
Book Title
Book Editors
IOS Press, 2003

1

Evolutionary Reinforcement Learning for
Simulated Locomotion of a Robot with a

Two-link Arm

Yohannes Kassahun and Gerald Sommer

Christian Albrechts University, Institute of Computer Science and Applied Mathematics,
Department of Cognitive Systems, Olshausenstr. 40, D-24098, Kiel, Germany

Abstract. In this paper we present a neural controller design for robots using an
evolutionary reinforcement learning system that is suitable for learning through
interaction. The method starts with networks of minimal structures determined by
the domain expert and increases their complexity along the evolution path. It uses a
nature inspired meta-level evolutionary process where newstructures are explored
at larger time-scale and existing structures are exploitedat smaller time-scale. The
method introduces an efficient and compact genetic encodingof neural networks
onto a linear genome that enables one to evaluate the networkwithout decoding
it. We demonstrate the method by designing a neural controller for a robot with
a two-link arm that enables it to move forward as fast as possible. We first give
an introduction to the evolutionary method and then describe the experiment and
results obtained.

Keywords. Neural networks, Reinforcement learning, Evolutionary algorithms

1. Introduction

A meaningful combination of the principles of neural networks, reinforcement learning
and evolutionary computation is useful for designing agents that learn and adapt to their
environment through interaction [4]. The combination results in an evolutionary rein-
forcement learning system where each of the components of the learning system plays
an important role.

Neural networks are useful for evolving the control system of an agent [8]. They
provide a straight forward mapping between sensors and motors and this enables them
to represent directly the policy (control) or the value function to be learned. Reinforce-
ment learning is useful as a type of learning where the agent is not told directly what to
do but fed with a signal (reward) that measures the quality ofexecuting an action in a
given state [12]. The purpose of the agent is to act optimallyin its environment so as to
maximize its rewards. It is one form of learning through interaction. Learning through
interaction underlines nearly all the principles of intelligence [9]. This property of re-
inforcement learning makes it important in evolutionary reinforcement learning system.
Like neural networks, evolutionary algorithms [2,7,10] are inspired from biology. Pop-
ulations of organisms have been adapting to their particular environmental conditions



2

through evolutionary selection (survival of the fittest) and variablity among them. From
these principles of adaptation in nature, it is possible to derive a number of concepts
and strategies for solving learning tasks and develop optimization strategies for artificial
intelligent systems.

The evolutionary reinforcement learning system that combines the principles of neu-
ral networks, reinforcement learning and evolutionary algorithms is shown in figure 1.
The evolutionary algorithm contains genotypes of neural networks to be evaluated in a
given environment. Each neural network is evaluated and assigned a given fitness value
(reward). Through genetic operators of the evolutionary algorithm, the agents will be
improved. The process continues until a certain number of generations or until an agent
is found that solves a given task.

Figure 1. Evolutionary reinforcement learning system. The agents, where the neural networks are embedded
in, are evaluated in the environment and their fitness valuesare returned to the evolutionary algorithm as
rewards.

2. Evolutionary Acquisition of Neural Topologies

Evolutionary Acquisition of Neural Topologies (ENAT) [5] is an evolutionary reinforce-
ment learning system that is suitable for learning and adaptation to the environment
through interaction. It combines meaningfully the principles of neural networks, rein-
forcement learning and evolutionary methods.

The method introduces a novel genetic encoding that uses a linear genome of genes
(nodes) that can take different forms. The forms that can be taken by a gene can either
be a neuron, or an input to the neural network, or a jumper connecting two neurons. The
jumper genes are introduced by the structural mutation along the evolution path. They



3

encode either forward or recurrent connections. In addition to the synaptic weight, a
neuron node has a unique global identification number and number of input connections
to it. A jumper node has also additionally a global identification number, which shows
the neuron to which it is connected. Figure 2 shows an exampleof encoding a neural
network using a linear genome. As can be seen in the figure, a linear genome can be
interpreted as a tree based program if one considers all the inputs to the network and all
jumper connections as terminals.

(a) (b)

(c)

Figure 2. An example of encoding a neural network using a linear genome. (a) The neural network to be
encoded. It has one forward and one recurrent jumper connection. (b) The neural network interpreted as a tree
structure, where the jumper connections are considered as terminals. (c) The linear genome encoding the neural
network shown in (a). In the linear genome,N stands for a neuron,I for an input to the neural network,JF for
a forward jumper connection, andJR for a recurrent jumper connection. The numbers besideN represent the
global identification numbers of the neurons, andx or y represent the inputs coded by the input gene (node).

The linear genome has some interesting properties that makes it useful for evolution
of neural networks. It encodes the topology of a neural network implicitly in the ordering
of the elements of the linear genome. This enables one to evaluate the network repre-
sented by it without decoding the neural network. That means, it is possible to evalu-
ate the neural network encoded by the linear genome without some type of ontological
process of transforming the genotype into phenotype. The evaluation of a linear genome
is closely related to executing a linear program using a postfix notation. In the genetic
encoding the operands (inputs and jumper connections) comebefore the operator (a neu-
ron) if one goes from right to left along the linear genome. The process of evaluating a
linear genome without decoding the neural network encoded by it is performed as fol-
lows. One starts from the right most node of the linear genomeand then moves to the
left in computing the output of the nodes. If the current nodeis an input node, then its
current value and the weight associated with it is pushed onto the stack. If the current
node is a neuron node, thenn values with their associated weights are popped from the
stack and the result of computation with the weight associated with the neuron node is
pushed onto the stack. If the current node is a recurrent jumper node, then the last value
of the neuron node whose global identification number is the same as that of the jumper
node is obtained. Then the value obtained with the weight associated with the jumper
node is pushed onto the stack. If the current node is a forwardjumper node, the sub-



4

linear genome (sub-network) starting from a neuron whose global identification number
is the same as that of the forward jumper node is copied. The response of the sub-linear
genome is computed in the same way as that of the linear genome. Finally, the result of
computation with the weight associated with the forward jumper node is pushed onto the
stack. After traversing the genome from right to left completely, the resulting values are
popped from the stack. The number of the resulting values is the same as the number of
outputs of the neural network encoded by the linear genome. An example of evaluating
the linear genome is shown in figure 3.

Figure 3. An example of evaluating a linear genome without decoding the neural network encoded by it. The
linear genome encodes the neural network shown in figure 2. For this example, the current values of the inputs
to the neural network,x andy, are both set to1. In the example, all neurons have a linear activation function of
the formz = a, wherea is the weighted linear combination of the inputs to a neuron.The overlapped numbers
above the linear genome show the status of the stack after computing the output of a node. The numbers in
brackets are the weights associated with the nodes.

The presented linear genome iscompletein that it can represent any type of neural
network. It is also acompactencoding of neural networks since the length of the lin-
ear genome is the same as the number of synaptic weights in theneural network. It is
closedunder structural mutation and under a specially designed crossover operator. An
encoding scheme is said to be closed if all genotypes produced are mapped into a valid
set of phenotype networks [3]. The crossover operator exploits the fact that structures
originating from some initial structure have some parts in common. By aligning the com-
mon parts of two randomly selected structures, it is possible to generate a third structure
which contains the common and disjoint parts of the two mother structures. This type
of crossover is introduced by Stanley [11]. An example of thecrossover operator under
which the linear genome is closed is shown in figure 4.

If one assigns integer values to the nodes of a linear genome such that the integer
values show the difference between the number of outputs andnumber of inputs to the
nodes, one obtains the following rules useful in the evolution of the neural controllers.
The first is that the sum of integer values is the same as the number of outputs of the
neural controller encoded by the linear genome. The second is that a sub-network (sub-
linear genome) is a collection of nodes starting from a neuron node and ending at a
node where the sum of integer values assigned to the nodes between and including the
start neuron node and the end node isone. This property of the linear genome makes it
important in the design of evolutionary methods for hierarchical and modular networks.
Figure 5 illustrates the concept.

The main search operators in EANT are the structural mutation, parametric mutation
and crossover operator. The structural mutation adds or removes a forward or a recurrent
jumper connection between neurons, or adds a new sub-network to the linear genome. It
does not remove sub-networks since removing sub-networks causes a tremendous loss of
the performance of the neural network. The structural mutation operates only on neuron



5

Figure 4. Performing crossover between two linear genomes. The genetic encoding is closed under this type
of crossover operator since the resulting linear genome maps to a valid phenotype network. The weights of the
nodes of the resulting linear genomes are inherited randomly from both parents.

nodes. The weights of a newly acquired topology are initialized to zero so as not to dis-
turb the performance of the network. The parametric mutation is accomplished by per-
turbing the weights of the networks according to the uncorrelated mutation in evolution
strategy or evolutionary programming. Figure 6 shows an example of structural mutation
where a neuron node lost connection to an input and received aself-recurrent connection.

Since a linear genome is equivalent to a tree based program, the initial structures are
generated using either the grow or full method [1]. The initial complexity of the neural
structures is determined by the domain expert and is specified by the maximum depth that



6

Figure 5. An example of the use of assigning integer values to the nodesof the linear genome. The linear
genome encodes the neural network shown in figure 2. The numbers in the square brackets below the linear
genome show the integer values assigned to the nodes of the linear genome. Note that the sum of the integer
values isoneshowing that the neural network encoded by the linear genomehas onlyoneoutput. The shaded
nodes form a sub-network. Note also that the sum of the integer values assigned to a sub-network is always
one.

N 1 N 2 I x I y N 3 I x I y

W=0.3 W=0.7 W=0.5 W=0.8 W=0.6 W=0.4 W=0.3

I x

W=0.9

N 1 N 2 I x I y N 3 I x I y

W=0.3 W=0.7 W=0.5 W=0.8 W=0.6 W=0.4 W=0.3

JR1

W=0.1

1

2 3

x y

0.7 0.6

0.9

0.5 0.3

0.4

0.8

1

2 3

x y

0.7 0.6

0.1

0.5 0.3

0.4

0.8

0.3 0.3

Figure 6. An example of structural mutation. Note that the structuralmutation deleted the input connection to
N1 and added a self-recurrent connection to it.

can be assumed by the initial structures. The depth of a neuron node in a linear genome
is the minimal number of neuron nodes that must be traversed to get from the output neu-
ron to the neuron node, where the output neuron and the neuronnode lie within the same
sub-network that starts from the output neuron. The evolution of neural networks starts
with exploitation of structures that are already in the system. By exploitation, we mean
optimization of the weights of the structures. This is accomplished by an evolutionary
process that occurs at smaller time-scale. The evolutionary process at smaller time-scale
uses parametric mutation and recombination operators as a search operator. An example
of the exploitation process is shown in figure 7. Explorationof structures is done through
structural mutation and crossover operator. The structural selection operator that occurs
at larger time-scale selects the first half of the structures(species) to form the next gener-
ation. In order to protect the structural innovations or discoveries of the evolution, young
structures that are less than few generations old with respect to the larger time-scale are
carried over along the evolution regardless of the results of the selection operator. New
structures that are introduced through structural mutation and which are better according
to the fitness evaluations survive and continue to exist. Since sub-networks that are intro-
duced are not removed, there is a gradual increase in the number of structures and their
complexity along the evolution path. This allows EANT to search for a solution starting
from a neural network with minimum structural complexity specified by the domain ex-
pert. The search stops when a neural network with the necessary optimal structure that
solves a given task is obtained.



7

t

w(N0)

w(Ix)

w(Iy)

t+1

Trajectory in 
weight space

x y

 0

 5.0

 5.0 5.0

N 0 I y

W=5.0 W=5.0 W=5.0

I x

Figure 7. The weight trajectory of the linear genome shown at the rightside while it is being exploited. The
quantitiest andt +1 are time units with respect to the larger time-scale. The weights of the existing structures
are optimized between two consecutive time units with respect to the larger time-scale. The point clouds att

andt + 1 show populations of individuals from the same species.

3. Learning to Move Forward

The crawling robotic insect introduced by Kimura and Kobayashi [6] is used for this ex-
periment. It is used for reinforcement learning task where the agents learns to move for-
ward as fast as possible through interaction with the environment. The crawling robotic
insect has one arm having two joints where the joints are controlled by two servo motors.
It has also a touch sensor which detects whether the tip of thearm is touching the ground
or not. The schematic diagram of the robot is shown in figure 8.

Figure 8. The crawling robotic insect. The robot has one arm with two joints and a touch sensor for detecting
whether the tip of the arm is touching the ground or not.

The robot has bounded continuous and discrete state variables. The continuous state
variables are the joint angles and the discrete state variable is the state of the touch sensor.
The controller observes the joint angles and the state of thetouch sensor. Depending on
the state it perceives, the controller is expected to changethe angles of the joints appro-
priately so that the robot can move forward as fast as possible. The first joint angleθ1 is
bounded between55˚ and94 ,̊ and the second joint angleθ2 lies in the range[−34 ,̊ 135 ]̊.
For both of the joints, the angles are measured from the vertical as shown in figure 8. The



8

angle ranges are chosen so that they are equivalent to the angle ranges chosen by Kimura
and Kobayashi. They measured the first joint angle from the horizontal and the second
joint angle from the first link. The touch sensorφ takes the value0 for non-touch state
and1 for touch state.

Let the coordinates of the first and the second joints be(x0, y0) and(x1, y1), respec-
tively and let the coordinate of the tip of the arm be(x2, y2). The state of the robot at
each time stept = 0, 1, . . . is given byst = (x0, y0, x2, y2, θ1, θ2, φ). Since the coordi-
nate(x1, y1) can be calculated given a states, it is not listed in the definition of the state
of the robot. The state transition of the system is governed by equations (1) and (2). If
the tip of the arm is not touching the ground (φ(t) = 0), then the state transition equation
is given by

θ1(t + 1) = θ1(t) + δ1

θ2(t + 1) = θ2(t) + δ2

x0(t + 1) = x0(t)
y0(t + 1) = y0(t)
x2(t + 1) = x0(t + 1) + l1 sin θ1(t + 1) + l2 sin θ2(t + 1)
y2(t + 1) = y0(t + 1) + l1 cos θ1(t + 1) − l2 cos θ2(t + 1)

, (1)

and if the tip of the arm is touching the ground(φ(t) = 1), then the state transition
equation takes the form

θ1(t + 1) = θ1(t) + δ1

θ2(t + 1) = θ2(t) + δ2

x2(t + 1) = x2(t)
y2(t + 1) = y2(t)
x0(t + 1) = x2(t + 1) − l2 sin θ2(t + 1) − l1 sin θ1(t + 1)
y0(t + 1) = l2 cos θ2(t + 1) − l1 cos θ1(t + 1)

. (2)

The quantitiesδ1 andδ2 are the outputs of the neural controller to be designed, andl1
andl2 are the lengths of the first and the second link. The first link is between the first
joint and the second joint while the second link is between the second joint and the tip
of the arm. For the experiment,l1 = 34 cm andl2 = 20 cm are chosen. The first joint
is located at right upper corner of the rectangular body of the robotic insect which has a
height of18 cm and width of32 cm. A trial contains50 time steps and at the beginning
of a trial the robot is placed at the origin. The fitness function used to evaluate a neural
controller is given by

f =
1

N

N∑

t=1

(x0(t) − x0(t − 1)), (3)

where the differencex0(t) − x0(t − 1) is the velocity of the system at timet in the
direction of thex−axis andf is the average velocity of the robot for a trial. The number
of time steps used per trial is represented byN .

Tsuchiya et al. [13] applied their policy learning by genetic algorithm using im-
portance sampling (GA-IS) for learning to move forward. They defined a three di-
mensional vectorX = (x1, x2, x3) for representing the state space. The dimen-
sions of the state space is made up of the joint angles and the state of the touch



9

sensor. The policy used in their experiment is a 7 dimensional feature vectorF =
[x1, x2, x3, x4 (= 1 − x1) , x5(= 1 − x2), x6(= 1 − x3), 1.0]. A weight vectorΘ =
(θ1,i, θ2,i, θ3,i, θ4,i, θ5,i, θ6,i, θ7,i) is used to select the actionai(t) from normal distri-
bution with mean valueµi = 1/(1 + exp(−

∑6

k=1
θk,ixk)) and standard deviation

σi = 1/(1+exp(−θ7,i))+0.1. If the selected action is out of range then it is resampled.
The number of the policy parameters is 14 and hence the searchspace for the genetic
algorithm has 14 dimensions.

In our experiment, the structure shown in figure 9 (a) containing two output neurons
connected to three input nodes (θ1, θ2, φ) is used as the initial controller. The best con-
troller shown in figure 9 (b) is found after running EANT. Notethat the best controller
is more complex than the initial structure. Figure 9 (c) shows the waveforms of the joint
angles and the touch sensor for the first 20 time steps as the robot moves forward and
being controlled by the best controller.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
−1

−0.5

0

0.5

1

1.5

2

Forward steps taken by the robot

An
gl

e 
in

 ra
di

an

θ
1

θ
2

φ

(a) (b) (c)

Figure 9. Learning to move forward. (a) The initial structure. (b) Thebest controller found by our algorithm
that enables the robot to move forward. (c) The waveforms of the joint angles and the touch sensor as the robot
moves forward.

The method introduced by Tsuchya et al. (GA-IS) needed on theaverage 10000 in-
teractions with the environment for learning to move forward. We have run EANT 50
times and obtained on the average 3520 intractions for learning the task. As compared
to the GA-IS, EANT has reduced the number of interactions with the environment nec-
essary to learn to move forward. The reduction in the number of interactions is due to
the direct search for an optimal policy in the space of policies, starting minimally and
increasing the complexity of the neural network that represents the policy.

4. Conclusion and Outlook

An evolutionary reinforcement learning system that is suitable for learning through inter-
action is presented. The system exploits both types of adaptations: namely evolutionary
adaptation and adaptation through learning. It starts withnetworks of minimal structures
and complexifies them along the evolution path.

The method introduces a compact genetic encoding that enables one to evaluate the
neural network encoded by it without some type of ontological process of transforming
the genotype into phenotype. In addition to this, a meta-level evolutionary process is in-



10

troduced that is suitable to explore new structures incrementally and exploit the existing
ones.

The system can be extended to handle the evolution of hierarchical structures and
modular networks. In addition to this, ways of describing the search space as well as the
final resultant networks can be included in order to direct the evolution.

Acknowledgments

This work is sponsored by the German Academic Exchange Service (DAAD) under grant
code R-413-A-01-46029 and the COSPAL project under the EC contract no. FP6-2003-
IST-2004176, which are duly acknowledged.

References

[1] W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone.Genetic Programming: An Intro-
duction on the Automatic Evolution of Computer Programs andIts Applications. Morgan
Kaufmann, San Francisco, CA, 1998.

[2] J. H. Holland.Adaptation in Natural and Artificial Systems. The MIT Press, Massachusetts,
London, 1975.

[3] J. Jung and J. Reggia. A descriptive encoding language for evolving modular neural networks.
In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), pages
519–530. Springer-Verlag, 2004.

[4] Y. Kassahun and G. Sommer. Improving learning and adaptation capability of agents. In
Proceedings of 8th Conference on Intelligent Autonomous Systems (IAS-8), pages 472–481,
Amsterdam, November 2004.

[5] Y. Kassahun and G. Sommer. Evolution of neural networks through incremental acquisition
of neural structures. Technical Report 0508, Institute of Computer Science and Applied
Mathematics, Christian-Albrechts University, Kiel, Germany, June 2005.

[6] H. Kimura and S. Kobayashi. Reinforcement learning for locomotion of a two-linked robot
arm. In Proceedings of the 6th European Workshop on Learning Robots, pages 144–153,
1997.

[7] J. R. Koza. Genetic programming: A paradigm for genetically breeding population of com-
puter programs to solve problems. Technical Report STAN-CS-90-1314, Computer Science
Department, Standford University, Stanford, CA, USA, 1990.

[8] S. Nolfi and D. Floreano.Evolutionary Robotics. The Biology, Intelligence, and Technology
of Self-Organizing Machines. The MIT Press, Massachusetts, London, 2000.

[9] R. Pfeifer and C. Scheier.Understanding Intelligence.The MIT Press, Massachusetts, Lon-
don, 1999.

[10] H. P. Schwefel.Evolution and Optimum Seeking. John Wiley & Sons, New York, 1995.
[11] K. O. Stanley.Efficient Evolution of Neural Networks through Complexification. PhD thesis,

Artificial Intelligence Laboratory. The University of Texas at Austin., Austin, USA, August
2004.

[12] R. Sutton and A. Barto.Reinforcement Learning. An Introduction. The MIT Press, Mas-
sachusetts, London, 1998.

[13] C. Tsuchiya, H. Kimura, and S. Kobayashi. Policy learning by GA using importance sam-
pling. In Proceedings of 8th Conference on Intelligent Autonomous Systems (IAS-8), pages
385–394, Amsterdam, November 2004.


