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Abstract. In this paper we present a neural controller design for ®hbstng an
evolutionary reinforcement learning system that is sigtgbr learning through
interaction. The method starts with networks of minimalistures determined by
the domain expert and increases their complexity alongubkigon path. It uses a
nature inspired meta-level evolutionary process wherestavctures are explored
at larger time-scale and existing structures are expla@tesinaller time-scale. The
method introduces an efficient and compact genetic encagfimgural networks
onto a linear genome that enables one to evaluate the netwitiriut decoding
it. We demonstrate the method by designing a neural coetrédr a robot with
a two-link arm that enables it to move forward as fast as péssiWe first give
an introduction to the evolutionary method and then desditile experiment and
results obtained.
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1. Introduction

A meaningful combination of the principles of neural netlgyreinforcement learning
and evolutionary computation is useful for designing agéimat learn and adapt to their
environment through interaction [4]. The combination t&sin an evolutionary rein-
forcement learning system where each of the componentsdé#ining system plays
an important role.

Neural networks are useful for evolving the control systenam agent [8]. They
provide a straight forward mapping between sensors andrmatal this enables them
to represent directly the policy (control) or the value ftioe to be learned. Reinforce-
ment learning is useful as a type of learning where the agamttitold directly what to
do but fed with a signal (reward) that measures the qualitgxacuting an action in a
given state [12]. The purpose of the agent is to act optimali{s environment so as to
maximize its rewards. It is one form of learning through iatgion. Learning through
interaction underlines nearly all the principles of intgince [9]. This property of re-
inforcement learning makes it important in evolutionanypfercement learning system.
Like neural networks, evolutionary algorithms [2,7,10& @&mspired from biology. Pop-
ulations of organisms have been adapting to their particit@ironmental conditions



through evolutionary selection (survival of the fittestflamriablity among them. From
these principles of adaptation in nature, it is possibled¢ave a number of concepts
and strategies for solving learning tasks and develop dpdition strategies for artificial
intelligent systems.

The evolutionary reinforcement learning system that corabthe principles of neu-
ral networks, reinforcement learning and evolutionaréthms is shown in figure 1.
The evolutionary algorithm contains genotypes of neuréivaeks to be evaluated in a
given environment. Each neural network is evaluated anidreess a given fitness value
(reward). Through genetic operators of the evolutionagpathm, the agents will be
improved. The process continues until a certain number péggions or until an agent
is found that solves a given task.

Fitness value (reward)
of evaluated individual

Evolutionary Environment
Algorithm
Genotypes : Action ]
‘ Observation or Value ’;'
\ orState —> s
3 A situated agent (phenotype)
‘.. being evaluated. 3

An agent to be evaluated

Figure 1. Evolutionary reinforcement learning system. The agenterey the neural networks are embedded
in, are evaluated in the environment and their fitness vatwesreturned to the evolutionary algorithm as
rewards.

2. Evolutionary Acquisition of Neural Topologies

Evolutionary Acquisition of Neural Topologies (ENAT) [5 &n evolutionary reinforce-
ment learning system that is suitable for learning and adigpt to the environment
through interaction. It combines meaningfully the prinegpof neural networks, rein-
forcement learning and evolutionary methods.

The method introduces a novel genetic encoding that usesarlgenome of genes
(nodes) that can take different forms. The forms that carakert by a gene can either
be a neuron, or an input to the neural network, or a jumperectmg two neurons. The
jumper genes are introduced by the structural mutationgalba evolution path. They



encode either forward or recurrent connections. In additamthe synaptic weight, a
neuron node has a unique global identification number andeuof input connections
to it. A jumper node has also additionally a global identtima number, which shows
the neuron to which it is connected. Figure 2 shows an exaofpéscoding a neural
network using a linear genome. As can be seen in the figuraegarligenome can be
interpreted as a tree based program if one considers alhfhas to the network and all
jumper connections as terminals.
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Figure 2. An example of encoding a neural network using a linear gendgajeThe neural network to be
encoded. It has one forward and one recurrent jumper cdaone¢b) The neural network interpreted as a tree
structure, where the jumper connections are consideredragials. (c) The linear genome encoding the neural
network shown in (a). In the linear genoniéstands for a neuron, for an input to the neural networklF for

a forward jumper connection, adR for a recurrent jumper connection. The numbers bedidepresent the
global identification numbers of the neurons, anary represent the inputs coded by the input gene (node).

The linear genome has some interesting properties thatshitakseful for evolution
of neural networks. It encodes the topology of a neural nekwoplicitly in the ordering
of the elements of the linear genome. This enables one taaeathe network repre-
sented by it without decoding the neural network. That me#ris possible to evalu-
ate the neural network encoded by the linear genome witltmuegype of ontological
process of transforming the genotype into phenotype. Thkiation of a linear genome
is closely related to executing a linear program using afpasttation. In the genetic
encoding the operands (inputs and jumper connections) befoee the operator (a neu-
ron) if one goes from right to left along the linear genomee Pnocess of evaluating a
linear genome without decoding the neural network encodeitlib performed as fol-
lows. One starts from the right most node of the linear genantethen moves to the
left in computing the output of the nodes. If the current n&dan input node, then its
current value and the weight associated with it is pushed g stack. If the current
node is a neuron node, thervalues with their associated weights are popped from the
stack and the result of computation with the weight assediatith the neuron node is
pushed onto the stack. If the current node is a recurrentgumgde, then the last value
of the neuron node whose global identification number is #meesas that of the jumper
node is obtained. Then the value obtained with the weighicas®d with the jumper
node is pushed onto the stack. If the current node is a forjuemgher node, the sub-



linear genome (sub-network) starting from a neuron whosbkalilidentification number
is the same as that of the forward jumper node is copied. T¥porese of the sub-linear
genome is computed in the same way as that of the linear gertonaly, the result of
computation with the weight associated with the forwardpennode is pushed onto the
stack. After traversing the genome from right to left conbgllg the resulting values are
popped from the stack. The number of the resulting valudsisame as the number of
outputs of the neural network encoded by the linear genomexample of evaluating
the linear genome is shown in figure 3.
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Figure 3. An example of evaluating a linear genome without decodiegnteural network encoded by it. The
linear genome encodes the neural network shown in figurerzhioexample, the current values of the inputs
to the neural networky andy, are both set ta. In the example, all neurons have a linear activation fomotif
the formz = a, whereaq is the weighted linear combination of the inputs to a neufdre overlapped numbers
above the linear genome show the status of the stack aftgputorg the output of a node. The numbers in
brackets are the weights associated with the nodes.
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The presented linear genomecismpleten that it can represent any type of neural
network. It is also a&compactencoding of neural networks since the length of the lin-
ear genome is the same as the number of synaptic weights metiral network. It is
closedunder structural mutation and under a specially designessover operator. An
encoding scheme is said to be closed if all genotypes pradareemapped into a valid
set of phenotype networks [3]. The crossover operator ésptloe fact that structures
originating from some initial structure have some partsammon. By aligning the com-
mon parts of two randomly selected structures, it is possibhenerate a third structure
which contains the common and disjoint parts of the two mogitreictures. This type
of crossover is introduced by Stanley [11]. An example ofdlassover operator under
which the linear genome is closed is shown in figure 4.

If one assigns integer values to the nodes of a linear genastethat the integer
values show the difference between the number of outputmiamdber of inputs to the
nodes, one obtains the following rules useful in the evolutf the neural controllers.
The first is that the sum of integer values is the same as thdeuof outputs of the
neural controller encoded by the linear genome. The setiht a sub-network (sub-
linear genome) is a collection of nodes starting from a neurode and ending at a
node where the sum of integer values assigned to the nodeedietand including the
start neuron node and the end nodeng This property of the linear genome makes it
important in the design of evolutionary methods for hienizal and modular networks.
Figure 5 illustrates the concept.

The main search operators in EANT are the structural mutgtarametric mutation
and crossover operator. The structural mutation adds ocvvesa forward or a recurrent
jumper connection between neurons, or adds a new sub-rietwire linear genome. It
does not remove sub-networks since removing sub-netwarksss a tremendous loss of
the performance of the neural network. The structural maraiperates only on neuron
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Figure 4. Performing crossover between two linear genomes. Theigegratoding is closed under this type
of crossover operator since the resulting linear genomesrtag valid phenotype network. The weights of the
nodes of the resulting linear genomes are inherited randfmonh both parents.

nodes. The weights of a newly acquired topology are inz&ito zero so as not to dis-
turb the performance of the network. The parametric mutasaccomplished by per-
turbing the weights of the networks according to the undateel mutation in evolution
strategy or evolutionary programming. Figure 6 shows amgate of structural mutation
where a neuron node lost connection to an input and receiself-eecurrent connection.
Since a linear genome is equivalent to a tree based prognarimitial structures are
generated using either the grow or full method [1]. The @itiomplexity of the neural
structures is determined by the domain expert and is spebijighe maximum depth that
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Figure 5. An example of the use of assigning integer values to the nofléise linear genome. The linear
genome encodes the neural network shown in figure 2. The msntbéhe square brackets below the linear
genome show the integer values assigned to the nodes oht@ ljenome. Note that the sum of the integer
values isoneshowing that the neural network encoded by the linear gerttasenlyoneoutput. The shaded
nodes form a sub-network. Note also that the sum of the integjaes assigned to a sub-network is always
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Figure 6. An example of structural mutation. Note that the structoratation deleted the input connection to
N1 and added a self-recurrent connection to it.

can be assumed by the initial structures. The depth of a newde in a linear genome
is the minimal number of neuron nodes that must be traveosgettfrom the output neu-
ron to the neuron node, where the output neuron and the naodmlie within the same
sub-network that starts from the output neuron. The evaiudif neural networks starts
with exploitation of structures that are already in the sgstBy exploitation, we mean
optimization of the weights of the structures. This is acpbshed by an evolutionary
process that occurs at smaller time-scale. The evolutygoracess at smaller time-scale
uses parametric mutation and recombination operatorsearatsoperator. An example
of the exploitation process is shown in figure 7. Exploratibstructures is done through
structural mutation and crossover operator. The strulcsetaction operator that occurs
at larger time-scale selects the first half of the struct(spscies) to form the next gener-
ation. In order to protect the structural innovations ocdigeries of the evolution, young
structures that are less than few generations old with ce$pehe larger time-scale are
carried over along the evolution regardless of the restiltseselection operator. New
structures that are introduced through structural mutatitd which are better according
to the fithess evaluations survive and continue to existeSsnb-networks that are intro-
duced are not removed, there is a gradual increase in theenuwhbtructures and their
complexity along the evolution path. This allows EANT to sdefor a solution starting
from a neural network with minimum structural complexityesfgied by the domain ex-
pert. The search stops when a neural network with the negesgtimal structure that
solves a given task is obtained.
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Figure 7. The weight trajectory of the linear genome shown at the righe while it is being exploited. The
quantitiest andt + 1 are time units with respect to the larger time-scale. Th@htsiof the existing structures
are optimized between two consecutive time units with retstgethe larger time-scale. The point cloudg at
andt + 1 show populations of individuals from the same species.

3. Learningto Move Forward

The crawling robotic insect introduced by Kimura and Kolshid6] is used for this ex-
periment. It is used for reinforcement learning task whbeesagents learns to move for-
ward as fast as possible through interaction with the enwirent. The crawling robotic
insect has one arm having two joints where the joints arerotied by two servo motors.
It has also a touch sensor which detects whether the tip @frthés touching the ground
or not. The schematic diagram of the robot is shown in figure 8.
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Figure 8. The crawling robotic insect. The robot has one arm with tvintfoand a touch sensor for detecting
whether the tip of the arm is touching the ground or not.

The robot has bounded continuous and discrete state wesialiie continuous state
variables are the joint angles and the discrete state Vaiithe state of the touch sensor.
The controller observes the joint angles and the state dbtieh sensor. Depending on
the state it perceives, the controller is expected to ch#mgangles of the joints appro-
priately so that the robot can move forward as fast as passibie first joint anglé; is
bounded betweesb’ and94°, and the second joint angle lies in the rangé—34", 1357].
For both of the joints, the angles are measured from thecates shown in figure 8. The
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angle ranges are chosen so that they are equivalent to tlkeeranges chosen by Kimura
and Kobayashi. They measured the first joint angle from thiezbiotal and the second
joint angle from the first link. The touch senspitakes the valu® for non-touch state
and1 for touch state.

Let the coordinates of the first and the second joint&dgey,) and(z1, y1), respec-
tively and let the coordinate of the tip of the arm (&, y2). The state of the robot at
eachtime step = 0,1, ... is given bys; = (xo, yo, x2,y2, 01, 02, ¢). Since the coordi-
nate(x1,y;) can be calculated given a statgt is not listed in the definition of the state
of the robot. The state transition of the system is governedduations (1) and (2). If
the tip of the arm is not touching the grount({) = 0), then the state transition equation
is given by

O1(t+ 1) =61(t) + 01

O2(t 4+ 1) = Oa(t) + 02

zo(t + 1) = z0(?) (1)
yo(t +1) =yo(t) ’

IQ(t —+ 1) = xo(t + 1) —+ ll sin@l(t—i- 1) —+ 12 SiHOQ(t —+ 1)

Yot + 1) =yo(t + 1) + 11 cosbr(t + 1) —lacosba(t + 1)

and if the tip of the arm is touching the grou@(t) = 1), then the state transition
equation takes the form

01(t+1)=0:1(t) + 01

O2(t + 1) = 02(t) + 02

ya(t +1) = y(t) '
,To(t—f' 1) Zl'g(t—f' 1) - lg sin92(t+ 1) - ll sin@l(t—i— 1)
yo(t+1) =lacosba(t +1) —licosbyi(t + 1)

The quantities); andd. are the outputs of the neural controller to be designed,/and
andl, are the lengths of the first and the second link. The first linkdtween the first
joint and the second joint while the second link is betweenscond joint and the tip
of the arm. For the experimerit, = 34 cm andls = 20 cm are chosen. The first joint
is located at right upper corner of the rectangular body efrtibotic insect which has a
height of18 cm and width of32 cm. A trial containss0 time steps and at the beginning
of a trial the robot is placed at the origin. The fithess fumcttised to evaluate a neural
controller is given by

LN
f= N;(IO(t)_xO(t_l))v ©))

where the difference(t) — zo(t — 1) is the velocity of the system at timein the
direction of thexr—axis andf is the average velocity of the robot for a trial. The number
of time steps used per trial is represented\y

Tsuchiya et al. [13] applied their policy learning by genetigorithm using im-
portance sampling (GA-IS) for learning to move forward. fhiefined a three di-
mensional vectorX = (xz1,xz2,x3) for representing the state space. The dimen-
sions of the state space is made up of the joint angles andtdte af the touch



sensor. The policy used in their experiment is a 7 dimensifasure vectorF =

[Il, X2,X3, T4 (: 1-— Il) ,I5(: 1-— xg),SCG(: 1-— ZCg), 10] A W8|ght vector® =
(01,i,02.4,054,04,,05,:,064,07;) is used to select the actien(t) from normal distri-
bution with mean valugi; = 1/(1 + exp(—Y0_, 6..a1)) and standard deviation
o; = 1/(1+exp(—07,))+0.1. If the selected action is out of range then it is resampled.
The number of the policy parameters is 14 and hence the sepeate for the genetic
algorithm has 14 dimensions.

In our experiment, the structure shown in figure 9 (a) comaitwo output neurons
connected to three input nodek (62, ¢) is used as the initial controller. The best con-
troller shown in figure 9 (b) is found after running EANT. Ndtet the best controller
is more complex than the initial structure. Figure 9 (c) shtlhe waveforms of the joint
angles and the touch sensor for the first 20 time steps as ltlo¢ moves forward and
being controlled by the best controller.

Angle in radian

91 9’2 (,7) 01 92 d) 51 2 3 4 5 6 7 8 6 101112 13 14 15 16 17 18 19 20
Forward steps taken by the robot

(a) (b) (c)

Figure 9. Learning to move forward. (a) The initial structure. (b) Thest controller found by our algorithm
that enables the robot to move forward. (c) The waveformbefdint angles and the touch sensor as the robot
moves forward.

The method introduced by Tsuchya et al. (GA-IS) needed oavkeage 10000 in-
teractions with the environment for learning to move fordvae have run EANT 50
times and obtained on the average 3520 intractions forileguthe task. As compared
to the GA-IS, EANT has reduced the number of interactionf wie environment nec-
essary to learn to move forward. The reduction in the numberteractions is due to
the direct search for an optimal policy in the space of pe$icstarting minimally and
increasing the complexity of the neural network that repnésthe policy.

4. Conclusion and Outlook

An evolutionary reinforcement learning system that isahlg for learning through inter-
action is presented. The system exploits both types of atlaps: namely evolutionary
adaptation and adaptation through learning. It starts métlvorks of minimal structures
and complexifies them along the evolution path.

The method introduces a compact genetic encoding thatemahk to evaluate the
neural network encoded by it without some type of ontoldgicacess of transforming
the genotype into phenotype. In addition to this, a metatlevolutionary process is in-
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troduced that is suitable to explore new structures incrdatly and exploit the existing
ones.

The system can be extended to handle the evolution of hkacaicstructures and
modular networks. In addition to this, ways of describing search space as well as the
final resultant networks can be included in order to direetatolution.
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