the algorithm
needs about 5 seconds to estimate the pose). Second,
we loose the possibility to combine them with the other
constraints for simultaneous considerations in pose
estimation.

The key idea to relate circles and spheres to lines, is
to interpret the circles and spheres as orbits generated
by twist operations by modeling general rotations as
introduced in the next section.

3.3.2. Operational Definition of Circles and Spheres
Using Twists. We will first repeat the general descrip-
tion of circles and spheres, as introduced in Part I and
then generate an operational definition of these entities.
In the next section we will continue with the formula-
tions of the circle-line and sphere-line constraints.

Let be Z = A ∧ B ∧ C a circle in CGA. Evaluating
the outer products of three points leads to

Z = A ∧ B ∧ C = A + A−e + A+e0 + A±E

(3.10)

with suitable multivectors A, A−, A+ and A±, see
Part I.

A circle can also be understood as a twist Lz mod-
eling a general rotation and a point Xz on the circle.
From the dual representation of the circle, this infor-
mation is very easy to extract since the generating twist
parameters are directly given. The twist transformation
corresponds to a suitable parameterized motor Mφ ,

Mφ = exp

(
φ

2
(A+ + e A±)

)
. (3.11)

The points on the circle are simply given by

Xφ
z = (Mφ Xz M̃φ) : φ ∈ [0, . . . , 2π ]. (3.12)

Figure 7 (left) visualizes the geometry. The circle re-
sults as the orbit of the unique motor, which moves a
certain point.

Figure 7. Circles and spheres parameterized with twists.
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Now we continue with the formalization of a sphere.
The general expression of a sphere leads to

S =
(

P − 1

2
ρ2e

)
. (3.13)

In this formulation, P is the center of the sphere and ρ

is the radius.
The idea is to formalize spheres in an operational

manner as two coupled twists modeling general rota-
tions. In that approach a sphere is formalized by a point
Xs on a sphere and two perpendicular twists, Ls1

and
Ls2

, intersecting in the origin of the sphere. Figure 7
(right) visualizes the idea. The corresponding motors
are denoted as Mφ1 and Mφ2 ,

Mφ1 = exp

(
φ1

2
(e12 + e(p · e12))

)
,

Mφ2 = exp

(
φ2

2
(e31 + e(p · e31))

)
. (3.14)

The bivectors e12 and e31 are the two perpendicular
rotation planes, belonging to the rotation axes which
are connected to the center P of the sphere. Then all
points on the sphere S result from the equation

Xφ1,φ2
s = (

Mφ1 Mφ2 Xs M̃φ2 M̃φ1

)
: φ1, φ2 ∈ [0, . . . , 2π ].

(3.15)

This principle of coupling two motors is virtual in
contrast to kinematic chains, which correspond the
coupling of physical objects. The principle of virtual
coupling can be further extended to construct more
complex orbits of twists and, thus, to enable pose esti-
mation of more complex objects, see [33].

3.3.3. The Constraint Equations of Circles and
Spheres to Lines. So far we have developed the for-
malization of circles and spheres as orbits of twists. We
will use these representations to express incidence of
circles Z and spheres S to 3D lines L.

While in the constraint equations of Section 2 the
motors are the only unknowns to be estimated, now we
have higher loads because of the parameterization of
the features or entities of pose estimation.

We will start with the formalization of a suitable
circle-line constraint. To relate the circle Z to a line
L = e ∧ (O ∧ x), we only need to estimate the un-
known angle φ, which leads to collinearity of the suit-
able transformed point Xz ∈ Z to L. The circle-line

constraint can now be written as

(Mφ Xz M̃φ) × e ∧ (O ∧ x) = 0. (3.16)

In this equation, the angle φ is an additional unknown
for each constraint equation. The pose estimation con-
straint equation for an unknown rigid body motion now
means to estimate both the best motor M and the angle
φ,

(M(Mφ Xz M̃φ)M̃) × e ∧ (O ∧ x) = 0. (3.17)

The sphere-line constraint, respectively the inci-
dence of a line L = e ∧ (O ∧ x) to a sphere S can
be described by a point Xs on the sphere and the two
motors Mφ1 and Mφ2 ,

(Mφ1 Mφ2 Xs M̃φ2 M̃φ1 ) × e ∧ (O ∧ x) = 0. (3.18)

In this constraint equation φ1 and φ2 are additional
unknowns. The pose estimation constraint equation for
an unknown rigid body motion means to estimate the
best motor M and the two angles φ1 and φ2,(

M
(
Mφ1 Mφ2 Xs M̃φ2 M̃φ1

)
M̃

) × e ∧ (O ∧ x) = 0.

(3.19)

This approach to formalize constraint equations for cir-
cles and spheres appears surprising in the context of our
algebraic embedding. The main problem with these en-
tities is, how to formalize constraint equations, which
obtain the characteristics mentioned in Part I. For this
reason we choose an operational definition of circles
and spheres and linearize them in the same manner as
we linearize the pose problem: We formulate these en-
tities in their tangential space and choose a Lie algebra
representation of these entities.

4. Real-Time Pose Estimation

This section concerns the numerical estimation of the
pose parameters and presents experimental results.

4.1. Estimation of Motion Parameters

In the last sections, several constraint equations to re-
late object information to image information are de-
rived. In these equations, the object, camera and image
information is assumed to be known and the motor M
expressing the motion is assumed to be unknown. The
main question is now, how to solve a set of constraint
equations for multiple (different) features with respect
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to the unknown motor M. Since a motor is a polynomial
of infinite degree (see, e.g., its series expression), this
is a non-trivial task, especially in the case of real-time
estimations.

4.1.1. Linearization in the Tangential Space. The
idea is to gain linear equations with respect to the gen-
erators of the motor. We use the exponential representa-
tion of motors and apply the Taylor series expression of
first order for approximation. This leads to a mapping
of the above mentioned global motion transformation
to a twist representation, which enables incremental
changes of pose. That means, we do not search for
the parameters of the Lie group SE(3) to describe the
rigid body motion [11], but for the parameters which
generate their Lie algebra se(3) [24]. This results in
linear equations in the generators of the unknown 3D
rigid body motion. In this section we derive the lin-
earization of the motors. For the sake of simplicity we
will do that in the case of point transformations. The
Euclidean transformation of a point X caused by the
motor M is approximated in the following way:

MXM̃ = exp

(
−θ

2
(l′ + em′)

)
X exp

(
θ

2
(l′ + em′)

)

≈
(

1 − θ

2
(l′ + em′)

)
X

(
1 + θ

2
(l′ + em′)

)
≈ E + e(x − θ (l′ · x) − θm′). (4.1)

Setting l := θl′ and m := θm′ leads to

MXM̃ ≈ E + e(x − l · x − m). (4.2)

By combining this approximation of the motion with
the previously derived constraints (e.g. the point-line
constraint) this leads to1

0 = MXM̃ × L

⇔ 0 = exp

(
−θ

2
(l′ + em′)

)
X

× exp

(
θ

2
(l′ + em′)

)
× L

⇐≈⇒ 0 = (E + e(x − l · x − m)) × L

⇔ 0 = λ(E + e(x − l · x − m)) × L. (4.3)

Because of the approximation (⇐≈⇒) the unknown
motion parameters l and m are linear. This equation
contains six unknown parameters for the rigid body
motion. The unknowns are the six unknown twist pa-
rameters for the screw motion. In the last step we scale
the linearized constraints with a suitable factor λ to

express an Euclidean distance measure as explained
in Section 2. This means, everything so far happens
unscaled and only in the very last step we scale the
constraint equation and go to the Euclidean space, as
one of the strata of the hierarchy described in Part I.

The linear equations can be solved for a set of corre-
spondences by applying e.g. the Householder method
[29]. From the solution of the system of equations, the
motion parameters R, t can easily be recovered by eval-
uating θ := ‖l‖, l′ := l

θ
and m′ := m

θ
. The Motor M

can be evaluated by applying the Rodrigues’ formula
[11, 25]. This procedure is iterated to converge to the
whole rigid motion. Figure 8 visualizes the principle
of such an approximation and iteration: The aim is to
rotate a point X around 90 degrees to a point X′. The
first order approximation of the rotation leads to the
tangent of the circle passing through X. Normalizing
the tangent line to X′ (denoted by dashed lines) we get
X1 as the first order approximation of the required point
X′. By repeating this procedure the points X2, . . . , Xn
will be estimated, which converge to the point X′. It is
clear from Fig. 8 that the convergence rate of a rotation
is dependent on the amount of the expected rotation.
An analysis of the convergence rate for general angles
is given in the next section.

Note, that basically this estimation procedure corre-
sponds to a gradient descent method in the 3D space.

4.1.2. Generating an Example System of Equations.
In this section we will derive a system of equations for
point, line and plane correspondences to visualize the
type of equations which are obtained.

Figure 8. Principle of the convergence rate for the iteration of a
point X rotated around 90 degrees to a point X′. X1 is the result of
the first iteration and X2 is the result of the second iteration.
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Let us assume two points

P1 = (p11, p12, p13) (4.4)

P2 = (p21, p22, p23), (4.5)

one corresponding line (containing a direction Ld1 and
a moment Lm1),

L1 = {Ld1 = (Ld11, Ld12, Ld13),

Lm1 = (Lm11, Lm12, Lm13)} (4.6)

and one plane E1 (containing a normal Pd1 and Hesse
distance hd1),

E1 = {Pd1 = (Pd11, Pd12, Pd13), hd1}. (4.7)

Let us further assume that P1 corresponds to L1 and
P2 corresponds to E1.

Then the matrix for the system of equations takes
the form

Ax = b, (4.8)

with

A =




0 Ld13 −Ld12

−Ld13 0 Ld11

Ld12 −Ld11 0
−Pd11 −Pd12 −Pd13

−p13Ld13 − p12Ld12 p11Ld12 p11Ld13

p12Ld11 −p11Ld11 − p13Ld13 p12Ld13

p13Ld11 p13Ld12 −p12Ld12 − p11Ld11

−Pd13 p22 + Pd12 p23 Pd13 p21 − Pd11 p23 −Pd12 p21 + Pd11 p22


 .

The first three rows contain the components for a
point-line constraint and the fourth row the components
for a point-plane constraint. The solution vector b takes
the form

b = (−p12Ld13 + p13Ld12 + Lm11, −p13Ld11

+ p11Ld13 + Lm12, −p11Ld12 + p12Ld11

+ Lm13, −hd1 + Pd11 p21 + Pd12 p22 + Pd13 p23)T .

(4.9)

The system of equations contains as unknowns the six
twist parameters for which the equations are solved
for. The matrices involving kinematic chains, circles
and spheres take a comparable form, just modified with
additional unknowns.

Note, that though the point correspondences give
three equations the rank is just two. This shows the

well-known fact, that at least three point correspon-
dences are necessary to solve the 2D-3D pose esti-
mation problem. Furthermore gives every point-plane
constraint exactly one equation. So at least six corre-
spondences are necessary to get a unique solution.

4.1.3. Solving the System of Equations. Many algo-
rithms can be found in the literature to estimate coeffi-
cients of non-linear equations systems. A comparison
of four approaches for pose estimation are made by
Lorusso et al. in [21]. The algorithms deal with 3D
point based pose estimation and are based on a SVD
decomposition, unit quaternion (UQ), dual quaternion
and eigensystem (OM) computation. The comparison
consists of three parts, accuracy, stability and relative
efficiency. Their results are not in agreement with re-
sults presented in [42] and they figured out, that the
SVD and UQ methods are very similar and usually
the most stable. The OM method is not as stable for
planar data sets, but superior for large degenerate data
sets. The DQ algorithm was never the most stable and
usually broke down before the others. Unfortunately
they do not compare a gradient descent method within
this context. A gradient descent method will be pro-
posed in this work. Therefore we will now study the

convergence rate of the gradient descent method for
the case of one unknown angle θ . The result is demon-
strated in Fig. 9. The x-axis represents the wanted angle
θ , the y-axis shows the estimated angle θ̂ . Four itera-
tions are overlaid. The functions are very characteristic
and it can be seen that the contribution of the first it-
eration to gain a 90 degree rotation is 45 degree. This
becomes clear by comparing the situation with Fig. 8.
All angles, except that of 180 degree converge during
the iteration, and for the most cases only a few iter-
ations are sufficient to get a good approximation. In
situations where only small rotations are assumed, for
the most cases, two or three iterations are sufficient.

A comparison of this gradient descent method with
a standard SVD-approach or Kalman filter will be done
in the first experiment of the next section. There also the
adaptive use of pose constraints is presented in more
detail.



Real-Time Pose Estimation Using Extended Feature Concepts 61

Figure 9. Convergence rate of iterations for arbitrary angles between 0 and 180 degrees. The expected angles θ are on the x-axis and the
estimated angles θ̂ are on the y-axis. The iterations (1) . . . (4) are overlaid.

4.2. Pose Estimation Experiments

This section shows experimental results which demon-
strate that the theoretical approaches for pose estima-
tion developed so far are extremely useful. The first ex-
periment concerns the numerical analysis of the pose
estimation algorithm and compares results of the gra-
dient descent method with an SVD-approach and a
Kalman filter. The second experiment concerns pose
estimation of rigid objects containing points and lines.
We show results on real images and explain how to
combine the constraints and how to use them in a noise
adaptive manner. Then, experiments with kinematic
chains are presented. Finally, we describe experiments
with complicated objects, which contain all different
entities we have introduced so far. All information is
used to estimate the pose and kinematic chain parame-
ters of the objects simultaneously. The assumptions for
our experiments are the following:

1. Corner features in the image are either manually
extracted, or estimated by tracked point markers.

2. Edge features in the image are either reconstructed
from two corners or estimated by applying a Hough
transformation.

3. Image points on circles or conics are either extracted
manually or by a contour algorithm on a silhouette.

4. We use a monocular (calibrated) camera. Only the
projection matrix is given, we need no separation
of the matrix into intrinsic and extrinsic camera
parameters.

5. The 3D (Euclidean) object model is given in terms
of feature sets on the object model (corners, lines,
kinematic chain locations, etc.)

As explained in the previous section, since we only it-
erate linear equations containing always six unknowns
for the rigid body motion and a few additional ones
for the kinematic chains, the pose estimation itself
can be carried out in real-time. So far, we are able
to estimate the pose of an unknown object by given
correspondences and projection matrices in the frame
rate of 20 frames per second (fps) on a SUN Ultra 10
and a frame rate of 100 fps on a Linux 2 GHz machine.
Note, that the equations are good conditioned with
respect to the number of extracted and used image and
object features.

4.2.1. Pose Estimation of Simple Rigid Objects.
There exist several ways to estimate the motion pa-
rameters. In earlier works we concerned this problem
and we estimated the motion parameters either on the
Lie group SE(3) itself (by using an SVD approach), or
by using an extended Kalman filter (EKF) [39]. In our
first experiment, we compare the noise sensitivity of
these three methods (the two older ones, and the gradi-
ent descent method presented in the last section), with
respect to the three constraint equations, relating 3D
points to 2D points (Xx), 3D points to 2D lines (Xl), or
3D lines to 2D lines (Ll). Therefore we add a Gaussian
noise on extracted image points in a virtual scenario
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Figure 10. The scenario of the first experiment. In the first image the calibration is performed and the 3D object model is projected on the
image. Then the camera moved and corresponding line segments are extracted. For comparison reasons, the initial pose is overlaid. The diagram
shows the performance comparison of different methods in case of noisy data.

(see Fig. 10). Then we estimate the rigid body motion,
and use the translational error between the ground truth
and the disturbed values as error measure. The result
is depicted in Fig. 10. It is easy to see, that the re-
sults, obtained with the SVD approach are the worst
ones. Instead, the Kalman filter and the twist approach
have a more stable and comparable error behavior. It
is obvious, that the results of the experiments are not
much affected by the used constraints themselves. This
occurs because we selected certain points directly by
hand and derived from these the line subspaces. So the
quality of the line subspaces is directly connected to the
quality of the point extraction. The result of this inves-
tigation is, that for noise corresponding to a distribution

Figure 11. Tracking a model house consisting of points and lines.

function, the Kalman filter or twist approach for pose
estimation should be used. There are two main reasons,
why we further prefer the twist approach for pose esti-
mation instead of the EKF: Firstly, the Kalman filter is
sensitive to outliers (see e.g. the scenario addressed in
Fig. 17), leading to non-converging results. Secondly,
Kalman filters must be designed for special situations
or scenarios. So the design of a general Kalman fil-
ter, dealing with different entities in a weighted man-
ner is hard to implement. Instead, this can be done
very easily in the twist approach since the linearized
constraint equations of any entity can just be scaled
and put in one system of equations. Figure 11 shows
results of an automatic tracking algorithm developed
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and analyzed in [31]. The tracking algorithm is a
heuristic which relies upon a combination of itera-
tive improvement and random sampling. Iterative im-
provement refers to a repeated generate-and-test prin-
ciple by which the algorithm moves from an initial
state to its local optimum, see also [2]. We use this
approach for self localization and robot navigation
tasks.

4.2.2. Adaptive Use of Pose Estimation Constraints.
Image preprocessing algorithms sometimes enable a
characterization of the quality of extracted image data
(see e.g. [10]). The resulting question is how to deal
with noisy extracted image data. The idea to cope with
this problem in the context of pose estimation is very
simple: Every constraint equation of an image feature
describes a distance measure of the involved entity.
This constraint equation can be scaled by a factor λ ∈ R

and so it is possible to individually scale the weights
of the equations within the whole system of equations
of an observed object. Figure 12 shows an example:
We have only three extracted image points and three
extracted image lines at hand (see left image). We can
use both types of information separately to estimate the
pose of the object. Since we have only a few informa-
tion for each type of correspondences, the object itself
is not very well fitted to the image data, see e.g. the
upper left or lower right images. On the other hand,
we can put both constraint equations in one single sys-
tem of equations and solve the unknowns by using all
available image information simultaneously. Further-
more, we are able to choose different weights of the
constraints. The change of the estimated pose is visu-
alized in the other images of Fig. 12. This experiment
demonstrates that the presented approach enables to
model adaptive observer behavior in a cognitive man-

Figure 12. Different weights of constraints for pose estimation.

ner with respect to both the choice of image features
at hand and with respect to take into account the trust-
worthiness of the data.

In an other experiment we simulate the possibility of
noise adaptive use of the pose estimation constraints.
For this we add a Gaussian noise on some of the ex-
tracted image points. Although we know from the prob-
lem of Gaussian noise modeling on the unit sphere [5],
we will omit these problems here. In this experiment
we work with six image features and add on two of
them the Gaussian noise. Then we solve the constraint
equations with and without weighting the constraints,
depending on the noise level. The weights are chosen
inverse proportional to the noise level. This means that
the more noisy correspondences influence the whole
result to a lesser extend. To compare the pose estima-
tion results, we use those without noise as ground truth.
We repeat the experiment for every noise level several
times to get a smooth error function and choose for
every noise level the mean value. The result is visual-
ized in Fig. 13. It is easy to see, that we can use the
constraints in a noise adaptive manner.

Figure 14 visualizes the depth-dependence of the
used 3D constraints. As discussed in Part I, there is a
difference of building constraints in the 3D space or
in the 2D image plane: The noise in an image leads to
a noise cone in the 3D space. This effect and its cor-
rection is analyzed in Fig. 14. For this experiment, we
calibrate a scene with a model house. Then we pick out
two points of the model, put a Gaussian noise on their
corresponding image points and estimate their pose
separately. The two chosen points differ in their rel-
ative depth with respect to the image plane as can be
seen in Fig. 14. Then we estimate the absolute image
error. This means, the error measure is now connected
to the observation of the pose in the image plane. The
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Figure 13. Comparison of the results with and without noise sup-
pression.

graph in Fig. 14 shows the influence of the disturbed
image points on the estimated pose and their effect on
the image plane. The pixel noise of the image point is
given on the x-axis and on the y-axis the absolute pixel
error of the transformed projected object model com-
pared with the ground truth is shown. It can be seen that,
though the image points are disturbed in an equal man-
ner, the result of the noisy far pixel is worse than the
result of the noisy near pixel. This effect is often dis-

Figure 14. Depth dependence of the constraints.

cussed as disadvantage of the 3D approach. But the pos-
sibility of noise adaptive use of the constraints is often
neglected in this context. Since the constraint equations
formalize the pose problem in an implicit manner, the
constraints can be scaled with respect to their relative
depth. This is shown in the third error curve of Fig. 14.

4.2.3. Pose Estimation of Kinematic Chains. In the
next experiment (see e.g. Fig. 15), we use as more com-
plex object model the RX-90 robot arm [40]. Figure 15
shows some examples of a sequence containing 42 im-
ages. In this image sequence the first joint is moving
in 5 degrees steps from 0 to 25 degrees. Then the sec-
ond joint is moving in 5 degrees steps from 0 to 60
degrees. This is also shown in Fig. 16. We estimate the
pose of the robot and the angles of the kinematic chain
via tracked points markers. Figure 16 shows the joint
angles estimated and overlaid with the ground truth.2

Small deviations can be recognized. Dependent on the
position of the camera with respect to the object model
and the location of the joints, the estimated angles dif-
fer around 0.5 to 3 degrees to the ground truth. In sim-
ulation environments (and ideal situations) we could
prove that (for not degenerate cases) the parameters
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Figure 15. Images of a tracked robot arm taken from a sequence with 40 images.

Figure 16. Joint angles estimated and overlaid with the ground truth. The solid lines show the ground truth and the dashed lines show the
estimated values.

during the iterations converge against the ground truth.
The errors we gain in these experiments are dependent
on the calibration quality, the lens distortions and the
accuracy of the color marker detection.

Figure 17 shows an other image sequence. There
we visualize the stability of our algorithm in the con-
text of moved color markers which corresponds to im-
possible kinematics of the robot. Two things can be
seen. First, we model the geometry of the robot within
our constraints and the model will not be distorted. In-
stead, the algorithm leads to a spatially best fit of the

model to the extracted image data. Second, we have
no hierarchical approach for pose estimation of piece-
wise rigid objects as in [13, 43] but a pose estimation
based on the model of a kinematic chain. Hierarchical
pose estimation means that the pose problem is sep-
arated in subproblems which are solved sequentially.
So first the whole pose (the base transformation) is
estimated and then each joint angle separately. To en-
sure that the model is not distorted after the calcula-
tions the estimated values have to be constrained to the
model in a second processing step. There are two main
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Figure 17. Stability example for disturbed color markers and visualization of the geometry of the robot which is modeled within the constraints.

arguments why we do not recommend this method:
Firstly, the geometry of the whole object is not modeled
within the constraint equations. That necessitates the
second processing step to ensure no distorted model.
This second processing step can be avoided by model-
ing a kinematic chain within the constraint equations,
as is done in this work or by [4]. Second, each point
of a kinematic chain contributes with two linear inde-
pendent equations. Also the higher order points of a
kinematic chain influence the result of the whole pose.
This is strongly wanted in this context because only
then all possible geometric information is used simul-
taneously and not neglected due to redundancy of the
algorithm.

Figure 18 shows three example images taken from
a project dealing with a visual remote control for the
RX-90 robot. This means, a person with color mark-
ers attached to the person is tracked and the angles of
the human arm movements are estimated and trans-

Figure 18. Example images for visual remote controlling of the robot.

lated to the robot kinematics. So the robot follows the
human movements and therefore the human is able to
control the robot by its own movements. Color mark-
ers on the finger tips indicate the opening and closing
of the gripper. This module is used for grasping and
manipulation tasks as shown in Fig. 18. Since also a
client-server package is implemented, image process-
ing and tracking of the person is independent from the
location of the robot. This enables a robot controlling
though the person is not in the same room in which
the robot is located. During the experiments, we let the
image stream run via the university campus, which is
3 km away from the robot lab. The control system is
shown in Fig. 19.

4.2.4. Simultaneous Pose Estimation with Different
Kinds of Correspondences. This section concerns
the use of more extended object concepts for pose esti-
mation. In Fig. 20 pose estimation results of an object
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Figure 19. The system design for controlling the robot.

Figure 20. Pose estimation of an object, consisting of 3D points, lines, circles and kinematic chain segments.

containing points, lines, kinematic chains and circles
are presented.

In the last experiment, we use a model which con-
tains additionally a sphere, a prismatic and a revo-
lute joint. The model is depicted in Fig. 21. Figure
22 shows some pose estimation results of the object
model. Though we measured the size of the model by
hand, the pose is accurate and also the joint parameters
are good approximated. All information is arranged in

one linear system of equations, which leads to simul-
taneous solving of the pose parameters by using all
different features.

5. Summary and Discussion

In this work several important topics for computer vi-
sion and robotics are discussed. First of all, we use the
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Figure 21. Object model, consisting of different entities.

Figure 22. Pose estimation by using all types of model features.

foundations of Part I to deal with the pose estimation
problem. The framework of conformal geometric alge-
bra enables us to handle Euclidean, projective and con-
formal geometry by using suitable sub-algebras. We
present an extended framework for pose estimation of
object models, which consist of different types of en-
tities, including points, lines, planes, circles, spheres
and kinematic chains. We present efficient approaches
to solve the pose estimation problem numerically by
using all information simultaneously. Our experiments
with monocular pose estimation of kinematic chains
show that this is a first step to advantageously cope with

robot vision problems [27] in an advanced algebraic
way. The algorithm for pose estimation of kinematic
chains extends existing approaches, e.g. [4], since we
do not built constraints in the image plane, but con-
straints in the 3D space. Furthermore, we are able to
use a full perspective camera model in this context
and not a scaled orthographic one. The equations of
different constraints are put into one system of equa-
tions for estimating the parameters of the rigid body
motion. Since each point of a kinematic chain con-
tributes with two linearly independent equations, also
the higher order points of kinematic chains influence
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the result of the whole pose. This is also an exten-
sion to classical hierarchical approaches as presented in
[13, 43].

Instead of using invariances as an explicit formula-
tion of ideal geometry, we are using implicit formu-
lations of geometry as geometric constraints. Since in
our constraints spatial distance measures have to be
minimized, we can quite easily deal with noisy image
features, inexact calibrated cameras and noisy object
model features. Because the optimization is performed
with respect to the spatial distance in Euclidean space,
the task of pose estimation is more simple in compar-
ison to the minimization of distances on the manifold
of rigid body motions as performed in [5, 41].

In particular the noise adaptive use of the constraints
in this context is very interesting with respect to the de-
sign of behavior based [37] or learning robot systems.
Several articles concerning the fusion of noisy data,
e.g. [14], can be compared with our approach in that
respect. But we are also interested to apply different
kinds of entities with different reliabilities of measure-
ments so that a system is able to adapt and to pick up
the needed information by itself. Only few works exist
so far which deal with this important topic for stable
running systems, e.g. [17].

We implemented the sources in C++ [26] and are able
to estimate the motion (and kinematic chain) param-
eters in real-time with 20 frames per second on a SUN
Ultra 10 and gain 100 fps on a Linux 2GHz machine.

Our very recent work concerns extensions of this
feature based pose approach and is presented in
[33, 34]. There we use virtually coupled twists to yield a
special family of curves (so-called 3D cycloidal curves)
and extend this approach to general free-form contours.
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Notes

1. In the Eqs. (2.5), (2.8) and (4.3) the product sign Xmeans simply
juxtaposition (geometric product of factors on different lines).

2. Since the positioning accuracy of the robot arm is very good, we
use the positioning values of the robot arm as ground truth.

References

1. E. Bayro-Corrochano and D. Kähler, “Kinematics of robot ma-
nipulators in the motor algebra,” pp. 473–490, 2001.

2. J.R. Beveridge , “Local search algorithms for geometric object
recognition: Optimal correspondence and pose,” Technical Re-
port CS 93–5, University of Massachusetts, 1993.

3. W. Blaschke, Kinematik und Quaternionen, Mathematis-
che Monographien 4, Deutscher Verlag der Wissenschaften,
1960.

4. C. Bregler and J. Malik, “Tracking people with twists and expo-
nential maps,” in IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, Santa Barbara, California,
1998, pp. 8–15.

5. A. Chiuso and G. Picci, “Visual tracking of points as estimation
on the unit sphere,” in The Confluence of Vision and Control,
Springer-Verlag, 1998, pp. 90–105.

6. K. Daniilidis, “Hand-eye calibration using dual quaternions,”
Int. Journ. Robotics Res, Vol. 18, pp. 286–298, 1999.

7. J. Denavit and R.S. Hartenberg, “A kinematic notation for lower-
pair mechanisms based on matrices,” ASME Journal of Applied
Mechanics, Vol. 22, pp. 215–221, 1955.

8. L. Dorst, “Honing geometric algebra for its use in the computer
sciences,” pp. 127–152, 2001 in [38].

9. O. Faugeras, “Stratification of three-dimensional vision: Pro-
jective, affine and metric representations,” Journal of Optical
Society of America, Vol. 12, No. 3, pp. 465–484, 1995.

10. M. Felsberg and G. Sommer, “The multidimensional isotropic
generalization of quadrature filters in geometric algebra,” in 2nd
International Workshop on Algebraic Frames for the Perception-
Action Cycle, Springer-Verlag, 2000, LNCS 1888, pp. 175–
185.

11. J. Gallier, Geometric Methods and Applications for Computer
Science and Engineering, Springer-Verlag: New York, 2001.

12. W.E.L. Grimson, Object Recognition by Computer, The MIT
Press, Cambridge, MA, 1990.

13. A. Hauck, S. Lanser, and C. Zierl, “Hierarchical recognition of
articulated objects from single perspective views,” IEEE: Com-
puter Vision and Pattern Recognition, Puerto Rico, pp. 870–876,
1997.

14. Y. Hel-Or and M. Werman, “Pose estimation by fusing noisy data
of different dimensions,” IEEE Transactions on Pattern Analysis
and Machine Inteligence (PAMI), Vol. 17, No. 2, pp. 195–201,
1995.

15. D. Hestenes, H. Li, and A. Rockwood, “New algebraic tools for
classical geometry,” pp. 3–23, 2001 in [38].

16. D. Hestenes and R. Ziegler “Projective geometry with Clifford
algebra,” Acta Applicandae Mathematicae, Vol. 23, pp. 25–63,
1991.

17. J.R. Holt and A.N. Netravali, “Uniqueness of solutions to struc-
ture and motion from combinations of point and line correspon-
dences,” Journal of Visual Communication and Image Repre-
sentation, Vol. 7, No. 2, pp. 126–136, 1996.

18. H.H. Homer, “Pose determination from line-to-plane correspon-
dences: Existence condition and closed-form solutions,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
Vol. 13, No. 6, pp. 530–541, 1991.

19. R. Horaud, T.Q. Phong, and P.D. Tao, “Object pose from 2-d
to 3-d point and line correspondences,” International Journal of
Computer Vision, Vol. 15, pp. 225–243, 1995.



70 Rosenhahn and Sommer

20. H. Li, D. Hestenes, and A. Rockwood, “Generalized homoge-
neous coordinates for computational geometry,” pp. 27–52, 2001
in [38].

21. A. Lorusso, D.W. Eggert, and R.B. Fisher, “A comparison of four
algorithms for estimating 3D rigid transformations,” Machine
Vision and Applications , Vol. 9, Nos. 5/6, pp. 272–290, 1997.

22. D.G. Lowe, “Solving for the parameters of object models from
image descriptions,” in Proc. ARPA Image Understanding Work-
shop, 1980, pp. 121–127.

23. D.G. Lowe, “Three-dimensional object recognition from single
two-dimensional images,” Artificial Intelligence, Vol. 31, No. 3,
pp. 355–395, 1987.

24. R.M. Murray, Z. Li, and S.S. Sastry, A Mathematical Introduc-
tion to Robotic Manipulation, CRC Press, 1994.

25. T. Needham, Visual Complex Analysis, Oxford University Press,
1997.

26. PACLib (Homepage of the Kiel Perception-Action-Components
Library). http://www.ks.informatik.uni-kiel.de/∼paclib/

27. J. Pauli, “Development of camera-equipped robot systems,”
Technical Report 9904, Christian-Albrechts-Universität zu Kiel,
Institut für Informatik und Praktische Mathematik, 2000.

28. C. Perwass and J. Lasenby, “A novel axiomatic derivation of geo-
metric algebra,” Technical Report CUED/F—INFENG/TR.347,
Cambridge University Engineering Department, 1999.

29. W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling,
Numerical Recipes, C. Cambridge University Press, 1993.

30. B. Rosenhahn, O. Granert, and G. Sommer, “Monocular pose
estimation of kinematic chains,” in Applied Geometric Alge-
bras for Computer Science and Engineering, L. Dorst, C. Do-
ran, and J. Lasenby (Eds.), Birkhäuser Verlag, 2001, pp. 373–
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