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Chapter 1

Monocular Pose Estimation of
Kinematic Chains

Bodo Rosenhahn, Oliver Granert, Gerald Sommer 1

ABSTRACT In this paper conformal geometric algebra is used to formalize

an algebraic embedding for the problem of monocular pose estimation of

kinematic chains. The problem is modeled on the base of several geometric

constraint equations. In conformal geometric algebra the resulting equations

are compact and clear. To solve the equations we linearize and iterate the

equations to approximate the pose and the kinematic chain parameters.

1.1 Introduction

In this work we derive an algebraic embedding for monocular pose estima-
tion of kinematic chains. Pose estimation itself is a basic visual task and
several approaches for monocular pose estimation exist to relate the posi-
tion of a 3D object to a reference camera coordinate system (eg. [8, 7]).
Instead of using invariances as an explicit formulation of geometry as often
has been done in projective geometry, we are using implicit formulations
and use constraints to describe the pose estimation problem. The formu-
las in [12] produces compact constraint equations for pose estimation of
rigid objects for different situations. In many approaches the rigidity of
objects is assumed, but we are also interested in kinematic chains and so
to estimate the locations of bit by bit rigid objects which can change inter-
nal in a known manner. Examples are tracked robot arms or human body
movements.

In this paper we will use the conformal geometric algebra (ConfGA) [4] to
describe scenarios for kinematic chains [2] and their coupling with the pose
estimation problem. For this we will derive a suited object representation
for kinematic chains and follow the idea of the twist representation [2] to
approximate the movements in a linear manner as described in [3]. Then
we combine them with the pose estimation algorithm [11] to gain linear
equations, which converge during iteration to the unknown pose and the
internal angular or distance positions of the kinematic chain objects.

The paper is organized as follows: The first section describes the pose
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estimation scenario for rigid objects and the embedding of the scenario in
ConfGA. Then we will derive a kinematic chain representation in ConfGA
and describe the pose estimation constraint equations for such kinematic
chains. The fourth section is devoted to the experiments in simulated and
real environments and the last section ends the paper with a discussion.

1.2 Pose estimation in conformal geometric algebra
In this section we will explain the pose estimation scenario for rigid objects
and their geometric representation in ConfGA. This is a summary of [12].

1.2.1 The scenario of pose estimation

In the scenario of figure 1.1 we describe the following situation: We assume
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FIGURE 1.1. The scenario. The solid lines describe the assumptions:

the camera model, the model of the object and the extracted lines or

points on the image plane. The dashed lines describe the pose, which

leads to the best fit of the object with the extracted entities.

3D points Y i,j , and lines Si,j of an object or reference model. We denote
the object features with pairs of numbers, to distinguish later between the
points on the different object segments. Let us first assume the reference
model as a rigid object, so that eg. the angles θ′1, θ

′
2 in figure 1.1 do not

change during the motion. Further, we extract line subspaces li,j , or points
bi,j in an image of a calibrated camera, whose optical centre is denoted
by c, and match them with the model. The aim is to find the rotation
R and translation t, which leads to the best fit of the reference model
with the actual extracted entities. To compare the image features with
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the object features, we interpretate the extracted image entities, resulting
from the perspective projection, as a one dimensional higher entities by
their back projection in the space. This idea [13] will be used to formulate
the scenario as a pure kinematic problem and three different constraints
can be formulated to describe the collinearity of a reference point or line
to an image point or line:

1. 3D point 3D line correspondence: A transformed point, e.g.
X0,1, of the model point Y 0,1 must lie on the projection ray Lb0,1

,
given by c and the corresponding image point b0,1.

2. 3D point 3D plane correspondence: A transformed point, e.g.
X1,1, of the model point Y 1,1 must lie on the projection plane P 1,1,
given by c and the corresponding image line l1,1.

3. 3D line 3D plane correspondence: A transformed line, e.g. L1,1,
of the model line S1,1 must lie on the projection plane P 1,1, given by
c and the corresponding image line l1,1.

The aim in [12] is to use ConfGA to embed the scenario in a suitable
algebraic language. For this the entities, the transformation of the entities
and constraints for collinearity and coplanarity of involved entities are de-
scribed in ConfGA. Furthermore it can be shown [13] that these constraints
contain some kind of distance measure, so that they can be used as error
measure to be minimized in an optimization process.

1.2.2 Introduction to conformal geometric algebra

A geometric algebra Gp,q,r is built from a vector space IRn, endowed with
the signature (p, q, r), n = p+ q+ r, by application of a geometric product.
The geometric product consists of an outer (∧) and an inner (·) product,
whose roles are to increase or to decrease the order of the algebraic entities,
respectively. For later use we introduce the commutator × and anticom-
mutator × products, respectively for any two multivectors,

AB =
1

2
(AB + BA) +

1

2
(AB −BA) =: A×B + A×B.

For a discussion of these two products and their relation to the geometric,
inner and outer product, see [6].

To introduce the ConfGA, we follow [4] and start with the Minkowski
plane G1,1,0, which has an orthonormal basis {e+, e−}, defined by the prop-
erties

e2
+ = 1, e2

− = −1 and e+ · e− = 0.

A Null basis can now be introduced by the vectors

e0 := 1

2
(e− − e+) and e := e− + e+.

Furthermore we define E := e ∧ e0.

In an n-dimensional vector space, the Minkowski model Gn+1,1,0 will be
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Constraint Entities ConfGA

X = E + ex
point-line

L = En + eM
X × L = 0

X = E + ex
point-plane

P = EP + edI
X × P = 0

L = En + eM
line-plane

P = EP + edI
L × P = 0

TABLE 1.1. The geometric constraints for pose estimation expressed

in conformal geometric algebra.

used, therefore enlarging the Geometric Algebra of the n-dimensional vec-
tor space by two additional basis vectors, which define a Null space.

The general form of the points x ∈ Gn,0,0 can be described by x ∈
Gn+1,1,0 with x = x + 1

2
x2e + e0 =: F (x).

Lines can be described by the outer product of two points on the line and
the point at infinity (see [5]), L = e ∧ a ∧ b.
Since the outer product of three points determines a circle [4], the line can
be interpreted as a circle passing through the point at infinity.

Planes can be described by the outer product of three points on the
plane, and the point at infinity, P = e ∧ a ∧ b ∧ c.
Using e ∧ a instead of a (this is the so called affine representation of a
point [4]), we can write the point, line and plane as

X = e ∧ x = E + ex

L = e ∧ a ∧ b = E(b− a) + ea ∧ b = En + eM

P = e ∧ a ∧ b ∧ c = E(b− a) ∧ (c− a) + ea ∧ b ∧ c = EP + edI3.

As in other geometric algebras as well, rotations can be described by
rotors R. A translation can be described by a translator, Ta = (1 + a

2
)e0,

which is nothing more than a special rotor. Indeed, it can be shown [9]
that translations, rotations, dilations and inversions can all be described
by suitable rotors in ConfGA. To describe the combination of a rotation R

and a translation t we denote it, according to [1], as a motor M = RTa

which is an abbreviation of “moment and vector”.

1.2.3 Kinematic constraints in conformal geometric algebra

Now we need only formulate the constraints for collinearity and coplanarity
of involved entities. Table 1.1 gives an overview of the formulations of the
constraints for collinearity and coplanarity in conformal geometric algebra,
which were developed and analysed in [13, 12]. These constraints contain
some kind of distance measure and it can be schown [13], that the relations
between the different entities are controlled by their orthogonal distance,
the Hesse distance. This property leads to well conditioned equations and
robustness in case of noisy data.

Combining these constraints with a rigid body motion of object points or
lines, the pose estimation constraint equations reduce to setting the com-
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mutator and anticommutator products to zero [13, 12]. Thus, the constraint
equations of pose estimation read

(MXM̃) × L = 0, (MXM̃) × P = 0, (MLM̃) × P = 0.

These compact equations subsume the pose estimation problem at hand:
find the best motor M which satisfies the constraint.

1.3 Pose estimation of kinematic chains
In this section we extend the pose estimation scenario of figure 1.1 to
kinematic chains. This means, eg. that the angles θ′1, θ

′
2 of figure 1.1 can

change during the motion.
In the first subsection we describe kinematic chains in conformal geo-

metric algebra. Then we continue with the formalization of constraints for
pose estimation of kinematic chains.

1.3.1 Kinematic chains in conformal geometric algebra

So far we have parameterized the 3D pose constraint equations of a rigid
object. Let be described the rigid object as a list of points. Assume that a
second rigid body is attached to the first one by a joint. The joint can be
formalized as an axis of rotation and/or translation in the object frame. If
the joint is only dependend on a variable angle θi, it is called a revolute
joint, and it is called a prismatic joint if the degree of freedom is only a
variable length di [1]. The transformation of the attached points can be
represented by a motor M1. For a short description of the transformations
we define

T0(X0,i0
) := X0,i0

T1(X1,i1
,M1) := M1X1,i1

M̃1.

This means that T0 describes the identity for points which are not subject
to internal transformations. We call them base points. The function T1

formalize the transformation of an attached joint.
In the general case, a point Xn,in

of an n-th joint can be represented by
a sequence of such motors M 1, . . . ,Mn. This leads to a function Tn,

Tn(Xn,in
,M1, . . . ,Mn) := M1 . . .MnXn,in

M̃n . . .M̃1.

An object model O of a kinematic chain with n segments can now be
represented by a list of such functions Ti,

O = {T0(X0,i0
), T1(X1,i1

,M1), . . . , Tn(Xn,in
,M1, . . . ,Mn)

|n, i0 . . . in ∈ IN}

Note, that the j-th joint consists of points Xj,1, . . . ,Xj,ij
. This numbering

is also shown in figure 1.1.
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1.3.2 Constraint equations for kinematic chains

In this subsection we will combine the introduced representation of kine-
matic chains with the pose estimation constraints, derived in section 1.2.3.
This is very simple now because everything is formulated in the same alge-
bra. The general unknown pose corresponds to a motor M . For the base
points X0,i0

the constraint equations reduce for a suitable projection ray
L to

(M(T0(X0,i0
))M̃) × L = 0

⇔ (MX0,i0
M̃) × L = 0.

The general constraint equation for a point at the j-th joint leads to

(M(Tj(Xj,ij
,M1, . . . ,M j))M̃) × L = 0

⇔ (M(M1 . . .M jXj,ij
M̃ j . . .M̃1)M̃) × L = 0.

It is also simple to use extracted image lines and their reconstructed pro-
jection planes P . For such situations, the constraint equations reduce to

(M(T0(X0,i0
))M̃) × P = 0

⇔ (MX0,i0
M̃) × P = 0,

for the base points, and the general constraint equation for a point at the
jth joint leads to

(M(Tj(Xj,ij
,M1, . . . ,M j))M̃) × P = 0

⇔ (M(M1 . . .M jXj,ij
M̃ j . . .M̃1)M̃) × P = 0.

Note, that it is also possible to describe kinematic chains by lines and com-
bine them with the LP-constraint. For this, only lines Lj,ij

and projection
planes P j,ij

have to be substituted and combined with the anticommutator
product. Note that we always need base points for a suitable solution be-
cause it is not possible to differ between M and M 1 for the first segment.
This results from the geometry of the scenario and the combination of the
pose estimation problem with kinematic chains.

To gain linear equations we use the exponential representation of rotors,
and use the Taylor expression of fist degree for approximation. This leads to
a mapping of the above mentioned global model to such one, which enables
incremental changes of pose. The approximation is comparable to the twist
description and approximation of kinematic chains, described in [3, 2]. It
leads to a linear equation system, which results in a first approximation
of the unknowns. Figure 1.2 visualizes such an approximation: The aim
is to rotate a point P around 90 degree to a point P ′. The first order
approximation of the rotation leads to the tangent of the circle passing
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FIGURE 1.2. Principle of the convergence rate for the iteration of a

point P rotated around 90 degree to a point P
′. P1 is the result of the

first iteration and P2 is the result of the second iteration.

through P . The approximation of the rotation leads to the closest point
on the tangent line to P ′ (denoted by dashed lines), and again normalizing
the point leads to P1 as the first approximation of the rotation. Now we
can repeat this procedure to estimate points P2, . . . ,Pn which converge
during the iteration to the point P ′. It is clear from figure 1.2, that the
convergence rate of a rotation is dependend on the amount of the expected
rotation. An analysis of the convergence rate for general angles is described
in the next section.

1.4 Experiments
In this section we first simulate the convergence rate of a rotation during
iterations. Then we test the performance of the algorithm on real images.
For this experiment we use the XL-constraint, and we mark points by
hand. The convergence rate of iterations for a general rotation θ is demon-
strated in figure 1.3. The x-axis represents the angle θ, the y-axis shows
the estimated angle θ̂. Four iterations are overlaid. The functions are very
characteristic and it can be seen, that the contribution of the first itera-
tion to gain 90 degree rotation is 45 degree. This is clear comparing the
situation with figure 1.2.

All angles, except that of 180 degree converge during the iteration and
for the most cases only a few iterations are sufficient to get a good approx-
imation. For situations, where only small rotations are assumed, for the
most cases, two or three iterations are sufficient.

The following experiments visualize the application of the pose estima-
tion algorithm on real scenarios, see figures 1.4, 1.5 and 1.6. In the first
image sequence, the object model is a door in a cupboard and both the
angle of the door and the robot are changing. During these movements we
extract the correspondences by hand and visualize the transformed pro-
jected object in the sequence. It is easy to see, that both unknowns, the
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FIGURE 1.3. Convergence rate of iterations for arbitrary angles be-

tween 0 and 180 degrees. The expected angles θ are on the x-axis and

the evaluated angles θ̂ are on the y-axis. The iterations (1) . . . (4) are
overlaid.

pose of the cupboard and the angle of the door are estimated and the error
is very small.

In the second image sequence, the object model is a doll and we estimate
the pose, the angle of the upper arm and the forearm. Figure 1.5 visualizes
the transformed projected object in the sequence. Though we only used
one 3D point for each kinematic chain segment and measured the size of
the doll by hand, the pose is also accurate.

In the third image sequence, we use as object model a robot arm. We
estimate the pose of the robot and the angles of the kinematic chain via
tracked points markers. Dependend on the position of the camera with re-
spect to the object model and the location of the joints the estimated angles
differ around 0.5 till 3 degrees to the ground truth. Figure 1.6 visualizes
some results.

1.5 Discussion
This paper presents an algebraic embedding for monocular pose estimation
of kinematic chains. Conformal geometric algebra is well suited to model the
involved geometric scenario since both the pose estimation problem and the
representation of kinematic chains are compact and easy to combine. The
involved geometry is implicitly represented and described on the base of
several geometric constraint equations. Any deviations from the constraints
correspond to the Hesse distance of the involved geometric entities [11]. So it
is possible to ensure well conditioned equations systems. The linearization
and iteration of the constraint equations is easy to implement and it is
shown, that only a few iterations are necessary to get a good approximation
of the pose and the kinematic chain parameters.
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FIGURE 1.4. Images of the first real scenario. Both the pose of the

cupboard and the opening angle of the door are estimated.

FIGURE 1.5. Images of the second real scenario. The pose of the doll

and the angles of the arms are estimated.
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