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Pose Estimation of Cycloidal Curves
by using Twist Representations

Bodo Rosenhahn and Gerald Sommer

ABSTRACT This work concerns the 2D-3D pose estimation problem of cycloidal
curves. Pose estimation means to estimate the relative position and orientation of a
3D object to a reference camera system. The 3D object features are in this work cy-
cloidal curves, as extensions to classical 3D point or 3D line concepts. This means,
we assume knowledge of a 3D cycloidal curve and observe it in an image of a cali-
brated camera. The aim is to estimate the rotation R and translation t to get a best
fit of the transformed 3D object model to the observed 2D image data. Furthermore,
other concepts such as 3D cycloidal surfaces and the numerical problems of esti-
mating the pose parameters are discussed.
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37.1 Introduction

In this paper we study the 2D-3D pose estimation problem of 3D cycloidal curves.
Cycloidal curves are a special case of algebraic curves. In general a cycloidal
curve is generated by a circle rolling on a circle or line without slipping [11]. This
leads to epitrochoids, hypotrochoids and trochoids as special classes of entities,
we will use in the context of 2D-3D pose estimation.

37.1.1 The pose estimation problem

Pose estimation itself is a basic visual task [6] and several approaches for monocu-
lar pose estimation exist that relate the position of a 3D object to a reference cam-
era coordinate system [6, 9, 19]. Our preliminary work also concerned the 2D-3D
pose estimation problem of rigid objects and kinematic chains [16]. Instead of
using invariance as an explicit formulation of geometry, as often has been done
in projective geometry, we are using implicit formulations and use constraints to
describe the pose estimation problem. The formulas in [15] result in compact con-
straint equations for pose estimation of rigid objects containing different entities
(points, lines, planes). The entities we are now interested in are cycloidal curves.
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This means curves we can generate by one, two or more coupled twists. Examples
are 3D circles, ellipses, cardioids, cycloids, archimedic spirals, spheres, quadrics,
etc. In this paper we will use conformal geometric algebra (CGA) [10] to describe
schemes for cycloidal curves and their coupling with the 2D-3D pose estimation
problem.

37.1.2 Preliminary work

Our recent work [15, 16] is summarized in Figure 37.1: There we assume as object
features 3D points, 3D lines, 3D spheres, 3D circles or kinematic chain segments
of a reference model. Further, we assume corresponding extracted features in an
image of a calibrated camera. The aim is to find the rotation R and translation
t of the object, which leads to the best fit of the reference model with the actual
extracted entities. To relate 2D image information to 3D entities we reconstruct
an extracted image entity to an entity with one dimension higher gained by back-
projection in the space. This idea will be used to formulate the problem as a pure
kinematic problem.

R , t

o

FIGURE 37.1. The scenario. The assumptions are the projective camera model, the model
of the object (consisting of points, lines, circles and kinematic chains) and corresponding
extracted entities on the image plane. The dashed line describes the pose of the model,
which leads to the best fit of the object with the actual extracted entities.

During the last few years we studied several algebras (e.g., the algebras for
pure projective [14] or pure kinematic geometry [1]), but the conformal geomet-
ric algebra is the most general one that describes the problems involved in pose
estimation. The mathematical spaces involved in the pose estimation problem are
the projective plane, projective space, kinematic space and Euclidean space. In-
deed all geometric algebras for modeling the spaces involved in the pose estima-
tion problem are represented as sub-algebras of the conformal geometric algebra.
So we are able to formalize all aspects of the pose estimation problem in one
framework.
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The motivation for this work is to generalize the already studied entities for
pose estimation to more free-form-like contours and surfaces. Though points,
lines, planes, circles and spheres cover a large range to model objects, we are
also interested in, e.g., ellipses to model the shape of eyes etc. This motivates
a search for a more general class of entities, which can be used in the context
of pose estimation. We now give a very brief summary of algebraic curves and
their characterizations collected by Lee in [11]. More detailed information about
algebraic curves can also be found in [4]. In our work we will concentrate on a
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FIGURE 37.2. Tree of algebraic curves.

subclass of roulettes, the cycloidal curves, which are circles rolling on circles or
lines. Figure 37.2 shows a subtree of the family of algebraic curves. Cycloidal
curves can be classified as epitrochoids, hypotrochoids and trochoids, which split
into further subclasses. Figure 37.2 also shows examples of these curves.

These curves are mostly defined in the 2D plane. For our scenario of pose
estimation, we will extend these curves to plane curves in the 3D space.

37.2 Cycloidal curves in conformal geometric algebra

In this section we will introduce the conformal geometric algebra with respect
to the basic notation and the description of cycloidal curves in the language of
parameterized twist transformations.

37.2.1 Introduction to conformal geometric algebra

In this section we introduce the main properties of the conformal geometric alge-
bra [10]. The aim is to clarify the notation, a more detailed introduction concern-
ing geometric algebras can be found in [18].

A geometric algebra Gp,q,r is built from a vector space R
n, endowed with the

signature (p, q, r), n = p + q + r, by application of a geometric product. The
product defining a geometric algebra is called geometric product and is denoted
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by juxtaposition, e.g., uv for two multivectors u and v. The geometric product
consists of an outer (∧) and an inner (·) product, whose roles are to increase
or to decrease the order of the algebraic entities, respectively. For later use we
introduce the commutator× and anticommutator× products, respectively for any
two multivectors,

AB = 1

2
(AB + BA) + 1

2
(AB − BA) =: A×B + A×B.

To introduce the conformal geometric algebra (CGA) we follow [10] and start
with the Minkowski plane R

1,1, which has an orthonormal basis {e+, e−}, de-
fined by the properties

e
2
+ = 1, e

2
−

= −1, and e+ · e− = 0.

A null basis can now be introduced by the vectors

e0 := 1

2
(e− − e+) and e := e− + e+

with e
2
0 = e

2 = 0. The vector e0 can be interpreted as the origin and the vector e

as a point at infinity. Furthermore we define E := e ∧ e0 = e+ ∧ e−.

In the case of working in an n-dimensional vector space R
n we couple an

additional vector space R
1,1, which defines a null space to gain R

n ⊕ R
1,1 =

R
n+1,1. From that vector space we can derive the conformal geometric algebra

(CGA) Gn+1,1 as a linear space of dimension 2n+2.

The algebras G3,1 and G3,0 are suited to represent the projective and Euclidean
space, respectively [8]. Since

G4,1 ⊇ G3,1 ⊇ G3,0,

both algebras for the projective and Euclidean space constitute subspaces of the
linear space of the CGA. It is possible to use operators to relate the different
algebras and to guarantee the mapping between the algebraic properties, see [17].

The basis entities of the 3D conformal space are spheres s, containing the cen-
ter p and the radius ρ, s = p + 1

2
(p2 − ρ2)e + e0. Thus, a sphere is a 1-blade.

The dual form for a sphere is s?. The advantage of the dual form is that s? can
be calculated directly from points on the sphere: For four points on the sphere, s?

can be written as s? = a ∧ b ∧ c ∧ d and is therefore a 4-blade.
A point x = x + 1

2
x2

e + e0 is nothing more than a degenerate sphere with
radius ρ = 0, which can easily be seen from the representation of a sphere. A
point x lies on a sphere s iff x ∧ s? = 0, or x · s = 0.

Circles z can be described by the intersection of two spheres. The dual rep-
resentation of circles leads to the outer product of three points on the circle,
z? = a ∧ b ∧ c.

From the dual form of circles and spheres, affine points X?, lines L? and
planes P ? can easily be represented as degenerate cases, just by involving the
point at infinity,

X? = e ∧ x, L? = e ∧ a ∧ b, P ? = e ∧ a ∧ b ∧ c.
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Note that since we will only work with the entities in their dual representation in
the next sections, we neglect the ?-sign in the further formulas.

37.2.2 Rigid motions and twists in CGA

As in G3,0, rotations in G4,1 are represented by rotors R = exp
(
− θ

2
l
)
. The

components of the rotor R are the unit bivector l, which represents the dual of the
rotation axis and the angle θ, which represents the amount of the rotation. If we
want to translate an entity with respect to a translation vector t ∈ G3,0, we can
use a so-called translator, T = (1 + et

2
) = exp

(
et

2

)
, which is a special rotor.

Rotations and translations can be estimated by applying rotors and translators as
versor products, e.g., X ′ = RXR̃, or X ′′ = TXT̃ . Note, that we use the ∼-
sign on a multivector to denote its reverse. To express a rigid body motion, we can
apply multiplied rotors and translators consecutively. We denote such an operator
as a motor M [1]. The rigid body motion of, e.g., a point X can be written as
X ′ = MXM̃ , see also [7].

Following e.g., [12], a rigid body motion of points can be expressed by a rota-
tion around a line in space followed by a translation along this line. This results
from the fact, that for every g ∈ SE(3) there exists a ξ ∈ se(3) and a θ ∈ R such
that g = exp(ξθ). Such transformations are also called twist transformations. The
Lie algebra element ξ ∈ se(3) is a twist, and its Lie group element, the exponen-
tial g = exp(ξθ) ∈ SE(3) describes a rigid body motion [5]. A motor describing
a twist transformation can be written as

M = exp
(
− 1

2
θ (l + em)

)
= exp

(
− 1

2
θΨ

)
.

A twist can be seen as an infinitesimal version of a screw motion and describes a
line in space with an angle θ and a pitch h, the ratio of translation to rotation. If
the pitch h is zero, the resulting motion is a rotation of an entity (e.g., a point X)
around a line L? in the space. To gain a twist representation, the general idea is
to translate both, the entity and the line to the origin, to perform a rotation and to
translate back the transformed entity.

The motor M can be interpreted as the exponential of a twist, with the form

M = TRT̃ = exp
(
− 1

2
θ (l + e(t · l))

)
.

The motion of a point can then be decomposed as

X ′ = MXM̃ = (TRT̃ )X(T R̃T̃ ).

We call such a transformation a general rotation. Whereas in Euclidean geometry,
Lie algebras and Lie groups are only applied to point concepts, motors can also
be applied to other entities, like lines, planes, circles, spheres, etc.

37.2.3 Cycloidal curves in conformal geometric algebra

As previously explained, cycloidal curves are circles rolling on circles or lines. In
this section we will explain how to generate such curves in conformal geometric
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algebra. E.g., ellipses are not entities which can be directly described in conformal

XC

b

a
φ−φ∗2

point

twist

FIGURE 37.3. An ellipse generated by two coupled twists.

geometric algebra. The idea for modeling an ellipse is visualized in Figure 37.3:
We assume two parallel twists (modeling general rotations) in the 3D space and a
3D point on the ellipse, and we transform the point around the two twists in a fixed
and dependent manner. In this case, we use two coupled parallel (not collinear)
twists, rotate the point by −2φ around the first twist and by φ around the second
one. The set of all points for φ ∈ [0, . . . , 2π] generates an ellipse as the orbit
of the coupled group actions. In general, every cycloidal curve is generated by a
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FIGURE 37.4. 3D-2twist generated curves.

set of twists ξi with frequencies λi acting on one point X on the curve. Since
twists can be used to describe general rotations in the 2D plane or 3D space, we
call the generated curves nD-mtwist curves. With nD-mtwist curves we mean n

dimensional curves, generated by m twists with n, m ∈ IN. In the context of the
2D-3D pose estimation problem we use the cycloidal curves as 3D object entities.
So we mean 3D-mtwist curves, if we speak of just mtwist curves.
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We will start with very simple curves, and the simplest one consists of one point
(a point on the curve) and one twist. Rotating the point around the twist leads to
the parameterized generation of a circle: The corresponding twist transformation
can be expressed as a suitable motor Mφ and an arbitrary 3D point, XZ , on the
circle. The 3D orbit of all points on the circle is simply given by

X
φ
Z = MφXZM̃φ, φ ∈ [0, . . . , 2π].

We call a circle also a 1twist generated curve since it is generated by one twist.
Now we can continue and wrap a second twist around the first one. If we make

the amount of rotation of each twist dependent on each other, we gain a 3D curve
in general. This curve is firstly dependent on the relative positions and orientation
of the twists with respect to each other, the (starting) point on the curve and the
ratio of angular frequencies.

The general form of a 2twist generated curve is

X
φ
C = M2

λ2φM1
λ1φXCM̃

1

λ1φM̃
2

λ2φ, λ1, λ2 ∈ R, φ ∈ [α1, . . . , α2].

The motors M i are the exponentials of twists, the scalars λi ∈ R determine the
ratio of angular frequencies between the twists and XC is a point on the curve.
The values αi define an interval for the boundaries of the curve. For closed curves
they are usually α1 = 0 and α1 = 2π, but indeed it is also possible to define
curve segments. The case λ1 = λ2 = 1 leads to cardioids, λ1 = 2, λ2 = 1 leads

FIGURE 37.5. Perspective views of a 3D-2twist generated curve. The 2twist curve and the
twists axes are visualized.

to nephroids and λ1 = 3, λ2 = 1 leads to deltoids, which can be transformed (by
moving the second twist) to a trifolium, etc. Ellipses can easily be described by
λ1 = −2, λ2 = 1.

Figure 37.4 shows further examples from curves, which can be very easily gen-
erated by two coupled twists. Note: Also the archimedic spiral is a 2twist gener-
ated curve. To gain an archimedic spiral, one twist has to be a translator. Since
an archimedic spiral is no algebraic curve, the 2twist generated curves are more
general than the cycloidal curves.

All these curves are given in a 3D space. In Figure 37.4 only projections are
shown. Figure 37.5 shows a 3D 2twist generated curve of different projective
views.
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FIGURE 37.6. 3D-3twist generated curves. The first row shows three different perspective
views of a 3twist generated curve. The other row shows other 3twist generated curves, gen-
erated with different frequencies and twist positions. The three twists are also visualized.

It is also possible to generate 3twist curves. For this, a point is transformed with
respect to three twists. Examples of planar curves are shown in Figure 37.6.

So far, we have only formalized 3D curves. Surfaces can be modeled by ro-
tating, e.g., the 2twist generated curves around a third twist with a second inde-
pendent angle φ2, leading to 3twist generated surfaces. Examples are shown in
Figure 37.7. Note: If there is only one variable angle φ, the resulting entity is al-
ways a 3D curve in the 3D space, whereas the case of two variable angles φ1 and
φ2 leads to a 3D surface in the 3D space. The case of three variable angles leads
to volumes as highest structures in the 3D space.

The general form of 3twist generated surfaces is

Xφ1,φ2 = M 3
λ3φ2

M2
λ2φ1

M 1
λ1φ1

XM̃
1

λ1φ1
M̃

2

λ2φ1
M̃

3

λ3φ2
,

with λi ∈ R and φ1, φ2 ∈ [αi1 , . . . , αi2 ]. An ellipsoid, for example, is nothing
more than a (special) rotated ellipse (λ3 = λ2 = 1, λ1 = −2). Its parameterized
equation can be written as

X
φ1,φ2

Q = M3
φ2

M 2
φ1

M1
−2φ1

XQM̃
1

−2φ1
M̃

2

φ1
M̃

3

φ2
, φ1, φ2 ∈ [0, . . . , 2π].

This is visualized in the first image of Figure 37.7. The second image of Fig-
ure 37.7 shows a horizontally rotated cardioid.

The third and fourth images in the second row show rotated hypocycloids. The
last row shows rotated spirals, leading to surfaces, comparable to a flower.These
surfaces are very easy to generate and can be represented by just a few coupled
twists. In Figure 37.7 no grid-plot is shown. Instead the rotated cycloidal curves
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FIGURE 37.7. 3D-3twist generated surfaces

are shown to visualize the geometric generation of the surface. Lines and planes
also fall into the definition of 2twist and 3twist generated curves and surfaces.
Examples for well-known entities, interpreted as cycloidal curves or surfaces, are
points, lines, circles, ellipses, line segments, spirals, spheres, ellipsoids, planes,
cylinders, cones, etc.

The rigid body motions of these entities can easily be estimated, just by trans-
forming the generating twists. The transformation of an m twist generated curve
can be performed by transforming the m twists (which are just lines in the space),
and the point on the curve.

The description of these curves is compact, and rigid transformations can be
estimated very quickly. Cycloidal curves and surfaces extend already studied en-
tities to a more general class of entities without losing the advantages of our pre-
vious work. Indeed, we build up a hierarchy of entities and further work will
concentrate on enlarging these kinds of entities to approximate free-form curves
and surfaces. So far the hierarchy of entities consists of the following entities:

points, lines ⊆ circles ⊆ cycloidal curves ⊆ . . .
planes ⊆ spheres ⊆ cycloidal surfaces ⊆ . . .

37.3 Pose estimation in conformal geometric algebra

Now we will formalize the 2D-3D pose estimation problem, that is, a transformed
object entity must lie on a projective reconstructed image entity. Let X be an
object point and L be an object line, given in CGA. The (unknown) transformation
of the entities can be written as MXM̃ and MLM̃ .

Let x be an image point and l be an image line on a projective plane. The
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projective reconstruction from an image point in CGA can be written as Lx =
e ∧ O ∧ x. This leads to a reconstructed projection ray, containing the optical
center O of the camera, see Figure 37.1, the image point x and the vector e as
the point at infinity. Similarly, P l = e ∧O ∧ l leads to a reconstructed projection
plane in CGA.

Collinearity and coplanarity can be expressed by the commutator and anticom-
mutator products, respectively. Thus, the constraint equations of pose estimation
from image points read

(M X︸︷︷︸
object point

M̃)

︸ ︷︷ ︸
rigid motion of the object point

× e ∧ (O ∧ x)︸ ︷︷ ︸
projection ray,

reconstructed from the image point

︸ ︷︷ ︸
collinearity of the transformed object

point with the reconstructed line

= 0,

Constraint equations to relate 2D image lines to 3D object points, or 2D image
lines to 3D object lines, can also be expressed in a similar manner.

The constraint equations implicitly represent a distance measure which has to
be zero. Such compact equations subsume the pose estimation problem at hand:
find the best motor M which satisfies the constraint.

37.3.1 The pose estimation problem of cycloidal curves

Now we can combine the last two subsections to formalize the pose estimation
problem for cycloidal curves: We assume a 3D cycloidal curve, e.g.,

X
φ
Z = M2

λ1φM1
λ2φXM̃

1

λ2φM̃
2

λ1φ, λ1, λ2 ∈ R, φ ∈ [0, . . . , 2π].

The rigid motion of this curve incident on a projection ray can be expressed as

(
M (M2

λ1φM1
λ2φXM̃

1

λ2φM̃
2

λ1φ)M̃
)

× (e ∧ (O ∧ x)) = 0.

Since every aspect of the 2D-3D pose estimation problem of cycloidal curves is
formalized in CGA, the constraint equation describing the pose problem is com-
pact and easy to interpret: The inner parenthesis contains the parameterized rep-
resentation of the cycloidal curve with one unknown angle φ. The outer parenthe-
sis contains the unknown motor M , describing the rigid body motion of the 3D
cycloidal curve. This is the pose we are interested in. The expression is then com-
bined, via the commutator product, with the reconstructed projection ray and has
to be zero. This describes the incidence of the transformed curve to a projection
ray. The unknowns are the six parameters of the rigid motion M and the angle φ

for each point correspondence.
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37.3.2 The pose estimation problem of cycloidal surfaces

Similar to the previous section, it is possible to formalize constraint equations for
incidence of cycloidal surfaces to projection rays,

(
M(M 3

λ3φ2
M2

λ2φ1
M1

λ1φ1
XM̃

1

λ1φ1
M̃

2

λ2φ1
M̃

3

λ3φ2
)M̃

)

× (e ∧ (O ∧ x)) = 0.

But this would not cover all geometric aspects of the surface in the pose problem.
It is more efficient to build constraints on the surface contour in the image and
to model also tangentiality within the constraints. Therefore we use the surface
tangential plane P x at each point X and claim incidence of the tangential plane
Px with each projection ray,

(
M(M 3

λ3φ2
M2

λ2φ1
M1

λ1φ1
P xM̃

1

λ1φ1
M̃

2

λ2φ1
M̃

3

λ3φ2
)M̃

)

× (e ∧ (O ∧ x)) = 0.

The unknowns of these constraint equations are the rigid motion M and the an-
gles φ1 and φ2.

37.4 Experiments

This section shows experimental results.

37.4.1 Estimation of twist parameters

To solve the constraint equations for simple objects, partially represented by cy-
cloidal curves, we linearize the equations with respect to the motors and use the
first order Taylor series expression for approximation.

This leads to a mapping of the above mentioned global transformation to a twist
representation, which enables incremental changes of pose. This means, we do
not search for the parameters of the Lie group SE(3) to describe the rigid body
motion [5], but for the parameters which generate their Lie algebra se(3). This
idea is taken from [12]. From the resulting linear equations in the unknown 3D
rigid body motion we get an error function to be minimized. The main problem
of pose estimation of cycloidal curves is that they are in general not convex. This
results in the problem of getting trapped in local minima. To avoid global minima,
in our first approach we use local search [2] strategies to handle these problems
and to find a global minimum.

37.4.2 Pose estimation of convex objects

We will continue with pose estimation results of convex objects. For these exam-
ples the gradient method converges directly. The pose, for these types of curves,
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can be estimated in nearly video real-time (10 frames per second) on a SUN
Ultra 10.

FIGURE 37.8. Pose estimation of a 3D ellipse by using undistorted, distorted and interpo-
lated data.

FIGURE 37.9. Pose estimation of a 3D ellipse by using distorted and interpolated data.

Figures 37.8 and 37.9 address the self regularizing properties of image con-
tours: In the first column of Figure 37.8 an undistorted and a distorted image
ellipse are shown. The second column shows a pose estimation result found by
taking the undistorted image data and the extracted contour of the distorted im-
age. There are two possibilities to deal with the contour points:

On the one hand it is possible to use them directly, on the other hand it is
possible to interpolate them to an image ellipse and use the interpolated data. In
[20] several approaches for ellipse fitting are presented. To interpolate our con-
tour points, we re-implemented and used the LLS (linear least squares) approach
in our scenario. Though the LLS approach is not the best algorithm discussed in
[20], it is easy to implement and very fast. The pose results for the raw contour
points on the one hand, and the interpolated ellipse points on the other hand, are
shown in the third column of Figure 37.8. The upper image shows the pose result
achieved by using the pure points, the lower image shows the result achieved by
using the interpolated data. Indeed, using the pure points leads to worse results in
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FIGURE 37.10. Convergence behavior of the algorithm during the iteration.
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FIGURE 37.11. Pose estimation of an object containing one ellipse, two circles and one
deltoid.

comparison to using the interpolated data. To visualize the pose quality the 3D ob-
ject model is transformed and projected into the image. Figure 37.9 shows a more
extreme case of disturbed image data. It can be seen, that the use of interpolated
image data leads to more stable results than using the raw contour points.

Figure 37.10 shows the convergence behavior of our algorithm during the iter-
ations. Since the rigid body motion to estimate is very large, the algorithm needs
several iterations to converge. If only small movements are observed, the number
of iterations (and therefore the computing time) can be reduced significantly.

Figure 37.11 shows pose estimation results of a second 3D object model. This
object contains two circles, one ellipse and one deltoid. The left image shows the
3D object model. The other images show the transformed projected object model
to visualize the quality of the pose.
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FIGURE 37.12. Pose estimation of an object containing a cardioid and two cycloids.
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FIGURE 37.13. Pose estimation of 2twist surface, connected via a 2 d.o.f. kinematic chain
to a table.

37.4.3 Pose estimation of non-convex objects

Now we look at pose estimation of non-convex objects. Figure 37.12 shows ex-
perimental results for an object, containing three cycloidal non-convex curves. We
use all information simultaneously to solve for the pose parameters. Here we have
to encapsulate the gradient method for pose estimation within a heuristic, since
the entities are not convex any more. In the first image, the object model used is
shown. The other three images show pose estimation results for the object. Again
we mark the extracted point features in the image and the transformed projected
points. Furthermore, the transformed projected cycloidal curves are shown. Since
we measured the size of the object model by hand, the pose estimation result is
reasonably accurate.

The combination of the gradient method with the heuristic mentioned leads to
slow algorithms. While the pose for convex object models can be estimated in 10
frames per second, the estimation of the object presented in Figure 37.12 takes
up to 5 minutes to converge to a global minimum. But indeed, it is possible to
estimate the global minimum.

Figure 37.13 shows experimental results from a 2twist surface. The object
model is a lamp-shade connected via a 2 d.o.f. kinematic chain to a table. In this
experiment, the pose parameters and the angles of the kinematic chain are esti-
mated. The lamp-shade itself is modeled by two conical parts. Since both surface
parts are convex, the gradient method converges directly and we do not have to
apply a heuristic to estimate the pose.

37.5 Discussion

In this contribution we present a new approach to estimate the pose of 2twist
and 3twist curves. These cycloidal curves extend the classical pose estimation
problems in an interesting and useful way. We believe that for many applications
cycloidal curves are better suited to represent natural objects than the often used
tessellated surfaces. The representation of these entities is very compact and ge-
ometric manipulations, like rigid body motions of the curves, can easily be per-
formed, just by transforming the generating elements of the curve.
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The main difficulties that occur in the context of 2D-3D pose estimation of
general space curves or surfaces are the local minima in the error functions to be
minimized. This occurs naturally in the case of non-convex curves. If the objects
are convex (e.g., Figure 37.11) on the other hand, the gradient method for solving
the pose parameters converges to the global minimum and the pose can be esti-
mated in (nearly) video real-time (10 fps) on a SUN Ultra 10. But if the curves are
non-convex, we have to deal with local minima within our error function. In this
case we combine the previously used gradient method with a heuristic and then
we are able to estimate the global minimum. But so far, the algorithm is too slow
for practical applications. One possibility to deal with this problem is to separate
the non-convex curve in a set of curves containing the convex parts. This was
done in the experiment of Figure 37.13.

There the pose problem reduces to the simple case of convex object features,
but it requires more a priori knowledge about the scenario. Future research will
concentrate on faster algorithms to solve such constraint equations for non-convex
curves. Furthermore, we will concentrate on free-form contours and surfaces. First
results are presented in [17].
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