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Abstract

An important issue in image analysis is the detection of features in images. Prob-
lems occur, when the images contain noise or are rotated. An example for a rotation
invariant feature is the apex angle. However, apex angle detection is only expedi-
ent, on a special class of images, therefore in this thesis only images with up to two
overlaid intrinsically one dimensional structures are considered. Images belonging
to this class also allow the calculation of the local main orientation. Together, local
main orientation and apex angle provide access to the computation of both orien-
tations and vice versa. The estimation of the local main orientation and apex angle
are done by applying Riesz transforms up to third order to a local neighborhood of
the image. In order to accomplish that, a new interpretation of the Riesz transform
is studied, which in turn provides a new interpretation of the monogenic signal and
the monogenic curvature tensor. Another direct result of the new interpretation of
the Riesz transform is the ability to detect the rotation angle between two other-
wise identical images. In order to implement Riesz transforms up to the third order
they need to be combined with a suitable bandpass filter. The Laplacian of Poisson
allows the development of new filter kernels for the second and third order Riesz
transforms. The implementation of this method is compared to an implementation
of a well-known method using image gradients and computing the orientations of
up to two overlaid structures that has been developed in Lübeck.

Zusammenfassung

Eine wichtige Aufgabe in der Bildverarbeitung ist die Erkennung von Merkmalen
in Bildern. Probleme treten auf, wenn die Bilder Rauschen enthalten oder gedreht
sind. Ein Beispiel für ein rotationsinvariantes Merkmal ist der Öffnungswinkel.
Allerdings ist die Berechnung des Öffnungswinkels nur auf einer bestimmten Klasse
von Bilder sinnvoll, daher beschäftigt sich diese Arbeit nur mit Bildern, in denen
zwei Signale mit intrinsischer Dimension eins überlagert sind. Bilder dieser Art er-
lauben außerdem die Berechnung der lokalen Hauptorientierung. Hauptorientierung
und Öffnungswinkel zusammen bieten die Möglichkeit die Orientierungen der bei-
den Strukturen zu berechnen. Die lokale Hauptorientierung und der Öffnungswinkel
werden durch Anwendung der Riesztransformation bis zur dritten Ordnung in einer
lokalen Umgebung im Bild berechnet. Um das zu erreichen, wird eine neue In-
terpretation der Riesztransformation betrachted, die wiederum eine neue Interpre-
tation des monogenen Signals und des monogenen Krümmungstensor liefert. Ein
weiteres direktes Ergebnis der neuen Interpretation der Riesztransformation ist die
Fähigkeit, einen Drehwinkel zwischen zwei sonst gleichen Bildern zu berechnen.
Um die Riesztransformationen bis zur dritten Ordnung zu implementieren, wird
ein Bandpassfilter benötigt. Eine Kombination aus Laplaceoperator und Poisson-
filter wird verwendet, um neue Filterkerne für die Riesztransformationen zweiter
und dritter Ordnung zu berechnen. Eine Implementierung dieser Methode wird
mit einer Implementierung einer weit verbreiteten Methode verglichen. Die zweite
Methode wurde in Lübeck entwickelt und verwendet Gradienten in Bildern, um die
Orientierungen von bis zu zwei überlagerten Strukturen zu bestimmen.





Contents

1 Introduction 1

1.1 Orientation and Apex Angles . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Intrinsic Dimension of Images . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.3 Apex Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Orientation Estimation with two Overlaid i1D Structures 7

2.1 Using Riesz Transforms - the Kiel Method . . . . . . . . . . . . . . . . . 7

2.1.1 The Monogenic Signal as an Extension of the Analytic Signal . . 7

2.1.2 The Monogenic Signal in Terms of the Radon Transform . . . . . 11

2.1.3 The Monogenic Curvature Tensor in Terms of the Radon Transform 16
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1 Introduction

Image analysis is a main task in Computer Vision. In order to analyze images, the
detection of features in the image is a common technique. Typical features are for
example edges and corners. In this thesis a special class of images is considered. It is
assumed that images consist of up to two overlaid intrinsically one-dimensional signals,
hence have intrinsic dimension two (see figure 1.1). Analyzing this kind of images allows
the detection of the local main orientation and the apex angle between these signals.
These features can be used to estimate the orientations of both signals. When making
the additional assumption that the image is band limited - meaning it only consists of
a narrow band of frequencies - Riesz transforms can be used to estimate these features.
There are a lot of practical applications based on the detection of these features, or the
use of Riesz transforms on images in general. E.g.:

• In medical imaging different semi-transparent tissue layers can be separated and
analyzed.

• Layer separation is also used in texture analysis. If two textures are overlaid, they
can be separated according to the different orientations.

• The paper of Barth et al. [4] describes a method for detecting optical flow of
transparent overlaid structures.

• The first order Riesz transform allows matching between two images via rota-
tion/scale detection of pixels and regions.

• Homogeneous regions in images can be segmented.

Up to now, the use of Riesz transforms of images has been studied in a few works, for
example in [9], [8], [12], [6], [10], [11] by Sommer and Felsberg. In these works, the
monogenic signal is defined - it consists of the image signal itself and the first-order
Riesz transform of the image. Sommer and Felsberg showed that the monogenic signal
allows the estimation of local phase, orientation, and amplitude. The definition of the
monogenic signal (e.g. [9]) is motivated by viewing it as a 2D generalization of the
analytic signal. This generalization is achieved by applying the Riesz transform to the
signal instead of the Hilbert transform.

The monogenic curvature tensor consists of successively applied Riesz transforms up to
third order and is motivated by the Hessian matrix used in differential geometry. It has
been studied by Zang and Sommer in [24] and [25]. An ensuing work at the chair of
cognitive systems consisted of deriving a theory about the Riesz transform interpreted
using the Radon transform. Applying this new interpretation to the monogenic signal
and monogenic curvature tensor allows computation of the apex angle and the local main
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1 Introduction

Figure 1.1: From left to right: a) intrinsic dimension zero (i0D), b) intrinsic dimension
one (i1D), c) intrinsic dimension two (i2D).

orientation as well as the phase without the use of differential geometry. In addition
to that, the new interpretation offers the possibility to detect the intrinsic dimension of
local structures. More detailed explanations of this theory were published in [21], [23],
and [22] by Wietzke et al.

The major assignment in this thesis is to implement the Riesz transforms up to third
order and the new possibilities for feature detection resulting from the theory of the
relation between Radon and Riesz transform. For simplicity this approach will from
now on be called ’Kiel method’. As already stated, the Kiel method assumes that the
images are band limited. This assumption is fulfilled, if a bandpass filter is applied
to the image in before the Riesz transform. Felsberg showed in [6] that the ’difference
of Poisson’ filter is a suitable bandpass filter in combination with the first order Riesz
transform. The major task in this thesis is to find convolution kernels for the second
and third order Riesz transforms and a bandpass filter that can be combined with them.
Amongst other things, this problem is solved by the use of the ’Laplacian of Poisson’ as
a bandpass filter.

The Kiel method is compared to another method using differential geometry based on
image gradients. It has been developed at the university of Lübeck during the last
years and will therefore be called ’Lübeck method’. It is a well-known method used for
orientation estimation of up to two superimposed oriented patterns. Published works
containing the Lübeck method include [19], [2], and [1]. As for the Kiel method, the
images need to consist of either one or two intrinsically one-dimensional structures. If
there are two structures, they need to be either overlaid or occluding.

In addition to the comparison of both methods, rotation estimation as a practical ap-
plication is considered. In order to demonstrate the practical usability, the rotation
estimation is implemented and tested. It allows the calculation of the rotation angle be-
tween two rotated images. The rotation can be derived directly from the Riesz transform
theory based on the Radon transform in a very elegant way.

The remainder of this thesis is organized as follows: the next section introduces the
concept of intrinsic dimension, local main orientation and local apex angle. Chapter 2
describes the orientation estimation of two overlaid intrinsically one-dimensional struc-
tures, first using the Kiel method, then using the Lübeck method. The description of
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1.1 Orientation and Apex Angles

the underlying theory is followed by an outline of the implementation of both methods
in chapter 3. Especially the implementation of the Riesz transforms posed some prob-
lems, so the design of suitable filter kernels for the first, second, and third order Riesz
transforms is described in detail. Chapter 4 contains a comparison of both methods
on synthetic and real images. Chapter 5 describes the rotation estimation between two
images. The last chapter 6 gives a conclusion and an outlook.

1.1 Orientation and Apex Angles

In this section the features intrinsic dimension, local orientation and apex angle will
be introduced. These features and their computation is a major concern of this thesis,
therefore this chapter concludes with their introduction.

1.1.1 Intrinsic Dimension of Images

An image is defined as a two-dimensional function I : Ω ⊂ R2 → R. In the following, the
term intrinsic dimension is used to describe the images locally. Therefore the intrinsic
dimension is defined within a neighborhood U ⊂ Ω.

In contrast to considering the number of possible degrees of freedom in an n-dimensional
structure, intrinsic dimension considers the number of actually used degrees of freedom
within a local neighborhood U .

Definition 1.1.1. Intrinsic dimension classifies an image I into local neighborhoods U
(see also [22])

I ∈


i0DU , I(xi) = I(xj) ∀xi,xj ∈ U
i1DU , I(x, y) = g(x cos θ + y sin θ) ∀ (x, y) ∈ U with g ∈ RR and I /∈ i0DU

i2DU , else.

(1.1)

Basically, image areas with constant gray values have intrinsic dimension zero while
all lines and edges are intrinsically one-dimensional. Areas that contain corners have
intrinsic dimension two. An approach to intrinsic dimension is found in differential
geometry (see [3]). Images are considered to be surfaces in a three-dimensional space.
The x- and y-axis correspond to the pixel coordinates and the z-axis corresponds to the
gray value at the pixel position (x, y) ∈ R2. A plane part of the surface forms an i0D
neighborhood. An i1D neighborhood corresponds to a parabolic structure while elliptic
or hyperbolic parts of the surface form neighborhoods with intrinsic dimension two. An
analysis of intrinsic dimension can be done using gradients in images. This approach
is employed by the Lübeck method described in section 2.2. The interpretation of the
higher order Riesz transforms using the Radon transform yields a different access to
intrinsic dimension that is independent of differential geometry.
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1 Introduction

Figure 1.2: Orientation of texture in a picture (from [14])

1.1.2 Orientation

The concept of intrinsic dimension is needed when considering local orientations in
images. First the term ’direction’ in an image has to be regarded. The direction is
an angle with respect to the x-axis that defines a line through the origin of the image.
Along that line, gray values are constant, or expressed differently, the image gradients
are lowest. The term direction is not expedient though, when looking at local structures
because direction is defined to have values in [0, 2π). For further explanation, picture
1.2 can be examined. If the image is rotated by 180◦ around the origin, direction
changes. However, if one just considers a small local vicinity and rotates the local vicinity
around its origin, the direction does not change. Therefore the term local orientation is
defined for regarding local neighborhoods of an image. Local orientation is denoted by
θ ∈ [−π/2, π/2) and is otherwise defined like direction.

The next step in analyzing orientation in images consists of examining intrinsic dimen-
sions. In a neighborhood with intrinsic dimension one, exactly one orientation can be
found. If however, several intrinsically one-dimensional structures are overlaid, several
orientations occur. Estimating these or the main orientation of all of them is subject to
this thesis.

1.1.3 Apex Angles

In case of several overlaid i1D structures, it is possible to estimate apex angles between
these image structures. An intersection of two i1D structures yields two angles, the
apex angle is defined to be the smaller angle. If the main orientation and the apex angle
between two overlaid i1D structures can be estimated, a characterization of the image
structures is gained. In addition to that, the local apex angle itself can be used as a
rotation invariant feature of a local neighborhood of the image. This feature can be used
in a variety of image analysis applications, e.g. texture classification or segmentation of
homogeneous regions.

This concludes the introduction. In the next chapter the theory for estimating the local
main orientation and apex angle using the Kiel method and using the Lübeck method
is described.
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1.1 Orientation and Apex Angles
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Figure 1.3: The apex angle between the two image structures is defined to be the smaller
angle. θ1 and θ2 are the orientations of the each of the two structures with respect to
the x-axis. θmain = θ1+θ2

2 is the average orientation of the two structures with respect
to the x-axis (from [23]).
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2 Orientation Estimation with two
Overlaid i1D Structures

This chapter introduces the theory of both, the Kiel method and the Lübeck method.

2.1 Using Riesz Transforms - the Kiel Method

In this section an overview over two possibilities to derive the monogenic signal is given.
First, the monogenic signal is considered to be a multi-dimensional extension of the
analytic signal. This approach has been proposed by Felsberg in [6]. He also mentioned
the possibility to derive the monogenic signal using the Radon transform. This second
approach has been researched by Wietzke in [23] and is described in section 2.1.2.

2.1.1 The Monogenic Signal as an Extension of the Analytic Signal

In this section the computation of the monogenic signal and the estimation of the local
main orientation are described. There are different ways to derive the monogenic sig-
nal. It can be interpreted as a two-dimensional extension of the analytic signal. This
approach has been known for a while now and it is introduced in this thesis for a better
understanding of the underlying theory. Furthermore it is useful for the derivation of
convolution kernels for the implementation of the Riesz transform, which is a major task
in this work.

For easier calculation, it is assumed that the images consist of one frequency. An example
is the signal g(x) = g0 cos(kx), k, x ∈ R, for which the local phase can be calculated.
The local phase of g(x) is the argument of the cosine. Shifting the phase of the signal
by 90◦ transforms the cosine into a sine. By applying the arctangent, the phase of
this signal can be determined. Unfortunately, in the real world a signal, especially an
image, usually does not have just one frequency. In order to get a band limited signal
representing an image, a bandpass filter needs to be applied. If all frequencies but a
narrow band are filtered, the assumption that the signal consists of one frequency only
is considered to be fulfilled. In addition to that, it is useful to work on the picture
in different scale spaces, where the monogenic signal is calculated with pass bands at
different scales.

In the following part the analytic signal is introduced. It provides a way for calculating
the local phase of one-dimensional signals. The monogenic signal, which will be described
after the analytic signal, is considered as the multi-dimensional extension of the analytic
signal. In the two following sections, it is assumed that the signals to be processed only
consist of a narrow band of frequencies. In section 3.1.1 the theory of the monogenic
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2 Orientation Estimation with two Overlaid i1D Structures

Figure 2.1: Rotating the phase by 90◦

signal and the required bandpass filter to obtain a working set of filters for practical
applications are combined.

The Analytic Signal

The analytic signal can only be computed for one-dimensional signals; the orientation
estimation is therefore not expedient. The application of the analytic signal to a one-
dimensional signal provides the capability to estimate the phase and the amplitude.
Orientation estimation is possible using the extension to higher dimensions in the next
section. For now the analytic signal is interpreted as an operator for phase estimation.

In order to calculate the phase of a one-dimensional signal, an operator is needed that
shifts the global phase of the original signal by 90◦. Since the global phase can be
accessed easily in the frequency domain, the needed operator is derived after computing
the Fourier transform of the signal g : R → R:

F{g}(u) =

∫ ∞

−∞
g(x) exp(−2πiux)dx with x, u ∈ R. (2.1)

Using Euler’s formula, this becomes

F{g}(u) =

∫ ∞

−∞
g(x) cos(−2πux︸ ︷︷ ︸

=:ϕ

) + i g(x) sin(−2πux︸ ︷︷ ︸
=:ϕ

)dx with x, u ∈ R. (2.2)

The sine and the cosine term have the same argument, the phase ϕ that is to be calcu-
lated. Figure 2.1 shows a signal in the frequency domain and the corresponding result
after rotating the phase by 90◦. A comparison of the sine and cosine terms of the original
and the rotated phase in the image with equation 2.2 reveals that F{g}(u) has to be
multiplied with i in order to shift the phase by 90◦.

The multiplication by i is done by the Hilbert operator. Its transfer function F{h} is
defined by

F{h}(u) = i sign(u) = i
u

|u|
, u ∈ R. (2.3)
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2.1 Using Riesz Transforms - the Kiel Method

Its point spread function (the transform of the filter back into the spatial domain) is

h(x) = − 1

πx
, x ∈ R. (2.4)

By applying the convolution theorem, the convolution of the original function g with h
computes the function gH :

F{g}(u)F{h}(u) t dg(x) ∗ h(x) =: gH(x). (2.5)

The analytic signal is then defined as the complex signal

gA(x) := g(x)− i(h ∗ g)(x) = g(x)− igH(x), x ∈ R. (2.6)

The values of phase and amplitude are observed at a local spatial position x ∈ R which
is possible because of the assumption that the signal only consists of one frequency.

Using the two components of the analytic signal the local amplitude A and local phase
ϕ can be computed:
Let x ∈ R.

A(x) = |gA(x)| =
√

g(x)2 + gH(x)2

ϕ(x) = arg(g(x)− igH(x)) = atan2
(
−gH (x)

g(x)

)
= sign(−gH(x)) atan

(
|gH (x)|

g(x)

)
.

(2.7)

It is possible to apply the analytic signal to signals with a dimension higher than one. In
order to do that, the local orientation has to be known in advance because the Hilbert
filter can only be used in one direction. An easier way to process signals of higher
dimension is given by the monogenic signal.

The Monogenic Signal

The monogenic signal is a multi-dimensional extension of the analytic signal and has
been introduced by Sommer and Felsberg in [9]. It uses the Riesz transform, a multi-
dimensional Hilbert transform, to calculate a signal’s amplitude, phase, and orientation.
Alternatively, a phase vector combining phase and orientation can be obtained. As seen
in the section above, an operator has to be found that shifts the signal’s phase by 90◦.
To accomplish that, the Hilbert operator needs to be turned into a multi-dimensional
operator. This is done in the frequency domain, so that equation 2.3 is transformed to

F{R}(u) = i
u

|u|
=

(
i
u1

|u|
, i

u2

|u|

)T

= (F{Rx}(u),F{Ry}(u))T , u ∈ R2. (2.8)

the transfer function of the Riesz transform. It needs to be transformed back into
the spatial domain. A closer look at this inverse Fourier transform, though already in
combination with a bandpass filter, is given in appendix (B.1). Let x = (x1, x2) ∈ R2.
The result is

R(x) = − x

2π|x|3
⇔
(

Rx(x1, x2)
Ry(x1, x2)

)
=

 − x1

2π(x2
1+x2

2)
3
2

− x2

2π(x2
1+x2

2)
3
2

 . (2.9)
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2 Orientation Estimation with two Overlaid i1D Structures

Figure 2.2: The coordinate system defined by the components of the monogenic signal.
θ and ϕ, the angles defined by the 3D vector, are the local orientation and local phase
while r represents the phase vector.

The resulting monogenic signal is a 3D signal because it represents three different features
(local phase, local orientation and amplitude):

gM (x) := (g(x1, x2), (Rx ∗ g)(x1, x2), (Ry ∗ g)(x1, x2))
T , x = (x1, x2) ∈ R2. (2.10)

From now on the following abbreviations will be used:

p := g(x1, x2)
q1 := (Rx ∗ g)(x1, x2)
q2 := (Ry ∗ g)(x1, x2).

(2.11)

In the case of the monogenic signal, p is representing the even part of the signal, while
the odd part consists of two components, q1 and q2.

Using this 3D vector, local amplitude, local phase, and local orientation of the monogenic
signal have to be defined. In order to do that, consider the 3D coordinate system that is
defined by p, q1, and q2 as can be seen in figure 2.2. The vector (p, q1, q2)

T is visualized
as a red arrow.

Amplitude: The amplitude of the monogenic signal is defined similarly to the one of
the analytic signal, namely as the norm of the vector (p, q1, q2)

T , or in image 2.2 the
length of the red arrow.

Ax :=
√

p2 + q2
1 + q2

2 (2.12)

Orientation: The local orientation is obtained by q1 and q2. It is defined as the angle
θ. As can be seen in figure 2.2, the vectors q = (q1, q2)

T and (p, q1, q2)
T span a plane,

10



2.1 Using Riesz Transforms - the Kiel Method

the blue colored circle. It was already mentioned that the orientation θ is in [−π/2, π/2].
Since both, the vector q and −q span the same plane, the values of the orientation θ
are also within that interval. The local orientation is

θx := atan

(
q2(x)

q1(x)

)
x ∈ R2. (2.13)

Phase: Compared to the phase of the analytic signal, the phase of the monogenic signal
cannot be derived as easily. Here the phase is defined by a 3D vector. Using figure 2.2,
ϕ is the angle between the 3D vector (p, q1, q2)

T and the p-axis. The phase may also
be interpreted as the argument of p + iq and the remaining problem is the sign of q.
Therefore, a different method of obtaining the argument is needed:

ϕx := arg(p + i sign(q1)|q|) = − sign(q1) atan2

(
|q|
p

)
. (2.14)

The Phase Vector: In this paragraph, a 2D vector is defined that contains information
on both phase and orientation. The benefit is that both components of the vector have
values in [0, π]. This definition helps to avoid problems caused by the smaller range
of values of the orientation. In figure 2.2 the phase vector is rT , the blue arrow. It is
defined as:

r :=
q

|q|
arg(p + i|q|) =

 q1
|q| atan2

(
|q|
p

)
q2
|q| atan2

(
|q|
p

)  . (2.15)

This vector is perpendicular to the plane spanned by q and (p, q1, q2)
T . It is the normal

of the blue colored plane in figure 2.2 multiplied by the phase.

This concludes the interpretation of the monogenic signal as a multi-dimensional exten-
sion of the analytic signal - it shifts the phase by 90◦. Now a different interpretation
is introduced. It gives access to more possibilities for feature detection and shows for
example why the orientation can be derived as shown in 2.13.

2.1.2 The Monogenic Signal in Terms of the Radon Transform

This section is concerned with a new interpretation of the Riesz transform. The deriva-
tion via the Radon transform has been described by Wietzke in [23], [22], or [21]. Once
again it is assumed that a signal consists of only one frequency (or at least only of a
narrow band). Felsberg revealed in [6] that the monogenic signal can be expressed using
the Radon transform and its inverse. The first step is to introduce the Radon transform
and its inverse. After that, the Riesz transform is redefined.

Definition 2.1.1. The Radon transform of a continuous function f : R2 → R is defined
as

R{f}(t, θ) =

∫
(x,y)∈Ω

f(x, y)δ0(x cos θ +y sin θ− t)d(x, y), θ ∈ [0, .., π), t ∈ R. (2.16)
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2 Orientation Estimation with two Overlaid i1D Structures

Figure 2.3: Left: Original images. Right: Radon transform of the corresponding images.
The Radon transform in the top row shows two peaks which correspond to the lines at
angles of 30◦ and 130◦ and distances somewhat below zero. In the bottom row the
Radon transform has many peaks corresponding to the signal in the original image.

Definition 2.1.2. The inverse Radon transform of a continuous function
r : R× [0, .., π) → R is given by

R−1{r(t, θ)}(x, y) =
1

2π2

∫ π

θ=0

∫ ∞

t=−∞

∂
∂tr(t, θ)

x cos θ + y sin θ − t
dtdθ. (2.17)

Two general properties of the Radon transform (see [20]) are:

• R{R−1{r}} = r, with function r : R× [0, .., π) → R.

• R{Σm∈Mfm} = Σm∈MR{fm}, with an index set M and a function f : R2 → R.

According to definition 2.1.1 the Radon space, as applied in this thesis, is two-dimen-
sional (see figure 2.3). A point in the Radon space consisting of an angle θ ∈ [0, .., π) and
a distance t ∈ R represents a line in the original image defined by the angle θ with respect
to the x-axis and the distance t from the origin (0, 0) ∈ R2. The Radon transform at an
angle θ and a distance t calculates the integral (or in the discrete case, when working
on images, the sum) of function values on the corresponding line. Therefore, estimating
the Radon transform for intrinsically one-dimensional images yields an integral constant
for all angles except for θmain which describes the orientation of the i1D structure; the
points for different distances t ∈ R for all angles θ ∈ [0, .., π) \ θmain are constant. The
only non-constant column is the one with θmain, the angle that equals the orientation
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2.1 Using Riesz Transforms - the Kiel Method

Figure 2.4: The Riesz transform defined through the Radon transform (from [6])

of the i1D structure. In figure 2.3 the Radon transform is calculated for two i2D images
that contain two i1D signals with orientations 30◦ and 130◦. The non-constant columns
can be observed at those angles in both images. The other columns are not exactly
constant, but there are some artifacts. These are due to the finite signals and the
discretization. However, in theory this property of constant columns for all angles not
being an orientation of the image, is used to describe the Riesz transform using the
Radon transform.

Definition 2.1.3. Let I : Ω ⊂ R2 → R be an image. The Riesz transform at (x, y) ∈ Ω
can be defined using the Radon transform, its inverse, and the one-dimensional Hilbert
transform h1:

Rx{I}(x, y) := R−1{cos θh1(t) ∗ R{I}(t, θ)}(x, y)
Ry{I}(x, y) := R−1{sin θh1(t) ∗ R{I}(t, θ)}(x, y).

(2.18)

Proof of the equivalence of this definition to the one given in 2.9 can be found in [6]; it is
accomplished by using the central slice theorem. Figure 2.4 depicts the relation between
Riesz and Radon transform.

Interpretation of the Monogenic Signal on i1D Structures

In this paragraph it is assumed that the monogenic signal is used on local neighborhoods
that are intrinsically one-dimensional. The orientation within the local neighborhood

13



2 Orientation Estimation with two Overlaid i1D Structures

can be estimated by θmain = atan(Ry/Rx) (see section 2.1.1). This derivation is done
more intuitively when the Riesz transform is defined using the Radon transform.

When determining the orientation θmain for an i1D neighborhood, θmain equals the
orientation of the i1D structure. The Riesz transform is applied to the neighborhood -
a set of pixels grouped around the origin (0, 0) of the neighborhood.

It is sufficient to evaluate definition 2.1.3 at the origin - a fact that allows to simplify
the inverse Radon transform to

(
Rx{I}(0, 0)
Ry{I}(0, 0)

)
= − 1

2π2

∫ π

θ=0

∫ ∞

t=−∞

1

0 cos θ + 0 sin θ − t

(
cos θ
sin θ

)
h1(t) ∗

∂

∂t
R{I}(t, θ)dtdθ

=
1

2π2

∫ ∞

t=−∞

1

t
h1(t) ∗

∂

∂t
R{I}(t, θ)dt︸ ︷︷ ︸

=:sθmain

(
cos θ
sin θ

)
. (2.19)

The outer integral can be eliminated becauseR{I}(t1, θ) = R{I}(t2, θ) ∀t1, t2 ∈ R, ∀θ ∈
[0, .., π) \ θmain and therefore ∂

∂tR{I}(t, θ) = 0 ∀t ∈ R, ∀θ ∈ [0, .., π) \ θmain.

After this simplification of the inverse Radon transform, it becomes obvious why θ =
atan(Ry/Rx) is the orientation: the term called sθmain

is canceled out.

The term sθmain
is a result of the new interpretation of the Riesz transform. Therefore

the monogenic signal as defined in section 2.1.1 is now extended by a new component:
sθmain

= R−1{h1(t) ∗ R{I}(t, θ)}(x, y) =: q0.

Definition 2.1.4. The monogenic signal of an image I : Ω ⊂ R2 → R is defined as
p
q0

q1

q2

 :=


I(x, y)

R−1{h1(t) ∗ R{I}(t, θ)}(x, y)
R−1{cos θh1(t) ∗ R{I}(t, θ)}(x, y)
R−1{sin θh1(t) ∗ R{I}(t, θ)}(x, y)

 . (2.20)

In order to calculate the monogenic signal, sθmain
needs to be computed as well as the

Riesz transforms. Wietzke showed that it can be calculated either by a convolution with
a Hilbert filter in the direction θmain or by using the two parts of the Riesz transform.
The two parts of the Riesz transform can be used because of Euler’s formula cos2 θmain+
sin2 θmain = 1. The result is

sθmain
=
√

R2
x{I}+ R2

y{I}

=
√

(cos2(θmain) + sin2(θmain))s2
θmain

or

sθmain
= (h1 ∗ Iθmain

)(0)

= − 1

π

∫
τ∈R

I(τ cos(θmain), τ sin(θmain))

τ
dτ. (2.21)
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2.1 Using Riesz Transforms - the Kiel Method

In section 2.1.1 amplitude and phase also are calculated using the components of the
monogenic signal. The calculation of the amplitude remains the same. The introduction
of the analytic signal showed that the phase of a one dimensional signal f1D can be

derived by calculating the signal’s Hilbert transform and using it in ϕ = atan
(

h1∗(f1D)
f1D

)
.

Equation (2.21) revealed that sθmain
equals the Hilbert transform of I in the direction of

the main orientation. Therefore, the phase of I can be derived by ϕ = atan
(

sθmain
I

)
=

atan
(

h1∗Iθmain
I

)
.

Interpretation of the Monogenic Signal on i2D Structures

In the following, i2D structures are considered. After that, a possibility is presented to
decide whether a signal is considered to be intrinsically one- or two-dimensional. In this
paragraph it is assumed that a i2D signal consists of a finite set M := N≤n, n ∈ N of
overlaid i1D structures such that I =

∑
m∈M Im; each signal Im, m ∈ M has its own

orientation θm.

In the i1D case the inner integral can be eliminated (see equation 2.19) since there is only
one angle - the main orientation - for which the integral is non-zero. This simplification
can now be done for the same reasons, except this time a sum is required in order to
regard for each of the |M | orientations in

(
Rx{I}(0, 0)
Ry{I}(0, 0)

)
= − 1

2π2

∫ π

θ=0

∫ ∞

t=−∞

1

0 cos θ + 0 sin θ − t

(
cos θm

sin θm

)
h1(t) ∗

∂

∂t
R{I}(t, θ)dtdθ

=
1

2π2

∑
m∈M

(
cos θm

sin θm

)∫ ∞

t=−∞

1

t
h1(t) ∗

∂

∂t
R{I}(t, θm)dt. (2.22)

For each overlaid i1D signal Im, m ∈ M , the corresponding sθm term is defined as

sθm : =
1

2π2

∫ ∞

t=−∞

1

t
h1(t) ∗

∂

∂t
R{I}(t, θm)dt

= R−1{h1(t) ∗ R{I}(t, θm)}. (2.23)

In order to estimate the main orientation for overlaid structures of i1D signals in the
same way as described for the i1D case, a further assumption is required: sθm = sθn =
sθ, ∀m, n ∈ M - meaning that all the overlaid i1D signals have an arbitrary, but same
phase. In this case the main orientation θmain is calculated by

atan

(
Ry{I}(0, 0)

Rx{I}(0, 0)

)
= atan

(
sθ

∑
m∈M cos θm∑
m∈M sin θm

)
=

∑
m∈M θm

|M |
. (2.24)
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2 Orientation Estimation with two Overlaid i1D Structures

In case of only two overlaid i1D signals, it is of interest to estimate the apex angle
between the two signals: it is a rotationally invariant feature and combined with the
main orientation allows the calculation of the two orientations θ1 and θ2.

The apex angle between two overlaid i1D signals with arbitrary, but same phase is
derived by

R2
x{I}+ R2

y{I}
=s2

θmain
(cos θ1 + cos θ2)

2 + s2
θmain

(sin2 θ1 + sin2 θ2)

=s2
θmain

(cos2 θ1 + 2 cos θ1 cos θ2 + cos2 θ2 + sin2 θ1 + 2 sin θ1 sin θ2 + sin2 θ2)

=s2
θmain

(2 + 2 cos(θ1 − θ2))

⇔

acos

(
R2

x{I}+ R2
y{I}

2s2
θmain

− 1

)
= θ1 − θ2. (2.25)

This concludes the interpretation of the monogenic signal by means of the Radon trans-
form. This theory results in a possibility to compute the phase of i1D signals and explains

in more detail, why the orientation can be calculated using atan
(

Ry{I}
Rx{I}

)
. In addition

to that, it provides a new way to analyze i2D structures even if additional assumptions
are needed: the superposition of i1D signals in contrast to arbitrary i2D signals and the
assumption that sθm = sθn = sθ, ∀m, n ∈ M . The relation of sθ to the phase translates
to all overlaid signals having the same, but arbitrary phase.

The next section uses higher order Riesz transforms in order to define the monogenic
curvature tensor.

2.1.3 The Monogenic Curvature Tensor in Terms of the Radon
Transform

The monogenic curvature tensor has been proposed by Zang in [24]. She has developed
the monogenic curvature tensor in the Fourier domain which made interpretation diffi-
cult but showed a strong resemblance to differential geometry, especially the Gaussian
curvature. In this work the monogenic curvature tensor is described in the spatial do-
main using the Radon transform. To achieve that, the monogenic curvature tensor needs
to be understood as the composition of two or three Riesz transforms. A more detailed
derivation of the monogenic curvature tensor has been done by Oliver Fleischmann in
his student research project [13]. In order to define the monogenic curvature tensor the
image needs to be embedded as a Monge patch:

(x, y) ∈ Ω ⊂ R2 → (xe1, ye2, f(x, y)e3) with

{1, e1, e2, e3, e12, e13, e23, e123} being a set of basis vectors of Clifford algebra R3.
(2.26)
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2.1 Using Riesz Transforms - the Kiel Method

In this thesis, Clifford algebra is only used for the definition of the even and the odd
tensor. For further calculations, Clifford algebra is not required and is therefore not
explained here. For detailed introductions see [24] or [6].

The motivation for defining a monogenic curvature tensor comes from an examination
of the Hessian matrix in the frequency domain. The Hessian matrix is used to get an
analog to the Gaussian curvature and to the mean curvature (see [18]) and therefore
provides access to surface theory. If the Hessian matrix of an image I is transformed
into the frequency domain and viewed in polar coordinates, it reads

F{HI} =F

{(
∂2I
∂x2

∂2I
∂x∂y

∂2I
∂x∂y

∂2I
∂x∂y

)}

=− k

(
cos2(θ)F{I} cos(θ) sin(θ)F{I}
cos(θ) sin(θ)F{I} sin2(θ)F{I}

)
, (2.27)

with k being the radial part. Considering successive applications of Riesz transforms to
an image in polar coordinates in the frequency domain, yields the following tensor:

Definition 2.1.5. The even part of the monogenic curvature tensor is defined as

F{Teven} =

[
F{Rx{Rx{I}}} F{−Rx{Ry{I}}}e12

F{Rx{Ry{I}}}e12 F{Ry{Ry{I}}}

]
=

[
− cos2(θ)F{I} − cos(θ) sin(θ)F{I}e12

− cos(θ) sin(θ)F{I}e12 − sin2(θ)F{I}

]
. (2.28)

When ignoring the radial part −k, this tensor resembles the Hessian matrix in the
frequency domain. In the spatial domain using the Radon transform, the entries of the
tensor can be simplified by using h1(t) ∗ h1(t) ∗ I = −I:

Rx{Rx{I}} =R−1{cos θh1(t) ∗ R{R−1{cos θh1(t) ∗ R{I}}}}
=R−1{− cos2 θR{I}}

Rx{Ry{I}} =R−1{− cos θ sin θR{I}}
Ry{Ry{I}} =R−1{− sin2 θR{I}}. (2.29)

In surface theory the determinant of the Hessian - as an analog to the Gaussian curvature
- is used to distinguish between i1D and i2D signals. However, the determinant of
the even tensor is not equivalent to the Gaussian curvature: it cannot be interpreted
accordingly, though later in this section it will be derived that the tensor does still serve
as a measure for intrinsic dimension when interpreted on i2D signals.

Applying a third Riesz transform to the even curvature tensor, yields the odd tensor.
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2 Orientation Estimation with two Overlaid i1D Structures

Definition 2.1.6. The odd part of the monogenic curvature tensor is defined using
Teven{Rx{I}+ Ry{I}e12}:

Todd =

[
Rx{Rx{Rx{I}+ Ry{I}e12}} −Rx{Ry{Rx{I}+ Ry{I}e12}}e12

Rx{Ry{Rx{I}+ Ry{I}e12}}e12 Ry{Ry{Rx{I}+ Ry{I}e12}}

]
.

(2.30)

This tensor contains third order Riesz transforms, which can again be simplified to a
certain degree

Rx{Rx{Rx{I}}} =R−1{− cos3 θh1(t) ∗ R{I}}
Rx{Rx{Ry{I}}} =R−1{− cos2 θ sin θh1(t) ∗ R{I}}
Rx{Ry{Ry{I}}} =R−1{− cos θ sin2 θh1(t) ∗ R{I}}
Ry{Ry{Ry{I}}} =R−1{− sin3 θh1(t) ∗ R{I}}. (2.31)

This concludes the definition of the monogenic curvature tensor. The next two para-
graphs contain an interpretation of the tensor on i1D and i2D structures. In each case,
the higher order Riesz transforms are used to derive the local main orientation. The
apex angle is estimated if two i1D structures are superimposed. In addition to that, the
phase is calculated. However, in case of i2D signals, the constraint that the two overlaid
signals have an arbitrary, but same phase is needed again.

Interpretation of the Monogenic Curvature Tensor on i1D Structures

Section 2.1.2 shows that in case of intrinsically one dimensional signals, both parts of the
first order Riesz transform can be simplified. This is accomplished by first eliminating
the inner integral of the inverse Radon transform according to the number of orientations
present in the signal. In a second step, the cosine and sine parts can be pulled out of
the remaining integral of the inverse Radon transform which is possible because of the
linearity of the integral. The application of these arguments to the already simplified
second order Riesz transform in equation 2.29 results in an elimination of the Radon
transform and the Hilbert transform because of the identity R{R−1{I}} = I for an
image I and the Hilbert transform property: h1(t) ∗ h1(t) ∗ I = −I. The result is

Teven = −I(0, 0)

[
cos2(θ) − cos θ sin θe12

cos θ sin θe12 sin2 θ

]
. (2.32)

The third order Riesz transforms in the odd tensor can be simplified using the same
arguments but in this case the term sθmain

cannot be eliminated:

Todd = −R−1{h1(t) ∗ R{I}}︸ ︷︷ ︸
=sθmain[

cos2 θ(cos θ + sin θe12) − cos θ sin θ(cos θ + sin θe12)e12

cos θ sin θ(cos θ + sin θe12)e12 sin2 θ(cos θ + sin θe12)

]
. (2.33)

18



2.1 Using Riesz Transforms - the Kiel Method

From now on the single components of both tensors will be referred to as e.g. Teven11 or
Todd12

, the common way to refer to matrix entries.

In the i1D case, local (main) orientation derivation is possible in three different ways
using the even tensor:

θmain = atan

(√
Teven22
Teven11

)
= atan

(√
−I sin2 θ
−I cos2 θ

)
θmain = atan

(
Teven21
Teven11

)
= atan

(
−I cos θ sin θ
−I cos2 θ

)
θmain = atan

(
Teven22
Teven21

)
= atan

(
−I sin2 θ

−I cos θ sin θ

)
 = atan

(
sin θ

cos θ

)
. (2.34)

The trace of the even tensor allows the reconstruction of the signal I,

Teven11 + Teven22 = (−I cos2 θ) + (−I sin2 θ) =− I(cos2 θ + sin2 θ) = −I. (2.35)

The monogenic curvature tensor and its higher order Riesz transforms yield an alter-
native for phase calculation using the traces of the even and the odd tensor and the
relation between the phase and sθmain

:

ϕ = atan

(
trace(Toddy)

− sin θmain trace(Teven)

)
= atan

(
cos2(θmain) sin(θmain)sθmain

+ sin3(θmain)sθmain

sin(θmain)I

)
= atan

(sθmain

I

)
, (2.36)

with Toddy denoting the tensor that is retrieved by ignoring the parts that do not have a
e12 component. By means of Clifford algebra the odd tensor can be split into two parts
Todd = Toddx + Toddye12.

Interpretation of the Monogenic Curvature Tensor on i2D Structures

In this paragraph i2D signals are examined. It is again assumed that an i2D signal is
composed of two overlaid i1D signals and that both signals have arbitrary, but same
phases. In this situation it is of interest to calculate both orientations θ1 and θ2 in
addition to the local main orientation and the apex angle. It will later be seen that this
task can not be accomplished unambiguously. When applying the monogenic curvature
tensor to such signals, the determinants and traces of the tensor are useful. At first, the
entries of both tensors need to be simplified under the assumption of two orientations.
The steps of simplifying are basically the same ones that are taken in the i1D case.
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2 Orientation Estimation with two Overlaid i1D Structures

The even tensor is reduced to

Teven = −I(0, 0)

[
Teven11 Teven12

Teven21 Teven22

]
with

Teven11 = cos2 θ1 + cos2 θ2

Teven12 = −(cos θ1 sin θ1 + cos θ2 sin θ2)e12

Teven21 = (cos θ1 sin θ1 + cos θ2 sin θ2)e12

Teven22 = sin2 θ1 + sin2 θ2. (2.37)

While the odd tensor is simplified to

Todd = −R−1{h1(t) ∗ R{I}}︸ ︷︷ ︸
=sθmain

[
Todd11

Todd12

Todd21
Todd22

]
with

Todd11
= (cos3 θ1 + cos3 θ2) + (cos2 θ1 sin θ1 + cos2 θ2 sin θ2e12)

Todd12
= −(cos2 θ1 sin θ1 + cos2 θ2 sin θ2)e12 + (cos θ1 sin2 θ1 + cos θ2 sin2 θ2)

Todd21
= (cos2 θ1 sin θ1 + cos2 θ2 sin θ2)e12 − (cos θ1 sin2 θ1 + cos θ2 sin2 θ2)

Todd22
= (cos θ1 sin2 θ1 + cos θ2 sin2 θ2) + (sin3 θ1 + sin3 θ2)e12. (2.38)

In order to interpret these tensors, the determinant and trace of the even tensor are
derived and simplified:

det(Teven) = I2(0, 0)(cos2 θ1 sin2 θ2 + cos2 θ2 sin2 θ1 − 2 cos θ1 cos θ2 sin θ1 sin θ2)

= I2(0, 0)(cos θ1 sin θ2 − cos θ2 sin θ1)
2

= I2(0, 0) sin2(θ1 − θ2)

trace(Teven) = −I(0, 0)(cos2 θ1 + cos2 θ2 + sin2 θ1 + sin2 θ2)

= −2 · I(0, 0) (2.39)

This leads to the conclusion that the trace reconstructs the signal just like it does in the
i1D case. The determinant on the other hand allows apex angle estimation, but it also
becomes obvious that it can distinguish i1D and i2D structures. If θ1 = θ2, meaning
the two overlaid signals have equal orientation, the determinant equals zero. However,
signals with equal orientation are equivalent to the i1D case. The conclusion is

det Teven

{
= 0 I is an i1D signal
> 0 I is an i2D signal.

(2.40)

The odd part of the tensor can be split into Todd = Toddx+Toddye12: it is also true for the
determinant and trace of the odd part of the tensor. Both parts of the determinant and
trace yield options for estimating features like local phase, orientation, and apex angle.
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2.1 Using Riesz Transforms - the Kiel Method

The application of transformations to equation 2.38 results in the following determinant
for the odd tensor:

e1 det(Todd) =: e1s
2
θmain

B + e2s
2
θmain

C

B = (cos θ1 sin θ2 − cos θ2 sin θ1)

(cos2 θ1 sin2 θ2 + cos2 θ2 sin2 θ1 − 2 cos θ1 cos θ2 sin θ1 sin θ2)

= cos(θ1 + θ2) sin2(θ1 − θ2)

C = (cos θ1 sin θ2 + cos θ2 sin θ1)

(cos2 θ1 sin2 θ2 + cos2 θ2 sin2 θ1 − 2 cos θ1 cos θ2 sin θ1 sin θ2)

= sin(θ1 + θ2) sin2(θ1 − θ2). (2.41)

Calculating the trace of the odd tensor is far more straight forward:

e1 trace(Todd) = e1s
2
θmain

((cos3 θ1 + cos3 θ2) + (cos2 θ1 sin θ1 + cos2 θ2 sin θ2e12)

+ (cos θ1 sin2 θ1 + cos θ2 sin2 θ2) + (sin3 θ1 + sin3 θ2)e12)

= e1s
2
θmain

(cos3 θ1 + cos3 θ2 + cos θ1 sin2 θ1 + cos θ2 sin2 θ2)

+ e2s
2
θmain

(cos2 θ1 sin θ1 + cos2 θ2 sin θ2 + cos3 θ1 + cos3 θ2)

= e1s
2
θmain

(cos θ1 + cos θ2)

+ e2s
2
θmain

(sin θ1 + sin θ2)

= e1s
2
θmain

2 cos(
θ1 + θ2

2
) cos(

θ1 − θ2

2
)

+ e2s
2
θmain

2 sin(
θ1 + θ2

2
) cos(

θ1 − θ2

2
). (2.42)

Obviously, there are miscellaneous possibilities to use the trace and determinant of
both, the even and the odd part of the tensor, for apex angle and local main orientation
calculation.

The determinant and trace of the odd part of the tensor offer possibilities to estimate
the main orientation θmain by

θmain =
1

2
atan

(
s2
θmain

C

s2
θmain

B

)

=
1

2
atan

(
sin(θ1 + θ2) sin2(θ1 − θ2)

cos(θ1 + θ2) sin2(θ1 − θ2)

)
=

1

2
atan (tan(θ1 + θ2))

θmain = atan

(
sθmain

2 sin(θ1+θ2
2 ) cos(θ1−θ2

2 )

sθmain
2 cos(θ1+θ2

2 ) cos(θ1−θ2
2 )

)

= atan

(
tan

(
θ1 + θ2

2

))
. (2.43)
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2 Orientation Estimation with two Overlaid i1D Structures

The second formula for orientation estimation is derived by using the two components
of the trace of the odd part of the tensor. It is obvious that this formula also works
in the i1D case when θ1 = θ2. This is not true for the determinant and a direct result
of the new interpretation. Because of the invariance under intrinsic dimension, in this
thesis the trace is used for orientation estimation.

The apex angle can also be estimated in several ways. The best choice is to use the
determinant and trace of the even part of the monogenic curvature tensor in

|θ1 − θ2| = 2 atan


√√√√∣∣∣∣∣1−

√
1− det(Teven)

1 +
√

1− det(Teven)

∣∣∣∣∣


|θ1 − θ2| = 2 atan


√√√√∣∣∣∣∣trace(Teven)−

√
trace(Teven)2 − det(Teven)

trace(Teven) +
√

trace(Teven)2 − det(Teven)

∣∣∣∣∣


θ1 − θ2 = asin
(
I(0, 0)

√
det(Teven)

)
. (2.44)

The estimation of sθmain
or the related local phase in the i2D case is also possible by

using the monogenic curvature tensor.

It can be shown that the phase of the signal is: ϕ = atan2
(
| det(Todd|
det(Teven)

)
. The relation

between sθmain
and the phase in the i2D case is

ϕ = atan2
(sθmain

I2

)
= atan2

(
h1 ∗ Iθmain

I2

)
. (2.45)

These equations for calculating the phase can be used to calculate sθmain
which in turn

can be applied to equation (2.25) in order to estimate the apex angle.

This description of the theory of the monogenic signal and monogenic curvature tensor
in terms of the Radon transform is not very detailed, but still quite long. That is why
more extensive derivations are skipped. They can be found in Fleischmann’s [13] work.
His student research project’s main task was the derivation and proof of parts of the
theory, while this thesis’ main concern is the implementation and comparison to another
method next to some practical tests.

The following table summarizes the most important results that will later on be imple-
mented and tested.
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2.2 Using Gradients - the Lübeck Method

i1D i2D

θmain = atan
(

Rx
Ry

)
x x

θmain = atan

(√
RyRy
RxRx

)
x -

θmain = atan
(

RxRy
RxRx

)
x -

θmain = atan
(

RyRy
RxRx

)
x -

θmain = atan

(
det(Toddx)

det(Toddy )

)
- x

θmain = atan

(
trace(Toddy )

trace(Toddx)

)
x x

θ1 − θ2 = acos

(
R2

x+R2
y

2s2 − 1

)
- x

|θ1 − θ2| = 2 ∗ atan

(√∣∣∣∣ trace(Teven)−
√

trace(Teven)2−det(Teven)

trace(Teven)+
√

trace(Teven)2−det(Teven)

∣∣∣∣
)

- x

|θ1 − θ2| = 2 ∗ atan

(√∣∣∣∣1−√1−det(Teven)

1+
√

1−det(Teven)

∣∣∣∣
)

- x

θ1 − θ2 = asin(
√

4 det(Teven)

I(0,0)2
) - x

s = (h1 ∗ Iθmain
)(0) x -

ϕ = atan
(

s
f

)
x -

ϕ = atan2
(
| det(Todd|
det(Teven)

)
- x

−I = RxRx + RyRy x -
−2 · I = RxRx + RyRy - x

In order to implement this theory a suitable bandpass filter is needed to assure that the
images are bandlimited. The derivation of such a bandpass filter and the implementation
are depicted in chapter 3. In this more theoretical chapter the derivation of the Lübeck
method will follow.

2.2 Using Gradients - the Lübeck Method

The Lübeck method has been described in several papers including [19] [1], and [2]. It
uses image gradients calculated over a local neighborhood to estimate the local orien-
tation. This method works in two steps. First the orientation is calculated assuming
there is only one orientation - an i1D structure in the neighborhood. After that, a con-
fidence measure is applied to check if the assumption holds. If it does not hold, the
second step consists of estimating two orientations under the assumption, that the local
neighborhood consists of two overlaid or occluding i1D structures. Figure 2.5 visualizes
this approach.
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2 Orientation Estimation with two Overlaid i1D Structures

Figure 2.5: Testing for intrinsic dimension in the Lübeck method.

2.2.1 Single Orientation Estimation

Let I(x), xT = (x, y) ∈ R2 be a two-dimensional function representing a gray-level
image. The main orientation in a local neighborhood Ω of this image can be described
using θ. A derivative operator in the direction of the main orientation can be defined as

α(θ) := cos(θ)
∂

∂x
+ sin(θ)

∂

∂y
. (2.46)

When considering a local neighborhood Ω of an image I (with non-constant gray values)
and (x, y) ∈ R2 being the origin of the neighborhood, there exists an ideal orientation θ
if

α(θ)I(x, y) = 0
⇐⇒ vT∇I(x, y) = 0

(x, y) ∈ Ω, (2.47)

with vT = (cos(θ), sin(θ)) and ∇ :=
(

∂
∂x , ∂

∂y

)T
. However, due to noise, discretization,

etc., there usually is no ideal orientation. Therefore, orientation estimation is done by
minimizing the following integral over the local neighborhood Ω for which the orientation
has to be calculated:

v = argmin Q(v) = argmin
(∫

Ω(vT∇I)2dΩ
)

= argmin
(
vT
∫
Ω∇I(∇I)T dΩ v

)
= argmin

(
vTTv

)
,

(2.48)

under the additional criterion vTv = 1. Using Ix, Iy as derivatives of I in x- and y-
direction, T can be written as

T =

∫
Ω
∇I(∇I)T dΩ =

∫
Ω

[
I2
x IxIy

IxIy I2
y

]
dΩ. (2.49)
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2.2 Using Gradients - the Lübeck Method

It is possible to use a weighting function, so that pixels further away from the origin of
Ω are weighted less than closer pixels. However, at the moment, it does not matter if
such a weighting function is considered or not and is therefore omitted for now. Later
in the implementation it will be used again.

The composition of both criteria leads to minimizing

argmin (L(v)) = argmin
(
vTTv + λ2(1− vTv)

)
⇐⇒ Tv = λ2v with vTv = 1.

(2.50)

This equation is solved for v with v being the corresponding eigenvector to the lowest
eigenvalue λ2. If there exists an ideal orientation in the local neighborhood Ω, the
matrix T has rank one and the lower eigenvalue λ2 equals zero. When working on real
images, it is sufficient for λ2 to be close to zero for assuming that a single orientation is
found. The eigenvector v points in the direction, where the gray values do not change.
Therefore, a confidence measure is needed to determine if there is enough evidence for
a single orientation. The confidence measure is constructed using the determinant and
the trace of T. Let T11, T12, etc. be the components of T, then

dT = det(T) = λ1λ2 = T11T22 −T2
12

tT = trace(T) = λ1 + λ2 = T11 + T22.
(2.51)

These invariants can be interpreted as follows: if tT = 0, both eigenvalues are zero and
the gray values in the neighborhood are constant. dT = 0 and tT > 0 are evidence for
a single orientation. It can also be shown that dT ≤ t2T always holds, so using ε1 as a
confidence parameter, the confidence measure is

dT ≤ t2Tε1, (2.52)

with 0 < ε1. If the confidence for a single orientation is high enough, the orientation
still needs to be estimated which is done using

v = (−T12,T11)Tq
T 2
11+T 2

12

or

v = (T22,−T12)Tq
T 2
22+T 2

12

.
(2.53)

v can be derived this way because the lower eigenvalue is assumed to be zero. So Tv = 0,
the vector v needs to be orthogonal to both rows of the matrix T. This matrix has rank
one - the rows are therefore linearly dependent. Consequently, an eigenvector v needs
to be orthogonal to either the first or the second row.

If the confidence for a single orientation is high, the algorithm terminates with the
estimated single orientation. Otherwise, the image is tested for a double orientation.

2.2.2 Double Orientation Estimation

In case of more than one orientation in a neighborhood Ω, the confidence measure
2.52 introduced in section 2.2.1 does not hold. Therefore it is necessary to estimate a
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2 Orientation Estimation with two Overlaid i1D Structures

double orientation, if there are two orientations present in a local neighborhood which
is introduced in this section. Again, one can define a confidence measure for the double
orientation case and calculate this.

Two possibilities for double orientations in a local neighborhood are considered:

• Two overlaid orientations: I(x) = I1(x) + I2(x), x ∈ Ω where both components
are assumed to be ideally oriented with orientations θ1 and θ2.

• Two occluding orientations: I(x) =

{
I1(x), ∀x ∈ Ω1

I2(x), ∀x ∈ Ω2
with Ω1 and Ω2 being

two regions of the image which are adjacent to each other or expressed in a more
mathematical way: Ω1, Ω2 ⊂ Ω, Ω1 ∩ Ω2 = ∅.

Overlaid Case

First, the case of two overlaid orientations is considered. The operator defined for this
case is a composition of the operator for the single orientation case, executed for both
angles, denoted by θ and φ:

α(θ)I1(x) = 0 and α(φ)I2(x) = 0 ∀x ∈ Ω

⇒ α(θ)α(φ)I(x) = (cos(θ) ∂
∂x + sin(θ) ∂

∂y )(cos(φ) ∂
∂x + sin(φ) ∂

∂y )I(x)

= (cos(θ) cos(φ), sin(θ + φ), sin(θ) sin(φ))T (Ixx(x), Ixy(x), Iyy(x))
= aTdI
= 0.

(2.54)

a is called the MOP-vector, which stands for Mixed Orientation Parameters, while d is

an operator for the second order derivatives, d =
(

∂2

∂x2 , ∂2

∂x∂y , ∂2

∂y2

)T
. From now on let

u := (cos(θ), sin(θ))T and v := (cos(φ), sin(φ))T be the demanded vectors. Constraint

2.54 can also be expressed by α(θ)α(φ)I(x) = ∂2I(x)
∂u∂v (see also [1]). A closer look at a

reveals that the information needed for u and v is already contained in the MOP-vector.
The next step is the computation of a.

The arguments for computing the vector a are basically the same as in the single orien-
tation case. The lack of two ideal orientations results in 2.54 not equaling zero exactly,
therefore the following integral is minimized.

a = argmin Q1(a) = argmin
(∫

Ω(aTdI)2dΩ
)

= argmin
(
aT
∫
Ω dI(dI)T dΩ a

)
= argmin

(
aTT1a

)
,

(2.55)

where T1 is again an integral of a matrix, except this time a 3× 3 matrix:

T1 =

∫
Ω

dI(dI)T dΩ

=

∫
Ω

 I2
xx IxxIxy IxxIyy

IxxIxy I2
xy IxyIyy

IxxIyy IxyIyy I2
yy

 dΩ. (2.56)
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2.2 Using Gradients - the Lübeck Method

Minimizing Q1 under the criterion aTa = 1 is, like in the single orientation case, equiva-
lent to finding a such that T1a = λ3a, where λ3 is the smallest eigenvalue of the matrix
T1 and a the corresponding eigenvector. In order to have evidence for the double orien-
tation case λ3 needs to be close to zero. This is sufficient because the single orientation
case has already been ruled out. Like in the single orientation case, the estimation is
done using a weighting function but is for now omitted in favor of better readability.

Occluding Case

As already mentioned, instead of being overlaid, two i1D structures can also be occlud-
ing - the domain Ω is separated into two non-intersecting subsets Ω1 and Ω2 with the
corresponding parts of the image I1 and I2 respectively. In order to find the orientations
θ and ϕ, two equations need to be solved:

∂I1(x)

∂u
= 0, x ∈ Ω1 and

∂I2(x)

∂v
= 0, x ∈ Ω2. (2.57)

In this case, the composite criterion is

∂I(x)

∂u

∂I(x)

∂v
= aTd0I = 0, (2.58)

where d0 = (I2
x, IxIy, I

2
y )T . This criterion holds everywhere except at the boundary

between regions Ω1 and Ω2. The arguments for finding the vector a are exactly the
same as in the overlaid case of two orientations above. They yield

a = argmin Q2(a) = argmin

(
aT

∫
Ω

d0I(d0I)T dΩa

)
= argmin(aTT2a), (2.59)

where T2 is an integral of a matrix:

T2 =

∫
Ω

dI(dI)T dΩ =

∫
Ω

 I4
x I3

xIy I2
xI2

y

I3
xIy I2

xI2
y IxI

3
y

I2
xI2

y IxI
3
y I4

y

 dΩ, with aTa = 1. (2.60)

Minimizing Q2 is again equivalent to finding the eigenvector corresponding to the lowest
eigenvalue. So in both, the overlaid and the occluding case, the same frame work is used,
only the Matrices T1 and T2 differ. Hence both matrices are from now on referred to
as T.

MOP-Vector Decomposition

In order to estimate the orientations in the overlaid or occluding case, Ta = λ3a needs
to be solved for a. After ruling out the single orientation case, T has at most one
eigenvalue that is close to zero. According to [1], it is possible to determine a up to scale
and sign, which is sufficient in this case.
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2 Orientation Estimation with two Overlaid i1D Structures

The vector a is not computed directly but by using the minors of T. When estimating
those, a confidence measure for the i2D case can also be derived. The minor Mij , i, j,∈
{1, 2, 3} is obtained by calculating the determinant of the matrix T where the 4− i row
and the 4 − j column are deleted. When Tij denotes the number of the i-th row and
the j-th column of T, the following invariants are defined:

dT2
= det(T) = λ1λ2λ3 = T11M11 −T12M12 + T13M13

sT2
= λ1λ2 + λ2λ3 + λ1λ3 = M11 + M22 + M33. (2.61)

The confidence for the i2D case is then measured using

d2
T2
≤ s3

T2
ε2, with 0 < ε2. (2.62)

The MOP-vector a itself can be calculated in three different ways using the minors.
Proof of this can be found in [16]:

ai = Ri(Mi3,−Mi2, Mi1)
T = (ai, bi, ci)

T , R2
i = (ai + ci)

2 + b2
i , i ∈ {1, 2, 3}. (2.63)

So far, the vector a = (cos(φ) cos(φ), sin(θ + φ), sin(θ) sin(φ))T = (a, b, c)T contains the
orientations θ and ϕ only implicitly. The decomposition of the MOP-vector is done
by defining z1 and z2 by z1z2 = ac and z1 + z2 = b. z1 and z2 can be computed by
estimating the roots of the polynomial f(z) = (z − z1)(z − z2) = z2 − bz + ac. These
components are employed in the definition of a matrix M which translates back to the
cosines and sines of the two sought-after orientations:

M :=

[
a z1

z2 c

]
=

[
cos(θ) cos(φ) cos(θ) sin(φ)
sin(θ) cos(φ) sin(θ) sin(φ)

]
. (2.64)

Each component of this matrix is known either from the MOP-vector or the roots of
the polynomial. At the same time the rows and columns encode the two orientations.
Considering both rows yields the vector v scaled by a factor. By reducing the vector to
unit length, v is obtained:

cos(θ)vT and sin(θ)vT

⇒

v =
(a, z1)

T√
a2 + z2

1

=
(z2, c)

T√
z2
2 + c2

. (2.65)

The same is true for the columns which yield the vector u encoding θ:

cos(φ)u and sin(φ)u

⇒

u =
(a, z2)

T√
a2 + z2

2

=
(z1, c)

T√
z2
1 + c2

. (2.66)

Calculating the arctangent of the components of both vectors yields the sought orienta-
tions. According to [2] a more robust way of computing the orientations is comprised of
combining both possibilities for computing u and v.
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2.2 Using Gradients - the Lübeck Method

The result is

u =


q

a2+z2
2(a,z2)T +

q
z2
1+c2(z1,c)Tq

a2+z2
2+

q
z2
1+c2

, if (a, z2)
T (z1, c) > 0q

a2+z2
2(a,z2)T−

q
z2
1+c2(z1,c)Tq

a2+z2
2+

q
z2
1+c2

, otherwise

v =


q

a2+z2
1(a,z1)T +

q
z2
2+c2(z2,c)Tq

a2+z2
1+

q
z2
2+c2

if (a, z1)
T (z2, c) > 0q

a2+z2
1(a,z1)T +

q
z2
2+c2(z2,c)Tq

a2+z2
1+

q
z2
2+c2

otherwise.

This concludes the derivation of the Lübeck method. This chapter described the theory
of both methods used for local main orientation and apex angle computation in this
thesis. The Riesz transforms are derived in two ways, first as a multi-dimensional exten-
sion of the analytic signal, or more precisely, the Hilbert transform and second in terms
of the Radon transform, an approach that led to new interpretations for i1D and i2D
signals. The Lübeck method uses gradients instead of Riesz transforms in order to reach
a similar goal. Instead of local main orientation and apex angle, the orientations of up
to two signals are calculated. The next chapter is concerned with the implementation
of both methods and the design of a suitable bandpass filter, especially for the second
and third order Riesz transforms for the Kiel method.
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2 Orientation Estimation with two Overlaid i1D Structures
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3 Filter Design and Implementation

Both, the method using the higher order Riesz transforms and the method developed in
Lübeck, are implemented in C++ and partly using Matlab. In addition to the imple-
mentation of the algorithms, a graphical user interface has been constructed. This GUI
is implemented using Trolltech’s Qt, an open source library for GUI development (see
also http://trolltech.com/developer). Using the GUI, test images can be loaded
and a variety of filters can be applied to them. Test images, filters and different im-
plementations of the Riesz transform can be combined freely, allowing a wide range of
experiments (for a more detailed description see C). The implementation was running
on CPUs with about 3 GHz.

In this chapter the implementation of the Riesz transforms and later, of the Lübeck
method will be explained. Both, implementation and search for filter kernels are closely
related and are therefore both described in this chapter.

3.1 Implementation of Riesz Transforms

When implementing the monogenic signal or even higher order Riesz transforms, the
complicated part is the usage of a suitable bandpass filter and finding the corresponding
filter kernels. For single order Riesz transforms convolution kernels have been proposed
by Felsberg and Sommer (see [6]). The derivation of the kernels for higher order Riesz
transforms is complicated. To the best of my knowledge, no derivation of spatial kernels
of higher order exists. However, there are several possibilities to circumvent this problem.
First successive convolutions with the existing kernels can be done in order to obtain
second and third order kernels. A second approach consists of using Matlab and its
implementation of the discrete Radon transform and its inverse to implement the Radon
based theory of the Riesz transforms directly. A third option is to compute the kernels
in the frequency domain and apply the inverse Fourier transform. A fourth one involves
the use of an approximation of the difference of Poisson (DOP), the bandpass filter that
is usually used. All four possibilities are tried in this thesis and worked to a certain
degree. In addition to that, all approaches contributed to the development of each other
in some way and that is why all of them are important. The remainder of this chapter
describes all four approaches.

3.1.1 Kernels Obtained by Repeated Convolution in the Spatial
Domain

In this section a DOP (Difference of Poisson) is used as a bandpass filter. When using
a DOP, it is so far not possible to derive filter kernels for second and third order Riesz
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3 Filter Design and Implementation

transforms. However, as Felsberg is proposing in [6], it is possible to derive kernels for
the single order Riesz transform (the classic monogenic signal). Using these, successive
convolutions in the spatial domain can be applied to obtain higher order kernels. This
is shown in the following section.

Bandpass Filter Implementation of the Monogenic Signal

Section 2.1.1 described the theory of the monogenic signal. Now, an implemention needs
to be developed. The use of the monogenic signal assumes that the signal (or in this case
the image to be processed) consists of few frequencies - that it is bandlimited. Computing
the monogenic signal of real images results in a problem: real images usually consist of a
wide range of frequencies. Therefore a set of bandpass filters needs to be combined with
the monogenic signal. Those bandpass filters have to be two-dimensional, radial filters.
The bandpass filter is build using a Poisson filter instead of a Gaussian filter. Like
the Gaussian filter, the Poisson filter is a low pass filter for which the inverse Fourier
transformation is known. Subtracting two Gaussian filters with different parameters
from each other yields a bandpass filter. The same is true for the Poisson filter. The
advantage of the Poisson filter is that the kernel of Poisson filter is closely related to the
kernel of the monogenic signal.

Because the signal needs to be filtered, the even part that is so far simply the original
signal, is now also convolved with a mask. This results in one even and two odd filters.
They can be designed in the frequency domain more easily than in the spatial domain.
Let u = (u1, u2)

T be a 2D frequency vector and s ∈ (0,∞) a scaling factor, the new
even filter (simply a Poisson filter) in the frequency domain is

F{P}(u) := exp(−2π|u|s). (3.1)

The already known filter kernels of the Riesz transform in the frequency domain F{Rx}
and F{Ry} are now also multiplied by exp(−2π|u|s), becoming the two odd filter parts
F{Rx ∗ P} and F{Ry ∗ P}:

F{Rx ∗ P}(u) := F{Rx}(u) exp(−2π|u|s)
F{Ry ∗ P}(u) := F{Ry}(u) exp(−2π|u|s). (3.2)

These kernels can be transformed into the spatial domain. Proof has been provided by
[6] and may also be found in the appendix of this thesis. Transformed into the spatial
domain, the new kernels are

P (x) := s

2π(s2+|x|2)
3
2

(Rx ∗ P )(x) := −x1

2π(s2+|x|2)
3
2

(Ry ∗ P )(x) := −x2

2π(s2+|x|2)
3
2 .

(3.3)

In order to get a bandpass filter, the two Poisson kernels with different scales s are
subtracted from each other.
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3.1 Implementation of Riesz Transforms

Figure 3.1: Monogenic signal of the famous Lena calculated at different scales: From
left to right: Columns: Original image, amplitude, local orientation and local phase.
Upper row: Monogenic signal with coarse = 2 and fine = 1 as parameters. Lower row:
Monogenic signal with coarse = 4 and fine = 5 as parameters.

Using a coarse c ∈]0,∞[ and a fine f ∈]0,∞[ scale with c > f , the filter kernels resulting
from the subtraction are

DOP (x) := c

2π(c2+|x|2)
3
2
− f

2π(f2+|x|2)
3
2

(Rx ∗DOP )(x) := −x1

2π(c2+|x|2)
3
2−2π(f2+|x|2)

3
2

(Ry ∗DOP )(x) := −x2

2π(c2+|x|2)
3
2−2π(f2+|x|2)

3
2 .

(3.4)

These three convolution kernels are used to compute the monogenic signal:

p := (DOP ∗ g)(x1, x2)
q1 := ((Rx ∗DOP ) ∗ g)(x1, x2)
q2 := ((Ry ∗DOP ) ∗ g)(x1, x2).

(3.5)

Phase vector, local phase, local orientation, and amplitude are computed as defined in
equations (2.12) - (2.15) in section 2.1.1.

The monogenic signal is implemented in C++ as described above. In this thesis the ori-
entation and the apex angle are of interest. However, the higher order Riesz transforms
will be needed for robust apex angle computation. There are several possibilities for ob-
taining the higher order kernels, which will be described below. To conclude this section,
some examples of the results of the monogenic signal computation are presented. Figure
3.1 shows the results of the monogenic signal computation for Lena, one of the standard
test images in Computer Vision. The monogenic signal is computed at different scales.
Displayed are the original image, the amplitudes, local orientation, and local phase.
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3 Filter Design and Implementation

Figure 3.2: Results from a test run using the Radon transform implemented in Matlab.
The first orientation θ1 is kept constant at 60◦, while the other one has taken all values
from 0◦ − 180◦. The left image shows the results of the main orientation computation
using the first order Riesz transform, while the main orientation in the right image is
computed using the third order Riesz transform.

Riesz Transforms of Second and Third Order in the Spatial Domain

After calculating these kernels in the spatial domain, they can be convolved with each
other in order to obtain kernels for Riesz transforms of second and third order. However,
this approach does not work very accurately if the kernel sizes are kept constant. Because
the kernel sizes grow with a factor of 2×2 with each convolution, applying them to images
becomes increasingly inefficient.

3.1.2 Using the Discrete Radon Transform and its Inverse

For this thesis, a more direct implementation of the theory using the Radon transform
and its inverse to interpret the Riesz transform is tested. This implementation is done
using the Matlab Image Processing Toolbox where an implementation of the discrete
Radon transform and its inverse are provided. The results of this approach are less
accurate than the outcome after applying convolution kernels. Reasons are probably the
finite nature of images and numerical problems. The images of the Radon transform
(figure 2.3) in section 2.1.2 for example show artefacts in the columns for all orientation
angles not present in the image. The implementation of the inverse Radon transform is
even more complex. Another disadvantage is the high computational complexity of the
implementation of the Radon transform.

However, it is possible to verify the theory because apart from some inaccuracies, the
calculation of local main orientation and apex angle is successful. This can also be
observed in figure 3.2. The local main orientation computation in both images is fairly

accurate, especially in the left image, where θmain = atan
(

Ry
Rx

)
, thus only first order

Riesz transforms are applied. The application of third order Riesz transform in the

right image - θmain = atan

(
trace(Toddy )

trace(Toddx)

)
- shows more inaccuracies. The apex angle
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Figure 3.3: Result from a test run using the Radon transform implemented in Matlab.
The first orientation θ1 is kept constant at 60◦, while the other one has taken all values
from 0◦ − 180◦. Shown are the results of the apex angle computation.

computation poses the biggest problem (see figure 3.3), especially when very small apex
angles need to be computed. The result in figure 3.3 shows the apex angle computed by

|θ1 − θ2| = 2 ∗ atan

(√∣∣∣∣ trace(Teven)−
√

trace(Teven)2−det(Teven)

trace(Teven)+
√

trace(Teven)2−det(Teven)

∣∣∣∣
)

. The computation using

the Radon transform estimated an apex angle between 15◦ and 20◦ at the non-linear
part around 60◦, where the true apex angle is zero, so the apex angle computation is
not accurate for small apex angles.

A conclusion of these tests is that a direct implementation of the theory is possible, but
inaccurate and time consuming because of the longer computation time of the Radon
transform and Matlab itself. Therefore it is still important to find some suitable convo-
lution kernels.

3.1.3 Kernels Developed in the Frequency Domain

It is difficult to derive useful kernels for the second and third order Riesz transforms
in the spatial domain. Fortunately, this problem can also be solved in the frequency
domain and the inverse Fourier transform can be applied to obtain the necessary kernels
in the spatial domain. This procedure is implemented for this thesis and yields good
results. A quick overview is given in this section. The theory is straight forward and
fairly easy to program if a standard C++ Fourier transform is used. These kernels are
programmed and tested in this thesis, so that they can be compared to the so called LOP
kernels, which will be presented in the next section. In order to develop the kernels in the
frequency domain, the convolution theorem is used. Let f : R2 → R d tF : R2 → R
and g : R2 → R d tG : R2 → R be two functions to be convolved, then

f(x, y) ∗ g(x, y) d tF (u, v)G(u, v), (x, y), (u, v) ∈ R2. (3.6)

In order to develop the second and third order Riesz transform kernels in the frequency
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domain, the first order kernels are considered first:

F{Rx}(u) =
u

u
i

F{Ry}(u) =
v

u
i. (3.7)

According to the convolution theorem, the second and third order Riesz transforms can
now be obtained by multiplication of the first order kernels in the frequency domain.
The filter kernel for the even part remains the same, the other kernels are the inverse
Fourier transforms of

F{Rx{Rx}}(u) = i u
|u| i u

|u| = − u2

|u|2
F{Rx}Ry}}(u) = i u

|u| i v
|u| = − uv

|u|2

F{Ry}Ry}}(u) = i v
|u| i v

|u| = − v2

|u|2

F{Rx{Rx{Rx}}}(u) = i u
|u| i u

|u| i
u
|u| = −i u3

|u|3

F{Rx{Rx{Ry}}}(u) = i u
|u| i u

|u| i
v
|u| = −i u2v

|u|3

F{Rx{Ry{Ry}}}(u) = i u
|u| i v

|u| i
v
|u| = −i uv2

|u|3

F{Ry{Ry{Ry}}}(u) = i v
|u| i v

|u| i
v
|u| = −i v3

|u|3.

The needed bandpass filter - a difference of Poisson filter - is applied directly in the
frequency domain.

The inverse Fourier transforms of these filter kernels are calculated in C++ by using the
fftw library. This open source library is available on the Internet at
http://www.fftw.org and computes the discrete Fourier transforms of one- or more-
dimensional signals.

This approach is simple in theory but yields very good results, especially when the main
orientation is calculated. However, it would be more elegant and probably faster to
derive spatial kernels that can be computed directly in the necessary kernel size. The
next section describes such an approach.

3.1.4 Kernels Using the LOP as a Bandpass Filter Approximation

The calculation of the Riesz transform can only be done using a bandpass filter because
of the already stated assumption that the signal is band limited. In his dissertation
[8], Felsberg proposed the use of the difference of Poisson filter (DOP) instead of the
difference of Gaussian filter (DOG), the standard band pass filter. Unfortunately, it
is, to the best of my knowledge, not possible to derive spatial domain filter kernels for
the second and third order Riesz transform in combination with DOP kernels. In this
section an approach is described that allows the derivation of kernels for the second and
third order Riesz transform. However, the kernels for the first order transform cannot
be computed by this method.

It has been known for a while that the DOG (Difference of Gaussian) can be approxi-
mated with the LOG (Laplacian of Gaussian, also known as: Mexican Hat operator or
Marr-Hildreth operator). This fact has been widely used in the opposite direction for
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3.1 Implementation of Riesz Transforms

Figure 3.4: Left: LOG kernel. Right: DOG kernel

edge detection purposes: the LOG-filter is needed and the DOG-filter is used instead.
The reason for this is the smaller kernel size that can be used with the DOG. The stan-
dard Gaussian filter is a low pass filter with parameter σ ∈ R > 0. Using two different
Gaussian filters with different parameters σ1, σ2 ∈ R > 0 and taking the difference of
both yields a bandpass filter, the so called differences of Gaussian (DOP) filter. The
LOG-filter is a combination of a Gaussian filter g(x, y), (x, y) ∈ R2 and the Laplace
operator denoted by ∇. Both are applied to a signal f(x, y), (x, y) ∈ R2:

g(x, y) =
1

2πσ2
exp

(
x2 + y2

2σ2

)
∇ =

∂2

∂x2
+

∂2

∂y2

(LOG ∗ f)(x, y) =∇(g ∗ f)(x, y). (3.8)

For simplification, the ∇-operator can also be combined directly with the Gaussian filter
resulting in

LOG(x, y) =
∂2

∂x2

1

2πσ2
exp

(
x2 + y2

2σ2

)
+

∂2

∂y2

1

2πσ2
exp

(
x2 + y2

2σ2

)
=

= − 1

πσ4

(
1− x2 + y2

2σ2

)
exp

(
−x2 + y2

2σ2

)
. (3.9)

Figure 3.4 shows the similarity of both kernels.

In [15] and [7] Köthe and Felsberg examine the theoretical relation between Riesz trans-
forms and gradients. For better comparison, they use the Laplacian of Gaussian (LOG)
as a bandpass filter for the signals to be analyzed.

It seems that the same can be done using a Laplacian of Poisson (LOP) instead of the
Difference of Poisson (DOP). This approach is chosen in this section and it turns out
that it allows computation of filter kernels in the spatial domain for second and third
order Riesz transforms, but unfortunately not for first order Riesz transforms. In the
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Figure 3.5: Left: LOP kernel. Right: DOP kernel.

following, the LOP is introduced and the kernels for the second and third order Riesz
transforms are derived.

The standard Poisson filter for two dimensions is defined as

F{P}(u) = exp(−2π|u|s) t d s

2π|x + s|3.
(3.10)

Analog to the Laplacian of Gaussian, the Laplacian of Poisson is derived by (see [5] for
2D Fourier transform theorems)

F{LOP}(u) = −4π2|u|2 exp(−2π|u|s) t d(
∂2

∂x2
+

∂2

∂y2

)
s

2π|x + s|3

= − 3s

2π

[
2(x2 + y2 + s2)−

5
2 − 5(x2 + y2 + s2)−

7
2 (x2 + y2)

]
. (3.11)

Figure 3.5 demonstrates the similarity between both kernels.

The LOP kernel is used as a bandpass filter instead of the DOP kernel. So far it has
not been possible to derive the single order Riesz transforms, while using this filter, but
the second and third order filter kernels can be derived directly. Again, it is done in
the frequency domain, where the Riesz transform is multiplied with itself and with the
new filter according to the convolution theorem. For reasons of readability not all the
kernels will be described here. However, they may be found in the appendix B.2.

The second order Riesz transform has three components. For Rx{Rx} the derivation
will be sketched here. A more detailed derivation may be found in the appendix. Again
the convolution theorem is used and a multiplication of the Riesz transform and the
LOP kernel is done in the frequency domain:

F{Rx{Rx} ∗ LOP}(u) =

(
− u2

|u|2

)
(−4π2|u|2) exp(−2π|u|s)

=u24π2 exp(−2π|u|s). (3.12)

For this simplified function in the frequency domain, it is possible to derive filter kernels
in the spatial domain. The idea is to employ the Poisson kernel in spatial and frequency

38



3.1 Implementation of Riesz Transforms

domain and apply the derivative theorem for two-dimensional Fourier transforms as for
example described in [5]:

F
{

∂2

∂x2
f(x, y)

}
(u) = −4π2u2F (u, v)

=⇒

F
{

∂2

∂x2

s

2π|x + s|3

}
(u) = −4π2u2 (exp(−2π|u|s))

=⇒

F
{

∂2

∂x2

−s

2π|x + s|3

}
(u) = 4π2u2 (exp(−2π|u|s))

=⇒

F{ s

2π

(
3(x2 + y2 + s2)−

5
2 − 15x2(x2 + y2 + s2)−

7
2

)
}(u)

= u24π2 exp(−2π|u|s). (3.13)

The derivation of the third order kernels is done in a analogous way. This time, four
different filter kernels are derived which can be combined into the two parts of the
odd curvature tensor. Like for the second order kernels, the derivation is done in the
frequency domain using the convolution theorem. In favor of better readability, only
the derivation of Rx{Rx{Rx}} will be sketched here. Again a more detailed version of
the derivation with all different combinations of Riesz transforms may be found in the
appendix. In the frequency domain the third order Riesz transform in x-direction with
a LOP kernel reads

F{Rx{Rx{Rx}} ∗ LOP}(u) =

(
−i

u3

|u|3

)
(−4π2|u|2) exp(−2π|u|s)

=
u3

|u|
i 4π2 exp(−2π|u|s). (3.14)

The idea for deriving the corresponding spatial domain kernel is similar to the concept for
the second order kernels, except that a kernel of the combination of a single order Riesz
transform and a single standard Poisson filter will be used. Afterwards the derivative
theorem for 2D convolutions will be applied.

Felsberg [8] already showed how to derive the necessary kernel. Because it is used at
this point again, the proof of the derivation may be found in the appendix B.1.
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The third order kernel in the x-direction in the spatial domain reads

F
{

∂2

∂x2
f(x, y)

}
(u) = −4π2u2F (u, v)

=⇒

F
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)
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F{− 1

2π

(
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5
2 − 15x3(x2 + y2 + s2)−

7
2

)
}(u)

=
u3

|u|
i 4π2 exp(−2π|u|s). (3.15)

The derivation of the other kernels is done in an analogous way. As already described
in 2.1.2, the determinant of the even part of the monogenic curvature tensor serves as a
measure for intrinsic dimension. If the determinant is close to or below zero, the structure
in the image is considered intrinsically one-dimensional. If the determinant is greater,
the structure is considered to consist of two overlaid intrinsically one-dimensional struc-
tures, hence the model for i2D structures is used. When implementing these kernels and
applying them to images, there are always some numerical errors. Therefore, the deter-
minant of the even tensor approximates zero in case of an intrinsically one-dimensional
signal but does not equal zero. Experiments showed that instead of zero a threshold
around 0.0000035 yields better results.

Unfortunately, there is so far no formal proof that the DOP can be approximated by the
LOP. However, the performed experiments showed that the kernels work well; they are
more accurate and faster than the kernels gained by the other implementations described
above. Figures 3.6 and 3.7 show that the LOP kernels approximate those kernels that are
developed in the frequency domain and afterwards transformed to the spatial domain.

At this point the convolution kernels have been computed in either of the ways described
above. The images have been convolved with the kernels and the results have been used
directly for the calculation of local main orientation and apex angle. Using these, both
orientations can also be computed but unfortunately not unambiguously. This is due to
the calculated apex angle which is always the smaller angle between two structures. A
more detailed test can be found in chapter 4. Now the implementation of the Lübeck
method will be described.
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3.1 Implementation of Riesz Transforms

Figure 3.6: Left: LOP kernel. Right: Fourier kernel. From top to bottom: (Rx{Rx} ∗
LOP ), (Rx{Ry} ∗ LOP ), (Ry{Ry} ∗ LOP )
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Figure 3.7: Left: LOP kernel. Right: Fourier kernel. From top to bottom:
(Rx{Rx{Rx}} ∗ LOP ), (Rx{Rx{Ry}} ∗ LOP ), (Rx{Ry{Ry}} ∗ LOP ), (Ry{Ry{Ry}} ∗
LOP )
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3.2 Implementation of the Lübeck Method

The Lübeck method is also implemented in C++. The implementation is more straight-
forward compared to the Kiel method. It has been mentioned in 2.2 that the entries
of the matrices T, T1, and T2 which are computed within a neighborhood, can be
weighted with a weighting function. In this implementation a Gaussian filter (usually
with σ = 1.3) is applied. Another question that arises is, how the gradients are com-
puted. Two variants are tested. First the common central differences (they were also
used in [1]) are calculated, consider for example the kernel[

1 0 −1
]

(3.16)

in x-direction. In some cases a so called ’advanced Sobel filter’ is applied in order to
handle noise. The filter mask in x-direction in this case is

1

32

 3 0 −3
10 0 −10
3 0 −3

 . (3.17)

The difference between these two methods for gradient computation are not visible
most of the time. In some cases, especially on real images, a Gaussian filter is used to
preprocess the image. However, it does not always help. The same is true for the Kiel
method.

Another interesting problem in the implementation is posed by the i2D case. It is
described in section 2.2 that there exist three possibilities for the computation of the
vectors u and v. When using one of them, there are always some combinations of the
two orientations where the estimation does not work properly and results are completely
wrong or even infinite for one of the three possibilities. If, however, all three possibilities
are used there are usually at least two results that are close to the correct one. In order
to rule out a possible outlier, the two results with the smallest squared distance are
selected and the average of them is set as the final result.

This concludes the description of the implementation including the search of suitable
bandpass filters for the Kiel method. The next step is a comparison of both methods
and is described in the next chapter.
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After programming the Kiel method and the Lübeck method, one main task in this
thesis is the comparison of both methods. In this chapter both methods are tested on a
series of images; some are generated synthetically in order to test the absolute accuracy,
others are real images to see if the methods work on these as well.

4.1 Local Analysis of Synthetic Images

At first, both methods are tested on synthetic images. For these tests, two signals
with different orientations are overlaid additively. When the signals are computed,
orientations, phases, and wave lengths are known in advance. The size of these images
is determined by the range or kernel size, meaning the image has the same size as the
kernel. The local main orientation and apex angle are only computed for the pixel at the
origin. Let θ1 ∈ [0◦, 180◦) and θ2 ∈ [0◦, 180◦) be the two orientations. With λ1 ∈ R > 0
and λ2 ∈ R > 0 being the two wave lengths and ϕ1 ∈ [0◦, 360◦) and ϕ2 ∈ [0◦, 360◦)
being the two phases, the signal s ∈ R for the coordinates (x, y) ∈ R2 is computed in
the following way:

s1 :=
(sin(θ1)x + cos(θ1)y)2π

λ1
− ϕ1

s2 :=
(sin(θ2)x + cos(θ2)y)2π

λ2
− ϕ2

s := cos(s1) + cos(s2). (4.1)

These signals are repeated over the whole image. Otherwise s1 and s2 are restricted to
lie in [−π, π], the resulting signal is therefore referred to as being single. See figure 4.1
for examples with 201 pixels, ϕ = 45◦, λ = 0.5 for both signals and orientations θ1 = 20◦

and θ2 = 60◦.

The first test consists of calculating the two orientations for all combinations of angles
and comparing the results with the known real angles. This is done with the single
and the repeated forms of the images. The images are computed with 41 pixels, but
otherwise they have the same parameters as in the example above. Since ϕ1 = ϕ2 = 45◦,
the restriction of arbitrary, but same phases is fulfilled for all the images. Each method
is tested on all of the 180×180 images. The results are compared with the known correct
main orientations and apex angles.

The absolute values of the differences are accumulated and yield a possibility to calculate
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Figure 4.1: Left: Image with orientations 20◦ and 60◦, composed of two single overlaid
signals. Right: The same image composed of two repeated overlaid signals

the average error and compare both methods:

Errorapex :=
1

1802

∑
θ1∈[0,180)

∑
θ2∈[0,180)

|resultapex − realapex|

Errorθmain
:=

1

1802

∑
θ1∈[0,180)

∑
θ2∈[0,180)

|resultθmain
− realθmain

| (4.2)

The following table shows the results of these tests:

Parameters Single Image Repeated Image
Riesz Transform
Method

LOP-parameter = 2.6,
i1D/i2D = 0.0000035,
kernel size = 41

Errorapex : 0.1548◦

Errorθmain
:

0.0096◦

Errorapex : 0.0926◦

Errorθmain
:

0.0246◦

Gradient
Method

kernel size = 41, σ =
1.3, ε1 = 0.000011, ε2 =
1000.0

Errorapex : 1.5727◦

Errorθmain
:

1.1164◦

Errorapex : 1.7497◦

Errorθmain
:

1.4304◦

The Kiel method is run with parameters that were determined during the experiments.
The LOP-parameter defines the size of the pass band of the bandpass filter. The i1D/i2D
parameter is a boundary below which the determinant of the even tensor needs to be
in order to consider the structure to be intrinsically one-dimensional at the given point.
This parameter is set once and kept constant for all the following experiments, a fact
that makes the method much more comfortable to use than the method developed in
Lübeck where the parameters ε1 and ε2 are determined manually for almost every image.
When experimenting with those parameters, it becomes obvious that the choice of ε1 is
a trade-off between a high Errorapex and a high Errorθmain

because a fairly large mistake
is made around the nearly intrinsically one-dimensional structures, meaning when the
apex angle is very small. The same is true to a lesser extent for the method using
the monogenic signal. This can also be observed on the error surfaces in figure 4.2.
This trade-off behavior is the reason why both errors are considered separably instead
of creating one measure including both errors. By considering them separately, the
parameter can be determined more easily.
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4.1 Local Analysis of Synthetic Images

Figure 4.2: Error surfaces for the single overlaid signals. For each angle combination
between 0◦ and 180◦ the absolute errors between real and calculated apex angle and
real and calculated main orientation are determined. Top row: Lübeck method. Bottom
row: Kiel method. Left: Apex angle error, Right: θmain error. Important to note are
the actual heights of the error surfaces. The z-axis on the top left has a range from 0◦

to 25◦, the z-axis on the top right from 0◦ to 140◦, the bottom left ranges between 0◦

and 4◦ and the bottom right between 0◦ and 0.07◦.
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Figure 4.3: Development of the average error of apex angle and main orientation when
the kernels size varies.

Other tests include the invariance against changes in wavelength, kernel size, and phases.
Although the phases of the two signals need to be equal for the monogenic method to
work, some tests with different phases are also conducted in order to see how the method
behavior changes if this assumption is violated. This time, not all 32400 combinations
of orientations are tested through. Instead, both orientations are raised by 5◦ in every
step. This leads to a number of 362 = 1296 different tests. Accordingly, the average
errors are calculated. The basic set of parameters is listed in the following table.

Parameter Riesz Transforms Lübeck Method
signal type single single
i1D/i2D parameter det(even) <= 0.00000035 ε1 = 0.00001
LOP kernel 3.0 -
σ - 1.3
kernel size 41 41
ϕ1 45.0◦ 45.0◦

ϕ2 45.0◦ 45.0◦

λ1 0.5 0.5
λ2 0.5 0.5
step size 5 5

Errorapex 0.166◦ 1.081◦

Errorθmain
0.011◦ 0.492◦

During the tests conducted, this was the basic set of parameters with the corresponding
results in form of the error sums. In the following, single parameters are varied and the
results are recorded and plotted.

Kernel Size Modification The first test consists of modifying the kernel size. Through-
out the whole thesis kernels are computed using a certain range and the final kernel size
is 2 · range + 1 in order to ensure odd kernel sizes. The tested ranges are 5, 10, 15 and
20, the last one corresponding to the kernel size of 41 in the basic parameter set.

The results are shown in figure 4.3. Normally, the kernel size has to fit the frequency
range of the image. However, since the same image is used for all tests, the stability of the
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Figure 4.4: Left: Development of the average error of apex angle and main orientation
when both wave lengths are the same but vary. Right: Development of the average error
of apex angle and main orientation, when one wave length is kept constant but the other
one varies.

algorithms with smaller kernel sizes and therefore greatly reduced cost of computation
time is tested. One can see that the Kiel method is more stable when the kernel size is
smaller. Even if the size is reduced to 11 × 11, the average error is below 4◦ for both,
apex angle and main orientation.

Wave Length Modification This time the kernel size is kept constant but the wave
lengths differ. First, both wave lengths are the same, but vary. The result is shown in
figure 4.4 on the left. Changing the wave length corresponds to changing the size of the
structure relative to the kernel size or - viewed in the frequency domain - to changing
the frequency of a structure. Using smaller structures, i.e. smaller wave lengths leads to
better results using the Riesz transforms. With growing wave lengths, however, the error
when determining the apex angle with the monogenic signal is growing up to an average
error of 9◦. If only one wave length is changed while the other one is kept constant -
meaning one structure is larger than the other - both methods make an increasing error
in the computation of apex angle and main orientation, however, the method developed
in Lübeck delivers more accurate results while the Kiel method is not usable anymore,
since the average error is around 20◦. Because a bandpass filter is used that only allows
very few frequencies to pass, the change of one wave length - and therefore frequency -
probably causes one structure to lie outside of the pass band. If this is the case, it is
not surprising that the feature detection using the Kiel method fails.

Phase Modification In a third test concerning the change of parameters of the syn-
thetic images, the phases of the images are changed. Like in the test above, at first both
phases are the same, but vary. Images that are produced under these circumstances
do not violate the assumption of equal phases that is made in the Kiel method. The
results of the test are very good for both methods (see figure 4.5). The Kiel method is
slightly better, except when both phases equal zero. This is not surprising because it
can be proven that the orientation estimation is undefined when the phase equals zero.
If the phases are different, the main orientation estimation using the Kiel method is
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Figure 4.5: Left: Development of the average error of apex angle and main orientation
when the phases of both signals are the same, but vary. Right: Development of the
average error of apex angle and main orientation when one phase is kept constant, but
the other one varies.

not possible. Already slight changes in the phase lead to large errors in the orientation
estimation. The estimation of the apex angle, however, is surprisingly stable. This fact
raises hope for the use of the apex angle in other practical applications like optical flow
estimation and rotation estimation between two images. The Lübeck method is far more
stable against phase differences, in fact, after further adjustments to the i1D/i2D factor
ε1, very good results with error rates even below the ones for equal phases are achieved.

4.2 Global Tests on Images

In this section the orientations are computed over whole images. Hitherto, the apex
angle and local main orientation are only calculated for the pixel in the origin of the
synthetic images. In this section some results are presented where both orientations are
indicated by arrows. These arrows are drawn by passing the matrices containing the
orientations on to Matlab. Since it is impossible to draw the orientations for every single
pixel, a rectangle filter is used to average the results for several neighboring pixels. The
size of the rectangle filter corresponds to the number of orientations that are summarized
in one arrow.

In order to get a detailed picture of the performance of both methods, a lot of test images
are used. The following presentation of the results reveals some difficulties that each
method has on different images. For all images the parameters ε1 and ε2 that are used
by the Lübeck method for distinguishing between i1D and i2D structures are adapted.
In addition to that, sometimes the kernel size is adapted for both methods. When
using the Kiel method, there are some cases where the LOP-parameter characterizing
the bandpass filter is adapted to the image. However, if possible, the same parameters
are used. The test images are gained in different ways. Some are simply taken by a
digital camera of the Canon Powershot series. Others are obtained by the CD-ROM
accompanying [14]. There are also some images that are computed synthetically or are
copied from the papers describing the Lübeck method.
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Figure 4.6: Left: Lübeck method results using σ = 1.3 and kernel size = 21. Right: Kiel
method’s results using 3 as the LOP parameter and 21 as the kernel size.

Figure 4.7: Left: Lübeck method using the same parameters as in figure 4.6. Right:
Kiel method using 21 as kernel size and 5 as LOP parameter.

4.2.1 Synthetic Images

When the orientations are calculated over the whole synthetic image instead of solely for
the pixel at the origin, there are some difficulties at the edges of the images but apart
from that, the detection is accurate. Examples with a single i2D case and a repeated
i1D case are shown in figures 4.6 and 4.7 respectively. 4.6 presents the results of the
orientations estimation for two single signals with 10◦ and 62◦. It becomes obvious that
the detection of the local i1D parts works better using the Kiel method. When applying
the Lübeck method, the parameters for distinguishing between i1D and i2D have to
be adjusted for each image. In some cases it is very difficult to find parameters that
estimate the intrinsic dimension correctly over the whole image.

The repeated i1D case shows an orientation of 62◦ degrees. Both methods deal well with
this image, as can be seen in image 4.7.

The original image in the upper row of figure 4.8 is taken from [19]. It shows two overlaid
signals. The results of the Lübeck method for this image are very good - as good as
the ones in the original paper - which shows that the implementation works. The Kiel
method has some difficulties with this synthetic image. In some pixels the orientations
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Figure 4.8: Top left: Synthetic Image from [19]. Top middle: Upper right corner of
result image using Lübeck method, kernel size is 21, σ = 1.3. Top right: Same clipping
using the Kiel method, same kernel size as in Lübeck method, LOP parameter is 5.
Bottom left: Synthetic Image from [14]. Bottom middle: Upper left corner of Lübeck
results. Bottom right: Same clipping using Kiel method. Both methods are run with
the same parameters as in the top row.

are determined accurately, but in many points the method fails. Reasons for this can be
found in the more detailed analysis, that is done in section 4.1. The tests with different
phases and wave lengths reveal some weaknesses of the Kiel method that are probably
the reason why it fails at so many points of this test image. The bottom row in figure 4.8
shows a synthetic image containing a round structure. The results are taken from the
upper left corner. On this test image the Lübeck method yielded better results than the
Kiel method. The estimated orientations are more closely aligned with the structure and
a smaller part of the structure is considered to be intrinsically two-dimensional. This is
also true for the clipping of the image containing the smaller part of the structure.

4.2.2 Corners and Edges

In this section, the detection of orientations at corners and edges of two different syn-
thetic images is analyzed closer. Zooming in closely helps getting an idea of the problems
around sharply defined structures. In a preprocessing step a Gaussian filter is applied to
the image in order to improve the detection of sharply defined edges. Figure 4.9 shows
the images of two simple boxes and the orientation estimation at the upper right cor-
ner. Both images are created using a software similar to Microsoft’s Paint. Therefore,
the edges are defined sharply as can be seen in the result images. Both methods have
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Figure 4.9: Left: Original images showing boxes drawn with Microsoft’s Paint. Middle:
Results using the Lübeck method. Right: Results using the Kiel method. All result
images show the orientations around the upper right corner.

difficulties with these images. The Lübeck method cannot detect sharp edges; a valid
result is only delivered when a corner is present. This problem is examined closer in the
next test image.

When using the Kiel method, the edges are determined to be intrinsically two-dimen-
sional. In addition to that, some of the orientations are determined incorrectly. The
problem is that the arrows are always averages over several pixels. For one of these
pixels, a case occurs where the phase of the structure equals zero. In that case, the main
orientation estimation is not possible - a large error arises. The averaging propagates
the error that probably happened in one pixel only, over several pixels. This problem
can only be solved through phase computation and discarding of the orientation esti-
mation results at pixels where the phase equals zero. When using the LOP kernels, the
phase needs to be computed using the second or third order Riesz transforms which is
possible as Wietzke showed in [23]. However, due to a limited amount of time, it is not
implemented for this thesis.

The original image in figure 4.10 shows several different structures with i1D and i2D
areas. The upper end of the vertical edge is closely analyzed. The results of the Lübeck
method in the upper row show that the vertical edge is ignored. It is only detected near
the end of the line where the intrinsic dimension is two. When the image is preprocessed
with a Gaussian filter, the vertical edge is detected correctly as seen in the bottom row.
The problem which the Kiel method has at pixels where the phase equals zero also occurs
in this image. A Gaussian filter does not help with this problem because there still is a
position where the phase is zero.
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Figure 4.10: Left: Original image. Middle: Results at upper end of i1D signal after ap-
plying the Lübeck method. Right: Results using the Kiel method. Upper row: Original
image is used. Bottom row: A Gaussian filter is applied as a preprocessing step.

4.2.3 Textures or Fabrics

One application of orientation estimation is texture analysis. If a texture has two main
orientations and they are both known, it is possible to separate the different layers to
a certain extent. This is already described by for example [1] and [19]. In this section
some test pictures and the orientation estimation on textures using both methods are
shown.

Figure 4.11 contains the analysis of two different patterns of fabric. For the first one
(top), the Kiel method detects the local orientations remarkably well. The arrows seem
to reflect the whole pattern. The Lübeck method has more trouble. The intrinsic
dimension is detected correctly but the apex angle is usually too small. The second
pattern in the bottom row shows a piece of fabric with a stitched pattern. This test
image is a big challenge for both methods. The background part without stitches is not
detected correctly by either method. In the foreground part, the Kiel method detects the
two orientations, one vertical, one with an angle of about 135◦ better than the Lübeck
method.

4.2.4 Images Containing Noise

The performance of both methods on images containing noise is not measured by adding
artificial noise to the images but by using real images that contain noise. The test images
consist of one i1D and two i2D examples. All three of them were taken with a digital
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Figure 4.11: Upper row, left: Fabric photographed up close. Middle: Results from
Lübeck method. Right: Results using Kiel method. The clippings of the results both
stemmed from the upper middle of the original image. Bottom row, left: Fabric with
stitches. Middle: Lübeck method results clipping of upper right corner. Right: Kiel
method results, same clipping.
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Figure 4.12: Left: Original image featuring a piece of fabric. Middle: Results using the
Lübeck method after preprocessing with a Gaussian filter. Right: Results of the Kiel
method without applying a Gaussian filter.

Figure 4.13: Left: Original image containing the bottom part of an ironing board.
Middle: Results of the Lübeck method, shown is the left complete junction. Right:
Same clipping with the results of the Kiel method.

camera. The noise occurs because all images were photographed from a short distance.

Figure 4.12 shows a i1D structure containing noise: a pattern on a piece of cloth. The
original image is blurred and the human eye can hardly detect any orientation. It is
obvious that the Kiel method works better on this test image. The arrows representing
the resulting orientations of the Lübeck method only point upwards. The Kiel method
detected the orientation of approximately 135◦ accurately for most pixels.

In figure 4.13 the bottom structure of an ironing board can be seen. The result images
show noise in a clipping of an i2D structure. Despite the noise, both methods detected
the orientations in this test image to a certain degree. They distinguish the local i1D
and i2D areas correctly for the most part. The i2D structure is detected by both meth-
ods, however, the results differ. The Lübeck method detects it a little closer to the
actual crossing than the Kiel method but both methods’ orientations point in the right
direction.

In the test image in figure 4.14 a piece of fabric with overlaid i1D signals can be observed.
The black and white images show that the image contains noise but both methods are
able to detect the orientations and intrinsic dimension accurately. Shown is the clipping
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Figure 4.14: Left: Original image displaying the fabric of an ironing board. Middle:
Clipping of results after applying the Lübeck method. Right: Clipping of results using
the Kiel method.

containing several junctions of i1D structures. The Kiel method estimates the different
orientations in these junctions more accurately and even detects the junctions where the
dark structure crosses the lighter ones.

The tests on the synthetic and real images revealed shortcomings of both methods, but
also demonstrated that both work in general. The most important shortcoming of the
Lübeck method is the parameter ε1 that has to be adjusted manually for each image.
It ensures that the i1D and i2D areas of the image are distinguished properly. The
greatest disadvantage of the Kiel method is the constraint concerning the phases of the
two overlaid structures - they have to be the same - which greatly reduces the usability
of the method. The parameter for the LOP kernel for the Kiel method improves the
distinction between the intrinsic dimensions in an indirect way - by filtering convenient
frequencies - but is by far not as delicately to adjust. Another advantage of the Lübeck
method is that it can calculate both orientations unambiguously, something the Kiel
method cannot always do due to the estimated apex angle being the smaller angle of the
two angles. The Kiel method can deal with images containing noise far better, but the
Lübeck method is more robust against changes in phase or wave length. This concludes
the comparison of both methods. The next chapter describes an application of the single
order Riesz transforms.
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5 Application: Rotation Estimation

Riesz transforms can be used in different practical applications as for example the phase
vector estimation in the calculation of the optical flow. Another application presented
here, is the estimation of a rotation angle between two otherwise identical images. The
theoretical background for this application is a direct conclusion from the definition of
the single order Riesz transform and its interpretation using the Radon transform. The
approach works independently of intrinsic dimension on synthetic and real images.

Input for this task are two images containing the same signal but are rotated by a certain
angle (see in figure 5.1). Both input images contain a single signal and the second image
is rotated by β = 60◦. The first step consists of computing the Radon transform of each
image. According to the first and second input image img1 and img2 respectively, the
Radon transforms are denoted by r1(θ, t) and r2(θ, t). A rotation by a certain angle β
between two images corresponds to a translation along the θ-axis in Radon space (see
figure 5.1). If the rotation angle is denoted by β, the following equation is true for the
Radon transforms of the images:

r1(θ, t) = r2(θ + β, t), with θ ∈ [0◦, 360◦). (5.1)

The estimation of the rotation is achieved by calculating the first order Riesz transforms
in x- and y-direction for both images. For the first image, the Riesz transforms read

Rx1 = R−1{cos(θ)h1(t) ∗ r1(θ, t)},
Ry1 = R−1{sin(θ)h1(t) ∗ r1(θ, t)}. (5.2)

For the second image, the angle is denoted by γ = θ + β. For Rx2 follows (using the
linearity of the integral)

Rx2 = R−1{cos(γ)h1(t) ∗ r2(γ, t)}
= R−1{cos(θ + β)h1(t) ∗ r2(θ + β, t)}
= R−1{(cos(θ) cos(β)− sin(θ) sin(β)) h1(t) ∗ r1(θ, t)}
= cos(β)R−1{cos(θ)h1(t) ∗ r1(θ, t)} − sin(β)R−1{sin(θ)h1(t) ∗ r1(θ, t)}
= cos(β)Rx1 − sin(β)Ry1 . (5.3)
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Figure 5.1: Rotation estimation is possible because the rotation corresponds to a trans-
lation in Radon space.

The Riesz transform in y-direction can be reduced to

Ry2 = R−1{sin(γ)h1(t) ∗ r2(γ, t)}
= R−1{sin(θ + β)h1(t) ∗ r2(θ + β, t)}
= R−1{(sin(θ) cos(β) + sin(β) cos(θ)) h1(t) ∗ r1(θ, t)}
= cos(β)R−1{sin(θ)h1(t) ∗ r1(θ, t)}+ sin(β)R−1{cos(θ)h1(t) ∗ r1(θ, t)}
= cos(β)Ry1 + sin(β)Rx1 . (5.4)

Using equations 5.3 and 5.4, a system of linear equations needs to be solved in order to
determine cos(β) and sin(β) which deliver the needed angle β.

5.1 Implementation and Results

The implementation of this method is tested. The first order Riesz transforms are
already implemented and are thus applied on the two input images. After that, the
system of equations is solved. These steps are applied to each pixel of the images. For
more robustness, a 3× 3 rectangle filter is used to average the results. Only the region
in the middle of the images can be used for rotation estimation because near the edges
parts of the image might be invisible due to the rotation. The rotation routine comes
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from the Qt class QPainter. The implementation only works for images with same edge
length in x- and y-direction.

In order to test the rotation estimation implementation, three test images are ro-
tated. As measure of error the average angular error (AAE) is computed. The im-
age is rotated by each angle of [0◦, 360◦). The average angular error is defined as

AAE := |realRotation−estimatedRotation|
#tests . The following table shows the test images, some

parameters, and the resulting average angular error.

Image size: 201 × 201,
Coarse: 6, Fine: 3,
Range: 10

Image size: 256 × 256,
Coarse: 6, Fine: 3,
Range: 10

Image size: 256 × 256,
Coarse: 6, Fine: 3,
Range: 10

AAE = 0.27144◦ AAE = 2.79329◦ AAE= 2.1518◦

The resulting AAEs show that the method works well on the given test images. Overall,
the conclusion is that rotation estimation is a working application resulting directly from
the interpretation of the Riesz transform using the Radon transform.
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6 Conclusion and Outlook

This chapter concludes this thesis and summarizes the results.

The Riesz transform is interpreted using the Radon transform which yields, especially for
the higher order Riesz transforms, new possibilities for feature detection on images. The
features include the local main orientation and apex angle. The derivation of a suitable
bandpass filter - the Laplacian of Poisson - allows the direct derivation of convolution
kernels for the second and third order Riesz transforms.

The Lübeck method uses gradients on images to compute the orientations of up to two
overlaid i1D signals. By examining the structure tensor in the i1D case, a measure for
intrinsic dimension is derived. In the i2D case, a tensor accounting for both orientations
is considered and a confidence measure is derived in a similar way. Both tensors allow
the calculation of one and two orientations respectively.

After implementing both methods, a detailed comparison of the performance of both
algorithms is done by applying them to synthetic and real images. This comparison
revealed weaknesses and strengths of both methods. The greatest shortcoming of the
Lübeck method is the fact that the parameters need to be adjusted manually for each
image and that it is often not easy to find a working set of parameters. On the other
hand, the most serious disadvantage that the Kiel method is the constraint of the two
overlaid signals needing to have the same phase. This constraint greatly reduces the
range of images, the method can be applied to.

A direct insight of the interpretation of the Riesz transform by the Radon transform
yields an interesting application, the estimation of a rotation angle between two other-
wise identical images. This application is programmed and tested on real and synthetic
images.

There are still a lot of things that can be done to extend this and Wietzke’s work. One
important improvement would be the disposal of the constraint that both i1D signals
need to have the same phase. Apart from that, a formal proof that the LOP kernel
approximates the DOP kernel needs to be found. An interesting application is using the
Riesz transform for separating different layers of a texture according to their orientation.
This approach was already proposed and tested using the Lübeck method and is for
example described in [19]. A more direct improvement of the existing implementation
could be achieved by finding a more robust measure for intrinsic dimension. So far the
case of intrinsic dimension zero is ignored but it could probably be detected by using
the energy of a signal. In addition to that, the i1D/i2D distinction could be computed
more robustly, if additionally the determinant of the odd tensor is considered. Finally,
a more robust implementation of the phase and the phase vector using the second and
third order Riesz transform could help solving the problem of orientation estimation at
pixels where the phase equals zero. An implementation of the phase vector designed
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especially for i2D structures could be applied in optical flow estimation as can be seen
in [17].
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A Notations

Symbol Description
DOG Difference of Gaussian kernel
DOP Difference of Poisson kernel
F{I}(u, v) 2D Fourier transform of I at (u, v)
F−1{I}(x, y) Inverse 2D Fourier transform of I at (x, y)
(f ∗ g)(x, y) 2D convolution of f and g at point (x, y)
G Gaussian kernel
gM (x, y) Monogenic signal of 2D function g
I(x, y) ∈ R Image, 2D function I : R2 → R
Ix(x, y) = ∂I

∂x(x, y) First derivative in x-direction of I at (x, y) ∈ R2

Ixy(x, y) = ∂2I
∂x∂y (x, y) Second derivative in x- and y-direction

LOG Laplacian of Gaussian kernel
LOP Laplacian of Poisson kernel
P Poisson kernel
R(x, y) = −x

2π|x+s|3 Riesz transform vector (x- and y-direction)

R{I}(θ, t) Radon transform of I at angle θ and distance t
R−1{r(θ, t)}(x, y) Inverse Radon transform of r at (x, y)
Rx(x, y) = −x

2π|x+s|3 Riesz transform in x-direction

Rx{Ry}(x, y) Second order Riesz transform in x- and y-direction

Ry(x, y) = −y
2π|x+s|3 Riesz transform in y-direction

θmain ∈ [0◦, 180◦) Local main orientation

|x| =
√

x2 + y2 Length of vector x ∈ R2
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B Riesz Transform Kernel Derivation

B.1 Derivation of the First Order Riesz Transform
Kernels with a DOP Filter

The following derivation may be found in [8]. It is presented here because the same
arguments are needed for the derivation of the third order LOP kernels in the next
section. This derivation is done for 2D transform pairs, so that the kernels may be used
on 2D image data. The coordinates in the spatial and frequency domain are written as
x = (x, y) ∈ R2 and u = (u, v) ∈ R2 respectively. When written in polar coordinates,
the length of the vector will be denoted by |x| = r and |u| = q. The following derivation
is done using the Poisson kernel because the derivation without use of the scale space is
not needed here, however, it may be found in [8] or [10]. The derivation of the second
kernel in y-direction is the same as the one for the x-direction, so only the latter will be
presented here. In the frequency domain the kernel of the single order Riesz transform
in x-direction reads (see section 3.1.1)

F{Rx ∗ P}(u) :=
u

|u|
i exp(−2π|u|s). (B.1)

In order to get the kernel in the spatial domain, the Hankel transform is applied.
Bracewell states on page 358 in [5] that the Fourier transform of a function of r2 is

F

{
1

(1 + r2)
1
2

}
(u) =

1

|u|
exp(−2πq), u ∈ R2. (B.2)

Now a substitution takes place, with r′ = rs, s > 0 and in direct accordance to [8]
follows

F

{
s

1

(s2 + r′2)
1
2

}
(u) = s2(qs)−1 exp(−2πqs)

=⇒F

{
1

(s2 + |x|2)
1
2

}
(u) = |u|−1 exp(−2π|u|s). (B.3)

The next step consists of applying the derivative theorem for 2D Fourier transform pairs
to this function. This is described in [5] for a function f : R2 → R. With

F
{

∂

∂x
f(x, y)

}
(u) = i2πuF (u, v) (B.4)
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follows (using the linearity of the integral)

F

{
−x

(s2 + |x|2)
3
2

}
(u) = 2πi

u

|u|
exp(−2π|u|s)

=⇒F

{
−x

2π(s2 + |x|2)
3
2

}
(u) = i

u

|u|
exp(−2π|u|s). (B.5)

The derivation of the Riesz transform in y-direction is practically the same and the result
is

F

{
−y

2π(s2 + |x|2)
3
2

}
(u) = i

v

|u|
exp(−2π|u|s). (B.6)

B.2 LOP Kernel

In section 3.1.4 the idea of the derivation of the second and third order Riesz transform
kernels is described. Now this derivation is described in more detail. Section 3.1.4 shows
the kernels of the second and third order transforms in x-direction. Now all the kernels
will be listed.

LOP Kernel without Riesz Transform

Section 3.1.4 already shows that the Laplacian of Poisson (LOP) is derived by taking
the Laplacian of the Poisson filter in the frequency and in the spatial domain yielding

F{LOP}(u) = −4π2|u|2 exp(−2π|u|s) t d(
∂2

∂x2
+

∂2

∂y2

)
s

2π|x + s|3

= − 3s

2π

(
2(x2 + y2 + s2)−

5
2 − 5(x2 + y2 + s2)−

7
2 (x2 + y2)

)
. (B.7)

The derivation is found as follows:

The second derivative of the Poisson kernel in x-direction is

∂2

∂x2

s

2π|x + s|3
=

s

2π

∂2

∂x2
(x2 + y2 + s2)−

3
2

=
s

2π

∂

∂x

(
−3

2

)
(x2 + y2 + s2)−

5
2 2x

= − 3s

2π

∂

∂x
(x2 + y2 + s2)−

5
2x

= − 3s

2π

((
−5

2

)
(x2 + y2 + s2)−

7
2 2x2 + (x2 + y2 + s2)−

5
2

)
= − 3s

2π

(
(x2 + y2 + s2)−

5
2 − 5x2(x2 + y2 + s2)−

7
2

)
. (B.8)

70



B.2 LOP Kernel

And in an analog way follows for the y-direction

∂2

∂y2

s

2π|x + s|3
= − 3s

2π

(
(x2 + y2 + s2)−

5
2 − 5y2(x2 + y2 + s2)−

7
2

)
. (B.9)

Combined:

(
∂2

∂x2
+

∂2

∂y2

)
s

2π(x2 + y2 + s2)3

= − 3s

2π

(
2(x2 + y2 + s2)−

5
2 − 5(x2 + y2 + s2)−

7
2 (x2 + y2)

)
. (B.10)

Second Order Riesz Transform with LOP Kernel

So far, the first order Riesz Transform cannot be derived with the LOP as a bandpass
filter. Therefore, this and the next paragraph are only concerned with the second and
third order Riesz transform. Section 3.1.4 resulted in

F{Rx{Rx}}(u) = F
{

∂2

∂x2

−s

2π|x + s|3

}
(u) = 4π2u2 (exp(−2π|u|s)) (B.11)

for the second order Riesz transform in x-direction. Therefore

∂2

∂x2

−s

2π|x + s|3
= − s

2π

∂

∂x

(
−3

2

)
2x(x2 + y2 + s2)−

5
2

=
3s

2π

∂

∂x
x(x2 + y2 + s2)−

5
2

=
3s

2π

((
−5

2

)
2x2(x2 + y2 + s2)−

7
2 + (x2 + y2 + s2)−

5
2

)
=

3s

2π

(
(x2 + y2 + s2)−

5
2 − 5x2(x2 + y2 + s2)−

7
2

)
. (B.12)

In order to derive the Rx{Ry} kernel, one derivation in has to be done in x- and one in
y-direction. The idea is the same as in the Rx{Rx} case described in equation 3.13 with
the derivative theorem for 2D Fourier transforms [5]:
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F{Rx{Ry} ∗ LOP}(u) =

(
− uv

|u|2

)
(−4π2|u|2) exp(−2π|u|s)

= uv4π2 exp(−2π|u|s) t d
∂2

∂x∂y

−s

2π|x + s|3
=
−s

2π

∂2

∂x∂y
(x2 + y2 + s2)−

3
2

=
−s

2π

∂

∂y

(
−3

2

)
2x(x2 + y2 + s2)−

5
2

=
3s

2π

∂

∂y
x(x2 + y2 + s2)−

5
2

=
3s

2π

(
−5

2

)
2xy(x2 + y2 + s2)−

7
2

= −15s

2π
xy(x2 + y2 + s2)−

7
2 (B.13)

The derivation of the Ry{Ry} kernel is the same as the one for the Rx{Rx} kernel,
except the second order derivative in the spatial domain, has to be done in y-direction:

F{Ry{Ry} ∗ LOP}(u) =

(
− v2

|u|2

)
(−4π2|u|2) exp(−2π|u|s)

= v24π2 exp(−2π|u|s) t d
∂2

∂y2

−s

2π|x + s|3
=

3s

2π

(
(x2 + y2 + s2)−

5
2 − 5y2(x2 + y2 + s2)−

7
2

)
. (B.14)

Third Order Riesz Transform with LOP Kernel

The main idea for the derivation of the third order Riesz transform in x-direction is
introduced in 3.1.4. The second derivative theorem for 2D Fourier transforms (see [5])
is applied to the first order Riesz transform in x-direction. All of the other components
of the third order Riesz transform are derived analogous, only the directions of the first
order Riesz transform and the derivations vary.
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F{Rx{Rx{Rx}} ∗ LOP}(u) =

(
−i

u3

|u|3
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The next kernel needed is Rx{Rx{Ry}}. In order to derive it, one of the derivatives is
done in y-direction. The result is

F{Rx{Rx{Ry}}∗LOP}(u) =
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. (B.16)

The remaining two kernels are not derived explicitly because their derivations are similar
to the ones that were just described. The difference is that the single order Riesz
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B Riesz Transform Kernel Derivation

transform used, is the one in y-direction. The derivation of the Rx{Ry{Ry}} kernel
yields

F{Rx{Ry{Ry}} ∗ LOP}(u) =
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(B.17)

And finally the Ry{Ry{Ry}} is gained by

F{Ry{Ry{Ry}} ∗ LOP}(u) =
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(B.18)
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C Implementation

Chapter 3 describes the implementation of both, the Kiel method and the Lübeck
method. In order to be able to freely experiment with both methods, a GUI is im-
plemented. In Figure C.1 a screenshot of this GUI is shown.

The GUI allows to load images from file or to create images with one or two overlaid,
single or repeated signals. The left part of the GUI features a toolbox that offers a
variety of possibilities for image analysis. They are grouped into

• filters for preprocessing,

• computation of the monogenic signal, including local phase, orientation, amplitude,
and phase vector estimation,

• computation of the monogenic curvature tensor, including the determinants and
traces of the even and odd part,

• local orientation estimation on images with up to two overlaid signals,

• global orientation estimation on images with the possibility to visualize the result
using Matlab, and

• rotation estimation.

Input images can be examined by various filters. Available filters for preprocessing the
images are for example

• Gaussian filter,

• Laplacian filter,

• Rectangle filter,

• Sobel filter, or

• filters to determine intrinsic dimension using surface theory.

The implementation offers four possibilities to obtain the kernels for the Riesz transform:

• the LOP kernel,

• kernels developed in the frequency domain followed by an application of a inverse
Fourier transform (fftw library),

• kernels obtained by successive convolution, and
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C Implementation

Figure C.1: A snapshot showing the GUI with the result of the orientation estimation
and a LOP filter kernel.
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• kernels developed in Matlab, which can either be read from files or computed via
the Matlab access class.

The filter kernels can be chosen using the menu ’Monogenic’ in the menu bar. They
are computed using the parameters that are found in the corresponding tab of the
toolbox where the parameters are adjusted to the application. If Matlab is available,
the resulting kernels can be viewed. The matrices containing the kernel are sent to
Matlab via a Matlab access class. They are plotted using the ’surf’-function (see also
figure C.1).

For a closer examination the user of the GUI is able to zoom into the images or upsample
or downsample them.
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