
DOI: 10.1007/s00453-003-1044-3

Algorithmica (2004) 38: 91–113 Algorithmica
© 2003 Springer-Verlag New York Inc.

Free-Form Pose Estimation by Using Twist
Representations1

Bodo Rosenhahn,2 Christian Perwass,2 and Gerald Sommer2

Abstract. In this article we discuss the 2D–3D pose estimation problem of 3D free-form contours. We
observe objects of any 3D shape in an image of a calibrated camera. Pose estimation means estimating the
relative position and orientation of the 3D object to the reference camera system. While cycloidal curves are
derived as orbits of coupled twist transformations, we apply a spectral domain representation of 3D contours
as an extension of cycloidal curves. Their Fourier descriptors are also related to twist representations. A twist
is an element of se(3) and is a pair containing two 3D vectors. In a matrix representation, its exponential
leads to an element of SE(3) and therefore to a rigid motion. We show that twist representations of objects
can numerically efficiently and easily be applied to the free-form pose estimation problem. The pose problem
itself is formalized as an implicit problem and we gain constraint equations, which have to be fulfilled with
respect to the unknown rigid body motion.

Key Words. 2D–3D pose estimation, Free-form curves, Twists, Fourier descriptors, Cycloidal curves, ICP.

1. Introduction. This contribution concerns the 2D–3D pose estimation problem of
3D free-form curves. Pose estimation itself is one of the oldest computer vision problems
and algebraic solutions with different camera models have been proposed for several
variations of this problem. Pioneering work was done in the 80s and 90s by Lowe [30],
[31], Grimson [17] and others. In their work point correspondences are used. More
abstract entities can be found in [25], [51], [26], [22], [48], and [7]. Entities discussed are
circles, cylinders, kinematic chains or other multipart curved objects. Works concerning
free-form curves can be found in [12] and [45]. In these works contour point sets, affine
snakes or active contours are used for visual servoing. An overview of free-form object
representations is given in [9]. In this work several mathematical forms are discussed,
e.g. parametric forms, algebraic implicit surfaces, superquadrics, generalized cylinders
or polygonal meshes.

There exist two main strategies to deal with object models: Firstly, the object can be
separated in characteristic object features (like edges or corners, etc.) and then applied
to the different problems. Secondly, the object can be modeled as itself, e.g. in the form
of an implicit or parametric surface. The main properties of these strategies are clear:
If we assume scenarios containing easy objects with easy extractable corner or edge
features (e.g. buildings or artificial objects), there is no need to complicate the situation
by using full parameterized models. However, especially in natural environments with
curved shapes and surfaces, feature extraction and matching is a problem. Then there

1 This work has been supported by DFG Graduiertenkolleg No. 357 and by EC Grant IST-2001-3422
(VISATEC).
2 Institut für Informatik und Praktische Mathematik, Christian-Albrechts-Universität zu Kiel, Olshausenstraße
40, 24098 Kiel, Germany. {bro,chp,gs}@ks.informatik.uni-kiel.de.

Received May 1, 2002; revised January 21, 2003. Communicated by R. C. Veltkamp.
Online publication October 24, 2003.



92 B. Rosenhahn, C. Perwass, and G. Sommer

is a need to deal with an object as a whole, or one single entity and not features of the
object. We call such objects free-form objects, as a general class of objects and quote
Besl [6] for a definition: a free-form surface has a well defined surface that is continuous
almost everywhere except at vertices, edges and cusps. Sculptures, car bodies, ship hulls,
airplanes, human faces, organs or terrain maps are typical examples for free-form objects.

The main problem we are concerned with is the algebraic coupling of free-form
contours within the pose estimation problem. Therefore we use as a link between these
different topics the twists. Twists are well known from Lie groups and Lie algebras and
are mostly applied to rigid body motions. In this work we use twists on the one hand
within our pose estimation problem, and on the other hand to model the object contours.
This unification enables a compact description of the pose problem for free-form contours
in an implicit manner by using constraint equations, which have to be fulfilled.

The ICP (Iterative Closest Point) algorithms are well known for aligning 3D object
models. Originally ICP starts with two data sets (mostly points) and an initial guess
for their rigid body motion. Then the transformation is refined by repeatedly generating
pairs of corresponding points of the sets and minimizing an error metric. ICP algorithms
are mostly applied to 2D or 3D point sets. Instead, we later use it for comparison of a
trigonometric interpolated function with reconstructed projection rays. Different works
concerning ICP algorithms can be found in [42], [11], [23], and [50].

To solve the pose problem of free-form contours, we start with the pose estimation
problem for entities like points, lines and planes. Then we consider cycloidal curves as
a special case of algebraic curves. In general a cycloidal curve is generated by a circle
rolling on a circle or a line without slipping [27]. We use a twist representation to model
these curves (they are later called 3D 2twist cycloidal curves) and generalize them to 3D
ntwist cycloidal curves. This representation can be used to model a 3D trigonometric
interpolation of a 3D contour. The representation of an object shape by using twists is
compact and transformations of the object can be estimated just by transforming the
generators of the entity. Furthermore, instead of estimating the pose for a whole 3D
contour, we are able to use a low-pass description of the contour for an approximation,
leading to a speed up of the algorithm. As shown later, 3D cycloidal curves are strongly
connected to Fourier descriptors [2], [1], [16] as a spectral representation of a contour.
Fourier descriptors are often used for object recognition but are hard to connect with the
2D–3D pose estimation problem for a full perspective camera model. In this work we
overcome this problem by applying Fourier descriptors in a kinematic formalization of
the pose problem.

The paper is organized as follows: We start with our preliminary works in which we
generated a set of basis entities which can be used to model objects for pose estimation.
Then we continue with cycloidal curves and end up in free-form contours as trigonometric
interpolated functions. A trigonometric interpolation can be interpreted as constraint
superposition of orbits generated by a set of coupled twists we use for our pose estimation
scenario. The contribution ends with experiments on pose estimation of free-form curves.

1.1. Preliminary Work. Our recent work [38]–[41] can be summarized in the scenario
of Figure 1. In these preliminary works, we assume as object features 3D points, 3D
lines, 3D spheres, 3D circles or kinematic chain segments of a reference model. Further,
we assume extracted corresponding features in an image of a calibrated camera. The



Free-Form Pose Estimation by Using Twist Representations 93

R , t

o

Fig. 1. The scenario. The assumptions are the camera model, the model of the object (consisting of points,
lines, circles and kinematic chains) and corresponding extracted entities on the image plane. The aim is to find
the pose (R, t) of the model, which leads to the best fit of the object with the entities actually extracted.

aim is to find the rotation R and translation t of the object, which leads to the best fit of
the reference model with the entities actually extracted. To relate 2D image information
to 3D entities we interpret an extracted image entity, resulting from the perspective
projection, as a one dimension higher entity, gained through projective reconstruction
from the image entity. This idea will be used to formulate the scenario in three dimensions.
We are therefore working in a kinematic framework. Note that after reconstruction the
reconstructed entities are independent from the camera.

As mentioned before, there exist many scenarios in which it is not possible to ex-
tract point-like features as corners or edges, but only general contours. Besides, there
exist 3D objects which cannot be adequately represented by primitive object features
such as points, lines or circles. These are the scenarios we address in this contribution.
Additionally we argue that from a statistical point of view, pose estimations of global
object descriptions are more accurate and robust than those from a sparse set of local
features.

1.2. Algebraic Curves. This section gives a brief summary of algebraic curves [27].
There exist many ways to define algebraic curves. For example, a conic can be defined
as the set of intersection points of two projectively related pencils of lines [21]. It is also
possible to define a conic as an intersection of a cone with a plane. The resulting question
is: Which representation of an algebraic curve is well suited within the pose estimation
problem? As mentioned before, we want to use concepts which are already elements of
the kinematic framework we use for the pose problem. Therefore we prefer to describe
algebraic curves as orbits of a twist generated function. The second argument for using
twists consists in their compact representation within the pose problem to gain small
and easily interpretable equations. More detailed information about algebraic curves can
also be found in [10].



94 B. Rosenhahn, C. Perwass, and G. Sommer

(circle rolling outside a circle)

circle

(tracing point on circle)

trifolium quadrifoliumcirclecardioid nephroid deltoid cardioidellipse astroid nephroid

(circle rolling on a line)

line prolate/curtate
cycloid

(Circle rolling on circle/line)

(Curve rolling on curve)

(circle rolling inside a circle)

roulettes

cycloidal curves

hypotrochoidsepitrochoids

epicycloid roses hypocycloid

trochoids

Fig. 2. Tree of algebraic curves.

Here we concentrate on a subclass of the roulettes, the cycloidal curves, which are
circles rolling on circles or lines. Figure 2 shows a subtree of the family of algebraic
curves. Cycloidal curves can be distinguished between epitrochoids, hypotrochoids and
trochoids, which split to other subclasses. Figure 2 also shows examples of these curves.

Since a circle can be interpreted as a point rotating around a line in the space, a
circle rolling on a circle is nothing more than a point rotating around two twists in
a fixed and dependent manner. Indeed it is possible to generalize cycloidal curves to
for example circles rolling on circles/line, which are again rolling on circles/lines. This
generalization of n nested rolling circles is later called ntwist cycloidal curve. Since these
circles can be interpreted as the sum of n phase vectors, we later show the connection of
ntwist cycloidal curves to Fourier descriptors of closed curves, well known from signal
theory. Since Fourier descriptors can be used to interpolate functions trigonometrically,
we then have the direct link to use cycloidal curves for any free-form contour. Note that
these curves are mostly defined in the 2D plane. For our scenario of pose estimation, we
extend these curves to 2D or 3D curves in 3D space.

2. Curves in Conformal Geometric Algebra. This section concerns the formaliza-
tion of cycloidal curves in conformal geometric algebra. Geometric algebras are the
language we use for our pose problem and the main arguments for using this language
in that context are its dense symbolic representation and its coupling of projective and
kinematic geometry. One main problem for 2D–3D pose estimation is the involved math-
ematical spaces which are elements of the stratification hierarchy proposed by Faugeras
[13]. On the one hand we are interested in estimating an affine transformation (a rigid
body motion) and on the other hand we observe objects in an image and therefore have
to deal with projective geometry. To overcome this problem we use a conformal em-
bedding, and so we are able to deal with both projective and kinematic geometry in one
language. We first introduce the basic notation of conformal geometric algebra and the
modeling of entities and their kinematic transformations. We make use of it to model
cycloidal curves in 3D space. This part is also possible in classical affine geometry, but in



Free-Form Pose Estimation by Using Twist Representations 95

the next section we then combine this formalization within our pose estimation problem
and then it is necessary to use conformal geometry: The image entities are projectively
reconstructed to, e.g. projection rays and then transformed into conformal lines (Plücker
lines [37]). So the projective aspect of the pose problem is transformed into a kinematic
one and then combined within the kinematic description of the cycloidal curves and their
pose.

2.1. Introduction to Conformal Geometric Algebra. In this section we introduce the
main properties of conformal geometric algebra (CGA) [28]. The aim is to clarify the
notations. A more detailed introduction to geometric algebras can be found in [44].

In general, a geometric algebra Gp,q is a linear space of dimension 2n , n = p+q, with
a subspace structure, called blades, to represent so-called multivectors as higher-order
algebraic entities in comparison with vectors of a vector space as first-order entities. A
geometric algebra Gp,q results in a constructive way from a vector space R

p,q , endowed
with the signature (p, q), n = p+q by application of a geometric product. The geometric
product of two multivectors A and B is denoted as AB. The geometric product AB
contains an outer (∧) and an inner (·) product, whose roles are to increase or decrease
the grade of the algebraic entities, respectively. We demonstrate this effect in the case of
two vectors a, b ∈ Gp,q :

ab = a · b + a ∧ b

= 1
2 (ab + ba) + 1

2 (ab − ba) ,

where α = a · b is a scalar and A = a ∧ b is a bivector, thus,

ab = α + A

is an inhomogeneous multivector.
For later use we introduce the commutator (×) and anticommutator (×) products for

any two multivectors,

AB = 1
2 (AB + BA) + 1

2 (AB − BA) =: A×B + A×B.

The reader should consult [34] or [35] to become more familiar with the commutator and
anticommutator product. Their role is to separate the symmetric part of the geometric
product from the antisymmetric one.

To introduce CGA, we follow [28] and start with the Minkowski plane G1,1, which
has an orthonormal basis {e+, e−}, defined by the properties

e2
+ = 1, e2

− = −1 and e+ · e− = 0.

A null basis can now be introduced by the vectors

e0 := 1
2 (e− − e+) and e := e− + e+.

The vector e0 can be interpreted as the origin, and the vector e as a point at infinity.
Furthermore, we define E := e ∧ e0.



96 B. Rosenhahn, C. Perwass, and G. Sommer

In the case of an n-dimensional vector space the Minkowski model Gn+1,1 will be
used, therefore enlarging the geometric algebra of the n-dimensional vector space by
two additional basis vectors, which define a null space. For the 3D vectors space R

3 we
gain G4,1, which contains 25 = 32 elements.

The algebras G3,1 and G3,0 are suited to represent the projective and Euclidean space,
respectively [19], [21]. Since

G4,1 ⊇ G3,1 ⊇ G3,0,

both algebras for the projective and Euclidean space constitute subspaces of the linear
space of CGA. It is possible to use operators to relate the different algebras and to guaran-
tee the mapping between the algebraic properties. This relation is also interesting, since
it builds another stratification hierarchy, containing the Euclidean, projective and con-
formal space, in contrast to Faugeras’ stratification hierarchy, containing the Euclidean,
affine and projective space.

The basis entities of the 3D conformal space are spheres s, containing the center p
and the radius ρ, s = p+ 1

2 (p2 −ρ2)e+e0. A point x = x+ 1
2 x2e+e0 is nothing else but

a degenerate sphere with radius ρ = 0, which can easily be seen from the representation
of a sphere. A point x is on a sphere s iff x · s = 0. Since the following relationship holds
(see, e.g. [18]),

x · s = 0 ⇔ x ∧ s� = 0,

we can also use the dual representation (denoted with a �) of entities. Dual points, lines
and planes can be expressed as X� = e ∧ x, L� = e ∧ a ∧ b and P� = e ∧ a ∧ b ∧ c.
Note that since we later work with the entities in their dual representation, we neglect
the � in the following.

In this work we do not use all the properties which are offered by CGA. There is
no need for us to estimate, e.g. inversions or other conformal mappings, which can be
estimated in CGA. The properties we need are both the intrinsic relation of projective and
conformal geometry, and the possibility of expressing rigid motions in a linear manner.

2.2. Rigid Body Motions of Geometric Entities and Twists in CGA. In this section
the estimation of rigid body motions in CGA is discussed. It is well known, that a
rigid motion of an object is a continuous movement of the particles in the object such
that the distance between any two particles remains fixed at all times. A rigid motion
can be separated in a rotation R and a translation t. In CGA both operations can be
expressed in a linear manner and they also can be applied to different entities (e.g.
points, lines, circles, spheres) in the same manner. Rotations in G4,1 are represented by
rotors R = exp(−(θ/2)l). The components of the rotor R are the unit bivector l, which
represents the dual of the rotation axis, and the angle θ , which represents the amount of
the rotation. This is similar to the use of quaternions for estimating rotations. If we want
to translate an entity with respect to a translation vector t ∈ G3,0, we can use a so-called
translator, T = (1 + et/2) = exp(et/2). This translator is a special rotor, similar to a
translator in the dual quaternion algebra. The main difference of CGA to quaternions and
dual quaternions [5] is that there is no need to transform the entities in another space to
apply geometric transformations. This means for example that we do not have to encode



Free-Form Pose Estimation by Using Twist Representations 97

a point as a quaternion, compute quaternionic multiplications and transform it back to a
vector. Instead the entities remain in their natural representation.

Rotations and translations can be estimated by applying rotors and translators as versor
products [20], e.g. X′ = RXR̃ or X′′ = TXT̃.3 To express a rigid body motion, we can
apply multiplied rotors and translators consecutively. We denote such an operator (it is a
special even-grade multivector) as a motor M, which is an abbreviation of “moment and
vector”. The rigid body motion of for example a point X can be written as X′ = MXM̃,
see also [5]. However, as mentioned before, this does not only hold for point concepts.
Other entities like lines, plane, circles and spheres can be transformed in the same manner.

Following, e.g. [32], [43], and [33], a rigid body motion of points can be expressed
by a rotation around a line in space followed by a translation along this line. This
results from the fact that for every g ∈ SE(3) there exists a ξ ∈ se(3) and a θ ∈ R

such that g = exp(ξθ). Such transformations are also called twist transformations. The
Lie algebra element ξ ∈ se(3) is a twist, and its Lie group element, the exponential
g = exp(ξθ) ∈ SE(3), describes a rigid body motion [15]. A motor describing a twist
transformation can be written as

M = exp

(

−θ

2
(l + em)

)

= exp

(

−θ

2
�

)

.

A twist can be seen as an infinitesimal version of a screw motion and describes a line in
space with an angle θ and a pitch h, the ratio of translation to rotation. If the pitch h is
zero, the resulting motion is a rotation of an entity (e.g. a point X) around a line L� in the
space. To gain a twist representation, the general idea is to translate both, the entity and
the line to the origin, to perform a rotation and to translate back the transformed entity.
The motor M can be interpreted as the exponential of a twist, with the form

M = TRT̃

= exp

(

−θ

2
(l + e(t · l))

)

.

The motion of a point can then be decomposed as

X′ = MXM̃

= (TRT̃)X(TR̃T̃).

We call such a transformation a general rotation. Whereas in Euclidean geometry, Lie
algebras and Lie groups are only applied to point concepts, motors can also be applied
to other entities, like lines, planes, circles, spheres, etc. Note that we use ξ for a twist in
the affine space and � for a twist in the conformal space. For points these two structures
are equivalent, but � is more general, since it can also be applied to other entities.

3 Ã denotes the reverse of A and A� denotes the dual representation of A.



98 B. Rosenhahn, C. Perwass, and G. Sommer

XC

b

a
φ−φ∗2

point

twist

Fig. 3. A conic generated by two coupled twists.

2.3. Cycloidal Curves. While in the last section we stated that twists can be considered
as generators of the Lie group of rigid body motions for a certain set of entities, here we
restrict ourselves to model curves by the algebraic constrained motion of points in space.
As previously explained, cycloidal curves are circles rolling on circles or lines. In this
section we explain how to generate such curves as twist depending functions in CGA.
For example, conics are not entities which can be directly described in CGA. The idea
for modeling conics is visualized in Figure 3: We assume two parallel twists modeling
general rotations in 3D space and a 3D point on the conic, and we transform the point
around the two twists in a fixed and dependent manner. In this case we use two coupled
parallel (not collinear) twists, rotate the point by −2ϕ around the first twist and by ϕ

around the second one. The set of all points for ϕ ∈ [0 · · · 2π ] generates a conic as the
orbit of the generated Lie group.

In general, every cycloidal curve is generated by a set of twists ξi with frequencies
λi acting on one point X on the curve. Since m twists can be used to describe general
rotations in the 2D plane or 3D space, we call the generated curves nD-mtwist curves. By
nD-mtwist curves we mean n-dimensional curves, generated by m twists with n, m ∈ N.
Note, to model 3D cycloidal curves we restrict the twists to modeling general rotations,
but indeed twist curves are more general than cycloidal curves. In the context of the
2D–3D pose estimation problem we use the curves as 3D object entities. So we mean
3D-mtwist curves if we speak of just mtwist curves.

We start with very simple cycloidal curves. The simplest one consists of one point (a
point on the curve) and one twist modeling a general rotation. Rotating the point around
the twist leads to the parameterized generation of a circle: the transformation can be
expressed with a suitable motor Mϕ and an arbitrary 3D point, XZ , on the circle. The
3D orbit of all locations on the circle the point can take on is simply given by

Xϕ

Z = MϕXZ M̃ϕ, ϕ ∈ [0 · · · 2π ].

We call also a circle a 1twist generated curve. The points on the orbit are constrained
by the motor Mϕ as element of a Lie group. This is in contrast to classical subspace
concepts in vector spaces.



Free-Form Pose Estimation by Using Twist Representations 99

Now we can continue and wrap a second twist, also modeling a general rotation,
around the first one. If we make the amount of rotation of each twist dependent on each
other, we gain a 3D curve in general. This curve is firstly dependent on the relative
positions and orientation of the twists with respect to each other, the (starting) point on
the curve and the ratio of angular frequencies. For parallel twist axes we gain 2D curves
in 3D space, whereas we get 3D curves in 3D space for nonparallel twist axes.

The general form of a 2twist generated curve is

Xϕ

C = M2
λ2ϕ

M1
λ1ϕ

XC M̃
1
λ1ϕ

M̃
2
λ2ϕ

= exp

(

−λ2ϕ

2
�2

)

exp

(

−λ1ϕ

2
�1

)

XC exp

(
λ1ϕ

2
�1

)

exp

(
λ2ϕ

2
�2

)

,

λ1, λ2 ∈ R, ϕ ∈ [α1 · · · α2].

The motors Mi are the exponentials of the twists �i , the scalars λi ∈ R determine the
ratio of angular frequencies between the twists and XC is a point on the curve. The
values αi define the boundaries of the curve and indeed it is also possible to define curve
segments.

Figure 4 shows further examples of curves, which can be very easily generated by
two coupled twists. Note that the archimedic spiral is also a 2twist generated curve. To
gain an archimedic spiral, one twist has to be a translator. All these curves are given in
3D space. In Figure 4 only projections are shown. Table 1 gives an overview of some
well-known entities, interpreted as twist generated curves as well as twist generated
surfaces.

The rigid body motions of these entities can easily be estimated, just by transforming
the generating twists. The transformation of an mtwist generated curve can be performed
by transforming the m twists, and the point on the curve. The description of these curves
is compact, and rigid transformations can be estimated very quickly.

-2-1012
x

-1

0

1

2

3

z

-0.500.511.522.5
x

-0.5

0

0.5

1

1.5

2

2.5

z

-10123
x

-1

0

1

2

3

z

-10123
x

-1

0

1

2

3

z

-60-40-20020406080
x

-80

-60

-40

-20

0

20

40

60

z

0246810

-4

-2

0

2

4

6

Fig. 4. Curves generated from 3D-2twists with parallel axes.



100 B. Rosenhahn, C. Perwass, and G. Sommer

Table 1. Well known 3D entities as mtwist curves or surfaces.

Entity Class Entity Class

Point 0twist curve Rose 2twist curve
Circle 1twist curve Spiral 2twist curve
Line 1twist curve Sphere 2twist surface
Conic 2twist curve Plane 2twist surface
Line segment 2twist curve Cone 2twist surface
Cardioid 2twist curve Cylinder 2twist surface
Nephroid 2twist curve Quadric 3twist surface

3. Estimating Twists from a Given Closed Curve. So far we have discussed how a set
of multiplicatively coupled twists, modeling general rotations, can be used to generate a
curve. Similarly, we can ask how a given closed curve may be parameterized with respect
to a set of additively coupled twists. This problem is in fact closely related to Fourier
descriptors, which are used for object recognition [16], [49], [3], [24] and affine pose
estimation [3], [36] of closed contours. We will show here that a set of coupled twists,
modeling general rotations, acting on a vector is equivalent to a sum over a set of rotors,
which each act on a different phase vector. The latter can be regarded as a Fourier series
expansion, whose coefficients are also called Fourier descriptors.

The equivalence of coupled twists and a Fourier expansion is most easily shown in
Euclidean space. Let

Rϕ

i := exp
(

−πuiϕ

T
l
)

,

where T ∈ R is the length of the closed curve, ui ∈ Z is a frequency number and l
is a unit bivector which defines the rotation plane. Furthermore, R̃

ϕ

i = exp(πuiϕ/T l).
Recall that l2 = −1 and we can therefore write the exponential function as

exp(ϕ l) = cos(ϕ) + sin(ϕ)l.

For two twists modeling general rotations, a 2twist generated curve may then be written
in Euclidean space as follows:

Xϕ

C = M2
λ2ϕ

M1
λ1ϕ

XC M̃
1
λ1ϕ

M̃
2
λ2ϕ

⇔ xϕ

C = Rϕ

2 ((Rϕ

1 (xC − t1) R̃
ϕ

1 + t1) − t2) R̃
ϕ

2 + t2

= Rϕ

2 Rϕ

1 (xC − t1)R̃
ϕ

1 R̃
ϕ

2 + Rϕ

2 (t1 − t2)R̃
ϕ

2 + t2

= p0 + Vϕ

1 p1 Ṽ
ϕ

1 + Vϕ

2 p2 Ṽ
ϕ

2 ,

where p0 ≡ t2, p1 ≡ t1 − t2, p2 ≡ xC − t1, Vϕ

1 ≡ Rϕ

2 , Vϕ

2 ≡ Rϕ

2 Rϕ

1 and λi = 2πui/T .
Note that for planar curves the rotors Rϕ

1 and Rϕ

2 act in the same plane and the vectors
xC , t1 and t2 lie in the rotation plane. Hence, the {pi } lie in the rotation plane.

It can be shown that if a vector x lies in the rotation plane of some rotor R, then
Rx = xR̃. The previous equation can therefore be written as

xϕ

C = p0 + p1 Ṽ
2ϕ

1 + p2 Ṽ
2ϕ

2 .



Free-Form Pose Estimation by Using Twist Representations 101

Note that the square of a rotor is equal to a rotor of twice the angle in the same rotation

plane. Therefore, Ṽ
ϕ

i Ṽ
ϕ

i = Ṽ
2ϕ

i . Using the exponential form of rotors, we get

xϕ

C = p0 + p1 exp

(
2πu1ϕ

T
l
)

+ p2 exp

(
2πu2ϕ

T
l
)

.

This is equivalent to a Fourier series expansion where we have replaced the imaginary
unit i = √−1 with l and the complex Fourier series coefficients with vectors that lie in
the plane spanned by l. The latter vectors are the phase vectors. In general, it may be
shown that any closed, planar curve C(ϕ) can be expressed as a series expansion

C(ϕ) = lim
N→∞

N∑

k=−N

pk exp

(
2πkϕ

T
l
)

= lim
N→∞

N∑

k=−N

Rϕ

k pk R̃
ϕ

k .

For every closed curve there is a unique set of phase vectors {pk} that parameterizes the
curve. However, such a set corresponds to infinitely many different combinations of cou-
pled twists. That is, given a set of coupled twists, we can obtain the corresponding phase
vectors {pk} but not vice versa. The spectral representation of a curve transforms the
translational parts of its generating twists into a set of different phase vectors and there-
fore results in a pure rotor description. This additive representation is unique, whereas
the multiplicative coupled twist representation is not. Therefore, we use the additive
description for our pose estimation scenario later.

The expansion of the previous equation is again closely related to the standard Fourier
series expansion of a real, scalar-valued function. In Figure 5 a closed curve created by
two coupled twists is shown in the yz-plane. Suppose that instead of C(ϕ) we consider
CS(ϕ) := C(ϕ) + 2πϕ/T e1, where e1 is the unit vector along the x-axis. If we project
CS(ϕ) onto the xy-plane and xz-plane, we obtain the other two curves shown. This
visualizes the well-known fact that we can regard any periodic function in a space of
dimension n as the projection of a closed curve in a space of dimension n + 1.

The phase vectors {pk} are also called Fourier descriptors. It has long been known that
one can also construct affine invariant Fourier descriptors [16], [1], that is, entities that
describe a closed curve and stay invariant under affine transformations of the curve. This is
particularly useful for object recognition and has been used in many applications [4], [14],
[46]. The same relations that allow one to construct affine invariant Fourier descriptors
also allow for affine pose estimation. This works in the following way. Consider a closed
curve that lies on a plane which is tilted with respect to an observer. This curve is
projected with an affine camera onto an image plane. The pose of the plane in space
can then be estimated given the Fourier descriptors of the projected curve as well as the
Fourier descriptors of the original curve. See [2] for more details.

We attempted to perform a projective pose estimation via Fourier descriptors. Unfor-
tunately, there are two major problems. First, if a closed curve is projected projectively,
then the projected curve will not be sampled in the same way as the original curve. This
already distorts the Fourier descriptors. Secondly, going through the equations we found
that in order to solve the projective pose estimation problem via Fourier descriptors, one
has to find analytic solutions to nth degree polynomials. Since this is not possible in
general, we cannot follow this approach. We therefore investigated a different approach
for the pose estimation of projected closed curves, which are discussed in the following.



102 B. Rosenhahn, C. Perwass, and G. Sommer

Fig. 5. Projections of a curve created by coupled twists.

4. Pose Estimation in CGA. This section concerns the pose estimation problem. So
far we have just formalized free-form entities and their twist representation. Now we
continue to embed these entities in the 2D–3D pose estimation problem.

4.1. Pose Estimation in Stratified Spaces. To define the pose problem we quote Grim-
son [17]: By pose, we mean the transformation needed to map an object model from
its own inherent coordinate system into agreement with the sensory data. Thus, pose
estimation is to relate several coordinate frames of measurement data and model data, by
finding out the transformation between them. 2D–3D pose estimation means to estimate
the relative position and orientation of a 3D object to a reference camera system. We
already formalized our entities in conformal algebra, because we formalize the pose
estimation problem in conformal space. That is, a kinematic transformed object entity
has to lie on a projective reconstructed image entity. Let X be an object point given in
CGA. The (unknown) transformation of the point can be written as MXM̃. Let x be an
image point on a projective plane. The projective reconstruction from an image point
in CGA can be written as Lx = e ∧ o ∧ x. This leads to a reconstructed projection
ray, containing the optical center o of the camera, see, e.g. Figure 1, the image point x
and the vector e as the point at infinity. Note that o ∧ x formalizes the reconstructed
ray in projective geometry. The expression e ∧ o ∧ x represents the reconstructed ray
in conformal geometry and is therefore given in the same language that we use for our
mtwist generated curves.



Free-Form Pose Estimation by Using Twist Representations 103

To express the incidence of a transformed point with a reconstructed ray we can apply
the commutator product, which expresses collinearity and contains a distance measure
in the Euclidean space (see, e.g. [39] for the proofs). Thus, the constraint equation of
pose estimation from image points reads

(M X
︸︷︷︸

object point

M̃)

︸ ︷︷ ︸

rigid motion of the object point

× e ∧ (o ∧ x)
︸ ︷︷ ︸

projection ray,

reconstructed from the image point
︸ ︷︷ ︸

collinearity of the transformed object

point with the reconstructed line

= 0,

Constraint equations to relate 2D image lines to 3D object points, or 2D image lines
to 3D object lines, can also be expressed in a similar manner. Note that the constraint
equations implicitly represent a Euclidean distance measure which has to be zero. Such
compact equations subsume the pose estimation problem at hand: find the best motor
M which satisfies the constraint. However, in contrast to other approaches, where the
minimization of errors has to be computed directly on the manifold of the geometric
transformations [8], [47], in our approach a distance in the Euclidean space constitutes
the error measure. To change our constraint equation from the conformal to the Euclidean
space, the equations are rescaled without loosing linearity within our unknowns.

4.2. Pose Estimation of Cycloidal Curves. Now we can continue to combine the cy-
cloidal curves with the pose estimation problem:

We consider a 3D cycloidal curve, like

Xϕ

Z = M2
λ1ϕ

M1
λ2ϕ

XM̃
1
λ2ϕ

M̃
2
λ1ϕ

, λ1, λ2 ∈ R, ϕ ∈ [0 · · · 2π ].

By substituting this expression within our constraint equation for pose estimation, we
gain

(

M(M2
λ1ϕ

M1
λ2ϕ

XM̃
1
λ2ϕ

M̃
2
λ1ϕ

)M̃
)

× (e ∧ (o ∧ x)) = 0.

Since every aspect of the 2D–3D pose estimation problem of cycloidal curves is formal-
ized in CGA, the constraint equation describing the pose problem is compact and easy
to interpret: The inner parentheses on the left contain the parameterized generation of
the cycloidal curve. The outer parentheses contain the unknown motor M, describing
the rigid body motion of the 3D cycloidal curve. This is the pose we are interested in.
The expression is then combined via the commutator product with the reconstructed
projection ray and has to be zero. This describes the co-tangentiality of the transformed
curve to a projection ray. The point x is a member of a 2D contour in the image plane.

The unknowns are the six parameters of the rigid motion M and the angle ϕ for each
point correspondence. An example of pose estimation of cycloidal curves is shown in
Figure 6. The upper left image shows the 3D object model. The other images show pose
results of the model. To visualize the quality, the transformed and projected object model
is overlaid in the images.



104 B. Rosenhahn, C. Perwass, and G. Sommer

6
8
10

12
14

16
18

20
22

x

0

5

10

15

20

y

8

10

12

14

16

18

20

22

24

z

Fig. 6. Pose estimation of an object, containing a cardioid and two cycloids.

4.3. Pose Estimation of Free-Form Contours. So far we have considered continuous
3D curves as representing objects. Now we assume a given closed, discretizied 3D curve,
that is a 3D contour C with 2N sampled points in both the spatial and spectral domain
with phase vectors pk of the contour. We now replace a Fourier series development by
the discrete Fourier transform. Then the interpolated contour can be expressed in the
Euclidean space as

C(ϕ) =
N∑

k=−N

Rϕ

k pk R̃
ϕ

k .

For each ϕ, C(ϕ) leads to a point in the Euclidean space. We first have to transform this
expression in the conformal space. Then we can, similarly to the previous section, substi-
tute this expression into the constraint equations for pose estimation. The transformation
of the Fourier descriptors in conformal space can be expressed as

e ∧ (C(ϕ) + e−) = e ∧
((

N∑

k=−N

Rϕ

k pk R̃
ϕ

k

)

+ e−

)

.

Substituting this expression into the pose constraint equation leads to

(
M(e ∧ (C(ϕ) + e−))M̃

) × (e ∧ (o ∧ x)) = 0

⇔
(

M

(

e ∧
((

N∑

k=−N

Rϕ

k pk R̃
ϕ

k

)

+ e−

))

M̃

)

× (e ∧ (o ∧ x)) = 0.

The interpretation of this equation is also simple: The innermost parentheses contain
the Fourier descriptors in the Euclidean space. The next parentheses transform this



Free-Form Pose Estimation by Using Twist Representations 105

expression in the homogeneous space and then in the conformal space. Afterwards it
is coupled with the unknown rigid body motion (the motor M) and compared with a
reconstructed projection ray, also given in conformal space.

Note that twist generated curves are in this respect more general than contours as
we assume contours as closed curves, whereas twist generated curves (see, e.g. a spiral)
are in general not closed. This means, for closed curves, Fourier descriptors can be
interpreted as special twist generated curves, but not vice versa. The main point is the
coupling of a spectral representation of contours within the pose estimation problem.
This is achieved in the previous equation by using a conformal embedding.

4.4. Estimation of Pose Parameters. The main question now is how to solve a set of
constraint equations for multiple (different) features with respect to the unknown motor
M. Since a motor is a polynomial of infinite degree (see, e.g. its series expression),
this is a nontrivial task, especially in the case of real-time estimations. Furthermore,
we have multivector equations and so far there exists no multivector-SVD or any other
numerical algorithm for solving such Clifford equations. This is the reason why we now
return to matrix calculus by linearizing (and iterating) the equations. The idea is to gain
linear equations with respect to the generators of the motor. We use the exponential
representation of motors and expand the motors with a Taylor series up to first order.
This leads to a mapping of the above-mentioned global motion transformation to a
twist representation, which enables incremental changes of pose. That means, we do
not search for the parameters of the Lie group SE(3) to describe the rigid body motion
[15], but for the parameters which generate their Lie algebra se(3) [33]. This leads
to linear equations in the generators of the unknown 3D rigid body motion. For the
sake of simplicity we show the linearization for the case of point transformations. We
approximate the Euclidean transformation of a point X caused by the motor M in the
following way:

MXM̃ = exp

(

−θ

2
(l′ + em′)

)

X exp

(
θ

2
(l′ + em′)

)

≈
(

1 − θ

2
(l′ + em′)

)

X
(

1 + θ

2
(l′ + em′)

)

≈ E + e(x − θ(l′ · x) − θm′).

Setting l := θ l′ and m := θm′ leads to

MXM̃ ≈ E + e(x − l · x − m).

The combination of this approximation of the motion with the previously derived con-
straints for pose estimation results in

MXM̃ × (e ∧ (o ∧ x)) = 0

⇐ ≈ ⇒ (E + e(x − l · x − m))× (e ∧ (o ∧ x)) = 0

⇔ λ(E + e(x − l · x − m))× (e ∧ (o ∧ x)) = 0.

Because of the approximation (⇐ ≈ ⇒) the unknown motion parameters l and m are
linear. This equation contains six unknown parameters for the rigid body motion. The



106 B. Rosenhahn, C. Perwass, and G. Sommer

linear equations can be solved for a set of correspondences by applying, e.g. the well-
known Householder method. From the solution of the system of equations, the motion
parameters R, t can easily be recovered by evaluating θ := ‖l‖, l′ := l/θ and m′ := m/θ .
Once the six twist parameters θ , l′ and m′ are determined from l and m, the group action
can be recovered by applying the famous Rodrigues’ formula (1840) [15].

Solving these equations, we get a first approximation of the rigid body motion. Iter-
ating this process leads to a monotonous convergence to the actual pose and only a few
iterations (mostly five to eight) are sufficient to get a good approximated pose result.
The algorithm itself corresponds to a gradient descent method applied in 3D space.

5. Experiments. In this section we present experimental results of free-form contour
pose estimation.

So far we have identified the connection of 3D mtwist cycloidal curves and the discrete
Fourier transformation. The aim is now to formulate a 2D–3D pose estimation algorithm
for any kind of free-form contour. The assumptions we make are the following:

1. The object model is given as a set of 2N 3D points f 3
j , spanning the 3D contour.

Further, we assume their phase coefficients pk are known.
2. In an image of a calibrated camera, we observe the object in the image plane and

extract a set of n 2D points x2
j , spanning the 2D contour.

Since the number of contour points in the image is often too high (e.g. 800 points in our
experimental scenario), we subsample the point set to get a uniformly sampled set of
contour image points.

Note that we have no knowledge which 2D image point corresponds to which 3D
point of the interpolated model contour. Furthermore, a direct correspondence does not
generally exist.

Using our approach for pose estimation of point–line correspondences, the algorithm
for free-form contours consists of iterating the following steps:

(a) Reconstruct the image points to projection rays.
(b) Estimate the nearest point of each image point to a

point on the 3D contour.
(c) Estimate the pose of the contour with the use of this

correspondence set.
(d) goto (b).

The idea is that all image contour points simultaneously pull on the 3D contour. The
algorithm itself corresponds to the well-known ICP algorithms, e.g. discussed in [42]
and [50]. However, whereas it is mostly applied to sets of 2D or 3D points we apply it to a
trigonometric interpolated function and from image points reconstructed projection rays.

Note that this algorithm only works if we assume a scenario where the observations
in the image plane are not too different. Thus, it is useful for tracking tasks. For our
experiments we use up to a 25 pixel deviation. A projection of the object model used is
shown in Figure 7. The discrete points and the different approximation levels are shown.
The model itself consists of 90 contour points, is planar and has a width and height of



Free-Form Pose Estimation by Using Twist Representations 107

Fig. 7. The different approximation levels of the 3D object contour.

24 × 8 cm. Pose estimation results at different iterations are shown in Figure 8. The
white 2D contour is the transformed and projected 3D object model overlaid with the
image. Note that the iteration number shows the number of ICP cycles. Since the pose
estimation itself is performed by an iteration procedure, we have in the algorithm two
nested loops. However, as mentioned before, the pose estimation itself can be carried
out quickly and only few iterations are done in the inner loop of the algorithm.

Using the Fourier coefficients for contour interpolation works fine but the algorithm
can be made faster by using a low-pass approximation for pose estimation and by adding
successively higher frequencies during the iterations. This is basically a multiresolution
method. We call this technique the increasing degree method. Therefore we start the
pose estimation procedure with just a few Fourier coefficients of the 3D contour and
estimate the pose to a certain degree of accuracy. Then we increase the number of used
Fourier coefficients and proceed to estimate the pose. The idea is to start with a rough
approximation of the pose by using the low-pass informations and to refine it during the
iterations. This is shown in Figure 9. In this example the iteration number corresponds
directly to the number of used Fourier coefficients plus one. This means that we use two
Fourier coefficients in the first iteration, four Fourier coefficients in the third iteration,
etc. Iteration 21 uses 22 Fourier coefficients and Figure 9 shows that the result is nearly
perfect. Figure 10 shows pose results of an image sequence containing 540 images.

241612

1 4 8

Fig. 8. Pose results during the iterations.



108 B. Rosenhahn, C. Perwass, and G. Sommer

15 18 21

9

1 3 8

10 13

Fig. 9. Pose results of the low-pass contour during the iterations.

The accuracy and time performance of the algorithm is dependent on the number of
object and image points spanning the contours in two and three dimensions, respectively.
Furthermore, we can use the low-pass information of the 3D contour for approximations.
We made several experiments with changing contour approximations and image points.

In the first experiment we compare the results of our algorithm for different degrees
of contour approximation. On the one hand we use constant degrees over the iteration
(3, 4, 5, 10, 20, 30, 40) and on the other hand increasing degrees, similar to Figure 9. To
test the accuracy of our algorithmf we simply compare the translational error vector with
ground truth. The result is shown in Figure 11. It can be seen that the algorithm converges
after less than ten iterations. Then the error vectors do not change any more. It is clear
that the use of less degrees leads to fast, but more inaccurate, results. Our increasing
degree method finds a good optimum between computing time and accuracy of the result.

Fig. 10. Different pose results of the free-form contour.



Free-Form Pose Estimation by Using Twist Representations 109

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 0

5000

10000

15000

20000

0 2 4 6 8 10 12 14

Degree 4

Degree 3

Degree 5

Increasing Degree
Degree 10 +

Error
(mm)

Iterations

(ms)
time

Iterations

Degree 20 

Degree 40 

Degree 30 

Degree 3
Degree 4
Degree 5
Degree 10 
Increasing Degree

Fig. 11. Accuracy and computing time of the algorithm for a constant number of image points (80) and different
approximation levels of the contour.

The algorithm converges after nine iterations, with computing times between 5 and 15 s
on a SUN Ultra 10.

In a second experiment we use the increasing degree algorithm and change the number
of extracted contour points. In this experiment we use 10, 12, 14, 20, 27, 32, 40, 54 and
80 regular sampled image points and compared the accuracy and computing time. The
result is presented in Figure 12. It can be seen that the number of image points used
affects both the computing time and the accuracy. However, in comparison with the
previous experiment, there exists a critical break point with regard to the accuracy of
the algorithm. While the use of 14–80 image points does not affect the quality of the
pose too much, the use of 10 points or less leads to wrong poses. These results hold for
just this scenario and will change for other scenarios. The main result is that it is indeed
possible to use the whole image and object information available to estimate the pose
of the free-form contour, but we have to pay with computing time. Instead, the use of
low-pass contours with subsampled image points lead to faster and comparable results.
In this scenario the computing time can be reduced from 35 s to less than 1 s without
introducing nontolerable errors.

Indeed, the computing time is very dependent on the machine itself. Therefore, we
also tested the same algorithm on different machines in our group. The result is shown

0

5

10

15

20

25

30

35

0 2 4 6 8 10 12 14
0

2000

4000

6000

8000

10000

12000

0 2 4 6 8 10 12 14

IP 10

IP 80−12

Error
(mm)

IP 10

IP 54

IP 80

IP 40

IP 32

IP 27

IP 20
IP 14
IP 12

Iterations

Time

Iterations

(ms)

Fig. 12. Accuracy and computing time of the algorithm for changing image points.



110 B. Rosenhahn, C. Perwass, and G. Sommer

Table 2. Computing time of the increasing degree method for the same scenario on
different machines for 90 model points, 80 image points and 25 iterations.

Computer Pose (ms) Min. search Total (25 iterations)

Pentium IV 2 GHz 5 up to 20 ms 405 ms
Pentium III 850 MHz 15 up to 25 ms 783 ms
Sparc Ultra 10 325 up to 80 ms 10,295 ms (∼ 10 s)
Sparc Ultra 1 8,921 up to 667 ms 232,265 ms (∼ 3.5 min)
Sparc 4 13,322 up to 1,505 ms 356,811 ms (∼ 6 min)
Sparc 10 23,509 up to 1,743 ms 622,975 ms (∼ 10 min)

in Table 2. As can be seen, the computing time for the increasing degree method, with
80 image points is 783 ms on a standard Linux 850 MHz machine. With slightly adapted
parameters we reached 40 ms computing time with 1 mm pose deviation from ground
truth. However, this value is dependent on the scenario and the object model. Many ideas
to speed the algorithm up can also be found in [42]. We have not improved the algorithm
yet. This is part of future work. The main result is that the algorithm can also be used
for real-time applications on standard Linux machines.

Figure 13 shows the computing times for an image sequence containing 520 images.
The computing time for each image varies between 20 ms and 55 ms. The average
computing time is 34 ms, which is equivalent to 29 fps. These results were achieved with
a 2 GHz Pentium IV computer.

The robustness of our algorithm with respect to distorted image data is shown in
Figure 14. In this image sequence (containing 450 images) we distort the image contour
by covering parts of the contour with white paper. This leads to slight or more extreme
errors during the contour extraction in the image. Nevertheless, the behavior of the
matching and the pose results are acceptable. These examples give just a guess about
the stability of the proposed method. It is not possible to compensate for totally wrong
extracted contours or too much missing information.

10

20

30

40

50

60

70

80

(ms)

100 200 300 400 500
Frame

Fig. 13. Computing times for an image sequence containing 520 images.



Free-Form Pose Estimation by Using Twist Representations 111

Fig. 14. Different pose results for distorted image data.

6. Discussion. This work presents an algorithm for free-form pose estimation. There-
fore we start with simple point features and embed them in the family of cycloidal curves.
Cycloidal curves give an interesting link between classical geometry and signal theory
and are well suited to be used in the context of pose estimation. Therefore, we make use
of conformal geometric algebra, which subsumes projective and kinematic geometry.
One advantage is also the compact representation of the entities involved: just a set of
twists, frequencies and a point on the contour are needed to express a twist generated
curve, which is much easier to interpret than equivalent polynomials. The geometric
derivation of the interpolation further allows the use of approximations of the contour.
This can decrease the computing time immensely. So far Fourier descriptors are often
used for object recognition but seldom for pose estimation. More popular are snakes
or active contours. Since Fourier descriptors are nothing more than mtwist generated
curves, they can be defined in both the 2D and 3D space and low-pass information can
be used within the pose problem.

References

[1] Arbter K. Affine-invariant fourier descriptors. In From Pixels to Features (Simon J.C., Ed.). Elsevier,
Amsterdam, 1989, pp. 153–164.

[2] Arbter K. Affininvariante Fourierdeskriptoren ebener Kurven. Ph.D. Thesis, Technische Universität
Hamburg-Harburg, 1990.

[3] Arbter K. and Burkhardt H. Ein Fourier-Verfahren zur Bestimmung von Merkmalen und Schätzung der
Lageparameter ebener Raumkurven. Informationstechnik, Vol. 33 No. 1, 1991, pp. 19–26.

[4] Arbter K., Snyder W.E., Burkhardt H. and Hirzinger G. Application of affine-invariant fourier descriptors
to recognition of 3-D objects. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),
Vol. 12, No. 7, 1990, pp. 640–647.

[5] Bayro-Corrochanno E., Daniilidis K. and Sommer G. Hand–eye calibration in terms of motions of lines
using geometric algebra. In Proceedings of the 10th Scandinavian Conference on Image Analysis,
Vol. 1, 1997, pp. 397–404.

[6] Besl P.J. The free-form surface matching problem. In Machine Vision for Three-Dimensional Scenes,
(Freemann H., Ed.). Academic Press, San Diego, CA, 1990, pp. 25–71.

[7] Bregler C. and Malik J. Tracking people with twists and exponential maps. Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, Santa Barbara, CA, 1998,
pp. 8–15.



112 B. Rosenhahn, C. Perwass, and G. Sommer

[8] Chiuso A. and G. Picci. Visual tracking of points as estimation on the unit sphere. In The Confluence
of Vision and Control (Kriegman D., Hager G., and Morse S., Eds). Springer-Verlag, New York, 1998,
pp. 90–105.

[9] Campbell R.J. and Flynn P.J. A survey of free-form object representation and recognition techniques.
CVIU: Computer Vision and Image Understanding, No. 81, 2001, pp. 166–210.

[10] O’Connor J.J. and Robertson E.F. Famous Curves Index. http://www-history.mcs.st-andrews.ac.uk/
history/Curves/Curves.html.

[11] Czopf A., Brack C., Roth M. and Schweikard A. 3D–2D registration of curved objects. Periodica
Polytechnica, Vol. 43, No. 1, 1999, pp. 19–41.

[12] Drummond T. and Cipolla R. Real-time tracking of multiple articulated structures in multiple views.
In Proceedings of the 6th European Conference on Computer Vision, ECCV 2000, Dublin, Ireland,
Part II, 2000, pp. 20–36.

[13] Faugeras O. Stratification of three-dimensional vision: projective, affine and metric representations.
Journal of the Optical Society of America, Vol. 12, No. 3, 1995, pp. 465–484.

[14] Fenske A. Affin-invariante Erkennung von Grauwertmustern mit Fourierdeskriptoren. In Mustererken-
nung 1993 (Pöppel S.J. and Handels M., Eds.). Springer-Verlag, Berlin, 1993, pp. 75–83.

[15] Gallier J. Geometric Methods and Applications for Computer Science and Engineering. Springer-
Verlag, New York, 2001.

[16] Granlund G. Fourier preprocessing for hand print character recognition. IEEE Transactions on Com-
puters, Vol. 21, 1972, pp. 195–201.

[17] Grimson W.E.L. Object Recognition by Computer. The MIT Press, Cambridge, MA, 1990.
[18] Hestenes D. The design of linear algebra and geometry. Acta Applicandae Mathematicae, Vol. 23,

1991, pp. 65–93.
[19] Hestenes D. Invariant body kinematics: I. Saccadic and compensatory eye movements. Neural Networks,

No. 7, 1994, pp. 65–77.
[20] Hestenes D., Li H. and Rockwood A. New algebraic tools for classical geometry. In [46], 2001,

pp. 3–23.
[21] Hestenes D. and Ziegler R. Projective geometrie with Clifford algebra. Acta Applicandae Mathematicae,

No. 23, 1991, pp. 25–63.
[22] Horaud R., Phong T.Q. and Tao P.D. Object pose from 2-d to 3-d point and line correspondences.

International Journal of Computer Vision (IJCV), Vol. 15, 1995, pp. 225–243.
[23] Huber D.F. and Hebert M. Fully automatic registration of multiple 3D data sets. Proceedings of the

IEEE Computer Society Workshop on Computer Vision Beyond the Visible Spectrum (CVBVS 2001),
2001, pp. 637–650.

[24] Kauppinen H., Seppänen T. and Pietikäinen M. An experimental comparison of autoregressive and
Fourier-based descriptors in 2D shape classification. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence (PAMI), Vol. 17, No. 2, 1995, pp. 201–207.

[25] Klingspohr H., Block T., Grigat R.-R. A passive real-time gaze estimation system for human–machine
interfaces. In Computer Analysis of Images and Patterns (CAIP) (Sommer G., Daniilidis K. and Pauli
J., Eds.). LNCS 1296. Springer-Verlag, Berlin, 1997, pp. 718–725.

[26] Kriegman D.J., Vijayakumar B. and Ponce, J. Constraints for recognizing and locating curved 3D
objects from monocular image features. In Proceedings of Computer Vision (ECCV ’92) (Sandini G.,
Ed.). LNCS 588. Springer-Verlag, Berlin, 1992, pp. 829–833.

[27] Lee X. A Visual Dictionary of Special Plane Curves. http://xahlee.org/SpecialPlaneCurves dir/
specialPlaneCurves.html.

[28] Li H. Generalized homogeneous coordinates for computational geometry. In [46], 2001, pp. 27–52.
[29] Lin C.-S. and Hwang C.-L. New forms of shape invariants from elliptic Fourier descriptors. Pattern

Recognition, Vol. 20, No. 5, 1987, pp. 535–545.
[30] Lowe D.G. Solving for the parameters of object models from image descriptions. In Proceedings of

the ARPA Image Understanding Workshop, 1980, pp. 121–127.
[31] Lowe D.G. Three-dimensional object recognition from single two-dimensional images. Artificial

Intelligence, Vol. 31, No. 3, 1987, pp. 355–395.
[32] McCarthy J.M. Introduction to Theoretical Kinematics. MIT Press, Cambridge, MA, 1990.
[33] Murray R.M., Li Z. and Sastry S.S. A Mathematical Introduction to Robotic Manipulation. CRC Press,

Boca Raton, FL, 1994.



Free-Form Pose Estimation by Using Twist Representations 113

[34] Perwass C. Applications of Geometric Algebra in Computer Vision. Ph.D. thesis, Cambridge University,
2000. Available at http://www.perwass.de.

[35] Perwass C. and Lasenby L. A unified description of multiple view geometry. In [46], 2001, pp. 337–369.
[36] Reiss T.H. Recognizing Planar Objects Using Invariant Image Features. Springer–Verlag, New York,

1993.
[37] Rooney J. A comparison of representations of general spatial screw displacement. Environment and

Planning B, Vol. 5, 1978, pp. 45–88.
[38] Rosenhahn B., Granert O. and Sommer G. Monocular pose estimation of kinematic chains. In Applied

Geometric Algebras for Computer Science and Engineering (Dorst L., Doran C. and Lasenby J., Eds.).
Birkhäuser-Verlag, Basel, 2001, pp. 373–383.

[39] Rosenhahn B. and Lasenby J. Constraint Equations for 2D–3D Pose Estimation in Conformal Geo-
metric Algebra. Technical Report CUED/F - INFENG/TR.396, Engineering Department, Cambridge
University, 2000.

[40] Rosenhahn B. and Sommer G. Adaptive pose estimation for different corresponding entities. In Pattern
Recognition, 24th DAGM Symposium (Van Gool L., Ed.). LNCS 2449. Springer-Verlag, Berlin, 2002,
pp. 265–273.

[41] Rosenhahn B., Zhang Y. and Sommer G. Pose estimation in the language of kinematics. Proceedings of
the Second International Workshop—Algebraic Frames for the Perception–Action Cycle, AFPAC 2000.
LNCS 1888. Springer-Verlag, Berlin, 2000, pp. 284–293.

[42] Rusinkiewicz S. and Levoy M. Efficient variants of the ICP algorithm. Available at http://www.cs.
princeton.edu/ smr/papers/fasticp/. Presented at the Third International Conference on 3D Digital
Imaging and Modeling (3DIM), 2001.

[43] Selig J.M. Geometric Foundations of Robotics. World Scientific, Singapore, 2000.
[44] Sommer G., editor. Geometric Computing with Clifford Algebra. Springer-Verlag, New York, 2001.
[45] Stark K. A Method for Tracking the Pose of Known 3D Objects Based on an Active Contour Model.

Technical Report TUD / FI 96 10, TU Dresden, 1996.
[46] Tello R. Fourier descriptors for computer graphics. IEEE Transactions on Systems, Man, and Cyber-

netics, Vol. 25, No. 5, 1995, pp. 861–865.
[47] Ude A. Filtering in a unit quaternion space for model-based object tracking. Robotics and Autonomous

Systems, Vol. 28, No. 2-3, August 1999, pp. 163–172.
[48] Walker M.W. and Shao L. Estimating 3-d location parameters using dual number quaternions. CVGIP:

Image Understanding, Vol. 54, No. 3, 1991, pp. 358–367.
[49] Zahn C.T. and Roskies R.Z. Fourier descriptors for plane closed curves. IEEE Transactions on Com-

puters, Vol. 21, No. 3, 1972, pp. 269–281.
[50] Zang Z. Iterative point matching for registration of free-form curves and surfaces. IJCV: International

Journal of Computer Vision, Vol. 13, No. 2, 1999, pp. 119–152.
[51] Zerroug, M. and Nevatia, R. Pose estimation of multi-part curved objects. Proceedings of the Image

Understanding Workshop (IUW), 1996, pp. 831–835.


