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Abstract. 2D-3D pose estimation means to estimate the relative position and orientation of a 3D object with
respect to a reference camera system. This work has its main focus on the theoretical foundations of the 2D-3D pose
estimation problem: We discuss the involved mathematical spaces and their interaction within higher order entities.
To cope with the pose problem (how to compare 2D projective image features with 3D Euclidean object features),
the principle we propose is to reconstruct image features (e.g. points or lines) to one dimensional higher entities
(e.g. 3D projection rays or 3D reconstructed planes) and express constraints in the 3D space. It turns out that the
stratification hierarchy [11] introduced by Faugeras is involved in the scenario. But since the stratification hierarchy
is based on pure point concepts a new algebraic embedding is required when dealing with higher order entities.
The conformal geometric algebra (CGA) [24] is well suited to solve this problem, since it subsumes the involved
mathematical spaces. Operators are defined to switch entities between the algebras of the conformal space and its
Euclidean and projective subspaces. This leads to another interpretation of the stratification hierarchy, which is not
restricted to be based solely on point concepts. This work summarizes the theoretical foundations needed to deal
with the pose problem. Therefore it contains mainly basics of Euclidean, projective and conformal geometry. Since
especially conformal geometry is not well known in computer science, we recapitulate the mathematical concepts
in some detail. We believe that this geometric model is useful also for many other computer vision tasks and has
been ignored so far. Applications of these foundations are presented in Part II [36].
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1. Introduction

In this work we are concerned with the theoretical foun-
dations of an algorithmic approach for simultaneous
2D-3D pose estimation from correspondences of dif-
ferent entities. Pose estimation itself is a basic visual
task [14], and several approaches for monocular pose
estimation exist, which relate the position of a 3D object
to a reference camera coordinate system [1, 22, 39, 43].
Nearly all papers concentrate on one specific type of
correspondences. But many situations are conceivable
in which a system has to gather information from dif-
ferent hints or has to consider different reliabilities of
measurements. While from the first situation the ne-

cessity follows to relate the correspondences of quite
different geometric entities, the second problem ne-
cessitates the use of weighted mixtures of correspon-
dences. To cope algebraically with these combined in-
formations, is in general very hard. For example, some
algorithms assume point correspondences between 3D
model and 2D image data and relate 3D points to 3D
projection lines [39]. Other algorithms assume line cor-
respondences and relate 3D lines to 3D (reconstructed)
planes [21, 22]. Several algorithms use information
of the image plane to relate points to entities like
circles [23]. All these papers use different algebraic
embeddings. Matrix, quaternion and dual-quaternion
algebras can be found to describe the situations in
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different geometries (Euclidean, affine or projective)
[11, 37, 38].

One work concerning the combination of different
kinds of correspondences can be found in [20]. There
only point and line correspondences are treated.

In [37, 41] we started to embed the pose estima-
tion problem for point, line and plane correspondences
in the kinematic framework. We continued in [32] by
applying a conformal [24] embedding, which appears
much more compact and natural. This enables us to
formalize the monocular pose estimation problem for
kinematic chains [31] and to extend it to circle and
sphere concepts [35].

Our work is separated in two parts, Part I (this article)
and Part II [36]. Part I deals with the foundations of the
pose estimation problem and formalizes the pose sce-
nario by using the language of geometric algebras. It
turns out, that the conformal geometric algebra (CGA)
provides a new model dealing with projective and kine-
matic geometry which is not based on point concepts
leading to a new stratification hierarchy. In Part II we
then continue with application of these foundations to
the pose estimation problem of different corresponding
entities.

The main attribute of this contribution is to give an
overview of the geometric scenario for 2D-3D pose es-
timation and their algebraic embedding in conformal
geometric algebra (CGA) [24]. The contribution is or-
ganized as follows: The second section describes the
pose estimation scenario in the context of the strat-
ification hierarchy. Then, geometric algebras are in-
troduced. Therefore, we start with the algebra of the
Euclidean space, continue with the algebra of the pro-
jective space and end up in the algebra of the conformal
space which subsumes the former ones. In the fourth
section, the relations of projective and conformal ge-
ometry will be developed. This will be used in the Part
II to formalize the 2D-3D pose estimation problem in
one algebraic context.

2. Foundations of the 2D-3D Pose
Estimation Problem

This section introduces the foundations of the 2D-3D
pose estimation problem. Therefore, the general sce-
nario is explained firstly. Then the involved mathemat-
ical spaces are explained and thirdly, the main princi-
ples how to cope with the pose estimation problem are
explained and discussed.

Figure 1. The scenario. The solid lines describe the assumptions:
the camera model, the model of the object (consisting of points, lines,
circles, spheres and kinematic chains) and corresponding extracted
entities on the image plane. The dashed lines describe the pose of
the model, which leads to the best fit of the object with the actually
extracted entities.

2.1. The Scenario of Pose Estimation

In the scenario of Fig. 1 we describe the following situ-
ation: We assume 3D points, 3D lines, 3D spheres, 3D
circles or kinematic chain segments as features or com-
ponents of an object or reference model. Furthermore,
we extract corresponding features in an image of a cal-
ibrated camera. The aim is to find the rotation R and
translation T of the object, which lead to the best fit of
the reference model with the actual extracted entities.
One main question is, how to define a geometric error
measure with respect to that. Though it is clear by intu-
ition, a mathematical formalization is not easy and not
unique. Comparing model features to image features
leads to sets of constraint equations which have to be
solved and model the involved geometry in an implicit
manner.

The method how to establish the correspondences is
out of the scope of this paper. The reader should consult
e.g. [4] as an example to solve the matching problem
in this context.

2.2. The Stratification Hierarchy and Pose
Estimation

In the scenario of Fig. 1 four mathematical frameworks
can be identified: The first one is the projective plane
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P2 of a camera, embedded in the second framework, a
3D projective spaceP3. In this 3D projective space it is
possible to project or reconstruct entities. The third one
is the framework of kinematics. It contains the map of
the direct affine isometries [12], which can be used to
describe rigid body motions. A set of entities with the
property that the distances between any two of them
never vary is called a rigid body, and a transformation
with the property of preserving distances during a con-
tinuous transformation is called a rigid body motion.
A rigid body motion corresponds to the special Eu-
clidean transformation group SE(3). Although being a
transformation by itself, it subsumes rotation and trans-
lation. To distinguish between two rigid body motions,
a distance measure on the manifold has to be defined
[7, 42]. But this is no simple task in general. Instead, the
distance of two geometric entities in Euclidean space
can be used to derive a measure of motions. This ne-
cessitates as a fourth framework the Euclidean space or
Euclidean plane. The basic definitions of these spaces
are the following [12]: The Euclidean space is a vector
space V with a symmetric positive definite bilinear
form (which induces a Euclidean norm). The kinematic
space is an affine space with the group of rigid motions
as special affine transformation. The projective space
is the set of (V \{0})/∼ of equivalence classes with

∀u, v ∈ V \{0} : u ∼ v ⇔ ∃λ ∈ R : v = λu.

Mathematically, a projective space P(V ) is a set of
equivalence classes of vectors in V . The spirit of pro-
jective geometry is to view an equivalence class (u)∼
as an atomic object, forgetting the internal structure of
the equivalence class. For this reason, it is customary
to call an equivalence class a = (u)∼ a point (the entire
equivalence class (u)∼ is collapsed into a single object,
viewed as a point).

The idea is to end up later in the Euclidean space. In
that way it is possible to cope geometrically with the
problem of noisy data and to evaluate the quality of the
estimated pose. But since the Euclidean space is not
well suited to describe projective geometry and kine-
matics, the aim is to transform the generated constraint
equations only in the very last step in a distance mea-
sure of the Euclidean space. Before this step, we want
to use the other spaces to represent partial problems in
a suitable way. The above mentioned spaces of the pose
estimation scenario are exactly the spaces of the strat-
ification hierarchy which Faugeras introduced in 1995
[11]. The three main representations he is considering

Table 1. Stratification of mathematical spaces.

Concept Stratification

Vector calculus Euclidean ⊆ affine ⊆ projective

Geometric algebra Euclidean ⊆ projective ⊆ conformal

are the projective, affine and metric ones. All strata are
involved in the 2D-3D pose estimation problem.

In our approach, we are using geometric algebras
instead of vector calculus to represent and handle dif-
ferent mathematical spaces of geometric meaning. The
maximum sized algebra over a Euclidean space so far
used by us is an algebra to handle conformal transfor-
mations [15]. A transformation is said to be conformal
if it (locally) preserves angles. The conformal geomet-
ric algebra (CGA) contains the algebras for projective
and Euclidean geometry as subalgebras, thus leading to
another formalization of the stratification hierarchy, we
propose in this contribution. Table 1 shows the different
stratification hierarchies. The stratification hierarchy
proposed by Faugeras has its roots in the vector space
concepts and assumes points as the represented basic
geometric entities. All other geometric entities are de-
rived as subspaces of point sets without having an own
algebraic existence. Well known is the homogeneous
extension to express a Euclidean space as affine space
and to use the homogeneous component for distinction
between points and directions in the affine space. The
projective space as a set of equivalence classes is di-
rectly built on the homogeneous vector space concepts.
So this way to stratify the vision space is clearly mo-
tivated by the underlying point concepts of the vector
spaces.

In geometric algebras instead, we do have besides
point concepts so-called multivector concepts to model
geometry. In the next section we will explain why it is
necessary also to extend geometric algebras to homo-
geneous models. But this leads to a different stratifica-
tion of the spaces since this stratification is not based on
pure point concepts any more. Instead, the new strat-
ification concept contains algebras for the Euclidean,
projective and conformal space.

2.3. Principles of Solving the Pose
Estimation Problem

The main problem of 2D-3D pose estimation is how
to compare 3D Euclidean object features with 2D
projective image data. There are two strategies for
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comparison: On the one hand it is possible to project
the transformed entity in the image plane and to com-
pare it with the extracted image data. This leads to a
comparison in the projective plane or Euclidean plane,
respectively. The second possibility is to projectively
reconstruct the object features from the image data and
to compare the (by one dimension higher) entities with
the 3D object features. Both approaches have advan-
tages and disadvantages. Here we want to discuss a few
properties of both strategies: To enable comparisons in
the first strategy, the projected object features have to
be scaled in their homogeneous component. This leads
to fractions with the unknown transformation in both,
the numerator and the denominator. The equations are
not linear any more and are not easy to solve numer-
ically. Though the equations can also be expressed as
projective linear system of equations, the problem is
then to lose a distance measure and to risk bad condi-
tioned equations. To avoid such problems, orthographic
projections (see e.g. [6]) are used, but then the camera
model is not perspective any more. Since the second
strategy uses projective reconstructed data, this prob-
lem does not occur there. But the problem is that the
distance measures in the 3D space is different to those
in the image plane: Though the distance of two image
points may be constant, the distance of two 3D projec-
tively reconstructed points varies with the distance of
the points to the optical center of the camera. This ne-
cessitates for degenerate situations1 that the (from the
image and object features generated) constraint equa-
tions must be adapted with respect to the projective
depth. Table 2 summarizes the main principles of solv-
ing the pose problem in an implicit manner.

In our approach (similar to [43]) we projectively re-
construct the 3D data from image data and compare the
one dimensional higher entities (their projective equiv-
alence classes) with the 3D object features. There are
three main arguments why we decided for the second
strategy which is based on the stratification concepts
above: Firstly, we want to describe the constraints as

Table 2. Principles of formalizing constraints for the pose problem.

Geometric Full
Constraint Linear distance measure perspective

2D Euclidean no yes yes

Orthographic projective yes yes no

Full projective yes no yes

3D kinematic yes yes yes

simply as possible and want to gain real-time perfor-
mance. For this, the projectively reconstructed data are
easier to handle in the 3D kinematic space than the
projected data in the 2D projective space. The second
advantage of the approach is that the error measures
are formalized in the 3D Euclidean space and are di-
rectly connected to a spatial distance measure. This is
in contrast to other approaches, where the minimiza-
tion of estimating errors of the rigid body motion has to
be computed directly on the manifold of the geometric
transformation [7, 42]. The third argument is that the
depth dependence of the 3D constraints can be adapted
in each situation. As will be later shown (see Part II) our
constraints can be scaled, and therefore transformed in
depth-depending constraints comparable to the situa-
tion observed in the 2D image plane.

Since CGA can be used to formalize kinematics and
since it contains the algebras for projective and Eu-
clidean geometry as subalgebras, it is well suited to be
used in this context. Therefore, the whole scenario is
formalized in CGA: That are the entities, the kinematic
chains, the transformations of the entities and the con-
straints for collinearity, coplanarity and tangentiality of
the involved entities.

3. Introduction to Geometric Algebras

What we currently call geometric algebra [15] is tightly
related to Clifford algebra. Both in fact represent fam-
ilies of algebras which depend on both the chosen vec-
tor spaces the algebras are derived from and the chosen
kind of product defining the special algebra. A nice his-
toric introduction of Clifford’s contribution of invent-
ing a geometric extension of the real number system to
such which provides a complete algebraic representa-
tion of directed numbers can be found in [44].

Clifford (or geometric) algebras have the proper-
ties of dense symbolic representations of higher or-
der entities and of linear operations acting on those,
coupled with strong under-pinned mathematical con-
cepts. It is nice that many geometric concepts, which
are often introduced separately in special algebras
are unified in geometric algebras. So the concepts of
duality in projective geometry, Lie algebras and Lie
groups, incidence algebra, Plücker representations of
lines, complex numbers, quaternions and dual quater-
nions can all be found in suitable geometric algebras.
In geometric algebras there are strong relations be-
tween algebraic and geometric entities. Furthermore,
both the object concepts and the operations acting
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on those are represented in one unique mathematical
language.

We will now continue with a general introduction to
geometric algebras and will proceed with algebras to
model the Euclidean, projective and conformal space.
A more extended introduction into geometric algebras
can be found in [9, 10, 15, 16, 18, 19, 40]. See also the
courses on web, e.g. [8, 29].

In general, a geometric algebra G p,q,r is a linear
space of dimension 2n , n = p +q +r , with a subspace
structure, called blades, to represent so-called multi-
vectors as higher grade algebraic entities in compari-
son to vectors of a vector space as first grade entities,
or scalars as grade zero entities. A geometric algebra
G p,q,r results in a constructive way from a vector space
R

p,q,r , endowed with the signature (p, q, r ), by appli-
cation of a geometric product. The geometric product
of two multivectors A and B is denoted as AB. The ge-
ometric product consists of an outer (∧) and an inner
(·) product, whose roles are to increase or to decrease
the order of the algebraic entities, respectively.

To be more detailed, we define the geometric product
of a geometric algebra G p,q,r for two basis vectors ei

and e j as

ei e j =




1 for i = j ∈ {1, . . . , p}
−1 for i = j ∈ {p + 1, . . . , p + q}
0 for i = j ∈ {p + q + 1, . . . , n}
ei j = ei ∧ e j = −e j ∧ ei

for i �= j

.

(3.1)

A vector space with signature (p, q, r ), q �= 0, r �=
0, is called pseudo-Euclidean. If r �= 0, then its metric
is degenerate. Although the dual-quaternions, which
have some importance in kinematics, are isomorphic to
a degenerate geometric algebra, see [2, 3], we will in
the following only consider non-degenerate geometric
algebras G p,q where r = 0. Besides, we will write Gn

if q = 0, that is, there is a Euclidean metric.
The inner (·) and outer (∧) products of two vectors

u, v ∈ 〈G p,q〉1 ≡ R
p+q are defined as

u · v := 1

2
(uv + vu), (3.2)

u ∧ v := 1

2
(uv − vu). (3.3)

Here α = u · v represents a scalar, which is of grade
zero, i.e. α ∈ 〈G p,q〉0 with 〈·〉s is the operator to

separate the grade-s entities of the linear space G p,q .
Besides B = u ∧ v represents a bivector, i.e. B ∈
〈G p,q〉2.

As extension, the inner product of an r -blade u1 ∧
. . . ∧ ur with an s-blade v1 ∧ . . . ∧ v s can be defined
recursively by

(u1 ∧ . . . ∧ ur ) · (v1 ∧ . . . ∧ v s)

=
{

((u1 ∧ . . . ∧ ur ) · v1) · (v2 ∧ . . . ∧ v s) if r ≥ s

(u1 ∧ . . . ∧ ur−1) · (ur · (v1 ∧ . . . ∧ v s)) if r < s,

(3.4)

with

(u1 ∧ . . . ∧ ur ) · v1

=
r∑

i=1

(−1)r−i u1 ∧ . . . ∧ ui−1 ∧ (ui · v1)

∧ ui+1 ∧ . . . ∧ ur , (3.5)

ur · (v1 ∧ . . . ∧ v s)

=
s∑

i=1

(−1)i−1v1 ∧ . . . ∧ v i−1 ∧ (ur · v i )

∧ v i+1 ∧ . . . ∧ v s . (3.6)

We will make this more explicit in the next subsections.
For two blades A〈r〉 and B〈s〉 with non zero grade

r and s ∈ N the inner and outer product can also be
expressed as

A〈r〉 · B〈s〉 = 〈AB〉|r−s| (3.7)

and

A〈r〉 ∧ B〈s〉 = 〈AB〉r+s, (3.8)

with the following additional rules:

1. If r = 0 or s = 0, the inner product is zero.
2. If r + s > n, the outer product is zero.

The blades of highest grade are n-blades, called
pseudoscalars P . Pseudoscalars differ from each other
by a nonzero scalar only. There exist two unit n-
blades, called the unit pseudoscalars ±I. The unit
pseudoscalars are often indexed by the generating vec-
tor spaces of the geometric algebras, for example I E ,
I P and IC represent the unit pseudoscalars of the alge-
bras for the Euclidean, projective and conformal space,
respectively.
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The magnitude [P] of a pseudo-scalar P is a scalar.
It will be called bracket of P and is defined by

[P] := P I−1. (3.9)

For the bracket determined by n vectors, we write

[v1 . . . vn] = [v1 ∧ . . . ∧ vn]

= (v1 ∧ . . . ∧ vn)I−1. (3.10)

This can also be taken as a definition of a determinant,
well known from matrix calculus. We define the dual
X� of an r -blade X by

X� := XI−1. (3.11)

It follows, that the dual of an r -blade is an (n−r )-blade.
The reverse Ã〈s〉 of an s-blade A〈s〉 = a1 ∧ . . .∧as is

defined as the reverse outer product of the vectors ai ,

Ã〈s〉 = (a1 ∧ a2 ∧ . . . ∧ as−1 ∧ as)∼

:= as ∧ as−1 ∧ . . . ∧ a2 ∧ a1. (3.12)

The join A ∧̇ B is the pseudoscalar of the space given
by the sum of spaces spanned by A and B.

For blades A and B the dual shuffle product A ∨ B
is defined by the DeMorgan rule

(A ∨ B)� := A� ∧̇ B�. (3.13)

For blades A and B it is possible to use the join to
express meet operations: Let be A and B two arbitrary
blades and let J = A ∧̇ B, then

(A ∨ B) := (
AJ−1 ∧ BJ−1

)
J. (3.14)

The meet ∨, also called the shuffle product, is the com-
mon factor of A and B with the highest grade. The meet
will be used in Section 3.2 for incidence estimation of
points, lines and planes.

For further computations, we also use both the com-
mutator × and the anticommutator × product for any
two multivectors,

AB = 1

2
(AB + BA) + 1

2
(AB − BA)

=: A× B + A× B. (3.15)

The reader should consult [27] to become more famil-
iar with the commutator and anticommutator product.

Their role is to separate the symmetric part of the geo-
metric product from the antisymmetric one.

Now we will proceed to introduce the algebras for
the Euclidean, projective and conformal spaces.

3.1. The Euclidean Geometric Algebra

The algebra G3, which is derived from R
3, i.e. n = p =

3, is the smallest and simplest one, we want to intro-
duce here. This algebra is suitable to represent entities
and operations in the 3D Euclidean space. Therefore,
we call it EGA as abbreviation for Euclidean geomet-
ric algebra. We start with the three orthonormal basis
vectors {e1, e2, e3} of the 3D Euclidean space. The ge-
ometric algebra of the 3D Euclidean space consists of
23 = 8 basis vectors,

G3 = span{1, e1, e2, e3, e23, e31, e12, e123 = I E }.
(3.16)

The elements ei j = ei e j = ei ∧e j are the unit bivectors
and the element e123 = e1e2e3 = e1 ∧ e2 ∧ e3 = I E is
a trivector, called Euclidean unit pseudo-scalar, which
squares to −1 and commutes with scalars, vectors and
bivectors. To make more clear the above introduced
rules of the geometric product, we will formulate the
geometric product of two vectors as an example:

uv = (u1e1 + u2e2 + u3e3)(v1e1 + v2e2 + v3e3)

= u1e1(v1e1 + v2e2 + v3e3)

+ u2e2(v1e1 + v2e2 + v3e3)

+ u3e3(v1e1 + v2e2 + v3e3)

= u1v1 + u2v2 + u3v3 + (u1v2 − u2v1)e12

+ (u3v1 − u1v3)e31 + (u2v3 − u3v2)e23

= u · v + u ∧ v . (3.17)

Thus, the geometric product of two vectors leads to a
scalar, representing the inner product of the two vectors
(corresponding to the scalar product of these vectors in
vector calculus), and a bivector, representing the outer
product of two vectors. The bivector corresponds to the
dual of the vector which results from the cross prod-
uct (×) of two vectors (in vector calculus). The inner
product of a bivector (a ∧ b) with a vector c leads to
another vector,

(a ∧ b) · c
3.5= −(a · c) ∧ b + a ∧ (b · c)

= −(a · c)b + (b · c)a, (3.18)
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and thus, we get the equivalent formulation of the fa-
mous cross product rule for the 3D case,2

(a × b) × c = 〈a, c〉b − 〈b, c〉a. (3.19)

The inner product of two bivectors leads to a scalar,

(a ∧ b) · (c ∧ d)
3.4= ((a ∧ b) · c) · d

3.18= −((a · c)b + (b · c)a) · d

= −(a · c)(b · d) + (b · c)(a · d),

(3.20)

and we get (for the 3D case) the Lagrange identity for
the cross products of 3D vectors,

〈(a × b), (c × d)〉 = 〈a, c〉〈b, d〉 − 〈b, c〉〈a, d〉.
(3.21)

Note that the outer product is more general than the
cross product, since it can be applied to spaces of any
dimension and of any signature.

3.1.1. Representation of Points, Lines and Planes in
the Euclidean Geometric Algebra. Points, lines and
planes of the 3D space can all be modeled in the algebra
G3. A point, representing a position in the 3D space,
can simply be expressed by a linear combination of the
three basis vectors,

u = u1e1 + u2e2 + u3e3. (3.22)

A line can be represented as an inhomogeneous multi-
vector by using a vector r for the direction and a bivec-
tor m containing the moment, as outer product of a
point x on the line and the direction r of the line [5],

l = r + x ∧ r

= r + m. (3.23)

Incidence of a point with a line can be expressed by the
kernel of a function FX L ,

p ∈ l ⇔ FX L (p, l) = 0

⇔ (p ∧ r ) − m = 0. (3.24)

A plane can be represented by an entity one grade
higher then the line. In terms of the Hesse distance
d from the origin to the plane (coded by the Euclidean

pseudo-scalar) and the unit bivector direction n from
the origin to the plane, a plane is defined by

p = n + I E d. (3.25)

Thus, a plane is an inhomogeneous multivector, con-
sisting of a bivector and a trivector. The incidence of
a point with a plane can be expressed in the following
way,

x ∈ p ⇔ FX P (x, p) = 0

⇔ (x ∧ n) − I E d = 0. (3.26)

If we compare the representations of these three en-
tities in EGA, we recognize, that those of lines and
planes are more complicated than that of points. Also
the constraint equations expressing the incidence rela-
tion are not compact or simple. This has its reason in the
fact, that so far no origin of the vector space is mod-
eled within the geometric algebra. In vector calculus
this can formally be done by introducing an additional
(or homogeneous) coordinate. Such an extension will
also be done in Section 3.2 for modeling the projective
space in a Clifford algebra.

3.1.2. Rotations and Translations in the Euclidean
Space. Multiplication of the three basis vectors ei

with I E results in the three basis bivectors I E ei . These
bivectors rotate vectors in their own plane by 90◦, e.g.
(I E e3)e2 = e123e3e2 = e12e2 = e1, or (I E e1)e2 =
e123e1e2 = e23e2 = −e1, etc. Note, since the ba-
sis vectors are orthonormal, it is equivalent to write
ei j = ei ∧ e j for i �= j . The basis bivectors square to
−1, and so they can easily be identified with the unit
vectors i , j , k of the quaternion algebra H with the fa-
mous Hamilton relations i2 = j2 = k2 = i jk = −1.
We have the isomorphy G+

3 � H with G+
3 as the even-

grade subalgebra of G3.
The bivectors of the geometric algebra can be used

to represent rotations of points in the 3D space. A rotor
R is an even grade element of the algebra G3 which
satisfies RR̃ = 1. Since the even grade elements of G3

are scalars and bivectors, a rotor R and its reverse R̃ is
given by

R = u0︸︷︷︸
scalar

+ u1e23 + u2e31 + u3e12︸ ︷︷ ︸
bivectors

, (3.27)

R̃ = u0︸︷︷︸
scalar

− u1e23 − u2e31 − u3e12︸ ︷︷ ︸
bivectors

. (3.28)
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If we use the Euler representation of a rotor,

R = exp

(
−θ

2
n
)

= cos

(
θ

2

)
− n sin

(
θ

2

)
, (3.29)

it takes on geometric significance. Here n is a unit
bivector representing the plane of the rotation (its dual
n� corresponds to the rotation axis) and θ ∈ R is repre-
senting the amount of rotation. The rotation of a point,
represented by its vector x, can be carried out by mul-
tiplying the rotor R from the left and its reverse from
the right to the point x,

x′ = RxR̃. (3.30)

Such a multiplication is also called versor product and
the bivector R is the versor of this versor product. A ro-
tor is representing the group SO(3) in EGA. Thus, the
operation concatenates according to a left-sided prod-
uct R = R2 R1 yielding a new rotor. From this follows

x′ = RxR̃ = (R2 R1) x
(
R̃1 R̃2

)
. (3.31)

In contrast to rotation matrices of R
3, rotors are

working not only on points, but for all types of geo-
metric objects, and are defined independent on their
grade and the dimension of the space.

The exponential function of multivectors m can also
be expressed via its series expression,

exp(m) =
∞∑

k=0

mk

k!
. (3.32)

In contrast to rotations, there exists no multiplicative
way to formalize translation in the Euclidean geometric
algebra. The only possibility is to express translations
in an additive way, e.g., a point x is translated with a
translation vector t , by

x′ = x + t . (3.33)

This results from the well-known fact that translations
in R

3 = 〈G3〉1 constitute the additive group R
3. There-

fore, composite translations follow the rule t = t1 + t2.
Another problem concerns the linearity of both opera-
tions. A rotation,R, is a linear operation. Let be x and y
any multivectors of G3, thenR{x+y} = R{x}+R{y}.
But translation behaves not linear. For two vectors x and

y, representing points of 〈G3〉1, it follows T {x + y} �=
T {x} + T {y}.

These different behaviors cause problems in repre-
senting the rigid motion of an object in EGA as lin-
ear operation. A rigid motion in Euclidean space is a
mapping D : R

3 → R
3 which preserves distances be-

tween points and angles between vectors. In general,
the movement of a rigid body, that is a rigid displace-
ment, may include both rotation and translation in the
following way. Let be x′, x ∈ 〈G3〉1, then

x′ = RxR̃ + t . (3.34)

A spatial rigid displacement D = (R, t) belongs to
the special Euclidean group SE(3) = R

3 × SO(3).
Thus a composite displacement D = D2D1 exists with
D = (R, t) = (R2, t2)(R1, t1) = (R2 R1, R2t1 + t2).
But regrettably, because of the non-linear behavior of
the translation, the displacement is no linear operation
in G3, neither for points nor for other entities. For-
tunately, there are other algebraic embeddings which
result in linearization with respects to points or other
entities. While so far either point or line based trans-
formations for rigid displacements have been distin-
guished [30], we will introduce in this paper a third
category which is based on spheres, see Section 3.3.

3.2. The Projective Geometric Algebra

By using homogeneous coordinates we increase the di-
mension of the vector space by one and the correspond-
ing algebra is of dimension 24 = 16. The elements we
gain are now scalars, vectors, bivectors, trivectors and
the pseudoscalar. To model 3D projective geometry in
a geometric algebra four basis vectors are needed. The
signature of the derived vector space will be unimpor-
tant, therefore it is free to choose. We will introduce
the geometric algebra G3,1 to represent the projective
space. Here the additional basis vector e− denotes the
homogeneous component. Because e2

− = −1, this ba-
sis vector induces a Minkowski metric. The algebra
G3,1 contains the following elements,

G3,1 = span{1, e−, e1, e2, e3, e23, e31, e12,

e−1, e−2, e−3, e123, e−23, e−31, e−12,

e−123 = I P}. (3.35)

Note that e.g. e−123 ≡ e− ∧ e1 ∧ e2 ∧ e3 and e2
−123

= −1.
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3.2.1. Representation of Points, Lines and Planes in
the Projective Geometric Algebra. In contrast to the
Euclidean geometric algebra G3, in the projective ge-
ometric algebra G3,1 (PGA) we can simply represent
points, lines and planes as r -blades, i.e. homogeneous
multivectors of grade r . In that case the previously men-
tioned duality operator is of special importance since
it transforms geometric entities to their duals.

A point can be represented by a 1-blade. The basis
vector e− represents the homogeneous component of
the point. Thus, the point x given in G3, can be repre-
sented in G3,1 by

X = x + e−. (3.36)

Since X ∧ X = 0, so also

X ∧ λX = 0 ∀ λ ∈ R\{0}. (3.37)

For this reason the outer product is used to define the
equivalence class of points in the projective space. All
vectors X represent a point A if A∧X = 0. This means,
that the so-called outer product null space defines the
incidence of two entities, similar to [15].

A line can be represented by the outer product of two
points, leading to a 2-blade,

L = X1 ∧ X2

= (x1 + e−) ∧ (x2 + e−)

= x1 ∧ x2 + (x1 − x2)e−
= m + re−. (3.38)

The line L contains the moment m and direction r .
Therefore, it corresponds directly to the Plücker rep-
resentation [5]. Being a 2-blade, the line contains 6
bivector components.

A plane can be represented by the outer product of
three points, leading to a 3-blade

P = X1 ∧ X2 ∧ X3

= (x1 + e−) ∧ (x2 + e−) ∧ (x3 + e−)

= x1 ∧ x2 ∧ x3 + (x1 − x2) ∧ (x1 − x3)e−
= d I E + ne−. (3.39)

This representation corresponds to the Hesse descrip-
tion of planes, formalizing a plane by the normal n (as
bivector) of the plane, and the Hesse distance d of the
plane to the origin.

As can be seen, the generation of the higher order
entities is much more natural than in the algebra of the
Euclidean space because it results from the incidence
algebra of points.

The outer product of two blades is non-vanishing iff
their supports have zero intersection. This can be used
to prove an incidence relation [19], e.g. a point X is on
a line L iff

X ∧ L = 0. (3.40)

For blades Aand B we use the previous defined shuf-
fle product and the join, to express the meet operations:
Let be A and B two arbitrary blades and let J = A ∧̇ B,
then the meet can be written as

(A ∨ B) = (
AJ−1 ∧ BJ−1

)
J. (3.41)

The meet is the common factor of A and B with high-
est grade. The meet defines a generalized intersection
operation.

Note that the incidence operations always lead to
entities in the projective space. To re-transform e.g. a
projective point to a Euclidean point the projective split
[15] has to be applied.

The advantage of the algebra G3,1 for the projec-
tive space, in comparison to the algebra G3 for the Eu-
clidean space is that the representation of the entities is
much more natural and provided by the subspace con-
cepts. From this results a nice formulation of the duality
concept in projective geometry and compact descrip-
tions of joins and meets of subspaces, just by applying
a suitable operator.

In PGA projective transformations can be expressed.
These transformations are more general than Euclidean
transformations, since they include also other transfor-
mations like scaling or shearing. Since we are only
interested in Euclidean transformations, we have to re-
strict the projective transformations in a second pro-
cessing step. So we need an algebraic embedding which
enables the restriction of the transformations on a Eu-
clidean transformation in a better way. The common
used algebra so far is the dual quaternion algebra,
which is isomorphic to the motor algebra G+

3,0,1 [3].
But since it contains null spaces, the duality concepts
of projective geometry cannot be applied any more.3

The aim is now, to proceed to the conformal algebra,
which can handle these problems. One important prop-
erty of the conformal geometric algebra is that it is non-
degenerate, but contains an artificially generated null



36 Rosenhahn and Sommer

space. The algebra for projective geometry is further-
more a subset of this (extended) algebra. Since the null
space is artificially generated, it is possible to switch
between null spaces and non-null spaces, an important
fact for the next sections.

3.3. The Conformal Geometric Algebra

We use the conformal geometric algebra [18, 24] to
model the geometry of our scenario for pose estima-
tion. The use of the conformal geometric algebra is mo-
tivated by introducing stereographic projections [12].

3.3.1. Stereographic Projection. The idea behind
conformal geometry is to interpret points as stereo-
graphically projected points. Simply speaking, a stere-
ographic projection is one way to make a flat map of
the earth. Taking the earth as a 3D sphere, any map
must distort shapes or sizes to some degree. The rule
for a stereographic projection has a nice geometric de-
scription and is visualized for the 1D case in Fig. 2:
Think of the earth as a transparent sphere, intersected
on the equator by an equatorial plane. Now imagine
a light bulb at the north pole n, which shines through
the sphere. Each point on the sphere casts a shadow on
the paper, and that is where it is drawn on the map. A
visualization for the 2D case is shown in Fig. 5. Be-
fore introducing a formalization in terms of geometric
algebra, we want to repeat the basic formulas for pro-
jecting points in space on the sphere and vice versa,

Figure 2. Visualization of a stereographic projection for the 1D
case: Points on the circle are projected onto the line. Note that the
north pole n projects to the points at infinity, and the south pole s
projects to the origin.

e.g. given in [26]. To simplify the calculations, we will
restrict ourselves to the 1-D case, as shown in Fig. 2.
We assume two orthonormal basis vectors {e1, e+} and
assume the radius of the circle as ρ = 1. Note that e+
is an additional vector to the one-dimensional vector
space spanned by e1 with e2

+ = e2
1 = 1.

To project a point x′ = ae1 +be+ on the sphere onto
the e1-axis, the interception theorems can be applied to
obtain

x =
(

a

1 − b

)
e1 + 0e+. (3.42)

To project a point xe1 (x ∈ R) onto the circle we have
to estimate the appropriate factors a, b ∈ [0, . . . , 1].
The vector x′ can be expressed as

x′ = ae1 + be+

= 2x

x2 + 1
e1 + x2 − 1

x2 + 1
e+, (3.43)

and using homogeneous coordinates this leads to a ho-
mogeneous representation of the point on the circle as

x′ = xe1 + 1

2
(x2 − 1)e+ + 1

2
(x2 + 1)e3. (3.44)

Thus, the vector x is mapped to

x ⇒ x′ = ae1 + be+ + e3. (3.45)

We define e3 to have a negative signature, and therefore
replace e3 with e−, whereby e2

− = −1. This has the ad-
vantage that in addition to using a homogeneous repre-
sentation of points, we are also working in a Minkowski
space. Euclidean points, stereographically projected
onto the circle in Fig. 2, are then represented by the
set of null vectors in our new space. That is, we have
the mapping

x ⇒ x′ = ae1 + be+ + e−, (3.46)

with

(x′)2 = a2 + b2 − 1 = 0 (3.47)

since (a, b) are the coordinates of a point on the unit
circle. Note that each point in Euclidean space is in
fact represented by a line of null vectors in the new
space: the scaled versions of the null vector on the unit
sphere. In [24] it is shown that the conformal group of
n-dimensional Euclidean space R

n is isomorphic to the
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Figure 3. Visualization of the homogeneous model for stereo-
graphic projections for the 1D case. All stereographic projected
points are on a cone, which is a null-cone in the Minkowski space.
Note that in comparison to Fig. 2, the coordinate axes are rotated and
perspective drawn.

Lorentz group of R
n+1,1. Furthermore, the geometric

algebra Gn+1,1 of R
n+1,1 has a spinor representation

of the Lorentz group. Therefore, any conformal trans-
formation of n-dimensional Euclidean space is repre-
sented by a spinor in Gn+1,1, the conformal geometric
algebra. Figure 3 visualizes the homogeneous model
for stereographic projections for the 1D case.

Substituting the expressions for a and b from
Eq. (3.43) into Eq. (3.46), we get

x′ = xe1 + 1

2
(x2 − 1)e+ + 1

2
(x2 + 1)e−. (3.48)

This homogeneous representation of a point is used as
point representation in the conformal geometric alge-
bra. We will show this in the next section. Note that the
stereographic projection from a plane leads to points
on a sphere. Therefore, we can use (special) rotations
on this sphere to model e.g. translations in the world
or rigid body motion as coupled rotation/translation.
Since we also use a homogeneous embedding, we have
furthermore the possibility to model projective geom-
etry.

3.3.2. Definition of the Conformal Geometric
Algebra. To introduce CGA we follow [24] and start
with a Minkowski plane, G1,1, whose vector space R

1,1

has the orthonormal basis {e+, e−}, defined by the prop-
erties

e2
+ = 1 e2

− = −1 e+ · e− = 0. (3.49)

In addition, a null basis can now be introduced by the
vectors

e0 := 1

2
(e− − e+) and e := e− + e+. (3.50)

These vectors can be interpreted as the origin, e0, of the
coordinate system and the point at infinity, e, respec-
tively. Note that this is in consistency with Fig. 3: e0

corresponds to the south pole and e corresponds to the
north pole in homogeneous coordinates. Furthermore,
we define

E := e ∧ e0 = e+ ∧ e−.

For these elements the following straightforwardly
proved properties can be summarized as

e2
0 = e2 = 0 e · e0 = −1 E = e+e−

E2 = 1 Ee = −e Ee0 = e0

e+E = e− e−E = e+ e+e = E + 1

e−e = −(E + 1) e ∧ e− = E e+ · e = 1.

(3.51)

The role of the Minkowski plane is to generate null vec-
tors, and so to extend a Euclidean vector space R

n to
R

n+1,1 = R
n ⊕ R

1,1 and, thus, resulting in the confor-
mal geometric algebra Gn+1,1. The conformal vector
space derived from R

3 is denoted as R
4,1. A basis is

given by {e1, e2, e3, e+, e−}. The corresponding alge-
bra G4,1 contains 25 = 32 elements. We denote the
conformal unit pseudoscalar as

IC = e+−123 = EI E . (3.52)

In this algebra we consider points of the so-called null
cone, which fulfill the properties

{X ∈ R
4,1 | X2 = 0, X · e = −1}. (3.53)

The points of the null cone are related to those of the
Euclidean space by

X = x + 1

2
x2e + e0. (3.54)

Evaluating X leads to

X = x + 1

2
x2e + e0

= x + 1

2
x2(e+ + e−) + 1

2
(e− − e+)

= x +
(

1

2
x2 − 1

2

)
e+ +

(
1

2
x2 + 1

2

)
e−. (3.55)
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This is exactly the homogeneous representation of a
stereographic projected point, given in (3.48). The ba-
sis vectors {e, e0} only allow for a more compact rep-
resentation of vectors than when using {e+, e−}.

We will now analyze new characteristic properties of
the points, and so of the generated entities from these
points.

3.3.3. Geometric Entities in Conformal Geometric
Algebra. The use of a certain geometric algebra in-
duces an involved metric and therewith a basis geomet-
ric entity from which the other entities are derived. In
G3, the algebra of the Euclidean space, the basis en-
tities are points, and lines and planes are formulated
as certain sets of points. In the motor algebra G+

3,0,1,
an algebra to model kinematics [3], the basis entities
are lines, expressed in terms of the Plücker coordinates
[5], and points and planes are written in these terms.
In conformal geometric algebra, G4,1, the spheres are
the basis entities [26] from which the other entities are
derived. It turns out that the above introduced point rep-
resentation is nothing more than a degenerate sphere.

To introduce primitive geometric entities in CGA we
will start by introducing the representation of spheres
in CGA. Then we will proceed to the other enti-
ties. A more detailed introduction can be found in
[24].

There is no direct way to describe spheres as com-
pact entities in G3. The only possibility to define them is
given by formulating a constraint equation. The equa-
tion for a point, x ∈ G3, on a sphere with center p ∈ G3

and radius ρ ∈ R, ρ ≥ 0, can be written as

(x − p)2 = ρ2

⇔ x2 − (xp + px) + p2 = ρ2. (3.56)

The basis entities of the 3D conformal space are spheres
S, containing the center p and the radius ρ, S = p +
1
2 (p2 − ρ2)e + e0. The point X = x + 1

2 x2e + e0 is
nothing more than a degenerate sphere with radius ρ =
0, which can easily be seen from the representation of a
sphere. In G4,1 Eq. (3.56) can therefore be represented
more compact:

(x − p)2 = ρ2

⇔ X · S = 0. (3.57)

This can easily be verified,

X · S =
(

x + 1

2
x2e + e0

)
·
(

p + 1

2
(p2 − ρ2)e + e0

)

= −1

2
(x2 + p2 − ρ2) + x · p

= −1

2
((x − p)2 − ρ2). (3.58)

The dual form for a sphere is S�. The advantage of the
dual form is that S� can be calculated directly from
points on the sphere: For four points on the sphere, S�

can be written as

S� = A ∧ B ∧ C ∧ D, (3.59)

and a point X is on a sphere S iff X ∧ S� = 0. Note:
To test incidence of a point with an entity can be ex-
pressed by the inner product null-space or outer prod-
uct null-space, dependent on the representation or dual
representation of the entity. This follows from the easy
relationship (see e.g. [15])

X · S = 0

⇔ X ∧ S� = 0. (3.60)

So far we have introduced the description of the first
two entities, points and spheres.

Geometrically, a circle Z can be described by the
intersection of two spheres. This means:

X ∈ Z ⇔ X ∈ S1 and X ∈ S2. (3.61)

Since S1 and S2 can be assumed as linear independent,
we can write

X ∈ Z

⇔ (X · S1)S2 − (X · S2)S1 = 0

⇔ X · (S1 ∧ S2)︸ ︷︷ ︸
Z

= 0

⇔ X · Z = 0 (3.62)

This means that algebraically a circle can be expressed
as the intersection of two spheres. Figure 4 visualizes
the generation of a circle as intersection of two spheres.
The intersection of the circle with a third sphere leads
to a point pair.

In the dual form circles are geometrically defined by
three points on it,

Z� = A ∧ B ∧ C . (3.63)
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Table 3. The entities and their dual representations in CGA.

Entity Representation Grade Dual representation Grade

Sphere S = p + 1
2 (p2 − ρ2)e + e0 1 S� = A ∧ B ∧ C ∧ D 4

Point X = x + 1
2 x2e + e0 1 X� = (−Ex − 1

2 x2e + e0)I E 4

Plane P = nI E − de 1 P� = e ∧ A ∧ B ∧ C 4

n = (a − b) ∧ (a − c)

d = (a ∧ b ∧ c)I E

Line L = r I E + emI E 2 L� = e ∧ A ∧ B 3

r = a − b

m = a ∧ b

Circle Z = S1 ∧ S2 2 Z� = A ∧ B ∧ C 3

P z = Z · e, L�
z = Z ∧ e

P z = P z ∨ Lz , ρ = Z2

(e ∧ Z)2

Point pair P P = S1 ∧ S2 ∧ S3 3 P P� = A ∧ B, X� = e ∧ X 2

Figure 4. A circle can be expressed as intersection of two spheres.
Intersecting the circle with a third sphere leads to two points (only
one of these two points is visible).

Evaluating the outer products of three points leads to

Z� = A ∧ B ∧ C = A + A−e + A+e0 + A±E,

(3.64)

with

A = a ∧ b ∧ c

A− = 1

2
(c2(a ∧ b) − b2(a ∧ c) + a2(b ∧ c))

A+ = a ∧ b + b ∧ c − a ∧ c

A± = 1

2
(a(b2 − c2) + b(c2 − a2) + c(a2 − b2)).

The dual form of lines are represented by the outer
product of two points on the line and the point at infinity
(see [26]), L� = e ∧ A ∧ B. Since the outer product
of three points determines a circle [24], the line can

be interpreted as a circle passing through the point at
infinity.

Similar to lines, dual planes can then be defined
by the outer product of three points on the plane
and the point at infinity, P� = e ∧ A ∧ B ∧ C . A
plane is a degenerate sphere, containing the point at
infinity.

An overview of the definitions of the entities, their
dual representations and their grades are given in
Table 3. Since the outer product of 3 spheres leads
to a point pair, it is a 2-blade in its dual space. Using
the point at infinity leads to another representation of
a pure point X� = e ∧ X in the dual space.

The dual lines and planes are given, similar to G3,1,
by the Plücker coordinates of lines (direction r and
moment m) and the Hesse formulation (normal n and
directed distance d I E ) of planes, respectively.

The entities have now the following grades: points,
spheres and planes are 1-blades, and lines and circles
are 2-blades. Due to the fact that lines and planes are
mostly generated by points on these entities, we will
work with the dual representations of lines and planes
in the next sections.

3.3.4. Conformal Transformations. In CGA, any
conformal transformation can be expressed in the form

σ X′ = G XG−1, (3.65)

where G is a versor and σ a scalar. Since the null cone
is invariant under G, i.e. (X′)2 = X2 = 0, we have to
apply a scale factor σ to ensure X′ · e = X · e = −1.
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Table 4. Table of conformal transformations, the versors and scaling parameters.

Type G(x) on R
n Versor in Rn+1,1 σ

Reflection −nxn + 2nδ V = n + eδ 1

Inversion ρ2

x−c + c V = c − 1
2 ρ2e

( x−c
ρ

)2

Rotation RxR−1 R = exp
( − θ

2 n
)

1

Translation x − t T t = 1 + 1
2 te 1

Transversion x−x2t
σ (x) K t = 1 + te0 1 − 2t · x + x2t2

Dilation λx Dλ = exp
( − 1

2 E(ln λ)
)

λ−1

Involution x� = −x E −1

Table 4, taken from [24], summarizes the conformal
transformations. The first row shows the type of opera-
tion performed with the versor product. The second row
shows as example the result of a transformation acting
on a point. The third row shows the versor, which has to
be applied and the last row shows the scaling parameter
which is (sometimes) needed, to result in a homoge-
neous point and ensure the scaling X′ ·e = X ·e = −1.
As we see, any conformal transformation covers sev-
eral more simple geometric transformations. In Table 4,
a reflection is expressed with respect to a hyperplane
with unit normal n and signed distance δ. The inversion
is expressed for a circle of radius ρ centered at point
c. A transversion can be written down as an inversion
followed by a translation and another inversion. The
other transformations are self-explanatory. More ex-
planations of the conformal group can also be found
in [13, 26]. It is shown in e.g. [16], that in G3 the ro-
tations are generated by reflections. Similarly one can
ask, what does a reflection mean for the stereographic
projected point. This is visualized in Fig. 5 for the 2D
case: A reflection of a point A on the sphere with re-
spect to the 2D plane leads to a new point B on the
sphere, which corresponds to the inverse B of the point

Figure 5. Visualization of an inversion and translation for a stere-
ographic projected point in the 2D case.

A on the 2D plane. This means, that the basic opera-
tion in G4,1 is an inversion, and the other operations
are derived from it. In Fig. 5 it is also shown, what a
translation t of a point A on the 2D plane means for
a corresponding point A on the sphere. A translation
t corresponds to a special rotation A →A’. It is also
easy to imagine that a rotation of a point in the 2D
plane is exactly the same for its stereographically pro-
jected point on the sphere. This means, that a rotation
can be calculated in the same manner as in G2 or G3

and a translation is a special rotation in G3,1 or G4,1,
respectively. This is the reason why kinematics can be
described in this model in a linear manner.

We will now concentrate on expressing rotations and
translations in CGA.

3.3.5. Rigid Motions in Conformal Geometric
Algebra. This section concerns the formulation of
rigid body motions in CGA. As mentioned previously,
a rigid body motion corresponds to the Euclidean trans-
formation group SE(3). Although being a transforma-
tion by itself, it subsumes rotation and translation. To
describe a Euclidean transformation in a linear manner
makes it necessary to have access on a multiplicative
coupling of rotation and translation. Since the confor-
mal transformation contains the Euclidean transforma-
tion, we can use the conformal group to express rigid
body motions. Note: Though the conformal group is
more general than the Euclidean group, for our pose
estimation scenario it is sufficient to concentrate only
on this subset of transformations.

So far, we can use rotors as elements of G+
3 to

formalize pure rotation, but indeed it is not possible
to describe general rigid body motions in this alge-
bra in a multiplicative manner. As well as in G3 (see
Section 3.1.2), rotations in G4,1 are represented by
rotors, R = exp(− θ

2 l). The components of the rotor
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R ∈ G+
4,1 are, similar to Section 3.1.2, the unit bivector

l which represents the dual of the rotation axis, and
the angle θ , which represents the amount of the rota-
tion. The rotation of an entity can be performed just
by multiplying the entity from the left with the rotor R
and from the right with its reverse R̃. E.g., a rotation
of a point can be written as X′ = RX R̃. That this also
holds for any blade (and thus for lines, planes, circles,
spheres, etc.) can be seen from the easy relation

R(X1 ∧ X2 ∧ . . . Xn)R̃

= (RX1 R̃) ∧ (RX2 R̃) ∧ . . . (RXn R̃). (3.66)

If we want to translate an entity with respect to a
translation vector t ∈ 〈G3〉1, we can use a so called
translator, T ∈ G+

4,1, T = (1 + et
2 ) = exp(et

2 ). As
mentioned previously, a translator is a special rotor and
given in a null space since e2 = 0. Similar to rotations
we can translate entities by multiplying the entity from
the left with the translator T and with its reverse T̃ from
the right,

X′ = T XT̃ . (3.67)

To express a rigid body motion, we can apply ro-
tors and translators consecutively. We denote such an
operator,

M = T R, (3.68)

it is a special even-grade multivector, as a motor, which
is an abbreviation of “moment and vector” [2]. The
rigid body motion of e.g. a point X can be written as

X′ = MXM̃, (3.69)

see also [17].
This formalization of a rigid displacement can not

only be applied to points or lines (see [30]), but to all
entities, contained in Table 3. Furthermore, the trans-
formation rule is the same for all entities of Table 3.
This is in contrast to a former definition of motors in
the frame of motor algebra [2, 3], the algebra G+

3,0,1,
which is formulating kinematics in a space composed
of lines and which is isomorphic to the dual quater-
nion algebra. Although Eq. (3.68) is a valid definition
of a motor in both the motor algebra and CGA, its
behavior with respect to different entities is quite dif-
ferent. Compared with the motor algebra, in CGA we
do not have to make any sign changes, depending on

the entity, where the motor has to act on. This makes
several case decisions in the previous formalizations of
kinematics unnecessary and thus, the calculations will
become more easy. The reason for that increased sym-
metry of a motor action lies in our chosen algebraic
embedding.

3.3.6. Twist and Screw Transformations. Now fol-
lows a further definition of a motor in CGA based on
the so-called twists. Every rigid body motion can be
expressed as a twist or screw motion [25], which is a
rotation around a line in space (in general not pass-
ing through the origin)4 combined with a translation
along this line. In CGA it is possible to use the rotors
and translators to express screw motions in space. We
will start with the formalization of general rotations and
then continue with screw motions. It will turn out that a
general rotation is a special case of a screw motion and
its generator is directly connected to the representation
of a 3D line.

To model a rotation of a point X around an arbi-
trary line L in the space, the general idea is to translate
the point X with the distance vector between the line
L and the origin, to perform a rotation and to trans-
late the transformed point back. So a motor M ∈ G+

4,1
describing a general rotation has the form

M = T RT̃, (3.70)

denoting the inverse translation, rotation and back
translation, respectively. Using the exponential form
of the translator and rotor leads to5

M = T RT̃

= exp

(
et
2

)
exp

(
−θ

2
l
)

exp

(
−et

2

)

=
(

1 + et
2

)
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(
−θ

2
l
)(

1 − et
2

)

= exp

((
1 + et

2

)(
−θ

2
l
)(

1 − et
2

))

= exp

(
−θ

2
(l + e(t · l))

)
. (3.71)

This formulation corresponds to the one for a general
rotation given in [24]. Merely an exponential represen-
tation of the motor is used since then it is more easy to
calculate its derivative.

It is interesting to mention that the exponential part
of the motor M = T RT̃ consists directly of the line
components to rotate the entities around. To show this
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property, firstly the description of a dual line L� is
recalled,

L� = e ∧ A ∧ B

= e(a ∧ b) + (b − a)E. (3.72)

Using the unit direction n and the plumb point t of the
origin to the line leads to the line representation

L� = e(t ∧ n) + nE. (3.73)

Multiplying the dual line L� with IC (from the right)
results in

(e(t ∧ n) + nE)IC = (e(t ∧ n)EI E + nE)EI E

= e(t ∧ n)I E + nI E

= e(t · (nI E )) + nI E

= e(t · l) + l, (3.74)

since the direction n of the line corresponds to the dual
of the rotation plane l, n = l�.

Vice versa: Given the dual line L� (with unit direc-
tion) in the space, the corresponding motor describing
a general rotation around this line is given by

M = exp

(
−θ

2
L� IC

)

= exp

(
−θ

2
L
)

. (3.75)

Note that the line L must be scaled with respect to
the direction, ‖n‖ = 1, since the scaling of the line is
directly connected to the amount of the rotation θ . This
shows that a line is a generator of a general rotation.
We will now continue with screw motions.

Screw motions can be used to describe rigid body
motions. Already as early as 1830 Chasles proved that
every rigid body motion can be realized by a rotation
around an axis combined with a translation parallel to
that axis, see also [25, 30]. This is called a screw motion.
The infinitesimal version of a screw motion is called a
twist and it provides a description of the instantaneous
velocity of a rigid body in terms of its linear and angular
components. A screw motion is defined by an axis l,
a pitch h and a magnitude θ . The pitch of the screw is
the ratio of translation to rotation, h := d

θ
(d, θ ∈ R,

θ �= 0). If h → ∞, then the corresponding screw
motion consists of a pure translation along the axis of
the screw. The principle of a screw motion is visualized

Figure 6. Visualization of a screw motion along l.

in Fig. 6. To model a screw motion, the entity has to be
translated during a general rotation with respect to the
rotation axis. The resulting motor can be calculated in
the following way,

M = TdnT RT̃

= exp

(
edn

2

)
exp

(
−θ

2
(l + e(t · l))

)

= exp

(
edn

2
− θ

2
(l + e(t · l))

)

= exp

(
− θ

2

(
l + e

(
t · l − d

θ
n︸ ︷︷ ︸

m

)))

= exp

(
−θ

2
(l + em)

)
. (3.76)

The bivector in the exponential part, − θ
2 (l + em), is

a twist. The vector m is a vector in R
3 which can be

decomposed in an orthogonal and parallel part with re-
spect to n = l�. If m is zero, the motor M describes
a pure rotation. If m ⊥ l�, the motor describes a gen-
eral rotation. For m �⊥ l�, the motor describes a screw
motion.

4. The Pose Problem in Conformal Geometry

Let us recall Fig. 1 for the 2D-3D pose estimation
problem: We assume the knowledge of a 3D object
model and observe it in an image of a calibrated cam-
era. The aim is to find the rotation R and transla-
tion t of the object, which leads to the best fit of the
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reference model with the actual extracted entities. To
describe the pose scenario, it is crucial to interact enti-
ties between mathematical spaces involved in the pose
problem.

4.1. Interacting Entities in Euclidean, Projective
and Conformal Geometry

So far we are able to use CGA for the formalization
of involved entities and their transformations. To for-
malize the scenario of Fig. 1 in a suitable way, the
aim is now to describe the interaction of projective and
conformal geometry. As mentioned earlier, the inter-
action of the different strata of the hierarchy is only
poorly lit in the last years. E.g., Ruf [38] concerns this
problem, but only for point features in the framework
of matrix calculus. We want to extend the problem to
more general object features and use in this context the
conformal geometric algebra. To enable interaction be-
tween strata we use algebras for the projective and Eu-
clidean space, respectively, as subalgebras of the CGA.
It turns out that it is possible to switch between entities
between conformal and projective representations by
using multiplicative operators.

The main strategy to estimate the pose of the rigid
object of Fig. 1 is very simple. It is summarized in
Fig. 7 for the case of points: Compute the projection
rays as projective reconstruction of the image points,
and compare them (in the Euclidean space) with the
object model points after the movement. But in detail,
several algebraic transformations have to be performed:
Firstly, the image entities are projective reconstructed
and converted in a conformal representation. Then the
model features are transformed in the conformal space.
To get a distance measure in the Euclidean space, in
the last step, the transformed model entities and re-
constructed image features are compared by suitable
scaled constraint equations.

Figure 7. Involved geometric spaces of the 2D-3D pose estimation
problem.

Table 5. Different mathematical spaces with their correspond-
ing geometric algebras and point representations.

Space Algebra Point representation

3D Euclidean G3,0 x = x1e1 + x2e2 + x3e3

2D projective G2,1 xp2 = x1e1 + x2e2 + e−
3D projective G3,1 Xp3 = x1e1 + x2e2 +x3e3 + e−
3D kinematic G+

3,0,1 X = 1 + I(x1e23+ x2e31 + x3e12)

3D conformal G4,1 X = x + 1
2 x2e + e0

X� = e ∧ X

We can summarize the involved mathematical spaces
and their corresponding geometric algebras in the fol-
lowing manner: The Euclidean framework can be rep-
resented by using the algebra G3,0, and G3,1 can be used
to represent the projective space [19]. The projective
plane is represented by the algebra G2,1. One way of
defining a kinematic space is given by the motor algebra
G+

3,0,1 [2, 3]. Another way is given by embedding the
kinematics into the 3D conformal space represented by
G4,1 [24]. Table 5 gives an overview of representations
of points using different algebras. As can be seen, the
relation

G4,1 ⊇ G3,1 ⊇ G3,0 (4.1)

is valid, but only for G3,0 limited to points. Both alge-
bras for the projective and Euclidean space constitute
subspaces of the linear space of the conformal geomet-
ric algebra. Since only points are modeled in G3,0 the
direction of modeling the pose problem is consistent
with the increasing possibilities by using higher geo-
metric algebras: Reconstruct from the projective plane
one dimensional higher entities and work in the projec-
tive or conformal space, respectively. In these spaces
we have more possibilities of expressing geometry.
Therefore the modeling of the pose problem follows the
direction

G3,0, G2,1 ⇒ G3,1 ⇒ G4,1. (4.2)

In the following, we will introduce operators which
not only relate linear spaces of the considered algebras
but guarantee the mapping between the algebraic prop-
erties. This means, we define operators which trans-
form the representation of the entities of the conformal
space into equivalent entities in the projective space,
and vice versa. The possibility to change the represen-
tation of an entity enables us to pick up the advantages
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of each algebra, and so to use the better suited algebra
for each subproblem.

4.2. Change of Representations
of Geometric Entities

In this section it will be shown, how to transform
these representations. The operators between the con-
formal and projective space will be denoted as con-
formal projective split and projective conformal ex-
tension, according to the projective split [19] which
enables a change between the projective and the Eu-
clidean space and the conformal split [17, 19] which
enables a change between the Euclidean and con-
formal space. This means, by using these different
splits and extensions, it is possible to describe the
whole stratification hierarchy. This will lead to a
compact formulation of the 2D-3D pose estimation
problem.

We will start with the first two spaces, the confor-
mal space to describe kinematics and conformal ge-
ometry, and the projective space which can be con-
sidered as subspace of the former one. The two op-
erators to switch between geometric algebras repre-
senting these spaces are summarized in the following
theorems:

Theorem 4.1. To change an entity � given in
the projective representation, �p, to the conformal
representation, �c, �p ∈ {X, L, P ∈ G3,1} → �c ∈
{X�, L�, P� ∈ G4,1}, the following operator has to be
applied:

�c = e ∧ �p. (4.3)

Note. Since circles and spheres are no entities of the
projective space, we can not transform them between
the projective and conformal space. This leads to re-
markable consequences for the pose estimation prob-
lem, discussed in the later sections.

For the proof of the theorem it is sufficient to show
the simple relation e ∧ e− = E,

e ∧ e− = (e− + e+) ∧ e−
= e+ ∧ e− = E. (4.4)

To make the involved geometry more clear, we will
compute the representation changes of points, lines and

planes explicitly:

X ∈ G3,1 = x + e−
→ e ∧ (x + e−)

= e ∧ x + e ∧ e−
= ex + E = X� ∈ G4,1 (4.5)

L ∈ G3,1 = e−r + m

→ e ∧ (e−r + m)

= em + e ∧ (e−r )

= Er + em = L� ∈ G4,1 (4.6)

P ∈ G3,1 = e−n + d I E

→ e ∧ (e−n + d I E )

= En + ed I E = P� ∈ G4,1 (4.7)

Now, we describe how to switch representations from
the conformal space into the projective space.

Theorem 4.2. To change an entity �, given in
the conformal representation, �c, to the projective
representation, �p, �c ∈ {X�, L�, P� ∈ G4,1} →
�p ∈ {X, L, P ∈ G3,1}, the following operator has to
be applied:

�p = e+ · �c. (4.8)

For the proof it is sufficient to show the following iden-
tity

�p = e+ · (e ∧ �p),

e+ · (e ∧ �p) = (e+ · e)︸ ︷︷ ︸
1

∧�p − e ∧ (e+ · �p)︸ ︷︷ ︸
0

= �p.

(4.9)

We call the operations “e∧” and “e+·” the projective
conformal extension and conformal projective split,
respectively.

The transformation between the algebras for the pro-
jective and Euclidean space is much simpler. Lines and
planes can be represented in the Euclidean space, but
as mentioned before, these are only artificially gen-
erated representations which are not generated by the
algebra itself. As a consequence, only for points the
transformation can be described in a suitable way. The
transformations are leaned on Hestenes’ formalization
in [19] and can be written in the following way,

X → (X ∧ e−) · e−
X · e−

= x, x ∈ G3,0

x → x + e− = X, X ∈ G3,1.
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Table 6. Interaction between algebras of the Euclidean, projective
and conformal space.

Euclidean Projective Conformal
space space space

G3,0 ⊆ G3,1 ⊆ G4,1

�e
x+e−−→ �p

e∧�p−→ �c

(X ∧ e−) · e−
X · e−←− e+·�c←−

�e −→ e ∧ (x + e−) −→

←−
((

e+ · X
) ∧ e−

) · e−(
e+ · X

) · e−
←− �c

Table 6 gives an overview of the three main involved
spaces and their interaction.

To estimate a rigid body motion of an entity given in
projective geometry, we change its representation in a
conformal one, compute the rigid body motion and go
back to the projective space: Let �p be an entity given
in the projective space, and t a translation vector in
Euclidean space. In conformal geometric algebra, the
translator has the following structure, T = (1 + et

2 )
and T̃ = (1 − et

2 ). Then a multiplicative formulation
of the translated entity in the projective space is given
by

�′
p = e+ · (T(e ∧ �p︸︷︷︸

projective

)T̃)

︸ ︷︷ ︸
conformal︸ ︷︷ ︸

projective

. (4.10)

To compute joins and meets of entities, given in con-
formal geometric algebra, we change their represen-
tations to the projective space, perform the incidence
operation and go back to the conformal space. As an
example, the intersection (denoted with the operator
∨c) of a line L� with a plane P� is given by

L� ∨c P�=e ∧ ((e+ · L�︸︷︷︸
conformal

) ∨ (e+ · P�︸︷︷︸
conformal

))

︸ ︷︷ ︸
projective︸ ︷︷ ︸

conformal

(4.11)

(4.12)

To explicitly compute the coordinates of the inter-
section point of two lines, L1 and L2, given in the pro-
jective space, we intersect these lines in the projective

space and use the projective split to get the intersection
point in the geometric algebra of the Euclidean space,

x = 1

L1 ∨ L2︸ ︷︷ ︸
projective

·e−
(((L1 ∨ L2︸ ︷︷ ︸

projective

) ∧ e−) · e−)

︸ ︷︷ ︸
Euclidean

. (4.13)

These examples show, how to interact between the
Euclidean, projective and conformal framework.

4.2.1. Pose Constraints in Conformal Geometric
Algebra. This section gives a brief preview how the
interaction of entities in geometric algebras will be ap-
plied on the pose problem. As mentioned earlier, the
main problem in the pose scenario is, how to com-
pare 2D image features with 3D Euclidean object fea-
tures. Our constraint equations will lead to equations of
the following structure (here just for point correspon-
dences),

λ((MXM̃) × e ∧ (O ∧ x)) · e+ = 0. (4.14)

The interpretation of the equation is simple an the equa-
tion can be separated in the following manner,

λ( (M X︸︷︷︸
object point

in conformal space

M̃)

︸ ︷︷ ︸
rigid motion of the object point

× e ∧ ( O︸︷︷︸
optical
center

∧ x︸︷︷︸
image
point

)

︸ ︷︷ ︸
projection ray,

reconstructed from the image point
in conformal space︸ ︷︷ ︸

collinearity of the transformed object
point with the reconstructed line

) · e+

︸ ︷︷ ︸
geometric distance measure between 3D line and 3D point

= 0.

(4.15)

The mathematical spaces involved here are

λ((M X︸︷︷︸
C S

M̃)

︸ ︷︷ ︸
C S

× e ∧ ( O︸︷︷︸
P S

∧ x︸︷︷︸
PP︸ ︷︷ ︸

PS

)

︸ ︷︷ ︸
CS

) · e+

︸ ︷︷ ︸
ES

= 0. (4.16)

Here does PP abbreviate projective plane, PS projec-
tive space, CS conformal space and ES the Euclidean
space. Furthermore, will Part II [36] show that the used
commutator and anti-commutator products can be used
to describe a geometric distance measure, to ensure
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good conditioned equations in the presence of noise.
This will become more clear in Part II.

The main advantages of the constraint equations are
the following: Firstly, the constraints are expressed in
a multiplicative manner, they are concise and easy to
interpret (see Eq. (4.16)). This is the basis for fur-
ther extensions, like kinematic chains and other higher
order algebraic entities. Secondly, the whole geome-
try within the scenario is concerned and strictly mod-
eled. This ensures an optimal treating of the geome-
try and the knowledge that no geometric aspects have
been neglected or approximated which is sometimes
done in the literature by e.g. using orthographic camera
models.

5. Summary and Discussion

This work is concerned with the theoretical founda-
tions of the 2D-3D pose estimation problem. Firstly,
Faugeras’ stratification hierarchy is identified as an
important concept in the pose estimation problem.
But since it is based solely on point concepts we
introduce the conformal geometric algebra which pro-
vides a homogeneous model for stereographic geom-
etry and is therefore well suited to deal with pro-
jective geometry on the one hand and kinematics
on the other hand. The multivector concepts of ge-
ometric algebras lead to a new stratification hierar-
chy which contains as highest algebra the conformal
geometric algebra. Since conformal geometry is not
well known for solving computer vision problems,
we introduce the stereographic projections and sphere
concepts in some detail in the context of the pose
problem.

The usefulness of this approach is as preview shown
in Section 4.2.1: we gain compact constraint equations
with a strict modeling of all geometric aspects. We will
apply this in Part II [36] for simultaneous pose estima-
tion of different image and object features, e.g. contain-
ing points, lines, planes, circles, spheres or kinematic
chains. Our very recent work [33, 34] concerns further
extensions of this approach e.g. by modeling cycloidal
curves and free-form contours.
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Notes

1. Problems can occur if the object is very large (e.g. a hallway) with
some object features very near to the camera plane and other ob-
ject features far away from the camera plane. In such situations,
the spatial distance (which will be minimized) of the near ob-
jects influence the equations to a lesser extent than the far object
features.

2. In this example, 〈, 〉 denotes the scalar product of vectors, and ×
denotes the cross product.

3. The inverse pseudoscalar does not exist, since I2 = 0.
4. We call such an operation also a general rotation.
5. In the fourth equation is made use of the property g exp(ξ )̃g =

exp(gξ g̃) for gg̃ = 1. This property can be proven by an induction
on the series expression of the exponential function.
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