
Towards a Unified Approach

to

Learning and Adaptation

Dissertation

zur Erlangung des akademischen Grades
Doktor der Ingenieurwissenschaften

(Dr.–Ing.)
der Technischen Fakultät

der Christian-Albrechts-Universität zu Kiel

Yohannes Kassahun

Kiel
Februar 2006

1. Gutachter Prof. Dr. Gerald Sommer (Kiel)

2. Gutachter Prof. Dr. Anand Srivastav (Kiel)

Datum der mündlichen Prüfung: 31.01.2006

ABSTRACT

The aim of this thesis is to develop a system that enables autonomous and
situated agents to learn and adapt to the environment in which they live and
operate. In doing so, the system exploits both adaptation through learning
and evolution. A unified approach to learning and adaptation, which com-
bines the principles of neural networks, reinforcement learning and evolution-
ary methods, is used as a basis for the development of the system. In this
regard, a novel method, called Evolutionary Acquisition of Neural Topologies
(EANT), of evolving the structures and weights of neural networks is devel-
oped. The method introduces an efficient and compact genetic encoding of
a neural network onto a linear genome that encodes the topology of the neu-
ral network implicitly in the ordering of the elements of the linear genome.
Moreover, it enables one to evaluate the neural network without decoding
it. The presented genetic encoding is complete in that it can represent any
type of neural network. In addition to this, it is closed under both structural
mutation and a specially designed crossover operator which exploits the fact
that structures originating from some initial structure have some common
parts. For evolving the structure and weights of neural networks, the method
uses a biologically inspired meta-level evolutionary process where new struc-
tures are explored at larger timescale and existing structures are exploited at
smaller timescale. The evolutionary process starts with networks of minimal
structures whose initial complexity is specified by the domain expert. The
introduction of neural structures by structural mutation results in a gradual
increase in the complexity of the neural networks along the evolution. The
evolutionary process stops searching for the solution when a solution with
the necessary minimum complexity is found. This enables EANT to find
optimal neural structures for solving a given learning task. The efficiency of
EANT is tested on couple of learning tasks and its performance is found to
be very good in comparison to other systems tested on the same tasks.

ii

ACKNOWLEDGMENTS

This thesis would not have been brought about without the support of so
many individuals. These individuals have contributed a lot to the great years
I have had at Christian-Albrechts-University (CAU) of Kiel. It is my great
pleasure to thank them here.

My unlimited thanks go to my supervisor Prof. Dr. Gerald Sommer
who has been a major source of inspiration and motivation throughout the
work. I learned a lot from the discussions I had with him. I appreciate his
unreserved support, encouragements and helpful suggestions.

Deepest thanks to Dr. Getachew Hailu for introducing me to Prof. Dr.
Gerald Sommer. I had important discussions with him about machine learn-
ing at the beginning of my work.

I thank all members of the Cognitive Systems Group, Kiel for their sup-
port and help. My special thanks go to Oliver Granert for being a wonderful
friend and source of great discussion. I thank Di Zang, Stephan Al-Zubi, Sven
Buchholz and Nils Siebel for proofreading different chapters of this thesis. I
further thank my colleagues Marco Chavarria, Christian Gebken, Florian
Hoppe, Christian Perwass, Herward Prehn and Antti Tolvanen. They have
been always helpful all the times.

Wholehearted and deepest thanks to our technical staff Henrik Schmidt
and Gerd Diesner for their unreserved support during the experiments con-
ducted in our laboratory. I would like to thank also our secretary Francoise
Maillard for her friendly help in administrative matters.

I acknowledge the German Academic Exchange Service (DAAD) under
grant code R-413-A-01-46029 for sponsoring the research presented in this
thesis. “Danke Deutschland!”

Last, but not least, I thank all members of my family, to whom I dedicate
this thesis.

iv

CONTENTS

1. Introduction . 1

1.1 Motivation . 2

1.2 Closely Related Works . 5

1.3 Outline of the Thesis . 6

2. Background Material . 9

2.1 Artificial Neural Networks 9

2.2 Reinforcement Learning . 12

2.2.1 The Agent-Environment Interface 12

2.2.2 Returns . 13

2.2.3 Markov Decision Process 14

2.2.4 Value Functions . 15

2.2.5 Optimal Value Functions 16

2.3 Dynamic Programming . 18

2.3.1 Policy Evaluation . 18

2.3.2 Policy Improvement 19

2.3.3 Policy Iteration . 19

2.3.4 Value Iteration . 20

2.4 Monte Carlo Methods . 21

2.4.1 Recursive Implementation 23

2.5 Genetic Algorithms . 24

2.5.1 The Algorithm . 24

2.5.2 Genetic Operators 24

2.5.3 The Selection Algorithm 27

2.6 Genetic Programming . 29

2.7 Evolution Strategy . 31

2.8 Evolutionary Programming 33

2.9 Behavior-Based Robotics . 34

2.10 Summary . 38

vi Contents

3. Model Based Evolutionary Object Recognition System 39
3.1 Previous Work . 39
3.2 Object Recognition System 40

3.2.1 Visual Grouping . 40
3.2.2 Recognition and Model Acquisition Systems 41

3.3 Experiments and Results . 45
3.4 Summary . 48

4. Improving Learning and Adaptation Capabilities of Agents . . 51
4.1 The Robot World (Test Scenario) 53
4.2 What to Learn? . 55
4.3 Experimental Setup . 56
4.4 Offline Solution to the Optimal Policy in the Artificial Robot

World . 57
4.5 Learning and Adaptation at Individual Level 61

4.5.1 Q-Learning . 62
4.5.2 Exploration and Exploitation 63
4.5.3 Experiments and Results 63

4.6 Learning and Adaptation at Population Level 67
4.6.1 Experiments and Results 67

4.7 Hybrid of Learning and Evolutionary Algorithms 69
4.7.1 Experiments and Results 71

4.8 Summary and Analysis of Results 73
4.9 Conclusion Drawn and Recommendation 76

5. Evolutionary Acquisition of Neural Topologies (EANT) 77
5.1 Related Works . 79

5.1.1 Evolution of Connection Weights 80
5.1.2 Evolution of Structure and Connection Weights . . . 81

5.2 Contributions of the Work 83
5.3 The Proposed Method . 84

5.3.1 Genetic Encoding . 84
5.3.2 Evaluating a Linear Genome 88
5.3.3 Generating the Initial Linear Genome 91
5.3.4 Variation Operator: Structural Mutation 93
5.3.5 Variation Operator: Parametric Mutation 94
5.3.6 Exploitation and Exploration of Structures 96

5.4 Experimental Evaluation . 98
5.4.1 XOR Problem . 99
5.4.2 Crawling Robotic Insect 100
5.4.3 Pole Balancing . 104

Contents vii

5.5 Summary . 111

6. Vision Based Robot Navigation 115
6.1 The Physical Robot . 115
6.2 Reactive Navigation with Obstacle Avoidance 116
6.3 Vision Module . 119
6.4 Summary . 129

7. Conclusion . 131
7.1 Summary . 131
7.2 Outlook . 134

viii Contents

Chapter 1

INTRODUCTION

It is the dream of human kinds to create machines that are as intelligent as we
are. We humans want to have machines that can recognize the people around
us, talk to each other or to us in the most natural way, read a newspaper,
drive a car, make and serve a tea, help the disabled and so on.

Since learning is considered as the main component of an intelligent sys-
tem, scientists have tried, with varying degrees of success, to give machines
the ability to learn. Machine learning is the term used for this field of study
and is coined by Samuel, who made a computer for the first time to perform
learning task [84]. There are three major approaches that have been used in
machine learning:

• Supervised learning: In supervised learning, the trainer supplies the
learning system example training sequences containing inputs accom-
panied with correct outputs. The system is expected to generalize so
as to correctly classify or recognize unseen data that is not included in
the training sequence.

• Reinforcement learning: In reinforcement learning [7, 97], the learn-
ing system is not told the correct output for a given input but is fed
back with a reward signal that measures the quality of the output sig-
nal.

• Unsupervised learning: In this type of learning, the system is sup-
plied only with input sequence and is not told what the correct output
sequence is. Rather, the system has to look for input patterns in the
input data. A very good example of unsupervised learning is the oper-
ation of a Kohonen neural network [65].

For most of the intelligent systems that are developed so far, it is ex-
tremely hard to recognize objects, to talk in the most natural way, or to
make and serve a tea. This is because the design of these systems is not

2 Chapter 1. Introduction

based on behavioral diversity and survival of the fittest. Evolutionary theory
teaches us that the brain of human beings, or in general animals has evolved
to ensure the survival of the species and to control its behavior. The design
of intelligent agents requires a system that enables the evolution of “artifi-
cial brain” starting from simple structures and increasing its complexity over
generations based on evolutionary theory which results in the behavioral di-
versity. The complexity of the brain has to match the complexity of the task
environment. This thesis tries to give a contribution in this direction.

1.1 Motivation

The term intelligence is too complex to give a full definition describing it.
But in many fields of studies of intelligence, the key concept is the generation
of behavioral diversity while complying with the rules [78]. One of the impor-
tant properties of an intelligent agent is that it should be autonomous in the
sense that the degree of external control is minimal. Autonomy implies the
agent’s ability to learn from experience through interaction with the envi-
ronment. An agent that has the ability to learn through interaction with the
environment is autonomous since it can acquire its own knowledge over time.
Learning from experience requires automatically the agent’s ability to learn
continuously. Moreover, intelligent agents exhibit emergent behaviors. Such
behaviors are not programmed into the agents by the designer but rather are
the result of the interaction of the agents with their environment.

An intelligent agent should also be a situated agent in that it acquires
information about its environment only through its sensors while interacting
with the environment. Situatedness like autonomy requires us to have agents
with learning components. The capacity to learn increases the agent’s au-
tonomy. If intelligent agents are situated, they can learn and adapt to their
environment continually.

In addition, an intelligent system should learn to perform a task without
being told precisely how to do it, but it should be told precisely how to learn.
This thesis is concerned with the design of a learning system for intelligent
agents which enables them to learn to accomplish a task without being told
precisely how to do it.

The main motivation behind the design of the learning system comes
from the hypotheses proposed by Charles Darwin [25] on which the theory
of evolution is based upon. The first hypothesis says:

All organisms adapt to their environments.

If a species is to sustain over an extended periods of time in a continuously
changing, unpredictable environment, then it must be adaptive. The term

1.1. Motivation 3

adaptation has various interpretations and meanings but we considered the
following types of adaptations in the agents to be designed.

• Evolutionary adaptation: We see different kinds of adaptations in
nature. For example, the light-skinned form of the peppered moth (Bis-
ton betularia), called typica was the predominant form in England prior
to the beginning of the industrial revolution. It would be difficult to
pick it out against the light-colored bark of many trees common in Eng-
land. In regions that became industrialized, industrial smoke darkend
the tree trunks. Gradually the peppered moth population in industrial
areas became predominantly composed of a dark variety (Carbonaria),
which would be almost invisible against a dark background. This is a
good example of adaptation of an organism to changes in the environ-
ment.

• Adaptation by learning: Animals adapt to their environment
through learning in their lifetimes. We can take human beings as an ex-
ample. Human beings have acquired through evolution some instincts
and capabilities of learning. In other words, they are not born blank
and therefore they do not learn from scratch. They use these instincts
and capabilities as a starting knowledge to learn about their environ-
ment.

It is important to note that evolutionary and learning based adaptations
work on different timescales. Typically, evolutionary adaptation takes many
generations to happen while adaptation by learning happens in the lifetime
of an organism.

Based on the two types of adaptations, a meta-level evolutionary process
is developed that searches for new species (structures) at larger timescale
and adapts existing structures at smaller timescale. That means, agents learn
and adapt to their environment through evolution and by learning. The
second hypothesis of Darwin proposes:

All organisms descend from common ancestors.

A strong evidence for common descent may be found in traits shared
between all living organisms. It is known that every living thing makes use
of nucleic acids as its genetic material, and uses the same twenty amino acids
as the building blocks for proteins [6]. All organisms use the same genetic
code with some extremely rare and minor deviations to translate nucleic
acid sequences into proteins. In addition to this, observable morphological

4 Chapter 1. Introduction

similarities give us a good evidence for common descent. For example, all
birds even those which do not fly have wings.

There are heritable changes in phenotype (and genotype) of a species,
resulting in a transformation of the original species into a new species similar
to, but distinct from, its parent species.

According to this hypothesis, the developed learning system starts with
agents with minimum structures (species) whose initial complexity is speci-
fied by the domain expert. New structures are introduced by mutation along
the evolution. That means, all other structures originate from the initial
structure. The introduction of new structures results in a gradual increase
in the number of species and their complexity. Through complexification,
the agents will have the ability of continual learning and are able to extend
their competence, or acquire new competences. The third and the most well
known Darwin’s hypothesis states:

All organisms are not equally well adapted to their environment, some will
survive and reproduce better than others.

This hypothesis is known as the natural selection or the survival of the
fittest. Natural selection can be subdivided into two categories: ecological
selection and sexual selection. Ecological selection occurs when organisms
which survive and reproduce increase the frequency of their genes in the
gene pool over those which do not survive. Sexual selection occurs when
organisms which are more attractive to the opposite sex because of their
features reproduce more and thus increase the frequency of those features in
the gene pool.

In developing our system, we assumed only ecological natural selection.
In the system, one can identify two types of competitions. The first is the
competition within a species (individuals having the same structure) and
the other is the competition between species. Competition within a species
occurs at smaller timescale while competition among species occurs at larger
timescale. Species which are strong enough survive and continue to live while
others get extinct. The fourth hypothesis asserts the fact:

All organisms are variable in their traits.

The transfer of genetic material from parent to child must be accom-
plished so that the parental traits pass to the child with high probability.
There must also be a chance of passing useful new or different traits to the
child. Without the possibility of new or different traits, there would be no

1.2. Closely Related Works 5

variability for natural selection to act upon. The variability among individu-
als within a species or among species is an important factor for the adaptation
capabilities of organisms.

In the system presented, the variablity is achieved through structural mu-
tation and crossover operators that occur at the larger timescale, and para-
metric mutation and recombination operators that occur at smaller timescale.

In summary, the thesis is concerned with the design of a learning system
for autonomous intelligent agents that are situated. The agents learn and
adapt to their environment through evolution and by learning. The learning
system is realized using a nature inspired meta-level evolutionary process
where new structures are explored at larger timescale and existing structures
are exploited at smaller timescale. With respect to the goal of self-organizing
learning machines which start from minimal specification and rise to great
sophistication, the system starts with agents of minimal structures, and in-
creases their complexity along the evolution path.

1.2 Closely Related Works

Learning and adaptation through evolution of the structure and weights of
the neural networks is found to be successful in solving reinforcement learning
tasks. Two major types of encoding the neural structures are mentioned in
the literature: the direct and indirect encoding. In the direct encoding, every
connection and node of a neural structure is explictly encoded [2, 29, 34, 51,
73, 85, 95, 105] in the genome while in the indirect encoding the genome
contains rules that are used in constructing the neural structure [39, 64].

Our work is closely related to the works of Angeline et al. [2] and to
the works of Stanley and Miikkulainen [94, 95]. It is related to the works of
Angeline et al. in that the method uses structural mutation as a main search
operator for structural discoveries, and parametric mutation that is based on
evolution strategies or evolutionary programming with adaptive step sizes
for optimization of the weights of the neural networks. Complexification of
structures along the evolution path starting from a minimum structure makes
it related to the works of Stanley and Miikkulainen. In this section, the two
most closely related works are mentioned. A detailed review of related works
is given in Section 5.1.

The work presented in this thesis introduces a novel genetic encoding
where the construction rules of the neural structure are implicitly encoded in
the ordering of the nodes of the genome. Unlike other encoding systems in
the area of evolution of neural networks, the genome enables one to evaluate
the neural structure without reconstructing it from the linear genome. For

6 Chapter 1. Introduction

evolution of neural structures, the presented method uses a meta-level evo-
lutionary process where new structures are explored at larger timescale and
existing structures are exploited at smaller timescale.

1.3 Outline of the Thesis

This section outlines the structure of the thesis and gives a short summary
for each of the chapters.

Chapter two gives a brief overview of the basic components used in the
design of the learning system. Artificial neural networks, reinforcement learn-
ing, evolutionary methods and behavior based systems are discussed. The
two building blocks of reinforcement learning, dynamic programming and
Monte Carlo methods, are also introduced. Very brief introductions to evolu-
tionary methods namely genetic algorithms, genetic programming, evolution
strategy and evolutionary programming is also given.

The third chapter introduces an application example of an evolutionary
method in model based object recognition systems. The system recognizes
2D planar objects in 3D and determines their pose simultaneously. The
recognition is independent of translation, rotation and scaling. Models of
new objects which are not in the system are automatically acquired and
stored in a database of models to be recognized.

Chapter four proposes methods of improving the learning and adapta-
tion capability of autonomous agents by taking as an example a navigation
problem in an artificial robot world. Learning and adaptation at both in-
dividual and population levels are considered. Moreover, the advantages of
continual learning over learning from scratch is discussed for both learning
at individual and population levels and under different learning conditions.
A recommendation is given at the end of the chapter that is used as a design
guideline for the learning system that is introduced in chapter five.

The main contributions of this thesis is given in chapter five. The chapter
starts with a discussion of evolutionary reinforcement learning that combines
concepts from artifical neural networks, reinforcement learning and evolution-
ary methods. Then it introduces a novel method of evolving artifical neural
networks, called evolutionary acquisition of neural topologies (EANT). It
combines meaningfully the concepts of neural networks, reinforcement learn-
ing and evolutionary methods. The method introduces a new genetic encod-
ing of neural network that enables one to evaluate it without decoding it, and
a meta-level evolutionary method that exploits neural structures at smaller
timescale and explore new ones at larger timescale. The chapter gives per-
formance evaluation of the method by taking benchmark problems. It also

1.3. Outline of the Thesis 7

gives performance comparison of the method with related algorithms tested
on the same benchmark problems.

The application of EANT to the problem of robot navigation with obsta-
cle avoidance is considered in chapter six. The main purpose of the chapter
is to demonstrate the automatic design of neural controllers for robots using
EANT. The chapter begins with the development of a controller for sonar
based navigation. Then a vision module which is equivalent to the sonar
sensors in detecting obstacles is developed. This enables one to use the con-
troller developed for sonar based navigation for vision based navigation. The
results obtained by using EANT are compared to related algorithms tested
on the same application.

Finally, a conclusion and outlook is given in chapter seven. The chapter
gives analysis of the overall results obtained and discusses the possible future
directions of research.

8 Chapter 1. Introduction

Chapter 2

BACKGROUND MATERIAL

This chapter gives very brief introductions to the basic components used in
the development of a learning system for intelligent agents. In particular,
artificial neural networks, reinforcement learning, evolutionary methods and
behavior based systems are discussed. The two basic components of rein-
forcement learning namely dynamic programming and Monte Carlo methods
are also presented. Moreover, a discussion on major types of evolutionary
methods such as genetic algorithms, genetic programming, evolution strategy
and evolutionary programming is given.

2.1 Artificial Neural Networks

An artificial neural network is an interconnected assembly of simple compu-
tational units or nodes whose functionality is loosely based on the animal
neuron. The processing or computational ability of the neural network is
stored in the inter-unit connection strengths, or weights, obtained by the
process of adaptation or learning. A neural network has input and output
units which receive and give out signals to the environment, respectively.
Computational units which are not directly connected to the environment
are usually called hidden units. A neural network is a parallel computational
system since signals travel independently on weighted channels and the units
can update their state in parallel. Figure 2.1 shows a simple neuron model.

In a simple neuron model, the output y of a neuron node is calculated
by taking the sum of all signals xi weighted by a connection strength wi and
transforming the sum by the activation function g.

y = g

(

n
∑

i

wixi

)

(2.1)

McCulloch and Pitts [72] used only binary weight values and binary in-
puts. Rosenblatt proposed the perceptron [81], a more general computation

10 Chapter 2. Background Material

Fig. 2.1: A neuron model. In computing the output of a neuron, each input
signal is multiplied by the corresponding connection weight and the
results are added together. The neuron output is found after trans-
forming it with a function g(x) which is usually called activation
function.

model than McCulloch and Pitts units, where the inputs and the weights can
assume real values. The most commonly used activation functions include
the step function, the linear function and the sigmoid function. The step
function used by McCulloch and Pitts, and Rosenblatt returns only one bit
of information, whether the unit is on or off. It is given by

g(x) =

{

0 if x > θ
1 if otherwise

, (2.2)

where θ is the threshold value. The unit is on when the sum of all signals xi

weighted by a connection strength wi is greater than θ. The linear function
can transmit more information as compared to the step function with its
graded output,

g(x) = ax, (2.3)

where a is a constant that controls the inclination. Out of the three activation
functions, the sigmoid function is the most commonly used type of activation
function. The sigmoid function is given by

g(x) =
1

1 + exp(−ax)
, (2.4)

2.1. Artificial Neural Networks 11

where the constant a controls the slope of the response. As a → ∞, the
sigmoid function approximates the step function. The translated version of
the sigmoid function tanh(ax) which is bounded between −1 and 1 is also
commonly used as an activation function.

−5 −3 −1 1 3 5

0

0.2

0.4

0.6

0.8

1

x

g(
X

)

−5 −3 −1 1 3 5

−1

−0.5

0

0.5

1

x

g(
x)

Fig. 2.2: The sigmoid and tanh(x) activation functions.

The behavior of a neural network is not only captured in the connection
weights but also in how the nodes are interconnected with each other. In
other words, the architecture of a neural network plays an important role in
the determination of the behavior of the neural network. The architecture
of a neural network is defined by the number of neurons and their pattern
of connectivity. Most of the time units are organized in layers: input layer,
hidden layer(s) and output layer. There are two large categories of architec-
tures: feed-forward and recurrent. Signals travel from the input unit forward
to the output units in forward architectures. The state of the hidden units
are updated before the output units. In recurrent architectures, there may
be recurrent connection from a neuron in the upper layer to a neuron in the
lower layer, or recurrent connection from the same neuron. Recurrent archi-
tectures can have quite complex time dependent dynamics. A general form
of learning in systems with neural networks comprises both the acquisition
of the network architecture and the modification of the synaptic weights of
the acquired network architecture.

For a given architecture, learning is achieved by repeatedly updating the
weight values. In supervised learning, synaptic strengths are modified us-
ing the discrepancy between the desired output and the output given by
the network for a given input pattern. In unsupervised learning, the net-
work updates the weights on the basis of the input patterns only. The way
the network self-organizes its behavior is determined by the learning rule
and architecture chosen. Unsupervised learning is usually mainly applied

12 Chapter 2. Background Material

in feature extraction, categorization and data compression. In evolutionary
reinforcement learning, the synaptic strengths are modified based on the per-
formance of the network in solving a given learning task. The performance
is measured using a fitness value set by the domain expert. In most cases,
initial weights are set to zero or to small random values centered around zero.
Learning takes place by repeatedly presenting pairs of input-output patterns
for supervised learning and only input patterns for unsupervised learning. In
evolutionary reinforcement learning, learning takes place after the individual
has lived and operated in the environment. The synaptic strength of a unit
is modified using

wi(t + 1) = wi(t) + σ∆wi(t) 0 < σ ≤ 1, (2.5)

where wi(t) and wi(t + 1) are the synaptic strengths of the unit i before and
after modification, respectively. In order to prevent wide oscillations of the
weights from one change to the next, only a small rate of modification is
added to the previous weights. The rate of modification σ is known as the
learning rate. Learning algorithms are concerned with the computation of
∆w. A detailed introduction to neural networks is given by Bishop [13] and
Rojas [80].

Artificial neural networks are useful in the design of control architectures
of autonomous agents because they are robust and are excellent generaliza-
tion models [75]. In order to use a neural network for controlling autonomous
agents, it must be connected to the robot. In order to understand the be-
havior of the neural network, one must know how the network is embedded
in the robot, and one must know about the physics of the sensory and motor
systems [78].

2.2 Reinforcement Learning

Reinforcement learning is a type of machine learning that enables machines
and software agents to automatically determine the ideal behavior within a
specific context, in order to maximize their performance. A general signal
measuring the quality of an action taken by an agent, called reward, is fed
back to the learning algorithm. In other words, it is getting an agent to act
optimally in its environment so as to maximize its rewards.

2.2.1 The Agent-Environment Interface

Reinforcement learning is one form of learning from interaction to achieve a
certain predefined goal. The learner and decision maker is called the agent.

2.2. Reinforcement Learning 13

The thing it interacts with, comprising everything outside the agent, is called
the environment. The agent interacts with the environment continuously by
selecting actions and the environment responds to those actions and presents
the agent with a new situation. The environment also gives rise to rewards,
special numerical values that the agent tries to maximize over time.

Figure 2.3 shows the agent-environment interaction. The current states,
actions and rewards are represented by st, at and rt, respectively, and the
next states and rewards on the next time step are represented by st+1 and
rt+1.

Fig. 2.3: The agent-environment interaction.

The agent and environment interact at each of a sequence of discrete time
steps, t = 0, 1, 2, 3, · · · .1 At each time step t, the agent perceives a state of
the environment. Depending on the state perceived, the agent executes an
action and receives a corresponding reward.

At each time step, the agent tries to build a mapping from the states
to probabilities of selecting each possible action. This mapping, which is
denoted by πt, is called the agent’s policy where π (s, a) is the probability
that at = a and st = s. In reinforcement learning, the agent’s goal is to
maximize the reward it receives in the long run.

2.2.2 Returns

Assume that we have an agent that receives a sequence of rewards, denoted
by rt+1, rt+2, rt+3, · · · , after time step t. The return, Rt, is defined as some
specific function of the reward sequence. In reinforcement learning the ob-
jective of an agent is to maximize the expected return. In simplest case, the

1 The ideas for the discrete time can be extended to the continuous-time case.

14 Chapter 2. Background Material

return is the sum of the rewards:

Rt = rt+1 + rt+2 + rt+3 + · · ·+ rT , (2.6)

where T is the final time step. This is suitable for applications in which there
is a natural notion of final time step. The agent-environment interaction
breaks into subsequences which are called episodes (trials). Each trial ends
in a special state called the terminal state, followed by a reset to a standard
starting state or to a sample from a standard distribution of starting states.

In many cases, however, the agent-environment interaction does not break
naturally into distinct trials, but goes on continually without limit. As an
example one can consider a control process of a robot with a long life span.
These are called continuing tasks. For such tasks, the agent tries to maximize
the expected discounted return:

Rt = rt+1 + γrt+2 + γ2rt+3 + · · · =
∞
∑

k=0

γkrt+k+1, (2.7)

where γ is a parameter, 0 ≤ γ ≤ 1, called the discount rate. It determines
the present value of the future rewards: a reward received k time steps in the
future is worth only γk−1 times what it would be worth if it were received
immediately. If γ = 0, the agent tries to maximize the immediate rewards:
its objective in this case is to learn how to choose at so as to maximize only
rt+1. If γ approaches 1, the objective takes future rewards into account more
strongly: the agent becomes more farsighted.

2.2.3 Markov Decision Process

In order to define the Markov property for a reinforcement learning prob-
lem, we assume that we have a finite number of states and reward values.
The dynamics of an environment can be defined by specifying the complete
probability distribution:

P {st+1 = s′, rt+1 = r′|st, at, rt, st−1, at−1, rt−1, · · · , r1, s0, a0} , (2.8)

for all s′,r′, and all possible values of the past events: st, at, rt, · · · , r1, s0, a0.
If the environment’s response at t + 1 depends only on the state and action
representations at t, then the environment’s dynamics can be defined by
specifying only

P {st+1 = s′, rt+1 = r′|st, at} , (2.9)

for all s′, r′, st and at. We say, a state signal has Markov property and a
Markov state, if and only if equation (2.8) is equal to equation (2.9) for all

2.2. Reinforcement Learning 15

s′, r′ and histories, st, at, rt, · · · , r1, s0, a0. A reinforcement learning task that
satisfies the Markov property is called a Markov decision process or MDP. If
the state and action spaces are finite, then it is called finite Markov decision
process (finite MDP). A particular finite MDP is defined by its state and
action sets and by the one-step dynamics of the environment. For a given
state and action, s and a, the probability of each possible next state, s′, is

P a
ss′ = P {st+1 = s′|st = s, at = a} . (2.10)

Equation (2.10) shows the state transition probabilities. The expected value
of the next reward given any current state and action, s and a together with
any next state, s′, is

Ra
ss′ = E {rt+1|st = s, at = a, st+1 = s′} . (2.11)

The quantities given by equation (2.10) and (2.11) completely specify the
dynamics of a finite MDP.

2.2.4 Value Functions

Most of reinforcement learning algorithms are based on estimating value
functions. The functions can be functions of states or functions of state-
action pairs. They estimate how good it is for an agent to be in a given state
or how good it is to perform a given action in a given state. The notion
“how good” is defined in terms of the expected return. The rewards the
agent expect to receive depend on what actions it will take. That means,
value functions are defined with respect to particular policies.

The value of a state s under a policy π, which is defined by V π (s), is the
expected return when starting in s and following π thereafter. For MDPs, it
is given as

V π (s) = Eπ {Rt|st = s} = Eπ

{

∞
∑

k=0

γkrt+k+1|st = s

}

, (2.12)

where Eπ is the expected value given that the agent follows policy π. V π

is usually called the state-value function for policy π. The value of taking
action a in state s under a policy π, denoted Qπ (s, a), is the expected return
starting from s, taking action a, and thereafter following policy π.

Qπ (s, a) = Eπ {Rt|st = s, at = a} = Eπ

{

∞
∑

k=0

γkrt+k+1|st = s, at = a

}

.

(2.13)

16 Chapter 2. Background Material

The value functions used in reinforcement learning and dynamic program-
ming satisfy particular recursive relationships. For any policy π and state
s, the following consistency condition holds between the value of s and the
value of its possible successor states.

V π (s) = Eπ {Rt|st = s}

= Eπ

{

∞
∑

k=0

γkrt+k+1|st = s

}

= Eπ

{

rt+1 + γ

∞
∑

k=0

γkrt+k+2|st = s

}

=
∑

a

π (s, a)
∑

s′

P a
ss′

[

Ra
ss′ + γEπ

{

∞
∑

k=0

γkrt+k+2|st+1 = s′

}]

⇔ V π (s) =
∑

a

π (s, a)
∑

s′

P a
ss′ [R

a
ss′ + γV π (s′)] .

(2.14)
Similarly, it is possible to write the recursive relationship for the action-

value function.

Qπ (s, a) = Eπ {Rt|st = s, at = a}

= Eπ

{

∞
∑

k=0

γkrt+k+1|st = s, at = a

}

= Eπ

{

rt+1 + γ

∞
∑

k=0

γkrt+k+2|st = s, at = a

}

=
∑

s′

P a
ss′

[

Ra
ss′ + γEπ

{

∞
∑

k=0

γkrt+k+2|st+1 = s′′

}]

⇔ Qπ (s, a) =
∑

s′

P a
ss′ [R

a
ss′ + γV π (s′)] .

(2.15)

Equations (2.14) and (2.15) are the Bellman equations for V π (s) and
Qπ (s, a) respectively. Figure 2.4 shows the backup diagrams for V π and Qπ.
They show the relationship between state value or action value of the current
state and state values or action values of its successor states [42].

2.2.5 Optimal Value Functions

A policy π is better than or equal to a policy π′ if its expected return is
greater than or equal to that of π′ for all states. In other words, π ≥ π′

2.2. Reinforcement Learning 17

(a) (b)

Fig. 2.4: Backup diagrams for (a) V π and (b) Qπ.

if and only if V π (s) ≥ V π′

(s) and Qπ (s, a) ≥ Qπ′

(s, a) for all states and
state-action pairs. There is at least one policy that is better than or equal to
all other policies. This policy is the optimal policy. Although there may be
more than one optimal policy, we denote all optimal policies by π∗ since they
share the same optimal state value function, denoted by V ∗, and action-value
function, denoted by Q∗. The optimal state-value function is given by

V ∗ (s) = max
π

V π (s) , (2.16)

for all states. Optimal policies share also the same optimal action-value
function, which is given by

Q∗ (s, a) = max
π

Qπ (s, a) , (2.17)

for all states and actions. It is possible to write equations (2.16) and (2.17)
in recursive form using equations (2.14) and (2.15) as given by

V ∗ (s) = max
π

∑

s′

P a
ss′ [R

a
ss′ + γV ∗ (s′)] (2.18)

Q∗ (s, a) =
∑

s′

P a
ss′

[

Ra
ss′ + γ max

a′

Q∗ (s′, a′)
]

. (2.19)

The Bellman optimality equation (2.18) has a unique solution indepen-
dent of the policy for a finite MDP problem. Actually, the Bellman optimality
equation is a system of equations. If the dynamics of the environment are
known (Ra

ss′ and P a
ss′), then one can use one of the variety of methods of

solving systems of nonlinear equations to solve the system of equations.

18 Chapter 2. Background Material

For V ∗, it is relatively easy to determine an optimal policy. For each state
s, there will be one or more actions at which the maximum is attained in the
Bellman optimality equation. Any policy that assigns nonzero probability
only to these actions is an optimal policy. This is similar to a one-step ahead
search. If we have the optimal state value function, V ∗, then the actions that
appear best after a one-step ahead search will be optimal actions. In other
words, any policy that is greedy with respect to the optimal value function
V ∗ is an optimal policy.

Choosing optimal actions for Q∗ is still easier. The agent does not have
to do a one-step-ahead search: for any state s, it can simply find any action
that maximizes Q∗ (s, a). In other words, the agent does not need to know
anything about the environment’s dynamics in order to generate an optimal
policy [70].

2.3 Dynamic Programming

If one has a perfect model of the environment as a Markov decision process
(MDP), one uses a collection of algorithms referred to as dynamic program-
ming [97]. We can apply dynamic programming to obtain the optimal value
functions V ∗ and Q∗, which satisfy the Bellman optimality equations, and
then the optimal policies.

2.3.1 Policy Evaluation

The process of computing the state-value function V π for an arbitrary policy
π is called policy evaluation. It is known that the Bellman equation (2.14)
is a system of simultaneous linear equations. Its solution is straight forward,
and can be found by one of the standard methods of solving a system of
simultaneous linear equations.

The solution can also be found by generating a sequence of approximate
value functions V0, V1, V2, · · · . The initial approximation, V0, is chosen arbi-
trarily (except that the terminal state, if any, must be given value 0), and
each successive approximation is obtained by using the Bellman equation for
V π as an update rule:

Vk+1 (s) =
∑

a

π (s, a)
∑

s′

P a
ss′ [R

a
ss′ + γVk (s′)] . (2.20)

It can be shown that Vk → V π as k → ∞. Figure 2.5 gives a complete
algorithm for iterative policy evaluation.

2.3. Dynamic Programming 19

Input π, the policy to be evaluated.
Initialize V (s) = 0 for all the states.
Repeat

∆← 0
For each state s:

v ← V (s)

V (s)←
∑

a

π (s, a)
∑

s′

P a
ss′ [R

a
ss′ + γV (s′)]

∆← max (∆, |v − V (s)|)
until ∆ < θ (a small positive number)
Output V ≈ V π

Fig. 2.5: Iterative policy evaluation (taken from [97]).

2.3.2 Policy Improvement

Given a policy π, it is possible to find a better policy π′ such that V π′ ≥ V π.
This can be obtained by choosing deterministically an action at a particular
state or by considering changes at all states and to all possible actions, se-
lecting at each state the action that appears best according to Qπ (s, a). A
policy π′ is greedy with respect to π if

π′ (s) = arg max
a

∑

s′

P a
ss′ [R

a
ss′ + γV π (s′)] . (2.21)

In equation (2.21), arg maxa denotes the value of a at which the expression
that follows is maximized. The greedy policy takes the action that looks best
in the short term; after one step of lookahead according to V π. The greedy
policy is as good as, or better than, the original policy.

The process of making a new policy that improves on an original policy,
by making it greedy or nearly greedy with respect to the value function of
the original policy, is called policy improvement.

2.3.3 Policy Iteration

We can start from a policy, π, and improve it using V π to yield a better
policy, π′. We can then compute V π′

and improve it again to yield an even
better policy, π′′. As a result of this repeating process, we can obtain a
sequence of monotonically improving policies and value functions:

π0
E−→ V π0

I−→ π1
E−→ V π

1
I−→ π2

E−→ · · · I−→ π∗ E−→ V ∗,

20 Chapter 2. Background Material

where
E−→ denotes a policy evaluation and

I−→ denotes a policy improvement.
Each policy is guaranteed to be a strict improvement over the previous one
(unless it is already optimal). For a finite MDP, this process must converge to
an optimal policy and optimal value function in a finite number of iterations.
This way of finding an optimal policy is called policy iteration [97]. Figure
2.6 shows the algorithm for policy iteration.

1. Initialization
V (s) and π (s) arbitrarily for all s.

2. Policy Evaluation
Repeat

∆← 0
For each state s:

v ← V (s)

V (s)←
∑

a

π (s, a)
∑

s′

P a
ss′ [R

a
ss′ + γV (s′)]

∆← max (∆, |v − V (s)|)
until ∆ < θ (a small positive number)

3. Policy Improvement
policy-stable ← true
For each state s:

b← π (s)

π (s)← arg maxa

∑

s′

P a
ss′ [R

a
ss′ + γV π (s′)]

if b 6= π (s), then policy-stable ← false
If policy-stable, then stop; else go to 2

Fig. 2.6: Policy iteration for V ∗ (taken from [97]).

2.3.4 Value Iteration

The value iteration algorithm follows from the recursive form of the Bellman
optimal state value function (2.18). The equation that governs the value
iteration is given by

Vk+1 (s) = max
a

∑

s′

P a
ss′ [R

a
ss′ + γVk (s′)] . (2.22)

2.4. Monte Carlo Methods 21

The sequence {Vk} converges to the optimal state value V ∗. Value iter-
ation effectively combines both policy evaluation and policy improvement.
The algorithm is shown in Figure 2.7.

Initialize V arbitrarily for all the states

Repeat
∆← 0
For each state s:

v ← V (s)

V (s)← maxa

∑

a

π (s, a)
∑

s′

P a
ss′ [R

a
ss′ + γV (s′)]

∆← max (∆, |v − V (s)|)
until ∆ < θ (a small positive number)

Output a deterministic policy, π, such that

π (s) = arg maxa

∑

s′

P a
ss′ [R

a
ss′ + γV (s′))

Fig. 2.7: Value iteration (taken from [97]).

2.4 Monte Carlo Methods

Monte Carlo methods are suitable for learning from experience, which does
not require prior knowledge of the environment’s dynamics. These methods
solve the reinforcement learning problem based on averaging sample returns.

There are two types of Monte Carlo methods that can be applied in
estimating V π (s) or Qπ (s, a): The every-visit MC method and the first-visit
MC method. The every-visit MC method estimates V π (s) as the average
of returns following all visits to s in a set of episodes or trials. Qπ (s, a)
is estimated as the average return following all visits to the (s, a) pair in
a set of episodes. On the other hand, the first-visit MC method averages
just the return following the first-visit to s in estimating V π (s) and averages
the first-visit to the (s, a) pair in estimating Qπ (s, a). In this work, we use
the first-visit MC method for estimating V π (s) or Qπ (s, a). Both methods
converge to V π (s) or Qπ (s, a) as the number of visits to s, or (s, a) pair goes
to infinity.

22 Chapter 2. Background Material

If the model of the environment is not available, then it is better to
estimate the action values than the state values. With the model of the
environment at hand, state values are sufficient to determine a policy. It is
not possible to use state values to determine a policy without having the
model of the environment. Therefore, one estimates action values, which do
not require the model of the environment in determining a policy.

For a deterministic policy, π, one will observe returns only for one of the
actions for each state in following π. That is the Monte Carlo estimate of
the other actions will not improve with experience. This is a serious problem
since the purpose of learning action values is to help in choosing among the
actions available in each state. This implies that one needs to estimate values
of all actions from each state, not the one we currently favor. To solve this
problem, one can start each episode at a state-action pair, so that every such
pair has a nonzero probability of being selected at a start. This guarantees
that all state-action pairs will be visited an infinite number of times in the
limit of an infinite number of episodes. This assumption is called “exploring
starts”.

For learning directly from real interactions with an environment, the as-
sumption of exploring starts can not be in general relied upon. In this case,
it is better to use stochastic policies with nonzero probability of selecting
all actions. Figure 2.8 shows an algorithm for Monte Carlo method with
exploring starts.

Initialize for all states s and actions a:
Q (s, a)← arbitrary
π (s)← arbitrary
Returns (s, a)← empty list.

Repeat forever:
(a) Generate an episode using exploring starts and π
(b) For each pair s, a appearing in the episode:

R← return following the first occurrence of s, a
Append R to Returns (s, a)
Q (s, a)← average(Returns (s, a))

(c) For each s in the episode:
π (s)← arg maxa Q (s, a)

Fig. 2.8: A Monte Carlo algorithm with exploring starts (taken from [97]).

2.4. Monte Carlo Methods 23

2.4.1 Recursive Implementation

Monte Carlo methods can be implemented recursively, on an episode-by-
episode basis. This implementation enables Monte Carlo methods to process
each new return recursively with no increase in computation or memory as
the number of episodes increases. Suppose that we want to implement a
weighted average, in which each return Rn is weighted by wn, and we want
to compute

Qn (s, a) =

n
∑

k=1

wkRk

n
∑

k=1

wk

. (2.23)

It is possible to write equation (2.23) in the form given by equation (2.24),

Qn+1 (s, a) =

wn+1

Wn
Rn + Qn (s, a)
wn+1

Wn
+ 1

, (2.24)

where Wn =
n
∑

k=1

wk. Rewriting equation (2.24), we obtain

Qn+1 (s, a) = Qn (s, a) +
wn+1

Wn+1

[Rn+1 −Qn (s, a)] . (2.25)

Equation (2.25) is an update rule for an action value function. In similar
fashion, it is also possible to write an update rule for a state value function
given by

Vn+1 (s) = Vn (s) +
wn+1

Wn+1
[Rn+1 − Vn (s)] . (2.26)

The quotient wn+1/Wn+1 can be considered as a step-size or learning rate,
which is usually denoted by α. Replacing wn+1/Wn+1 by α in equations (2.26)
and (2.25), one obtains the recursive forms of the Monte Carlo methods for
V (s) and Q (s, a), which are given by

Vn+1 (s) = Vn (s) + α [Rn+1 − Vn (s)] and (2.27)

Qn+1 (s, a) = Qn (s, a) + α [Rn+1 −Qn (s, a)] . (2.28)

24 Chapter 2. Background Material

2.5 Genetic Algorithms

Genetic algorithms [48] are computational models inspired by natural evo-
lution. They encode a potential solution of a given problem on a simple
chromosome-like data structure and apply genetic operators to these struc-
tures so as to preserve critical information.

A genetic algorithm (GA) starts with a population of chromosomes which
are randomly generated. Chromosomes are then evaluated and given repro-
ductive opportunities according to the result of their evaluations. Those
chromosomes which represent a better solution to the target problem are
given more chances to reproduce than those chromosomes which represent
poorer solutions [10].

A chromosome is made up of genes. The values that can be assumed by
a gene are called alleles. Genes code a specific property or component of a
solution.

Genetic algorithms use two separated spaces: the search space and so-
lution space. The search space is a space of coded solution to the problem
and the solution space is the space of actual solutions. Coded solutions, or
genotypes must be mapped onto actual solutions, or phenotypes before the
quality of fitness of each solution can be evaluated.

2.5.1 The Algorithm

A simplest form of GA, the canonical or simple GA, is summarized in Fig-
ure 2.9. A typical genetic algorithm starts with a population of randomly
generated chromosomes. Each chromosome is decoded, one at a time, its
fitness is evaluated, and three genetic operators, crossover, mutation and re-
production are applied followed by selection to generate a new population.
This process is repeated until a desired individual is found, or until the best
fitness value in the population stops increasing, or until a predefined number
of generations have been produced.

2.5.2 Genetic Operators

Genetic algorithm uses its operators to find the best solution in the search
space. Crossover and mutation operators maintain the variation between
individuals so that children do not become identical copies of their parents.
This variation between individuals helps the population to keep on improving
from generation to generation.

2.5. Genetic Algorithms 25

Fig. 2.9: The simple genetic algorithm.

Crossover Operators

These operators are used to exchange genetic material between two chro-
mosomes. They are used to exploit the genetic material contained in the
population of the chromosomes. The most common types of crossover op-

26 Chapter 2. Background Material

erators are 1-point and 2-point crossover operators. With 1-point crossover
operator, a crossover point is chosen randomly along the chromosomes and
everything either before the crossover point or after the crossover point is
exchanged between the chromosomes. With 2-point crossover operator, two
crossover points are chosen along the chromosomes and everything between
the crossover points, or everything before the first crossover point and after
the second crossover point is exchanged. Figure 2.10 shows examples of the
1-point and 2-point crossovers.

Fig. 2.10: 1-point (a) and 2-point (b) crossover operators. The arrows show
crossover points.

Mutation Operators

Mutation operators are used to introduce a new genetic material into chro-
mosomes. They help the genetic algorithm not to converge to a sub-optimal
solution. They are used by the genetic algorithm to explore the search space.
For binary chromosomes, the mutation operator flips bits contained in the
genes of chromosomes. For chromosomes containing genes made up of real
values, mutation is performed by adding normally distributed random num-
bers with expectation value 0. Figure 2.11 shows the effect of mutation
operator on binary chromosomes.

Reproduction Operators

These operators are straightforward. They select an individual, copy it and
place the copy into the mating pool.

2.5. Genetic Algorithms 27

Fig. 2.11: Effect of mutation operator for binary chromosomes. The under-
lined bits show bits that are flipped.

2.5.3 The Selection Algorithm

Selection is a consequence of competition between individuals in a population.
This competition results from an overproduction of individuals which can
withstand the competition of varying degrees. The search for an optimal
solution is directed by the “survival of the fittest” principle. This principle
comes into play when we decide which chromosomes can join the mating
pool and hence be parents for the next generation. This decision process is
controlled by selection operators.

Fitness-Proportional Selection

Fitness-proportional selection specifies probabilities for individuals to be
given a chance of passing offspring into the next generation. An individ-
ual i is given a probability of

pi =
fi

∑

j

fj

(2.29)

for being able to pass on traits. The value f is the fitness value of an in-
dividual. Following Holland [48], fitness-proportional selection has been the
tool of choice for a long time in the GA community. It has been heavily crit-
icized in recent times for attaching differential probabilities to the absolute
value of fitness. Early remedies for this situation were introduced through
fitness scaling, a method by which absolute fitness were made to adapt to
the population average.

Truncation or (µ, λ) Selection

This is the second most popular method of selection. A number µ of parents
are allowed to breed λ offspring, out of which the µ best are used as parents

28 Chapter 2. Background Material

for the next generation. A variant of the (µ, λ) selection is (µ + λ) selection
where, in addition to offspring, the parents participate in the selection pro-
cess. The truncation selection methods are not dependent on the absolute
fitness values of individuals in the population. The µ best will always be the
best, regardless of the absolute fitness differences between individuals.

Tournament Selection

This type of selection is not based on competition within the full generation
but in a subset of the population. A number of individuals, called the tour-
nament size is selected randomly, and a selective competition takes place.
The better individuals in the tournament are then allowed to replace those
of the worse individuals. The tournament size is used to control the selection
pressure. A small tournament size causes a low selection pressure and a large
tournament size causes high selection pressure.

Tournament selection has recently become a mainstream method for se-
lection, mainly because it does not require centralized fitness comparison
between all individuals. This not only accelerates evolution considerably,
but also provides an easy way to parallelize the algorithm [6].

Ranking Selection

Ranking selection is based on the fitness order, into which the individuals can
be sorted. The selection probability is assigned to individuals as a function
of their rank in the population. Mainly, linear and exponential ranking are
used. For linear ranking, the probability is a linear function of the rank,

pi =
1

N

[

p− +
(

p+ − p−
) i− 1

N − 1

]

, (2.30)

where p−/N is the probability of the worst individual being selected, and
p+/N is the probability of the best individual being selected, and

p− + p+ = 2 (2.31)

should hold in order for the population size to stay constant.
For exponential ranking, the probability can be computed using a selec-

tion bias constant c,

pi =
c− 1

cN−1
cN − i, (2.32)

with 0 < c < 1.

2.6. Genetic Programming 29

2.6 Genetic Programming

Genetic programming (GP) is the evolution of computer programs [67, 68],
where the genetic strings encode a program that solves a given problem.
Koza and Cramer [24] suggested the use of tree structure as program rep-
resentation in a genome. A program in genetic programming is built with
functions and terminals. A terminal set is composed of the inputs to the
GP program, the constants supplied to the GP program, and the zero argu-
ment functions, while a function set is composed of statements, operators,
and functions available to the GP program [6]. Together, terminals and
functions are referred to as nodes.

The function set is selected to fit the problem domain. The range of
available functions is very broad. A GP program may use any program-
ming construct that is available in any programming language. Examples of
functions and constructs that can be used in GP include boolean functions,
arithmetic functions, transcendental functions, conditional statements, loop
statements and subroutines.

The first step in performing a GP run is the definition of the initial set of
functions and terminals. An example of initial set of functions and terminals
is give by

F = {+,−,×,÷, cos}
T = {x, y, z} .

The second step consists of creating an initial population of random programs
by randomly choosing the branching nodes from the function and terminal
set within a predefined maximum depth level. The depth of a node is the
minimal number of nodes that must be traversed to get from the root node
of the tree to the selected node. Unlike genetic algorithms, the individuals
that are generated can have different lengths. As usual the fitness value of
an individual is computed after the individual is evaluated on a given data
set, or after the individual has lived and operated in a certain environment.

Crossover operator combines the genetic material of two parents by swap-
ping a part of one parent with a part of the other. It exchanges subtrees
between parents. It is important that the function set and terminal set are
closed so that all possible combinations of subtrees correspond to legal pro-
grams. An example of crossover operator applied on tree-based GP programs
is shown in Figure 2.12.

Mutation operates on only one individual. It deletes a randomly selected
node or creates a new random subtree in its place. In GP, after crossover has
occurred, each child produced undergoes mutation with a low probability.

30 Chapter 2. Background Material

Fig. 2.12: Tree-based crossover. The crossover operator swaps a randomly
selected subtree of one parent with a randomly selected subtree of
the other. In the figure the subtrees to be swapped are enclosed
by rectangles.

The other operator used in GP is the reproduction operator which simply
produce a copy of an individual.

2.7. Evolution Strategy 31

2.7 Evolution Strategy

Evolution Strategy (ES) was developed at Berlin Technical University by Ingo
Rechenberg [79] and Hans Peter Schwefel [87]. Rechenberg and Schwefel were
working with hydrodynamic problems when they hit upon the idea of using
random events by throwing dice to decide the direction of an optimization
process. Initially, evolution strategy experiments were restricted to variables
with integer values, which represent parameters of an experimental setup
to be optimized [52], and the population consisted of one individual only.
In today’s computer implementation, an ES algorithm uses vectors of real
numbers and the population consists of many individuals.

For n parameters to be adapted, an ES chromosome is represented by a
vector pair c given by

c = (w, σ) = ((w1, w2, . . . , wn), (σ1, σ2, . . . , σn)), (2.33)

where w is the decision or object parameters vector and σ is the strategy pa-
rameters or learning rates vector. The adaptation of the strategy parameters
is an integral part of the optimum search for the object parameters. The ex-
tension of the representation of individuals to include strategy parameters has
introduced a distinction between phenotype and genotype. Strategy param-
eters are subjected to the same variation policy as are the object parameters.
Selection indirectly favors the strategy parameter settings that are beneficial
to make progress in the given problem domain, thus developing an internal
model of the environment constituted by the problem. Self-adaptation of
strategy parameters is the key aspect of ES which is the result of selecting
better adapted individuals in both the domain of object variables and the
domain of strategy parameters.

The mutation operator acts on both the object and strategy parameters
and is given by

σ′

i = σi e
τ ′ N(0,1)+τ Ni(0,1), (2.34)

w′

i = wi + σi Ni (0, 1) , (2.35)

where τ ′ = 1/
√

2n and τ = 1/
√

2
√

n, and N (0, 1) is a random number drawn
from a Gaussian distribution of zero mean and unity standard deviation. A
boundary rule given by the following equation is used to force learning rates
not to be smaller than a threshold value:

σ′

i < ǫ0 ⇒ σ′

i = ǫ0. (2.36)

32 Chapter 2. Background Material

Causality is emphasized in evolution strategy so that strong causes would
generate strong effects. That means, large mutations should result in large
jumps in fitness, and small mutations should result in small changes in fitness.

The recombination operator of two ES chromosomes c1 = (wa, σa) and
c2 = (wb, σb) denoted by ×rec is defined as

×rec(c1, c2) = (w′, σ′) = ((w′

1, w
′

2, . . . , w
′

n), (σ
′

1, σ
′

2, . . . , σ
′

n)), (2.37)

where w′

i = fw(wa,i, wb,i) and σ′

i = fσ(σa,i, σb,i) for all i ∈ {1, 2, . . . , n}. The
functions fw and fσ are the recombination functions. In evolution strategies,
two recombination functions play a prominent role: discrete and intermedi-
ate recombination. With discrete recombination one of the two respective
components is randomly chosen,

f(x1, x2) =

{

x1 χ ≤ 0.5,
x2 χ ≥ 0.5,

(2.38)

where the function χ returns a uniformly distributed random number from
interval [0, 1]. The components x1 or x2 are chosen with equal probability
of 50%. For intermediate recombination the mean values of the respective
components are computed using

f(x1, x2) =
x1 + x2

2
. (2.39)

The intermediate operator is used for recombinations in particular among
strategy parameters.

The selection operator in evolution strategy is truncation or (µ, λ) selec-
tion. It is a deterministic operator, which chooses the µ < λ individuals to
constitute the population in the next generation. The symbol λ stands for
the number of offspring and µ for the number of parents. The selection in
ES is nearer to what Darwin called ”natural selection” [89].

There are two important ways in which ES differs from Genetic algorithms
(GA). First, there is no constraint on the representation. The typical GA
approach involves encoding the problem solutions as a string of representative
tokens. In ES, the representation follows from the problem. Second, the
mutation operator simply changes aspects of the solution according to a
statistical distribution which weights minor variations in the behavior of the
offspring as highly probable and substantial variations.

2.8. Evolutionary Programming 33

2.8 Evolutionary Programming

Evolutionary programming (EP) is created in the early 1960s by Fogel,
Owens, and Walsh [32]. They conducted experiments dealing mainly with
the question of how to evolve computer programs, which are implemented as
finite state machines, for prediction, control and pattern classification tasks.

A chromosome of length n in evolutionary programming is a real valued
vector c given by

c = (w) = (w1, w2, . . . , wn), (2.40)

where w is a vector of object variables. For such types of chromosomes used
in EP, the mutation step-sizes are not self-adaptive. But as the optimal
value for fitness is approached, the mutation rate is decreased. The fitness
is made to influence the spread of mutations, for example, by tying it to the
variance of the Gaussian distribution. The nearer the optimum, the sharper
the distribution becomes around zero. An example of mutation operator [33]
which depends on the fitness of a chromosome c is given by

w′

i = wi +
(

√

k · fitness(c) + z
)

·N(0, 1), (2.41)

where N (0, 1) is a random number drawn from a Gaussian distribution of
zero mean and unity standard deviation. The parameters k and z are de-
termined by the domain expert and are tuned to the problem at hand. But
usually, k is set 1 and z is set to zero so that the mutation operator depends
on the fitness of the chromosome. The problem in using the above type of
mutation operator is that for fitness functions whose global optimum is not
zero, the spread of mutation will not come to zero.

In most of practical applications, the optimum value of the fitness func-
tion is not known. This implies that, it is not always possible to give a
guarantee that the distribution of mutation step-sizes will come to zero. In
order to avoid such problems, Fogel [31] developed a method called Meta-EP,
where the original chromosome used in evolution programming is extended
to included strategy parameters or adaptable mutation step-sizes. For the
extended chromosome c given by

c = (w, σ) = ((w1, w2, . . . , wn), (σ1, σ2, . . . , σn)), (2.42)

the mutation operator in EP is

σ′

i = σi · (1 + αNi(0, 1))
w′

i = wi + σ′

i ·Ni(0, 1)
, (2.43)

34 Chapter 2. Background Material

where α is usually set to 0.2. Like evolution strategy, a boundary rule given
by the following equation is used to force mutation step-sizes not to be smaller
than a threshold value:

σ′

i < ǫ0 ⇒ σ′

i = ǫ0. (2.44)

Other variants of mutation operator are also used and tried. Mutation oper-
ators that used the lognormal scheme as in ES, and those that use Cauchy
distribution instead of Gaussian are good examples. For modern EP, self-
adaptation of mutation step-sizes is one specific feature. But unlike evolution
strategy, EP still refrains from using recombination as a major operator for
generating variants [31].

In order to generate the next population P (t + 1), first a reproduction
operator is used to generate a copy of the current population P (t) of size
N . Then the mutation operator is applied on copy of P (t) and is combined
with P (t) to form an intermediate population P ′(t + 1), whose size is twice
as large as the size of P (t). Every individual in the intermediate population
P ′(t+1) is then evaluated. A probabilistic (N, N) selection is applied on the
intermediate population to form the next generation.

2.9 Behavior-Based Robotics

Behavior-based approach (embodied cognitive science) assumes the develop-
ment of autonomous agents which can operate in an environment where the
boundary conditions are changing rapidly [18, 66]. Brook’s subsumption ar-
chitecture was the first approach towards a new paradigm in the study of
intelligence. It is a method of decomposing a robot’s control architecture
into a set of task achieving behaviors or competences. The approach taken
by Brooks is purely reactive behavior-based method. He argued that the
traditional sense-plan-act paradigm used in some of the first autonomous
robots was in fact detrimental to the construction of real working robots
[3]. In contrast to the traditional approach, the subsumption architecture
builds control architectures by incrementally adding task-achieving behav-
iors on top of each other. He further argued that building world models and
reasoning using explicit symbolic representational knowledge at best was an
impediment to timely response and at worst actually led robotic researchers
in the wrong direction. Figure 2.13 illustrates the conventional sense-plan-
act and the new decomposition of a mobile robot control system based on
task achieving behaviors.

The design decisions of the mobile robots in subsumption architecture are
based on the following dogmatic principles:

2.9. Behavior-Based Robotics 35

(a)

(b)

Fig. 2.13: The traditional sense-plan-act (a) and the subsumption architec-
ture (b).

1. Complex behavior need not necessarily be a product of a complex con-
trol system [18]. It may be an observer who ascribes complexity to an
organism. Complex behavior may be a reflection of a complex environ-
ment. Intelligence is in the eye of the observer [20].

2. There is no need for representation when intelligence is approached in
incremental manner [20].

3. Robots should be cheap [17]. The term cheap is meant essentially
three things. First, it implies exploiting the physics of the system-
environment interaction. Second, it means exploiting the constraints
of the ecological niche and third it means the system must be parsimo-
nious. An ecological niche is defined by Wilson [106] as the range of
each environmental variable such as temperature, humidity, and food
items, within which a species can exist and reproduce.

4. The world is its own best model [20].

5. Robustness in the presence of noise or when one or more of its sensors
fails or starts is the design goal.

6. Intelligence is emergent from an agent-environment interaction based
on a large number of parallel, loosely coupled processes that run asyn-

36 Chapter 2. Background Material

chronously and are connected to the agent’s sensory-motor apparatus
[78, 19].

7. The control system of autonomous intelligent agents should be built
incrementally [16].

In subsumption architecture, a class of desired behaviors that the robot
should be able to perform in the environment in which it will have to operate
is called level of competence. For example, one of the basic things a mobile
robot should be able to do is to avoid objects on its way. That means, it
should be equipped with the competence to avoid obstacles. Since obstacle
avoidance is the most basic one, it is designated as a level 0 competence.
Next there could be a move around or level 1 competence or any other sort
of more complex competences like create maps.

Each level of competence is implemented as a layer of the control archi-
tecture. These layers can be built incrementally. This naturally leads to
extendable designs in which new competences can simply be added to the
already existing and functioning control system. Once each layer has been
built and debugged, it never has to be changed again. The statement that
the layers, once tested and debugged, never have to be changed is not always
true. Sometimes links are added between layers to inhibit certain behaviors.
Higher-level layers build and rely on lower-level layers. This is analogous to
the evolutionary idea. In behavior-based robotics, we do not have to wait
until all the layers have been designed and put together in order to operate
the robot.

Each layer consists of a set of modules that asynchronously send messages
to each other over connecting wires. In subsumption architecture, each layer
is an augmented finite state machine. Other modules can suppress input to
modules and inhibit outputs from modules. There is a certain amount of
interaction between the modules but in order to achieve emergence and in-
cremental complexity, the interaction between modules has to be minimized.
The design of a subsumption architecture involves the following steps: (1)
identification of behaviors of the robot that should be performed (2) the or-
ganization of the level of competences. A very good example of designing
real agent using subsumption architecture that follows an object is described
by Bunten [22].

Sommer [93] proposed the algebraic aspects of designing behavior-based
systems. He suggested that a common theoretical framework is necessary
for combining robotics, computer vision, neural computation and signal the-
ory. The framework consists of a global algebraic frame for embedding the
perceptual and motor categories, a local algebraic framework for bottom-
up construction of necessary information, and a framework for learning and

2.9. Behavior-Based Robotics 37

self-control that is based on the equivalence of perception and action. He
identified Geometric algebra [47] as an adequate global algebraic frame and
the Lie theory [99] as adequate local algebraic frame.

Pfeifer [78] suggested design principles of behavior based systems that
base themselves on embodied cognitive science. The design principles are
different from engineering designs since engineering designs require no be-
havioral diversity in their methods while the design principles in cognitive
science require behavioral diversity. A brief summary of the design principles
is given as follows:

1. The three-constituents principle: The design of autonomous intel-
ligent agent constitute the following three fundamental components.

• Definition of ecological niche

• Desired behaviors and tasks

• Agent design: Steps 2-7 explain the design of the agent itself.

2. The complete agent principle: This design principle implies that
agents should be autonomous, self-sufficient, embodied and situated.
Even though this principle is extremely powerful, it is not usually con-
sidered explicitly. All the artificial agents designs to date do not entirely
fulfill the complete agent principle. In contrast, all natural systems ful-
fill the complete agent principle.

3. The principle of parallel, loosely coupled processes: This prin-
ciple assumes that intelligence is emergent from an agent-environment
interaction, and from a large number of processes that run asyn-
chronously and connected to the agent’s sensory-motor apparatus. The
term ”loosely coupled” refers to the coupling through the interaction
with the environment.

4. The principle of sensory-motor coordination: The sensory-motor
coordination enables the agents to interact efficiently with the environ-
ment. It also serves the purpose of structuring the sensory input.

5. The principle of cheap design: Designs must be parsimonious and
exploit the physics and constraints of the ecological niche.

6. The redundancy principle: Applying this principle to the design of
agents results in agents that are robust whenever some of their part
stops to function. The redundancy of the sensors will give the agent
the ability to function for example in a dark room.

38 Chapter 2. Background Material

7. The value principle: Autonomous systems should have a value sys-
tem that guides the mechanisms of self-supervised learning employing
principles of self-organization. The value system modulates the learn-
ing process by increasing the probability that an agent gets into a
situation.

2.10 Summary

The basic components used in the design of the learning and adaptation
system for autonomous intelligent agents are briefly discussed. In the sys-
tem presented in this thesis, neural networks represent the optimal value
function to be learned. The learning and adaptation concepts in reinforce-
ment learning and evolutionary methods are used for the evolution of the
structures and connection weights of neural networks. The design principles
of behavior based systems are employed in the complexification process of
neural networks.

Chapter 3

MODEL BASED EVOLUTIONARY
OBJECT RECOGNITION SYSTEM

In this chapter, an application example of evolutionary methods to the prob-
lem of object recognition is presented. A novel evolutionary object recog-
nition system, which is independent of translation, rotation and scaling, for
recognizing 2D plane objects in 3D and determining their 3D poses simulta-
neously is proposed.

Object recognition is one of the most important, yet least understood,
aspect of visual perception [101]. For many biological vision systems, the
recognition and classification of objects is spontaneous, natural activity. In
contrast, the recognition of common objects is still way beyond the capability
of artificial systems, or any recognition system proposed so far.

The proposed system has the following features which makes it different
from other recognition systems:

1. A common unifying approach for both recognition and pose estimation,
treating both subtasks at the same time.

2. Finding a global optimal solution in space of solutions. The space of so-
lutions is made up of the Cartesian product of objects to be recognized
and their poses.

By pose, we mean the transformation needed to map an object model
from its own inherent coordinate system into agreement with the sensory
data [38]. The system extracts and saves contour points of objects from
training images as their contour models.

3.1 Previous Work

There are different approaches to object recognition that have been proposed.
One can divide them in general in two groups: non-correspondence or global

40 Chapter 3. Model Based Evolutionary Object Recognition System

matching and correspondence or feature matching. A global matching in-
volves finding a transformation that fits a model to an image without first
determining the correspondence between individual parts or features of the
model and the data. Several of this approaches base themselves on a simple
geometric parameters such as area, perimeter, Euler number, moments of
inertia, Fourier or other spatial frequency descriptions, tensor measures and
so on. Representative examples include works of Hu, Murase and Nayar,
and Zahn and Roskies [49, 74, 109]. These methods are efficient but are
sensitive to occlusion [38]. On the other hand, feature matching procedures
try to find the correspondence between local features of the model and the
data, and then determining the transformation for a given correspondence
between the model and the data. These methods are robust against occlusion
but are not as efficient as global matching procedures [38, 82, 101] since they
have to solve the correspondence problem for every model that is going to
be assumed.

Genetic algorithms are mostly employed in searching the best correspon-
dence between a given model and the data, or in searching the best geometric
transformation that brings a large number of model points into alignment
with the scene [9, 12]. In our implementation, we use genetic algorithm to
search for a model that best fits a given scene and simultaneously determines
the transformation that brings the model into alignment with the scene. The
presented system belongs to the global matching group.

3.2 Object Recognition System

Our system has three parts. The first part performs a simple visual grouping
based on predefined colors of an object. The second part does the recognition
and pose estimation of the perceived object and the third part is used to
acquire new models of new objects that are not known to the system.

3.2.1 Visual Grouping

There is a considerable evidence that prior to the recognition, the early pro-
cessing stages in the visual cortex are involved in grouping and segmentation
operations on the base of image properties, such as proximity, collinearity,
similarity of contrast, color, motion, texture, etc [101]. The grouping and
segmentation process attempts to organize the image into coherent units,
and to decide what parts of an image belong together.

Our visual grouping algorithm tries to group objects based upon prede-
fined colors of an object. The visual grouping is done as follows:

3.2. Object Recognition System 41

1. Read in an RGB color image.

2. Convert the image into its HSV (Hue, Saturation, Value) image format.

3. Generate a binary image with pixels marked for the object of interest
with predefined colors.

4. Use graph-search or an equivalent algorithm to group pixels that come
from the same object, and extract image regions (components).

5. Get the centroid and number of pixels of each of the components in the
image.

3.2.2 Recognition and Model Acquisition Systems

The recognition system starts by generating a binary contour image from
the components image using a standard contour following algorithm. Then
it generates the complement image of the contour image and calculates the
distance transform [45, 92] of it. The distance transform assigns a distance
value of zero to all contour points and a positive distance value to all non-
contour points as the distance to the closest contour point depending on
the distance metric used. In calculating the distance transform, we have
assumed that the complement of the contour image is toroidal rather than
planar. Figure 3.1 shows the steps involved in getting the distance transform
of an input image to the recognition system. The distance transform is used
in determining the fitness value of an individual.

(a) (b) (c) (d) (e)

Fig. 3.1: The steps involved in getting the distance transform taking letter
A as an example. (a) The input image. (b) The components image
which is the result of the visual grouping algorithm. (c) The contour
image generated by the standard contour following algorithm. (d)
The complement of the contour image. (e) The distance transform
of the complement of the contour image.

In this work, we have used a chromosome (an individual) shown in Figure
3.2. The chromosome has four genes. The first gene codes the index of an
object in the database of the contour models, which are already acquired

42 Chapter 3. Model Based Evolutionary Object Recognition System

by the system. The second, third and fourth genes code the rotation of the
object about z-axis, y-axis and x-axis respectively relative to the non-rotated
model of the object. The centroid of the model is taken as the origin of the
coordinate system and the z-axis is assumed to be perpendicular to the image
plane of the camera. The length of the chromosome is determined by the
number of contour models in the system and the number of bits used in
representing the orientation of an object. The number of bits that code the
rotation of an object about an axis determines the resolution of the rotation
angle coded by the chromosome.

Index of
an object.

Rotation
about z-axis.

Rotation
about y-axis.

Rotation
about x-axis.

Fig. 3.2: A chromosome: The first gene codes the object to be recognized.
The second, third and fourth genes code the orientation of the ob-
ject.

A fitness function of a chromosome given by

f = −
∑

i

di, (3.1)

is used to determine the fitness value of an individual. It is defined as the
negative sum of the distance values, di, in the distance transform of the
complement image of the contour image. The index i runs for all points of
the translated, scaled and rotated contour model of an object coded by the
chromosome. A zero value of the fitness function means a perfect fit of the
model to a particular component in the image since the distance values for
the contour points in the distance transform are zero.

Figure 3.3 shows a contour image of an 8× 8 hypothetical input image,
the distance transform of the complement of the contour image and contour
models coded by three different chromosomes which are projected onto the
distance transform. The fitness value of the chromosomes coding the contour
models shown in Figure 3.3(c), 3.3(d) and 3.3(e) are -31 , -39 and 0 respec-
tively. Figure 3.3(e) shows a case where the model fits to the component
perfectly.

The following steps are used in evaluating an individual:

1. Decode the individual. That is, get the type of the contour model with
its orientation coded by the chromosome.

3.2. Object Recognition System 43

(a) (b) (c) (d) (e)

Fig. 3.3: Determination of the fitness value of a chromosome. (a) The con-
tour image. (b) The distance transform of the complement of the
contour image. (c), (d) and (e) Contour models coded by different
chromosomes and projected onto the distance transform.

2. Calculate the scale factor between the rotated contour model and the
component using,

s =

√

Ai

Am
(3.2)

where Ai is the area of the component in the image and Am is the
area of the orthogonal projection of the rotated contour model onto
the plane parallel to the image plane of the camera.

3. Translate the contour model to the centroid of the component. Then
rotate it using the orientation angle obtained when decoding the chro-
mosome and scale it using the scale factor calculated above.

4. Determine the fitness value of the individual using equation (3.1).

The position (centroid) of a component and the number of pixels of the
component are determined by the visual grouping algorithm. The position
of a contour model and the scale factor between the contour model and
the component are determined while an individual (chromosome) is being
evaluated. The search for the best model with best orientation that fits a
given component in the image is done by the genetic algorithm. One can see
that the recognition and pose estimation problems are solved simultaneously
by the recognition system.

The main purpose of the genetic algorithm is to solve the optimization
problem of finding the maximum value on the fitness landscape. Unlike tra-
ditional search algorithms like gradient-following strategy, genetic algorithms
are not trapped in a local minima. They usually find the global maximum of
a multimodal function having many local maxima and minima. Figure 3.4
shows an example of a fitness landscape of an input image containing letter

44 Chapter 3. Model Based Evolutionary Object Recognition System

W, which is rotated by 180 degrees about z-axis. The coordinate at which
the global maximum value of the fitness function occurs gives the index of
the object recognized with its rotation angles. The genetic algorithm uses
its genetic operators to move on the fitness landscape.

Fig. 3.4: A fitness landscape of an input image containing letter W rotated by
180 degrees about z-axis taking the centroid of letter W as the origin
of the coordinate system. The global maximum of the landscape
occurs at the index of the contour model of letter W in the database
of the contour models and at rotation angle of 180 degrees.

The recognition system executes the following two important steps while
recognizing an object:

1. Perform a complete genetic run for a component until the best individ-
ual is found.

2. Decode the best individual and return the object recognized with its
pose.

The main advantage of the recognition system is that it can be easily
parallelized. This can be done in three different ways. First, we can have
copies of the algorithm that operate in parallel on different components de-
tected in the input image so that the recognition of all detected components
can be done simultaneously. Second, we can run a parallel implementation of
the algorithm for one component and apply it to the rest of the components

3.3. Experiments and Results 45

sequentially. The algorithm can be parallelized since genetic algorithms let
themselves easily parallelized [103]. This is specially useful if we want to in-
crease the recognition rate of our system. Third, we can combine the above
types of parallelizations and benefit an increase in both the recognition rate
and speed of recognition.

The model acquisition system is used to acquire and save a new model
for a new object for which the model does not exist in the system. It uses the
above visual grouping algorithm to identify and locate the object. Then it
uses a contour following algorithm to extract the contour points of the object
and samples the contour points evenly so that the resulting model has the
same number of points as the other models in the system. This is important
because the fitness value of an individual depends on the number of contour
points of a model coded by the chromosome (individual).

3.3 Experiments and Results

For all the experiments, we have set the parameters of the genetic algorithm
as shown in Table 3.1. The system is made to acquire models of 64 objects
some of which are shown in Figure 3.5. The objects include the English
alphabets, digits, free hand drawn objects and some German traffic signs.
The resolution of the system in coding the rotation angle of the object about
an axis is 0.7045 degrees.

No. of individuals in the population 500
Crossover probability 0.2
Mutation probability per bit 0.05
Selection scheme Truncation
No. of bits per gene coding the index of an object 6
No. of bits per gene coding a rotation angle about z-axis 9
No. of bits per gene coding a rotation angle about y-axis 9
No. of bits per gene coding a rotation angle about x-axis 9

Tab. 3.1: Parameters of genetic algorithm used

Experiment on Artificial Images

In this experiment, we study the effect of random noise on the recognition
rate and pose estimation of the system. Each input image is subjected to

46 Chapter 3. Model Based Evolutionary Object Recognition System

Fig. 3.5: Some of the objects whose models are acquired by our system.

different levels of random corruption between 0% to 50%. The percentage of
the noise levels shows the ratio of the number of pixels that are corrupted
by the random noise to the total number of pixels in the image. A uniform
random function generator is used to select a pixel in the input image. The
color of the selected pixel is made to change to some other color which is not
used in the visual grouping algorithm.

0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

100

110

Noise level

R
ec

og
ni

tio
n

ra
te

Fig. 3.6: Recognition rate obtained for different random noise levels.

Figure 3.6 shows the result obtained for different noise levels added to
the test images. As the test images, we have used translated, scaled and
rotated versions of all images whose models are acquired by our system. The
translation, scale and rotation parameters of each image is randomly selected.
As can be seen in Figure 3.6, the system has 100 percent recognition rate for
noise level up to 5%. This makes the system robust to be used for real life
applications.

In order to investigate the pose (rotation) estimation capability of our
system, we have generated rotated versions of one of the German traffic signs
shown in Figure 3.7. The non-rotated version of this traffic sign was already

3.3. Experiments and Results 47

acquired by our system. We have measured the average pose estimation error
of 10 experiments, which are run for 0%, 1%, 5% and 10% noise levels and
for all rotation angles shown in Figure 3.7.

Image

Angle 0 20 40 60 80 100 120 140 160

Image

Angle 180 200 240 260 280 300 320 340 360

Fig. 3.7: Rotated versions of the German traffic sign used to indicate a pedes-
trian path.

Each of the experiments are done by starting the recognition system with
different random seed values. As can be seen from Figure 3.8, the system is
able to estimate the pose of an object with absolute maximum pose estima-
tion error of 5.5 degrees for noise level of 10%. This makes the system again
robust for estimating the pose of an object.

Figure 3.9 shows sample recognition results obtained on artificial images.
As can be seen from the figure, the recognition system has found in (d), (e),
(f) and (h) equivalent rotation angles, which will result in the same image
projected onto the image plane of the camera.

Experiment on Real Images

Figure 3.10 shows sample recognition results obtained in recognizing real 2D
images. For the experiments, we have used plane images printed on sheet of
papers and some real German traffic signs.

For real images, we have obtained a recognition rate of 95%. This recog-
nition rate can be increased even to a higher level if one uses a parallel
implementation of the recognition system as stated in Section 3.2, where
different recognizers work on one component at the same time.

We have tested and implemented our system on a standard 800 MHz
computer running the Linux operating system. On the system, our algorithm
was able to process 2 input images per second if the image contains one
component. The recognition time of the system increases linearly with the
number of components detected in the input image.

48 Chapter 3. Model Based Evolutionary Object Recognition System

0 50 100 150 200 250 300
−3

−2

−1

0

1

2

3

Rotation angle in degrees

R
ot

at
io

n
es

tim
at

io
n

er
ro

r
in

 d
eg

re
es

Noise level 0%

0 50 100 150 200 250 300
−3

−2

−1

0

1

2

3

Rotation angle in degrees

R
ot

at
io

n
es

tim
at

io
n

er
ro

r
in

 d
eg

re
es

Noise level 1%

0 50 100 150 200 250 300
−2

−1

0

1

2

3

4

Rotation angle in degrees

R
ot

at
io

n
es

tim
at

io
n

er
ro

r
in

 d
eg

re
es

Noise level 5%

0 50 100 150 200 250 300
−1

0

1

2

3

4

5

6

Rotation angle in degrees

R
ot

at
io

n
es

tim
at

io
n

er
ro

r
in

 d
eg

re
es

Noise level 10%

Fig. 3.8: Pose estimation error for 0, 1, 5 and 10 percent noise levels.

3.4 Summary

A novel evolutionary object recognition system, which is independent of
translation, rotation and scaling, for recognizing 2D plane objects in 3D
and determining their 3D poses simultaneously is presented. The system has
three important components. The first part performs the visual grouping for
detecting pixels that come from the same object. The second part does the
recognition and pose estimation using genetic algorithm and the third part
is used to acquire a model of new object whose model is not already in the
system.

From the experiments, it can be concluded that one can use the power
of genetic algorithms to search for the best fit in the space of objects and
their pose. The presented system is suitable for applications requiring the
recognition of navigation symbols such as traffic signs.

The system has one limitation. It is not robust with respect to occlusions.
If an object is occluded, the system may not recognize the object correctly.
The system can be extended to handle the occlusion problem by redesigning

3.4. Summary 49

a.(60, 0, 0) b.(60, 60, 30) c.(10, 70, 40) d.(30, 45, 50)

a’.(59.8, 0, 0) b’.(58.5, 59.9, 32.4) c’.(9.2, 70.5, 42.9) d’.(209.9, 135.7, 231.1)

e.(45, 10, 20) f.(220, 60, 180) g.(30, 60, 45) h.(0, 60, 0)

e’.(45.1, 360.0, 22.5) f’.(212.8, 296.6, 172.6) g’.(30.3, 59.8, 44.4) h’.(180.4, 240.2, 179.6)

Fig. 3.9: Sample recognition results obtained from experiments on artificial
images. The numbers in the brackets below each of the images show
the rotation angles of the images about z, y and x-axis respectively.
The contour images show the recognition result obtained.

the visual grouping algorithm to use other features such as object boundaries.

50 Chapter 3. Model Based Evolutionary Object Recognition System

Fig. 3.10: Sample recognition results obtained in recognizing real 2D images.
The contour images below each of the images show the type of the
object that is recognized.

Chapter 4

IMPROVING LEARNING AND
ADAPTATION CAPABILITIES OF
AGENTS

When an infant learns how to go and how to stand, it has no explicit
teacher, but it does have a direct sensory-motor connection to its environ-
ment. Through this connection, the infant receives a wealth of information
about cause and effect, about consequences of actions, and about what to
do in order to achieve goals. This interaction is a major source of knowl-
edge about our environment and ourselves. Learning from interaction is a
fundamental idea underlying nearly all theories of learning and intelligence
[97]. It is used by agents at the individual level. In this chapter, we investi-
gate agents using learning from interaction. This type of learning is different
from supervised learning, which is learning from examples provided by a
knowledgeable external supervisor. Supervised learning is an important type
of learning but on its own it is not adequate for learning from interaction.
Moreover, it is usually impractical to obtain examples of desired behavior
that are both correct and representative of all the situations in which the
agent has to act and learn [75].

At the population level, it is clear that parents have inherited the infants
the ability to learn and survive. This inherited ability is developed through
evolution. A generation of an organism can only survive or continue to live
if the population adapts itself to various situations in the environment. This
shows that the learning and adaptation capabilities of agents is also affected
by evolution.

An individual or a population of individuals learn and adapt to a situation
in an environment either from scratch, that is without having any knowledge
about the situation, or continually depending on the initial knowledge about
the situation. At individual level, adaptation refers to the maximization of
the satisfaction of the individual in its lifetime for different situations in the
environment. At population level, adaptation refers to the survival of the

52 Chapter 4. Improving Learning and Adaptation Capabilities of Agents

individual. In other words, it is the ability of the individual to have offspring
in a new situation.

Natural evolution implies that organisms adapt to their environment.
Evolution works over many generations, covering much longer periods than
those of lifetime learning [52]. How could an individual learn to use its eyes if
it had not been equipped with eyes through evolution? An organism without
any organ of sight might not be able to react to visual stimuli, but it could
be the ancestor of a species with eye-like organs. Therefore, evolution can
be considered as a process of meta-learning on a generational level. Only
evolutionary adaptations and innovations enable organisms to “optimally”
react to environmental conditions. This involves an impressive potential for
creativity and innovation.

Reinforcement learning [42, 97] is one form of learning from interaction.
It is learning what to do, how to map situations to actions so as to maximize
a numerical reward signal. The learner is not told which actions to take, but
instead must discover by itself which actions yield the most reward by trying
them [97]. Like the infant, an agent using reinforcement learning learns and
adapts itself through interaction with the environment. In this chapter, we
use Q-learning [8], which is one form of reinforcement learning, to investigate
the learning and adaptation of agents at individual level.

Evolutionary algorithms are, on the other hand, flavors of the well known
machine learning method called ”beam search” where the machine learning
evaluation metric for the beam is called the ”fitness function” and the beam
of the machine learning is referred to as the ”population” [6]. Like other ma-
chine learning systems, evolutionary algorithms have operators that regulate
the size, contents and ordering of the beam (population). We use genetic al-
gorithms (GA), which are one form of evolutionary algorithms, to investigate
the learning and adaptation of agents at population level.

We try to answer the following important questions:

1. Is the learning time required by agents shorter in continual learning in
comparison to learning from scratch at both individual and population
levels, and under various learning conditions?

2. Is it possible to improve the learning and adaptation capability of
agents by hybridizing learning and evolutionary algorithms?

We will use agents using Q-learning, hybrid of multi-layer perceptron
(MLP) and genetic algorithm, hybrid of Q-learning and genetic algorithm in
answering the above questions. The agents live and operate in an artificial
robot world.

4.1. The Robot World (Test Scenario) 53

4.1 The Robot World (Test Scenario)

A deterministic world of denumerable states is used as a test scenario to
investigate the learning and adaption capability of an agent. The agent is
assumed to be a point robot with simplified motor actions: left, forward
and right [42]. All actions can be tried in all states. The robot world and
its state of transitions as a function of the present state and action taken,
are shown in Figure 4.1. The arrows in the cells show the orientation of the
point robot when the robot finds itself in these states.

The task of the agent is to reach a given goal state through the shortest
path. For reinforcement learning agents, a reward function given any current
state, next state and action, st, st+1 and a, is given by equation (4.1).

Ra
st,st+1

=

0 if st+1 6= st

1 if st+1 = goal state
−1 if st+1 = st

. (4.1)

The negative numerical reward in equation (4.1) discourages agents at-
tempting an action against the world boundary. This action does not change
the state of the environment. For genetic algorithms, a fitness function given
by equation (4.2) is used.

f (n) = γn. (4.2)

The quantity f represents the fitness value of an individual, where γ ∈
[0, 1) is a constant, and n is the number of steps taken by the point robot
from a given start state to a given goal state. Equation (4.2) encourages
those individuals that go from the start state to the goal state through a
shortest path. Figure 4.2 shows a fitness function for γ = 0.8. The dynamics
of the robot world, which is described by the state transitions table and the
reward function, is not known to the agents a priori.

The robot world is a very highly simplified scenario of a real robot world.
First, it is impossible to think a dimensionless robot or completely distin-
guishable states. Second, it is not possible to throw the details of low level
control and deal with only simplified motor actions. Even though these as-
sumptions are unrealistic, we base our experiments on artificial robot world
due to the following justifiable reasons:

1. The experiments have to be carried out for a large number of times
for different conditions of learning and adaptation experiments. This
requires a lot of time and energy to execute all the experiments on real
robot until one gets agents with satisfactory behaviors.

54 Chapter 4. Improving Learning and Adaptation Capabilities of Agents

0

1

3

2

4

5

7

6

12

13

15

14

8

9

11

10

(a) (b)

(c)

(d)

Fig. 4.1: A two-dimensional robot world (a) The robot world. The point
robot must find the shortest path from any start state to the goal
state. (b) The state transitions table that governs the motion of
the point robot. (c) The state flow diagram of the state transi-
tions table. The letters at the sides of the transition lines indicate
the robot’s motor actions F , R and L, which stand for forward ,
right and left motor actions, respectively. (d) The interpreta-
tion of the robot world. The robot world consists of four positions.
In each of these positions, the robot can take one of the four ori-
entations. A robot in state 0 or a robot in position I with orien-
tation north will bump against the world boundary if it executes a
forward action. In this case, the state of the robot world will not
change. If it executes a right action, then it changes its orientation
to east or goes to state 1.

4.2. What to Learn? 55

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of steps taken

F
itn

es
s

va
lu

e

0.8n

Fig. 4.2: The fitness function for γ = 0.8. The fitness value of an individual
gets higher as the number of steps taken by the individual gets
smaller.

2. There is a danger of coming up with wrong conclusions with experi-
ments on real robots. This is because of the fact that noise and error
causes certain parts of the agent’s policy to fluctuate.

A more efficient and inexpensive method is, therefore, to run the exper-
iments on an artificial robot world that needs much less experimental effort
and yet to come up with domain free results with respect to our problem at
hand.

4.2 What to Learn?

The agent learns on-line through interaction with the environment either the
optimal policy for perceived states or the action values of the states of the
environment. A policy defines the learning agent’s way of behaving at a given
time. It is a mapping from perceived states of the environment to actions to
be taken when in those states. An action value of a state shows “how good”
it is for an agent to perform a given action in a given state.

By optimal policy, we mean a policy that enables the agent to go from
a given start state to a given goal state with minimum number of actions
or steps. With genetic algorithms, the agent learns directly the optimal
policy without having to learn the model of the environment. In Q-learning,
the agent learns the action values and saves them in a Q-table [42]. It can
generate the optimal policy for perceived states from the Q-table.

56 Chapter 4. Improving Learning and Adaptation Capabilities of Agents

4.3 Experimental Setup

The following test cases are selected for all experiments that are presented in
this thesis. Each of the cases shows the level of the knowledge of the agent
about what is going to be learned.

Test Case A

In this test case, we assume that the states of the policy that is going to be
learned are completely contained in the previously learned optimal policy.
For example, one of the optimal policies from start state 7 to goal state 15
contains the states 7, 4, 5, 13, 12, 15. The sequences of actions that are
contained in the policy are {right, right, forward, left, left}.

Assuming that the previously learned optimal policy is this policy, any
policy with start state sstart ∈ {7, 4, 5, 13, 12, 15} and goal state sgoal = 15
can be considered as a test policy, since it is known from Bellman optimality
equation [42, 97] that an optimal policy with sstart ∈ { 7, 4, 5, 13, 12, 15}
and goal state 15 has its states completely contained in one of the optimal
policies with start state 7 and goal state 15.

Test Case B

Here it is assumed that the previously learned optimal policy and the policy
which is going to be learned have common states. A policy with states 3,
0, 1, 5, 4, 7 generated by sequence of actions {right, right, forward, left,
left } and a policy with states 2, 1, 5, 13, 12, 15 generated by actions {left,
forward, forward, left, left} are good examples of policies having common
states {1, 5}.

Test Case C

The previously learned optimal policy and the policy which is going to be
learned have no common states. Examples of optimal policies which have no
common states are 1, 5, 13, 9, 8, 11 generated by actions {forward, forward,
forward, left, left} and 15, 7, 3, 0 generated by actions {forward, forward,
right}.

For all the experiments in this chapter, the start and goal states {7, 15},
{3, 11} and {15, 0} are selected for the previously learned optimal policy
for the test case A, B and C, respectively, and the start and goal states {5,

4.4. Offline Solution to the Optimal Policy in the Artificial Robot World 57

15}, {7, 15} and {1, 11} are selected for the optimal policy which is going
to be learned for the test case A, B and C, respectively.

4.4 Offline Solution to the Optimal Policy in the Artificial

Robot World

In this section, a discussion is given on how to obtain the optimal solution
using different methods. The following assumptions are made before finding
the optimal policy:

1. The point robot (the agent) has a predefined goal state. In our case we
take state 15 as the goal state.

2. The optimal policy is determined off-line. That is, the dynamics of the
environment is known a priori to the agent.

The dynamics of the environment in which the agent live and operate
are determined using equations (2.10) and (2.11). For our test scenario, the
dynamics of the environment is given by equation (4.3).

P a
ss′ =

{

1 if s′ is a valid next state
0 otherwise

Ra
ss′ =

0 if st+1 = s′

1 if st+1 = goal state
−1 if st+1 = st

(4.3)

We can apply the optimal Bellman equations to solve for the optimal
state-value function V ∗ or the optimal action-value function Q∗. The optimal
Bellman system of equations for the goal state 15 is

V ∗ (0) = max

γV ∗ (3) left
γV ∗ (1) right
−1 + γV ∗ (0) forward

V ∗ (1) = max

γV ∗ (0) left
γV ∗ (2) right
γV ∗ (5) forward

...

V ∗ (15) = max

γV ∗ (14) left
γV ∗ (12) right
γV ∗ (7) forward

(4.4)

58 Chapter 4. Improving Learning and Adaptation Capabilities of Agents

In equation (4.4), γ is the discounting factor. It is set to 0.8 for this example.
The words “left”, “right” and “forward” show the possible motor actions of
the point robot. The equation has a unique solution that is independent
of a particular optimal policy. If one tries to apply exhaustive search for
finding all policies which result in the same optimal state value function,
one has to solve 316 = 43046721 systems of simultaneous equations to get
the 32 optimal policies. Assuming that we need 1µs to solve one system of
simultaneous equations, we need about 43 seconds to solve all systems of
simultaneous equations in order to find all optimal policies. For a backgam-
mon game, for example, which has about 1029 states, it would take millions
of years on today’s fastest computers to solve the Bellman equation for V ∗

[97]. In general, we can use dynamic programming methods (either value
iteration or policy iteration) to solve MDPs with millions of states using
today’s computers.

We have applied the value iteration algorithm (dynamic programming)
and found an optimal state value function shown in table 4.1 in only 20
iterations, for an absolute error of 10−50. From the table, it is possible to get
all the 32 optimal policies by using a one-step ahead search. For example, for
state 0 the optimal action is right since the action right will move the point
robot to state 1, which is a valid next state with the largest state value. A
state value of a state measures “how good” it is for an agent to be in that
state. From the result obtained, we see that the state value of state 3 is worst
for the goal state 15. This means that no matter which starting action the
agent takes from this state, it needs the largest number of steps to reach the
goal state as compared to starting from other states. One can also see that
it is best for an agent to be in the states 11, 12 or 14, since the agent needs
to execute only one optimal action (minimum number of actions) to reach
the goal state.

↑0 (1.13778) ↑4 (1.42222) ↑12 (2.77778) ↑8 (2.22222)
→1 (1.42222) →5 (1.77778) →13 (2.22222) →9 (1.77778)
←3 (0.91022) ←7 (1.13778) ←15 (2.22222) ←11 (2.77778)
↓2 (1.13778) ↓6 (1.42222) ↓14 (2.77778) ↓10 (2.22222)

Tab. 4.1: The optimal state value for the goal state 15.

We can also solve equation (4.4) using a genetic algorithm. A chromosome
containing 16 genes is defined, where a gene codes an action which moves
a point robot to the next state having the maximum state value. In other
words, a chromosome codes directly a policy and we want to use a genetic
algorithm to search for an optimal policy. An example of a chromosome

4.4. Offline Solution to the Optimal Policy in the Artificial Robot World 59

coding a system of simultaneous equations (policy) is shown in Figure 4.3.
The index of a gene along the chromosome is the same as the corresponding
state in the robot world.

0 1 2 . . . 1 10

Fig. 4.3: A chromosome coding a system of simultaneous equations. A gene
can take a value of 0, 1 or 2 representing an equation corresponding
to left, right and forward motor actions respectively of the point
robot.

In order to find a system of simultaneous equations whose solution is an
optimal state value function, we have to define a fitness function evaluating an
equation. We can use equation (4.2) for evaluating a system of simultaneous
equations in such a way that the equation is used repeatedly for each starting
state. The fitness function evaluating an equation is thus given as

f =
16
∑

s=0

γns , (4.5)

where ns represents the number of steps taken by the point robot from a
starting state s. Table 4.2 shows the parameters of the genetic algorithm
used in finding the system of simultaneous equations, whose solution is the
optimal state value function.

Number of individuals 50
Crossover probability 0.2
Mutation probability per gene 0.05
Selection method Truncation selection
Number of generations 50

Tab. 4.2: Parameters of genetic algorithm used.

We have run the algorithm and found the best system of simultaneous
equations (policy) after 11 generations. The best system of simultaneous
equations found by the genetic algorithm is given by equation (4.6).

V ∗ (0) = γV ∗ (1) right
V ∗ (1) = γV ∗ (5) forward

...
V ∗ (15) = γV ∗ (14) left

(4.6)

60 Chapter 4. Improving Learning and Adaptation Capabilities of Agents

0 5 10 15 20 25 30 35 40 45 50
1

2

3

4

5

6

7

8

9

10

Generation

F
itn

es
s

va
lu

e

Fitness value of the best individual

Average fitness value of the population

Fig. 4.4: A genetic algorithm run for finding the best system of simultaneous
equations. The best equation is found after the 11th generation.

The solution of equation (4.6) is the same as the solution found by ap-
plying value iteration algorithm, which is shown in Table 4.1. As compared
to the value iteration algorithm, the genetic algorithm is slower since it has
solved 50×11 = 550 equations before it obtained an equation whose solution
is the optimal state value function.

The Monte Carlo algorithm with “exploring starts” shown in Figure 2.8
is also used to find the optimal action values. The algorithm needed about
10000 iterations to get the action values, from which one can generate one
of the optimal policies for the goal state 15. As compared to the genetic
algorithm used, Monte Carlo methods needed much longer time to get the
optimal action values.

Conclusion: From this example, one can conclude that it is possible to
solve the Bellman optimality equations in different ways. If the dynamics of
the environment is known a priori, then dynamic programming can be used
to get the solution faster than genetic algorithms or Monte Carlo methods.
Genetic algorithms and Monte Carlo methods do not necessarily require the
knowledge of the dynamics of the environment a priori. Genetic algorithms
can directly search for the optimal policy in the space of policies. But Monte
Carlo methods can estimate the action values (model of the environment)

4.5. Learning and Adaptation at Individual Level 61

from experience. One can then generate the optimal policy from the es-
timated actions values. For an environment with a very large number of
states such as backgammon, it is only possible to solve the optimal Bellman
equation approximately in a given limited time.

4.5 Learning and Adaptation at Individual Level

Organisms, for example human beings, are always learning and adapting to
their environment in their lifetime. Much of the learning is done through
direct interactions with the environment. Consider a person who cannot ride
a bicycle. Let us say that this person wants to learn how to ride a bicycle.
The first thing he does is he asks about how to ride a bicycle. But only
telling him about how to ride a bicycle will not help him to ride the bicycle
at the first trial. The only way to learn to ride a bicycle is, therefore, to try
and have a real experience with the bicycle. This person has to do a large
number of trials before he learns how to ride a bicycle. Of course, the number
of trials made is dependent on the individual. Each of the trials made by the
person, whether it is successful or not, can be evaluated by the person since
he knows how well he has ridden the bicycle. Assuming that the bicycle is
the environment and the person is the agent, the notion “how well” is the
reward the person receives from the environment after having a trial. Each
of the trials is made up of a sequence of actions that are executed by the
person in riding the bicycle. The state of the bicycle can be the tilt angle and
forward speed of the bicycle relative to the ground. Depending on the reward
received and the state of the bicycle, the person has to execute a sequence of
actions to keep the bicycle upright and moving forward at a certain speed. In
this chapter, we use Q-learning, which is one from of reinforcement learning,
to investigate the learning and adaptation capability of agents that learn
through interaction with the environment and from experience.

The following assumptions are made for experiments in this section and
the following sections.

1. The agent uses learning from interaction. That is, it uses an action-
perception cycle.

2. The agent does not know the dynamics of the environment a priori.
Moreover, the agent tries to learn an optimal policy only for perceived
states.

62 Chapter 4. Improving Learning and Adaptation Capabilities of Agents

4.5.1 Q-Learning

Q-learning is an online learning method, in which the agent learns from
experience to act optimally in a given environment. The agent learns the
model of the environment and saves it in the action-value function (Q-table).
The agent uses the action-value function to generate the optimal policy for
a given start and goal state.

Q-learning has the properties of both dynamic programming and Monte
Carlo methods. It bases itself on the recursive implementation of the Monte
Carlo method and uses the optimal Bellman equation to update the action-
value of the current state. This can be shown as follows: The recursive
implementation of the Monte Carlo method can be written as

Q (st, at)← Q (st, at) + α

[

∞
∑

k=0

γkrt+k+1 −Q (st, at)

]

, (4.7)

which is equivalent to

Q (st, at)← Q (st, at) + α

[

rt+1 + γ

∞
∑

k=0

γkrt+k+2 −Q (st, at)

]

. (4.8)

With online learning, the agent cannot receive all rewards. It can only receive

the current reward for the current action. The term
∞
∑

k=0

γkrt+k+2 is the

return for the next state and action. That is Q (st+1, at+1) =
∞
∑

k=0

γkrt+k+2.

Replacing
∞
∑

k=0

γkrt+k+2 by Q (st+1, at+1), we get equation (4.9).

Q (st, at)← Q (st, at) + α [rt+1 + γQ (st+1, at+1)−Q (st, at)] (4.9)

If we want equation (4.9) to converge to the optimal action-value function,
Q∗, then we have to select the maximum value of the action-values of the
next state. This follows directly from the optimal Bellman equation for Q∗,

Q (st+1, at+1) = max
a

Q (st+1, a) . (4.10)

Using equation (4.10), we obtain an equation for the Q-learning algorithm,

Q (st, at)← Q (st, at) + α
[

rt+1 + γ max
a

Q (st+1, a)−Q (st, at)
]

. (4.11)

4.5. Learning and Adaptation at Individual Level 63

For a correct convergence to the optimal action-value function, the agent has
to update its action-vale function for all state-action pairs for the perceived
states. In other words, the agent has to explore its environment and at the
same time exploit what it has learned so far [8].

4.5.2 Exploration and Exploitation

With reinforcement learning, specially with on-line reinforcement learning,
there is a problem of exploration and exploitation. On the one hand, the
agent wants to explore the environment so as to find the optimal solution.
On the other hand, the agent wants to minimize the cost of learning by
exploiting the environment.

There are a lot of methods that balance the exploration and exploitation.
The simplest and most popular form of balancing the exploration and ex-
ploitation is the so called ǫ-greedy-action selection method. In this method,
an action is selected greedily most of the time. But every once in a while with
small probability ǫ, an action is selected at random, uniformly, independently
of the action-value estimates.

The other popular action selection mechanism is the softmax action se-
lection method. The probability of executing an action is determined by a
graded function of the estimated values. The greedy action is still given the
highest selection probability. But all the others are ranked and weighted
according to their value estimates. The Boltzmann distribution is used to
calculate the action selection probability. Let A be a set of all actions. The
probability of executing an action a ∈ A is given by the following equation,

P (a) =
e−Q(s,a)/τ

∑

a′∈A

e−Q(s,a′)/τ
(4.12)

where τ is a positive parameter called temperature. High temperatures cause
the action to be nearly equiprobable. Low temperatures cause a greater dif-
ference in selection probability for actions that differ in their value estimates.

4.5.3 Experiments and Results

The experiments are done for all test cases mentioned in Section 4.3. Table
4.3 shows the parameter of the Q-learning algorithm used. For balancing
the exploration and exploitation of the environment, we have used a simple
ǫ-greedy-action selection method. The reward function given by equation
(4.1) is used to evaluate the actions executed by the agent.

64 Chapter 4. Improving Learning and Adaptation Capabilities of Agents

α γ

0.3 0.3

Tab. 4.3: Parameters of the Q-learning algorithm.

Test Case A

In this test case, the states of the policy which is going to be learned are
completely contained in the previously learned optimal policy.

20 40 60 80 100
0

10

20

30

40

Trials

N
um

be
r

of
 A

ct
io

ns

Start state = 5 Goal state = 15
Learning from scratch

20 40 60 80 100
0

10

20

30

40

Trials

N
um

be
r

of
 A

ct
io

ns

Start state = 5 Goal state = 15
Continual Learning

(a) (b)

0

50

100

Left

Right

Forward
0

5

10

15

TrialsActions

A
ve

ra
ge

 v
al

ue

0

50

100

Left

Right

Forward
−5

0

5

10

15

TrialsActions

A
ve

ra
ge

 v
al

ue

(c) (d)

Fig. 4.5: Learning from scratch and continual learning. (a) Average number
of actions taken versus trials in learning from scratch. (b) Aver-
age number of actions taken versus trials in continual learning. (c)
Average action values for each state in learning from scratch. (d)
Average action values for each state in continual learning.

From Figure 4.5, one can see that the agent does not need to learn the
new optimal policy in continual learning. This is due to the fact that the
states of the new optimal policy are completely contained in the previously

4.5. Learning and Adaptation at Individual Level 65

learned optimal policy. One can also see that action values, that represent
the learned model of the environment, remain the same in the continual
learning.

Test Case B

In test case B, the previously learned optimal policy and the optimal policy
that is going to be learned have some states in common.

20 40 60 80 100
0

10

20

30

40

Trials

N
um

be
r

of
 A

ct
io

ns

Start state = 7 Goal state = 15
Learning from scratch

20 40 60 80 100
0

10

20

30

40

Trials

N
um

be
r

of
 A

ct
io

ns
Start state = 7 Goal state = 15
Continual Learning

(a) (b)

0

50

100

Left

Right

Forward
−5

0

5

10

15

TrialsActions

A
ve

ra
ge

 v
al

ue

0

50

100

Left

Right

Forward
−5

0

5

10

15

TrialsActions

A
ve

ra
ge

 v
al

ue

(c) (d)

Fig. 4.6: Learning from scratch and continual learning. (a) Average number
of actions taken versus trials in learning from scratch. (b) Aver-
age number of actions taken versus trials in continual learning. (c)
Average action values for each state in learning from scratch. (d)
Average action values for each state in continual learning.

Figure 4.6 shows that the learning time required by the agent in continual
learning is shorter than that required in learning from scratch. The action
values are adjusted by learning the action values for the new optimal policy
in the continual learning accordingly.

66 Chapter 4. Improving Learning and Adaptation Capabilities of Agents

Test Case C

Here, the previously learned optimal policy and the optimal policy that is
going to be learned have no states in common.

20 40 60 80 100
0

10

20

30

40

Trials

N
um

be
r

of
 A

ct
io

ns

Start state = 1 Goal state = 11
Learning from scratch

20 40 60 80 100
0

10

20

30

40

Trials
N

um
be

r
of

 A
ct

io
ns

Start state = 1 Goal state = 11
Continual Learning

(a) (b)

0

50

100

Left

Right

Forward
−5

0

5

10

15

TrialsActions

A
ve

ra
ge

 v
al

ue

0

50

100

Left

Right

Forward
−5

0

5

10

15

TrialsActions

A
ve

ra
ge

 v
al

ue

(c) (d)

Fig. 4.7: Learning from scratch and continual learning. (a) Average number
of actions taken versus trials in learning from scratch. (b) Aver-
age number of actions taken versus trials in continual learning. (c)
Average action values for each state in learning from scratch. (d)
Average action values for each state in continual learning.

As can bee seen in Figure 4.7, even though the previously learned optimal
policy and the optimal policy that is going to be learned have no common
states, the learning time in continual learning is shorter than the learning
time in learning from scratch. This is possible due to the fact that the agent
has collected experience about other states, which are not contained in the
previously learned policy, while learning it.

From the experiments, we have concluded that the learning time in con-
tinual learning is shorter than the learning time in learning from scratch at
an individual level and under different learning conditions. Moreover, the

4.6. Learning and Adaptation at Population Level 67

different test cases suggest how we may bias (give prior knowledge to) agents
that learn from experience. If we bias an agent in such a way that the states
of the policy that is going to be learned are completely contained in the op-
timal bias policy, then there is nothing left for the agent to learn and the
bias is strong. If the bias policy and the policy that is going to be learned
have no common states, a relatively large amount of information is left for
the agent to learn. This shows that the amount of information that is going
to be learned depends on the number of common states between the optimal
bias policy and the policy that is going to be learned. The more common
states the optimal bias policy and the policy that is going to be learned have,
the less information is left for the agent to learn.

4.6 Learning and Adaptation at Population Level

Populations of organisms have been adapting to their particular environmen-
tal conditions through evolutionary selection (survival of the fittest) and vari-
ability among them. Those members of organisms with specific advantageous
abilities and features are able to cope with their environmental conditions.

In this section, learning and adaptation at population level where the
population is made up of neural networks is investigated. The neural net-
works are used to represent the optimal policy (control) that is going to be
learned. The purpose of the genetic algorithm is to search for the best neural
network (policy or controller) that controls the point robot in the artificial
robot world. The genetic algorithm searches for the best neural network by
directly determining the synaptic weights of the networks.

4.6.1 Experiments and Results

In the experiments the weights of the neural networks are directly determined
by the genetic algorithm. That means the evolutionary method searches
for the optimal policy directly in the space of policies represented by the
neural network. A population of MLPs with two layers forms a population
of controllers. The structure of the networks and the number of hidden units
is fixed but the weights are determined directly by the genetic algorithm. In
this experiment, we used MLPs having two outputs, four input units and six
hidden nodes. The MLP controls the point robot in the robot world. The
genetic algorithm lets each individual control the point robot and evaluates
and selects an individual (controller) that moves the point robot from a
given start state to a given goal state with a minimal number of steps. It
then applies genetic operators to generate the next population of MLPs for

68 Chapter 4. Improving Learning and Adaptation Capabilities of Agents

a predefined number of trials.
Figure 4.8 shows an example of the MLP used in this experiment. Table

4.4 shows the encoding of states and actions, which are the input and output
of the neural network, respectively.

0

1

1

0

0

1

Output
Input

actions
states

Fig. 4.8: The MLP used in the experiment. The input and output of the
MLP are binary codes of the states and actions.

State Code

0 0000
...

...
14 1110
15 1111

Action Code

left 00
right 01
forward 10
don’t care 11

(a) (b)

Tab. 4.4: The encoding of the states (a) and actions (b).

A fitness function given by equation (4.2) is used to evaluate the indi-
viduals. An example of a chromosome representing an MLP (an individual)
is shown in Figure 4.9. The parameters of the neural network and genetic
algorithms are given in Table 4.5.

We have run the experiment for all test cases and obtained the result
shown in Figure 4.10. As can be seen in the figure, the population attains a
certain average fitness value. The average fitness value, which is controlled
by the genetic operators, shows an equilibrium point of two ”forces”. One
of the forces, which is controlled by selection operator, tries to pull the pop-
ulation towards the global maximum fitness value (fitness value of the best

4.7. Hybrid of Learning and Evolutionary Algorithms 69

Wo1,1 ··· Wo1,N Wo2,1 ··· Wo2,N Wh1,1 ··· Wh1,4 WhN,1 ··· WhN,4

Fig. 4.9: A chromosome encoding an MLP. Wo’s show the synapses going
to the output units and Wh’s show synapses going from input to
hidden units. N is the number of hidden units.

Number of individuals 50
Crossover probability 0.2
Mutation probability per bit 0.05
Selection method Truncation selection
Number of hidden nodes 6
Number of bits per gene coding a synapse 8
Number of generations 100

Tab. 4.5: Parameters of the MLPs and genetic algorithm used for the exper-
iments.

individual) and the other force, which is controlled by the crossover and mu-
tation operators, tries to maintain the variation between individuals. The
learning time, which is measured in number of generations, required to at-
tain a certain average fitness value is shorter in continual learning than the
learning time in learning from scratch for all test cases.

4.7 Hybrid of Learning and Evolutionary Algorithms

An ecosystem is populated by living organisms that have their own autonomy.
The process of adaptation in these systems is made up of two phases. The
first phase is learning that occurs at an individual level and the second phase
is evolution occurring over successive generations of the population. An
individual in a population of organisms performs a sequence of actions that
maximize the reward it receives from the environment. The reward measures
the degree of satisfaction of the individual. In its lifetime, the individual
learns and adapts to its environment through interaction. The process of
learning and adaptation enables the individual to select those actions which
result in a higher satisfaction from those actions that cause danger or pain.
It is clear that an individual is not born blank. That means it does not
learn and adapt to its environment from scratch. The basic structures of the
brain, which determines the behavior of the individual, as well as the entire
body, is developed according to the genetic information inherited from its

70 Chapter 4. Improving Learning and Adaptation Capabilities of Agents

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

Generation

F
itn

es
s

va
lu

e

Start state = 5 Goal state = 15
Learning from scratch

Fitness value of the best individual

Average fitness value of the population

Test case A

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

Generation

F
itn

es
s

va
lu

e

Start state = 5 Goal state = 15
Continual learning

Fitness value of the best individual

Average fitness value of the population

Test case A

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Generation

F
itn

es
s

va
lu

e

Start state = 7 Goal state = 15
Learning from scratch

Fitness value of the best individual

Average fitness value of the population

Test case B

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Generation

F
itn

es
s

va
lu

e

Start state = 7 Goal state = 15
Continual learning

Fitness value of the best individual

Average fitness value of the population

Test case B

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Generation

F
itn

es
s

va
lu

e

Start state = 1 Goal state = 11
Learning from scratch

Fitness value of the best individual

Average fitness value of the population

Test case C

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Generation

F
itn

es
s

va
lu

e

Start state = 1 Goal state = 11
Continual learning

Fitness value of the best individual

Average fitness value of the population

Test case C

Fig. 4.10: Result obtained for a hybrid of MLPs and genetic algorithm. The
left column shows from top to down results of learning from scratch
for test case A, B, and C, respectively. The right column shows
the corresponding result in continual learning.

ancestors. The inherited genes in offspring are not exact copies of the genes
in the parents because of the genetic mutation and recombination operators.

In evolutionary theory, there are two major ideas that give different ex-
planations for the motive force of natural evolution and the phenomenon
of genetic inheritance. These ideas are Lamarckism and Darwinism. The

4.7. Hybrid of Learning and Evolutionary Algorithms 71

Lamarckian theory suggests that the motive of evolution is the effect of “in-
heritance of acquired characters.” Individuals may undergo some adaptive
changes through interaction with the environment or learning. These changes
will be somehow be put in their genes and direct evolution. On the other
hand, the central theory of Darwinism is “non-random natural selection fol-
lowing random mutation”. Mutation itself has no direction, but some individ-
uals with advantageous mutations will have more chance of survival through
natural selection. The Darwinian theory claims that evolution is nothing
but these cumulative processes of natural selection. In summary, while the
Lamarckian idea assumes the direct connection between learning and adap-
tation at the individual level and at the population level, the Darwinian idea
clearly divides them from each other. It is known that the mainstream of
today’s evolutionary theory is Darwinism [86].

4.7.1 Experiments and Results

A population of reinforcement learning agents using Q-learning and whose
performance is improved by a genetic algorithm are used to form the hybrid
algorithm. In the experiments, we investigate agents that use the Lamarckian
strategy and agents that use the Darwinian strategy. For both agents, the
algorithm starts with genetic algorithm, which initializes the Q-tables of the
agents. The agents learn through interaction in their lifetime and change the
content of the Q-table as they learn about their environment. At the end of
the life of an agent that uses the Lamarckian strategy, the collected knowledge
which is stored in the Q-table will be written back to the chromosome which
encodes it. In other words, the current generation will inherit to the next
generation what it has learned about its environment. This is the same as
inheritance of acquired characteristics. For agents using Darwinian strategy,
the contents of the Q-table will not be written back to the chromosome at
the end of the life of the agent. It means that the next generation will receive
initial values of the Q-table that enables the agents to learn a given optimal
policy as fast as possible. One can see clearly that the Q-table which is
modified by an agent in its lifetime is not transferred to the next generation.

Table 4.6 shows the Q-table and the chromosome that encodes it and
which is used in this experiment.

The reward function given by equation (4.1) is used for the reinforcement
learning agents, and the fitness function given by equation (4.2) is used for
the genetic algorithm. The parameters for the genetic algorithm and the
reinforcement learning are shown in Table 4.7.

The experiment is run for all test cases and the results shown in Figures
4.11 and 4.12 are obtained for learning and adaptation at the population

72 Chapter 4. Improving Learning and Adaptation Capabilities of Agents

States

Actions 0 1 · · · 14 15

left Q0,0 Q0,1 · · · Q0,14 Q0,15

right Q1,0 Q1,1 · · · Q1,14 Q1,15

forward Q2,0 Q2,1 · · · Q2,14 Q2,15

Q0,0 · · · Q0,15 Q1,0 · · · Q1,15 Q2,0 · · · Q2,15

Tab. 4.6: The Q-table and the chromosome that encodes it.

Number of individuals in the population 50
Crossover probability 0.2
Mutation probability per bit 0.05
Selection method Truncation selection
Learning rate of reinforcement learning 0.3
Discount rate of reinforcement learning 0.3
Number of bits coding a Q-value 8
Number of generations 100

Tab. 4.7: The parameters of genetic algorithm and reinforcement learning.

level. As can bee seen from the figures, the learning time in continual learn-
ing is shorter than the learning time in learning from scratch for all test
cases and for both strategies. In test case A, both populations of agents
do not require to learn the new policy at population level. Moreover, there
is an improvement in learning times in continual learning for both types of
population of agents for test case B and C.

One of the advantages of hybridizing learning and evolutionary algorithms
is that it enables one to generate effective initial values for the action values
automatically. The determination of the initial values for the action values
is one of the major problems in the reinforcement learning. One way to
determine the initial values is to bias the agent with a goal directed built-
in knowledge [43]. However, this requires the knowledge of states that are
perceived and the optimal actions at those perceived states. For a real envi-
ronment it is difficult to determine the optimal action for a given perceived
state.

The other advantage of hybridizing learning and evolutionary algorithms
is that it is also possible to determine the learning rate and discounting
factor automatically. This will help agents to adapt to a new situation with

4.8. Summary and Analysis of Results 73

minimum learning cost.

It is our believe that one can improve the learning and adaptation ca-
pability of agents by using both Lamarckian and Darwinian strategies. For
agents which have explored the environment enough or for agents which have
lived and operated in a given environment for a long time, it is advisable to
use the Lamarckian strategy. For agents which have not explored the en-
vironment enough or for agents which are in a fast changing environment,
it is better if one uses Darwinian strategy for improving the learning and
adaptation capability of agents.

In comparison with learning and adaptation at population level, learning
and adaptation at individual level is not computationally expensive, but its
learning and adaptation capability depends on the initial knowledge of the
individual about the situation that is going to be learned. It has been shown
experimentally in previous section that even though the individuals in the
population have no learning and adaption capabilities, there is learning and
adaption at population level. Note that the neural networks are used only to
represent a policy or a controller for the point robot. The synaptic weights
of the networks is directly determined by the genetic algorithm. That means
the individuals (the neural networks) have no capability of learning through
interaction. It is natural, therefore, to think of individuals having learning
and adaptation capabilities and which form a population. This will bring us
to the hybrid of learning and evolutionary algorithms. The computational
complexity of the hybrid of learning and evolutionary algorithms is much
higher than both of learning and adaptation at individual and population
levels. At the expense of this computational complexity, however, it is possi-
ble to learn and adapt to a more complex situation in the environment using
an appropriate hybrid of learning and adaptation algorithms.

4.8 Summary and Analysis of Results

Table 4.8 summarizes the results of the experiments. All experiments were
run 50 times and the result in Table 4.8 are the average number of trials to
accomplish a certain learning task. For evolutionary experiments all individ-
uals have exactly one trial per generation.

The results of experiments clearly show that the learning time required
in continual learning is shorter than that required in learning from scratch at
both individual and population levels and under various learning conditions.
They also show that the learning time in continual learning depends on the
number of states of a policy, which is going to be learned, that are contained
in the previously learned optimal policy. The more states the two policies

74 Chapter 4. Improving Learning and Adaptation Capabilities of Agents

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

Generation

F
itn

es
s

va
lu

e

Fitness value of the best individual

Average fitness value of the population

Start state = 5 Goal state = 15
Learning from scratch

Test case A

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

Generation

F
itn

es
s

va
lu

e

Fitness value of the best individual

Average fitness value of the population

Start state = 5 Goal state = 15
Continual learning

Test case A

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Generation

F
itn

es
s

va
lu

e

Fitness value of the best individual

Average fitness value of the population

Start state = 7 Goal state = 15
Learning from scratch

Test case B

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

Generation

F
itn

es
s

va
lu

e

Fitness value of the best individual

Average fitness value of the population

Start state = 7 Goal state = 15
Continual learning

Test case B

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Generation

F
itn

es
s

va
lu

e

Fitness value of the best individual

Average fitness value of the population

Start state = 1 Goal state = 11
Learning from scratch

Test case C

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Generation

F
itn

es
s

va
lu

e

Fitness value of the best individual

Average fitness value of the population

Start state = 1 Goal state = 11
Continual learning

Test case C

Fig. 4.11: Result obtained for agents using the Lamarckian strategy. The left
column shows from top to down results of learning from scratch
for test case A, B, and C, respectively. The right column shows
the corresponding result in continual learning.

have in common, the shorter will be the time required in continual learn-
ing. For test case A, where the states of a policy are completely contained
in the previously learned optimal policy, the agent does not need to learn
the optimal policy in continual learning. It is also interesting to see that,
even though the two policies have no common states (test case C), the time

4.8. Summary and Analysis of Results 75

0 10 20 30 40 50 60 70 80 90 100
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Generation

F
itn

es
s

va
lu

e

Fitness value of the best individual

Average fitness value of the population

Start state = 5 Goal state = 15
Learning from scratch

Test case A

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Generation

F
itn

es
s

va
lu

e

Fitness value of the best individual
Average fitness value of the population

Start state = 5 Goal state = 15
Continual learning

Test case A

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Generation

F
itn

es
s

va
lu

e

Fitness value of the best individual

Average fitness value of the population

Start state = 7 Goal state = 15
Learning from scratch

Test case B

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

Generation

F
itn

es
s

va
lu

e

Fitness value of the best individual

Average fitness value of the population

Start state = 7 Goal state = 15
Continual learning

Test case B

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Generation

F
itn

es
s

va
lu

e

Fitness value of the best individual

Average fitness value of the population

Start state = 1 Goal state = 11
Learning from scratch

Test case C

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Generation

F
itn

es
s

va
lu

e

Fitness value of the best individual

Average fitness value of the population

Start state = 1 Goal state = 11
Continual learning

Test case C

Fig. 4.12: Result obtained for agents using the Darwinian strategy. The left
column shows from top to down results of learning from scratch
for test case A, B, and C, respectively. The right column shows
the corresponding result in continual learning.

required in continual learning is shorter than the time required in learning
from scratch.

By comparing the results of agents using Q-learning and agents using
a hybrid of Q-learning and GA, one can see that agents using a hybrid of
Q-learning and GA required a smaller number of trials to learn the action

76 Chapter 4. Improving Learning and Adaptation Capabilities of Agents

Learning and evolutionary # of trials # of trials

methods used by agents in learning in continual

from scratch learning

A B C A B C

Q-Learning 40 50 40 0 14 20
Hybrid of MLP and GA 4 9 8 0 4 4
Hybrid of Q-Learning and GA (Lamarckian) 10 5 7 0 3 4
Hybrid of Q-Learning and GA (Darwinian) 5 5 6 0 3 4

Tab. 4.8: Summary of results obtained after running the experiments for test
case A, B and C respectively.

values of the states of the environment in both learning from scratch and
continual learning than agent using Q-learning algorithm only. This supports
our argument that agents using appropriate hybridization of learning and
evolutionary algorithms show better learning and adaptation capability as
compared to agents using learning algorithms only.

4.9 Conclusion Drawn and Recommendation

We have shown that continual learning requires shorter learning time as
compared to learning from scratch under various learning conditions. The
different test cases of the experiments show that an agent can use a related
knowledge to a new situation, which is going to be learned, to adapt itself
faster and make the learning time shorter. Furthermore, the adaptation time
required by an agent to adapt to a new situation depends on the amount of
knowledge it has about the new situation.

Hybridization of various learning algorithms with evolutionary algorithms
will give agents two levels of adaptation capabilities. The first is an individual
level adaptation capability, and the second is a population level adaptation
capability. The individual level adaptation capability depends on the the
learning algorithm used. At population level, the adaptation capability is
contained in the variation between individuals.

With adequate hybridization of learning algorithms and evolutionary
methods (like genetic algorithms, genetic programming and evolution strate-
gies) it is possible to design better agents with better learning and adaptation
capability for either lower or higher cognitive levels.

Chapter 5

EVOLUTIONARY ACQUISITION OF
NEURAL TOPOLOGIES (EANT)

A meaningful combination of the principles of neural networks, reinforcement
learning and evolutionary computation is useful for designing agents that
learn and adapt to their environment through interaction [56, 57, 94]. The
combination results in an evolutionary reinforcement learning system where
each of the components plays an important role.

Neural networks are useful for evolving the control system of an agent
[56, 75, 78]. They provide a straight forward mapping between sensors and
motors and this enables them to represent directly the policy (control) or the
value function to be learned. Moreover, they can accommodate continuous
(analog) or discrete input signals and provide either continuous or discrete
motor outputs, depending on the transfer function chosen. Gradual changes
to the parameters defining a neural network will often correspond to gradual
changes of its behavior i.e they offer a relatively smooth search space. In
addition to this, they are robust to noise. Since their units are based upon a
sum of several weighted signals, oscillations in the individual values of these
signals do not drastically affect the behavior of the network. They have
been used in combination with other methods in solving inherently unstable
control tasks [21, 35, 51, 77, 95, 104], in learning obstacle avoidance and
navigation paths [42, 50], and in representing a value function while learning
to play games without human expertise [23, 98].

Reinforcement learning is useful as a type of learning where the agent is
not told directly what to do but fed with a signal (reward) that measures the
quality of executing an action in a given state [8, 42, 97]. The purpose of the
agent is to act optimally in its environment so as to maximize its rewards.
It is one form of learning through interaction. Learning through interac-
tion underlines nearly all the principles of intelligence [78]. This property
of reinforcement learning makes it important in evolutionary reinforcement
learning system. In reinforcement learning, an agent tries to estimate the
value function. This function shows how good it is for an agent to be in

78 Chapter 5. Evolutionary Acquisition of Neural Topologies (EANT)

a given state or how good it is for an agent to execute a given action in a
given state. It is possible to generate the policy directly from value function.
In reinforcement evolutionary learning, the policy or the value function is
represented by a neural network.

Like neural networks, evolutionary algorithms are inspired from biology.
Populations of organisms have been adapting to their particular environ-
mental conditions through evolutionary selection (survival of the fittest) and
variablity among them. From these principles of adaptation in nature, it is
possible to derive a number of concepts and strategies for solving learning
tasks and develop optimization strategies for artificial intelligent systems. An
example of an optimization problem that can be solved using the principles
of evolution is a model based evolutionary object recognition system [58].

There are many forms of evolutionary algorithms. The major ones are
genetic algorithms [48, 103], genetic programming [67], evolution strategy
[79, 87] and evolutionary programming [31]. Most of the evolutionary algo-
rithms have the following important components: representation (definition
of individuals), evaluation function (fitness function), population, parent se-
lection mechanism, variation operators (recombination and mutation) and
survivor selection mechanism [28].

Evolutionary algorithms can be considered as a kind of reinforcement
learning. In evolutionary algorithms, the fitness function is a kind of a re-
ward signal of an agent that has operated and lived in a given environment.
But reinforcement learning algorithms and evolutionary algorithms have the
following major differences:

1. Reinforcement learning algorithms have only one agent while evolution-
ary algorithms have population of agents at a time.

2. In reinforcement learning, signals (rewards) are provided after each
action is executed by the agent. In evolutionary algorithms, fitness
values (rewards) are provided to the agent at the end of the life of
the agent or after the individual has performed or operated in the
environment.

3. Reinforcement learning algorithms update the policy or value function
of an agent while the agent is operating in the environment. Evolution-
ary algorithms, however, update the policy of an agent after the agent
has lived and operated in the environment. That means, evolution-
ary algorithms search for optimal value functions or optimal policies
directly in space of value functions or policies.

The evolutionary reinforcement learning system that combines the princi-
ples of neural networks, reinforcement learning and evolutionary algorithms is

5.1. Related Works 79

shown in Figure 5.1. The evolutionary algorithm contains genotypes of neu-
ral networks to be evaluated in a given environment. Each neural network
is evaluated and assigned a given fitness value (reward). Through genetic
operators of the evolutionary algorithm, the agents are improved and eval-
uated in the environment. The process continues until a certain number of
generations or until an agent is found that solves a given task. The neural
network may represent a policy or a value function depending on the task
that is going to be solved. It may even represent a regression or classifica-
tion function for supervised training of neural networks with evolutionary
algorithms.

Fig. 5.1: Evolutionary reinforcement learning system. The agents, where the
neural networks are embedded in, are evaluated in the environment
and their fitness values are returned to the evolutionary algorithm
as rewards.

5.1 Related Works

The evolution of neural networks can be divided into two major categories:
the evolution of connection weights and the evolution of both the structure
and connection weights. In the first category, the structure of neural networks

80 Chapter 5. Evolutionary Acquisition of Neural Topologies (EANT)

is fixed and is determined by the domain expert before the evolution begins.
In the second category, both the structure and the connection weights are
determined automatically by the evolutionary process. A detailed review of
the evolution of neural networks is given by Yao [108]. Our work falls in the
second category but in addition to the review of related works in the second
category, we will give a review of works in the first category that are applied
to reinforcement learning tasks.

5.1.1 Evolution of Connection Weights

Wieland [105] studied the evolutionary optimization of a fully connected
recurrent neural networks on different pole balancing problems. He encoded
the weights of the neural networks by eight bits and used genetic algorithm
for optimization. The structure of the recurrent neural network is determined
manually.

Evolutionary Programming (EP) for parameter optimization of feed-
forward neural networks is used by Saravanan and Fogel for double pole
balancing tasks [85]. The structure of the neural network especially the
number of hidden units are determined a priori.

Moriarty and Miikkulainen [73] developed a method of evolving neural
networks, called Symbiotic Adaptive Neuroevolution (SANE), where the sys-
tem evolves population of neurons instead of population of networks. Fully
connected hidden layers of networks are formed by a combination of neu-
rons selected randomly from a population of neurons. A neuron individual
receives an average fitness value of networks in which it takes part in.

Enforced Subpopulations (ESP) [34, 35, 36] is based on SANE, but it spe-
cializes neurons to specific tasks. Each non-input unit of the neural network
is assigned to a separate subpopulation and a neuron is recombined with the
members of its own subpopulation. Unlike SANE, the networks formed by
ESP consists of a representative from each evolving specialization and this
allows it to evolve recurrent networks since a neuron’s behavior in a recurrent
network critically depends on the neurons to which it is connected.

Floreano and Urzelai [29, 30] evolved a fully connected recurrent neural
network for learning a light-switching task. The genotype is made up of genes
that either code the synaptic strength of the connections, or the learning rate
and learning rule that may be used in modifying the synaptic strengths of
the connections while the agent is operating in the environment. In the latter
case, they used different Hebbian rules and different learning rates.

Igel [51] applied a specialized evolutionary strategy called CMA-ES [44]
for evolving a fixed-topology neural network. The CMA-ES uses important
concepts like derandomization and cumulation. Derandomization is a deter-

5.1. Related Works 81

ministic way of altering the mutation distribution such that the probability
to reproduce steps in search space that have led to better population is
increased. Moreover, the algorithm detects correlations between object vari-
ables and is invariant under orthogonal transformation of the search space.
The search path of population over a number of past generations is used in
order to use the information from previous generations more efficiently. In
CMA-ES this is known as cumulation.

5.1.2 Evolution of Structure and Connection Weights

These methods evolve both the connection weights and the structure of the
neural networks. They are divided into two major groups depending on the
type of genetic encoding used. The two types of genetic encoding are the
direct and indirect encoding types.

Direct Genetic Encoding

Methods that use direct encoding scheme must specify explicitly every con-
nection and nodes that will appear in the phenotype.

Angeline et al. [2] developed a system called GNARL (GeNeralized Acqui-
sition of Recurrent Links) that uses only structural mutation on the topology,
and parametric mutations on the weights as genetic search operators. The
system is based on evolutionary programming where crossover operator is
not used as a search operator. The system tries to maintain the behavior of
the network in order to avoid a radical jump from parent to offspring. New
links are initialized with zero weight, leaving the behavior of the modified
network unchanged and hidden nodes are added to the network without any
incident connections. The main problem of this method is that genomes
may end up in many extraneous disconnected structures that do not have
any contribution to the solution.

The Neuroevolution of Augmenting Topologies (NEAT) developed by
Stanley and Miikkulainen [94, 95] evolves both the structure and weights
of neural networks using both crossover and mutation operators. It starts
with networks of minimal structures and increases their complexity along
the evolution path. Every node and connection of the phenotype is encoded
by the genotype. The algorithm keeps track of the historical origin of every
gene that is introduced through structural mutation. The history is used by
a specially designed crossover to match up genomes encoding different net-
work topologies, and to create a new structure that combines the overlapping
parts of the two parents as well as their different parts. Structural discov-
eries of the evolutionary process are protected by niching (speciation). The

82 Chapter 5. Evolutionary Acquisition of Neural Topologies (EANT)

speciation in NEAT is achieved by explicit fitness sharing, where organisms
in the same species share the fitness of their niche. Unlike GNARL, NEAT
does not use self-adaptation of mutation step-sizes. Each connection weight
is perturbed with a fixed probability by adding a floating number chosen
from a uniform distribution of positive and negative values.

Indirect Genetic Encoding

In indirect encoding, one specifies rules that are used in constructing the
phenotype. Every connection and node is not specified in the genome but
can be derived from it.

Kitano’s [64] grammar based encoding of neural networks use Linden-
mayer systems (L-systems) [69] to describe the morphogenesis of linear and
branching structures in plants. L-systems are parallel string rewriting sys-
tems that rewrite a starting string into a new string by applying a set of
production rules to all symbols of the string in parallel. Sendhoff et al. [90]
extended Kitano’s grammar encoding with their recursive encoding of mod-
ular neural networks. Their system provides a means of initialization of the
network weights. Networks are trained using the standard back-propagation
and the encoding itself is variable and optimized on a larger timescale. Both
Kitano and Sendhoff used their systems for evolution of feed-forward net-
works. In Kitano’s grammar based encoding, there is no direct way of rep-
resenting the connection weights of neural networks in the genome.

Gruau’s Cellular Encoding (CE) method [39, 40, 41] is a language for lo-
cal graph transformations that controls the division of cells which grow into
artificial neural network. Through cell division, one cell called the parent cell
is replaced by two cells called child cells. During division, a cell must specify
how the two child cells must be linked. The genetic representations in CE
are compact because genes can be reused multiple times during the develop-
ment of the network and this saves space in genome since every connection
and node does not need to be explictly specified in the genome. Defining
a crossover operator for CE is still difficult, and it is not easy to analyze
how crossover affects the sub-functions in CE encoding since they are not
represented explicitly. Moreover, it suffers from the same problem as that of
Kitano’s grammar based encoding since there is no direct way of representing
the connection weights of neural networks in the genome. Luke and Spector
[71] proposed edge encoding as a solution to these problems. Unlike CE, the
grammar trees are traversed in depth-first rather than breadth-first order,
and networks are grown by modifying the edges in a graph rather than the
nodes. Currently, there is no experimental comparison between CE and edge
encoding and therefore nothing can be said on suitability and efficiency of

5.2. Contributions of the Work 83

edge encoding over CE in evolving neural networks.
Nolfi and Parisi [76] modeled biological development at the chemical level

using reaction-diffusion model. Diffusion is modeled at the level of axon
growth and reaction is modeled as the interaction between axon and cell
bodies. This method utilizes growth to create connectivity without explictly
describing each connection in the phenotype. Axon which do not hit other
cells during development are pruned. The complexity represented by the
genome is limited since every neuron is directly specified in the genome.

Vaario et al. [102] have developed a biologically inspired neural growth
based on diffusion field modeling combined with genetic factors for controlling
the growth of the network. The neural structures are grown in either a
two-dimensional or three-dimensional grid resulting in a two-dimensional or
three-dimensional tree-based neural structure, respectively. One weak point
of the method is that it can not generate networks with recurrent connections
or networks with connections between neurons on different branches of the
resulting tree structure.

Other works in indirect encoding simulated the genetic regulatory net-
works (GRN) in biology where genes produce signals that either activate
or inhibit other genes in the genome. The interaction of all genes forms a
network that produces a phenotype. Typical works that used GRN include
works of Dellaert and Beer [27] which use boolean functions called operons to
implement GRN, Morphogenesis of Jakobi [54], Artificial Ontogeny of Bon-
gard and Pfeifer [14], Computational Embryogeny of Bentley and Kumar
[11]. The main problem of these methods like other indirect encoding meth-
ods is that they do not search for the optimal solution starting from some
initial structure and increasing its complexity along the evolution.

5.2 Contributions of the Work

The method presented in this work is closely related to the already mentioned
works of Angeline et al. [2] and to the works of Stanley and Miikkulainen
[95, 94]. It is related to the works of Angeline et al. in that the method uses
parametric mutation that is based on evolution strategies or evolutionary
programming with adaptive step sizes for optimization of the weights of the
neural networks. Complexification of structures along the evolution path
starting from a minimum structure makes it related to the works of Stanley
and Miikkulainen. But it has the following important features which makes
it different from the earlier works:

1. It introduces a compact genetic encoding of a neural network that en-
ables one to evaluate the neural network without decoding it. The

84 Chapter 5. Evolutionary Acquisition of Neural Topologies (EANT)

topology of the network is implicitly encoded in the order of genes in
the linear genome.

2. For evolving the structures and weights of neural networks, a nature
inspired meta-level evolutionary process is used, where exploration of
structures is executed at a larger timescale and exploitation of existing
structures is done at smaller timescale.

5.3 The Proposed Method

In this section, we present our evolutionary reinforcement learning system,
called Evolutionary Acquisition of Neural Topologies (EANT). It is a novel
method that is suitable for learning and adaptation to the environment
through interaction. The system evolves both the structures and weights
of neural networks. With respect to the goal of self-organizing learning ma-
chines which start from minimal specification and rise to great sophistication,
EANT starts with neural networks of minimal structures, and increases their
complexity along the evolution path.

5.3.1 Genetic Encoding

A flexible encoding method enables one to design an efficient evolutionary
method that can evolve both the structures and weights of neural networks.
The genome in EANT is designed by taking this fact into consideration. A
genome in EANT is a linear genome consisting of genes (nodes) that can take
different forms (alleles). The forms that can be taken by a gene can either
be a neuron, or an input to the neural network, or a jumper connecting two
neurons. The jumper genes are introduced by structural mutation along the
evolution path. A jumper gene can either encode a forward or a recurrent
connection. A jumper gene encoding a forward connection represents a con-
nection starting from a neuron at a higher depth and ending at a neuron at
a lower depth. The depth of a neuron node in a linear genome is the mini-
mal number of neuron nodes that must be traversed to get from the output
neuron to the neuron node, where the output neuron and the neuron node
lie within the same sub-network that starts from the output neuron. On
the other hand, a jumper gene encoding a recurrent connection represents a
connection between neurons having the same depth, or a connection starting
from a neuron at a lower depth and ending at a neuron at a higher depth.
Every node in a linear genome has a weight associated with it. The weight
encodes the synaptic strength of the connection between the node coded by
the gene and the neuron to which it is connected. Moreover, every node can

5.3. The Proposed Method 85

save the results of its current computation. This is useful since the results of
signals at recurrent links are available at the next time step. In addition to
the synaptic weight, a neuron node has a unique global identification number
and number of input connections associated with it. A jumper node has also
additionally a global identification number, which shows the neuron to which
it is connected. An example of a linear genome encoding a neural network is
shown in Figure 5.2.

(a) (b)

(c)

Fig. 5.2: An example of encoding a neural network using a linear genome.
(a) The neural network to be encoded. It has one forward and one
recurrent jumper connection. (b) The neural network interpreted
as a tree structure, where the jumper connections are considered
as terminals. (c) The linear genome encoding the neural network
shown in (a). In the linear genome, N stands for a neuron, I for an
input to the neural network, JF for a forward jumper connection,
and JR for a recurrent jumper connection. The numbers beside N
represent the global identification numbers of the neurons, and x or
y represent the inputs coded by the input gene (node).

The linear genome can be interpreted as a tree based program if we con-
sider all the inputs to the network and all jumper connections as terminals.
Terminals are sources of signals either from the inputs or from other parts
of the neural network. On the other hand, neurons are processing units that

86 Chapter 5. Evolutionary Acquisition of Neural Topologies (EANT)

map the signals at their inputs to signals at their outputs. Terminals are
analogous to the terminal set and neurons are analogous to the function set
in a standard GP program [6, 67]. The linear genome is a prefix ordering
of genes (nodes) where the ordering implicitly represents the topology of the
neural network encoded by it. The term prefix ordering stands for the fact
that in the ordering the neuron nodes (operators) come before the inputs and
jumper connections (operands). Figure 5.3 shows the equivalence between a
neural network, a linear genome representing it, and a tree-based program
representing the neural network. Starting from a neural network it is pos-
sible to generate a linear genome that encodes it or a tree-based program
representing it. The converse is also true; starting from a linear genome or a
tree-based program, it is possible to generate the neural network.

Fig. 5.3: The linear genome is equivalent to the neural network it encodes
or a tree based program representing the neural network. One
can generate the tree based program or the linear genome starting
from the neural network or vise-versa. The tree-based program is
coded in XML like commands. The commands <NeuralNetwork>

and </NeuralNetwork>, <Neuron> and </Neuron>, <Input> and
</Input>, <Connection> and </Connection>, <Recurrent> and
</Recurrent>, and <GId> and </GId> stand for the start and end
of a program representing a neural network, a neuron, an input,
a forward jumper connection, a recurrent jumper connection, and
global identification number, respectively.

5.3. The Proposed Method 87

The linear genome has some interesting properties that makes it useful
for evolution of the structure of neural networks. Assume that integer values
are assigned to the nodes of a linear genome encoding a neural network such
that the integer values show the difference between the number of outputs of
the nodes and the number of arguments of the nodes (inputs to the nodes).
Note that every node in the linear genome has only one output. If a node
is an input to the neural network, the integer assigned to it is 1 since an
input to a neural network has only one output and no arguments (inputs)
at all. An integer value of 1 is also assigned to the forward and recurrent
jumper nodes since they are sources of signals from other neurons in the
neural network encoded by the linear genome. A neuron node will take an
integer value which is the same as one minus the number of inputs to the
neuron. In EANT, since there is no neuron without an input, the maximum
value of an integer assigned to a neuron node is zero. This is true for all
neurons with only one input. One of the important properties of a linear
genome is that the sum of the integer values assigned to each of the nodes
in a linear genome encoding a neural network is the same as the number of
outputs of the neural network.

After assigning the integer values to the nodes of the linear genome, it is
possible to detect a sub-linear genome (sub-network) of a linear genome. A
sub-linear genome (sub-network) in EANT is defined as a collection of nodes
starting from a neuron node and ending at a node where the sum of integer
values assigned to the nodes between and including the start neuron node
and the end node is one. An example is shown in Figure 5.4.

Fig. 5.4: An example of the use of assigning integer values to the nodes of
the linear genome. The linear genome encodes the neural network
shown in Figure 5.2. The numbers in the square brackets below
the linear genome show the integer values assigned to the nodes of
the linear genome. Note that the sum of the integer values is one
showing that the neural network encoded by the linear genome has
only one output. The shaded nodes in the linear genome form a
sub-network. Note also that the sum of the integer values assigned
to a sub-network is always one.

The linear genome is complete in that it can be used to represent any type

88 Chapter 5. Evolutionary Acquisition of Neural Topologies (EANT)

of neural network. It is also a compact encoding of neural networks since the
length of the linear genome is the same as the number of synaptic weights
in the neural network. Moreover, the encoding scheme used is closed. An
encoding scheme is said to be closed if all genotypes produced are mapped
into a valid set of phenotype networks [5, 55]. It is closed under structural
mutation operator since every new linear genome produced by structural
mutation is mapped into a valid phenotype network. See Section 5.3.4. It
is also closed under a special crossover where the crossover operator exploits
the fact that structures which originate from the initial minimal structures
have some parts in common. By aligning the common parts of two randomly
selected structures, it is possible to generate a third structure which contains
the common and disjoint parts of the two mother structures. The resulting
structure formed in this way maps to a valid phenotype network. This type
of crossover is introduced and used by Stanley [94]. An example is shown in
Figure 5.5. The number of inputs to a neuron node which is common to the
parent structures is updated using

n(s1 × s2) = n(s1) + n(s2)− n(s1 ∩ s2), (5.1)

where n(s1× s2) is the number of inputs to the neuron node in the offspring,
n(s1∩s2) is the number of input nodes to the neuron node which are common
to both structures, and n(s1) and n(s2) are the number of input nodes to the
neuron node in the parent structure s1 and s2, respectively.

5.3.2 Evaluating a Linear Genome

There are two methods of evaluating a linear genome. In the first method, one
decodes the linear genome into a neural network that it represents and then
evaluates the neural network directly. In other words, in this method there
is a physical difference between the genotype (the linear genome) and the
phenotype (the neural network encoded by the linear genome). This method
is especially useful if one wants to evaluate the network using some type of
parallel computation. In the second method, it is not necessary to decode
the linear genome into the neural network but one can use the linear genome
directly to evaluate the neural network represented by the genome. The
second method emphasizes the fact that it is not always necessary to create
a separate phenotype structure from genotype by some sort of ontological
process [6]. In other words, it is not always necessary to decode the linear
genome into a neural network for the purpose of evaluating the network
encoded by it.

For the purpose of evaluating or computing the output of the neural

5.3. The Proposed Method 89

Fig. 5.5: Performing crossover between two linear genomes. The genetic en-
coding is closed under this type of crossover operator since the re-
sulting linear genome maps to a valid phenotype network. The
weights of the nodes of the resulting linear genomes are inherited
randomly from both parents.

network without decoding the genome, we use a first in last out stack and
the following rules:

1. Start from the right most node of the linear genome.

90 Chapter 5. Evolutionary Acquisition of Neural Topologies (EANT)

2. Move from right to left in computing the output of the neural network.
This is the same as incrementing a program counter while running a
program.

3. If the current node is an input node, push its current value and the
weight associated with it onto the stack.

If the current node is a neuron node, pop n values with their associated
weights from the stack and push the result of computation with its
associated weight onto the stack, where n is the number of inputs of
the neuron being evaluated. The output of a neuron node is computed
using

O = g

(

n
∑

i=1

wi ai

)

, (5.2)

where O is the result of computation for the current neuron node, ai

and wi are the popped values and their associated weights. g (.) is the
activation function of the neuron node.

If the current node is a recurrent jumper node, get the last value of
the neuron node whose global identification number is the same as the
global identification number of the recurrent jumper node. Then push
the value obtained with the weight associated with jumper node onto
the stack.

If the current node is a forward jumper node, first copy the sub-linear
genome (sub-network) starting from a neuron whose global identifi-
cation number is the same as the global identification number of the
forward jumper node. Then compute the response of the sub-linear
genome in the same way as that of the linear genome. Finally, push the
result of computation with the weight associated with forward jumper
node onto the stack. This is analogous to calling a function in a pro-
gram or jumping to an interrupt service routine.

4. After traversing the genome from right to left completely, pop the re-
sulting values from the stack. The number of the resulting values is
the same as the number of outputs of the neural network coded by the
linear genome.

Figure 5.6 shows an example of evaluating a linear genome encoding the
neural network shown in Figure 5.2. As can be seen from the figure, one does
not need to decode the neural network in order to evaluate it.

5.3. The Proposed Method 91

Fig. 5.6: An example of evaluating a linear genome without decoding the
neural network encoded by it. The linear genome encodes the neural
network shown in Figure 5.2. For this example, the current values of
the inputs to the neural network, x and y, are both set to 1. In the
example, all neurons have a linear activation function of the form
z = a, where a is the weighted linear combination of the inputs to
a neuron. The overlapped numbers above the linear genome show
the status of the stack after computing the output of a node. The
numbers in brackets are the weights associated with the nodes.

The evaluation of a linear genome discussed above is equivalent to the
evaluation of a decoded neural network represented by the genome, where
the activation of a neuron of the network is given by

ai(t) = g

nf
∑

j=1

wijaj(t) +
n
∑

k=nf+1

wikak(t− 1)

 . (5.3)

In the equation, g is the activation function of the neuron and n is the number
of input connections to the neuron. The number of forward connections
and the number of recurrent connections to the neuron are nf and n − nf ,
respectively.

5.3.3 Generating the Initial Linear Genome

The first step in generating the initial genome is to determine the number of
outputs and number of inputs of the neural network required for a given task.
The initial linear genome contains only output neuron nodes and input nodes.
The forward and recurrent connection nodes are introduced by the structural
mutation operator and added to the linear genome along the evolution path.
Two methods are used in the initialization of the initial genome. These are
the grow and full methods [6, 68].

92 Chapter 5. Evolutionary Acquisition of Neural Topologies (EANT)

Grow Method

For a given maximum depth, the grow method produces linear genomes en-
coding neural networks of irregular shape because a node is assigned to a
randomly generated neuron node having a random number of inputs or to
a randomly selected input node. Figure 5.7 shows an example of a linear
genome generated using the grow method. The neural network encoded by
the linear genome has a neuron with repeated inputs.

N 0 N 1 N 3 I x I x I y N 2 I x I y

W=0.6 W=0.8 W=0.9 W=0.1 W=0.4 W=0.5 W=0.2 W=0.7 W=0.8

x y

 0

1 2

3

 Depth = 0

 Depth = 1

 Depth = 2

 0.6

 0.8 0.2

 0.8

 0.9

 0.1

 0.4

 0.5
 0.7

Fig. 5.7: An example of a linear genome generated by using the grow method
and the neural network encoded by it. Note that the linear genome
must be edited since the neural network encoded by it has a neuron
with repeated inputs.

Full Method

This method adds to the linear genome randomly generated neurons con-
nected to all inputs until a node is at the maximum depth and then adds
only random input nodes. This results in neural networks with symmetric
structures where every branch of a tree-based program equivalent of the lin-
ear genome goes to the full maximum depth. In this method, except neurons
at the maximum depth, all neurons are connected to a fixed number of neu-
ron nodes. Figure 5.8 shows an example of a linear genome generated with
full method.

5.3. The Proposed Method 93

N 0 N 1 I y I x I y N 2 I x I y

W=0.6 W=0.8 W=0.1 W=0.3 W=0.9 W=0.7 W=0.2 W=0.4 W=0.5

I x

Fig. 5.8: An example of a linear genome generated by using the full method
and the neural network encoded by it.

Editing a Linear Genome

An initially generated genome with either the grow or full method should
be edited so that it has no neuron nodes which have repeated inputs. It is
obvious that repeated inputs can be represented by a single input connection
to the neuron. Editing a linear genome avoids the unnecessary addition
of parameters in the weight space due to repeated inputs connected to a
neuron node, and hence reducing the number of evaluations necessary during
optimization of the weights of the neural network. Figure 5.9 shows an
example of editing a linear genome.

5.3.4 Variation Operator: Structural Mutation

The structural mutation used by EANT adds or removes a forward or a re-
current jumper connection between neurons, or adds a new sub-network to
the linear genome. The initial weight of a newly added jumper connection
or the initial weight of the first node of a newly added sub-network is set to
zero so as not to disturb the performance or behavior of the neural network.
The structural mutation operator does not remove a sub-network because re-
moving a sub-network results in a removal of all jumper connections that are
coming to or going out of the sub-network. This would cause a tremendous
loss of the performance of the neural network.

The structural mutation operates only on neuron nodes of a linear
genome. Figure 5.10 shows an example where the structural property of
a neuron node N3 is changed through the structural mutation. The neuron
node losses a connection to an input x and gains a self-recurrent connec-

94 Chapter 5. Evolutionary Acquisition of Neural Topologies (EANT)

Fig. 5.9: An example of editing a linear genome. The editing replaces repeat-
ing inputs with non-repeating ones.

tion. In applying the structural mutation, each neuron node is tested if it
is going to be mutated or not by drawing a random number from a uniform
distribution between 0 and 1. If the currently drawn random number is less
than the structural mutation probability pm, which is usually set between
0.05 and 0.1, the neuron node will be mutated. Once it is known that the
neuron node is going to be mutated, a random number is again drawn from
a uniform distribution between 0 and 1 for determining the kind of struc-
tural mutation to execute. Adding connections, adding sub-networks, and
removing connections are all given equal probabilities of execution.

5.3.5 Variation Operator: Parametric Mutation

Parametric mutation is used for optimization of the weights of a given struc-
ture. It is accomplished by perturbing the synaptic weights of the networks
according to the uncorrelated mutation in evolution strategy or evolutionary
programming [28, 31, 87]. In addition to the associated weight, each node in
a linear genome has an associated mutation step size or learning rate. Figure
5.11 shows a linear genome with n nodes where every node has a learning
rate associated with it.

5.3. The Proposed Method 95

N 1 N 2 I x I y N 3 I x I y

W=0.3 W=0.7 W=0.5 W=0.8 W=0.6 W=0.4 W=0.3

I x

W=0.9

N 1 N 2 I x I y N 3 I x I y

W=0.3 W=0.7 W=0.5 W=0.8 W=0.6 W=0.4 W=0.3

JR1

W=0.1

1

2 3

x y

0.7 0.6

0.9

0.5 0.3

0.4

0.8

1

2 3

x y

0.7 0.6

0.1

0.5 0.3

0.4

0.8

0.3 0.3

Fig. 5.10: An example of structural mutation. Note that the structural muta-
tion deleted the input connection to N1 and added a self-recurrent
connection to it.

Fig. 5.11: Every node of a linear genome has in addition to weight an asso-
ciated learning rate.

The mutation mechanism is specified as follows:

σ′

i = σi e
τ ′ N(0,1)+τ Ni(0,1), (5.4)

w′

i = wi + σi Ni (0, 1) , (5.5)

where τ ′ = 1/
√

2n and τ = 1/
√

2
√

n, and N (0, 1) is a random number drawn

96 Chapter 5. Evolutionary Acquisition of Neural Topologies (EANT)

from a Gaussian distribution of zero mean and unity standard deviation. A
boundary rule given by the following equation is used to force learning rates
not to be smaller than a threshold value:

σ′

i < ǫ0 ⇒ σ′

i = ǫ0. (5.6)

The main advantages of using the parametric mutations of synaptic
weights of the neural networks in the style of evolution strategies or evo-
lutionary programming are:

1. Both evolution strategy and evolutionary programming perform search
in the space of networks. Offspring created by mutation remain within
a locus of similarity to their parents [2].

2. Self-adaptation of mutation step sizes of learning rates is inherent in
both evolution strategy and evolutionary programming [4, 31, 87].

5.3.6 Exploitation and Exploration of Structures

The algorithm starts with networks of minimal structures whose initial com-
plexity is specified by the domain expert through the maximum depth that
can be assumed by the initial structures. The initial structures are generated
either with the grow or full method.

The system starts with exploitation of structures that are already in the
system. By exploitation, we mean the optimization of the weights of the ex-
isting structures. At the beginning of the exploitation of structures, each of
the existing structures is parametrically perturbed to form a population of µ
individuals. Then each of the individuals is evaluated to determine its fitness
value. After that, the standard survivor selection, the truncation or (µ, λ)
selection [88], is used for generating the individuals of the next generation. In
truncation selection, µ parents are allowed to breed λ offspring, out of which
the µ best are used as parents for the next generation. The (µ, λ) selection
does not depend on the absolute fitness values of individuals in the popu-
lation. The first µ best individuals remain best, regardless of the absolute
fitness differences between individuals. The process of generating new indi-
viduals through parametric mutation and using the (µ, λ) selection continues
for a certain number of generations N . This is an evolutionary process that
occurs at smaller timescale for optimization of the weights of a particular
structure. The number of evaluations that is necessary per structure is µN .
An example of the exploitation process is shown in Figure 5.12.

Exploration of structures is accomplished by structural mutation which
is performed at larger timescale. It is used to create new species or introduce

5.3. The Proposed Method 97

t

w(N0)

w(Ix)

w(Iy)

t+1

Trajectory in
weight space

x y

 0

 5.0

 5.0 5.0

N 0 I y

W=5.0 W=5.0 W=5.0

I x

Fig. 5.12: The weight trajectory of the linear genome shown at the right side
while being exploited. The quantities t and t + 1 are time units
with respect to the larger timescale. The weights of the existing
structures are optimized between two consecutive time units with
respect to the larger timescale. The point clouds at t and t + 1
show populations of individuals from the same species.

new structures. From each of the existing structures, a new structure is
formed and added to the existing ones. The weights of the newly acquired
structural parts of the new structure are initialized to zero so as not to form
(get) a new structure whose fitness value is less than its parent. This type of
initialization scheme for newly acquired structures is also used by Angeline
et al. [2].

The structural selection operator begins by sorting the exploited struc-
tures in descending order according to their fitness value. Then the first
half of the population are selected. Young structures which are less than
M generations old with respect to the larger time scale and which are not
selected are carried on along the evolution regardless of the results of the
selection operator. This will give them time to optimize their newly acquired
structures before they compete with other individuals globally. This way it
is possible to maintain the new structural discoveries of the evolution before
they get extinct pretty much earlier. The number of structures in any given
generation is not allowed to be larger than some pre-specified number. The

98 Chapter 5. Evolutionary Acquisition of Neural Topologies (EANT)

limit will keep the number of structures being entertained not to explode as
the evolution proceeds.

Figure 5.13 summarizes the evolutionary process of EANT at larger time
scale. As can be seen in the diagram, the evolutionary process continues
until a structure is found that solves a given task. The flow diagram reflects
the philosophy behind EANT in that different structures represent different
species and all species compete for resources in an environment in which they
live and operate. One can identify two types of competitions. The first is
the competition within a species and the other is the competition between
species. Competition within a species occurs between individuals having the
same structure while optimizing the weights of a structure. Species which
are strong enough survive and continue to live while others get extinct.

The main search operators at larger timescale are the structural mu-
tation and structural crossover. The structural operator used in EANT
exploits the fact that structures (species) which originate from the initial
structure (species) have some genetic material in common. By aligning the
common parts of two randomly selected species, it is possible to generate
a third species which contains the common and disjoint parts of the two
mother species. Structural mutation operates on a single species and creates
a new species by changing the structure of the mother species. At smaller
timescale, parametric mutation and recombination between individuals of
the same species are used as search operators.

New structures are introduced through structural mutation and those
structures that are better according to fitness evaluations survive and con-
tinue to exist in the population. Since sub-networks that are introduced by
structural mutation are not removed, there is a gradual increase in the com-
plexity of the structures along the evolution. This allows EANT to search for
a solution starting from a minimum structural complexity specified by the
domain expert. The search stops when a structure with the necessary mini-
mal structure that solves a given task is obtained. In EANT complexification
is an emergent property that depends on the task to be solved.

5.4 Experimental Evaluation

In this section the performance of EANT is examined. In the first experiment,
EANT’s ability of evolving the necessary minimal structure for a given task is
considered. The standard XOR problem is used for this case. In the second
experiment, we consider the problem of learning to move forward using a
single legged robotic insect. The third experiment discusses the efficiency of
EANT on the standard benchmark problem of balancing two poles attached

5.4. Experimental Evaluation 99

Start with structures having
minimal specifications

Exploit existing ones

Select the best structures

Solution found?

Stop

No

Yes

Exploit the first structures

Explore new structures

Fig. 5.13: EANT’s evolutionary process at larger timescale.

to a moving cart. Comparison with other algorithms tested on the same
problem is also given.

5.4.1 XOR Problem

The exclusive-OR (XOR) problem is a simple example of a data set which is
not linearly separable [13]. It consists of four inputs which are divided into
two classes. An example of exclusive-OR (XOR) is shown in Figure 5.14.
The inputs (0, 0) and (1, 1) belong to class C1, while the inputs (0, 1) and
(1, 0) belong to C2.

At least one hidden node is required to solve the problem since there is
no linear decision boundary which can classify all four points correctly. That
means the minimal neural structure for solving the XOR problem has at least

100 Chapter 5. Evolutionary Acquisition of Neural Topologies (EANT)

Fig. 5.14: The XOR problem. It is a simple example of a problem which is
not linearly separable.

one hidden node. The aim of this experiment is to prove if EANT is able
to find the necessary minimal neural structure required to solve the XOR
problem starting from a neural structure having only one output neuron.

The experiment is run for 100 times and EANT is able to find networks
having on the average 1.52 hidden nodes, and it takes the algorithm 1234
network evaluations to get a solution. Moreover, EANT has found a solution
all the time. From the results of the experiment, one can say that EANT is
consistent in finding the minimal neural structure required to solve the XOR
problem. Figure 5.15 shows a sample evolutionary run in solving the XOR
problem. If one decodes the best structure of the last generation, one obtains
a neural network with exactly one hidden neuron.

The problem has been used to measure the performance of several other
algorithms that evolve both the architecture and weights of the neural net-
works [26, 64, 94]. The NeuroEvolution of Augmenting Topology developed
by Stanley [94] found the solution to the XOR problem after 4755 network
evaluations and on the average found a solution network that has 2.35 hidden
nodes. It is clear to see that our algorithm performs better in this simple
problem. However, the XOR problem is such a simple task that it is not a
good benchmark for measuring the performance of an algorithm.

5.4.2 Crawling Robotic Insect

The crawling robotic insect introduced by Kimura and Kobayashi [63] is
used for this experiment. It is used for reinforcement learning task where
the agents learn to move forward as fast as possible through interaction with
the environment. The crawling robotic insect has one arm having two joints
where the joints are controlled by two servo motors. It has also a touch
sensor which detects whether the tip of the arm is touching the ground or

5.4. Experimental Evaluation 101

Generation 0

Species 0 → N1:3 I1 I0 I2

Generation 1

Species 0 → N1:4 JR1 I1 I0 I2

Species 1 → N1:3 I1 I0 I2

Generation 2

Species 0 → N1:4 N3:3 I2 I0 I1 I1 I0 I2

Species 1 → N1:4 JR1 I1 I0 I2

Species 2 → N1:5 N2:3 I0 I1 I2 JR1 I1 I0 I2

Species 3 → N1:3 I1 I0 I2

Fig. 5.15: A sample evolutionary run for the XOR problem. The species
are sorted in descending order according to their fitness values.
The first four best solutions are shown for each generations. For a
neuron node, the number after the colon shows the number of input
connections to it. The input node I0 is connected to a constant
bias.

not. The schematic diagram of the robot is shown in Figure 5.16.

Fig. 5.16: The crawling robotic insect. The robot has one arm with two
joints and a touch sensor for detecting whether the tip of the arm
is touching the ground or not.

The robot has bounded continuous and discrete state variables. The
continuous state variables are the joint angles and the discrete state variable
is the state of the touch sensor. The controller observes the joint angles

102 Chapter 5. Evolutionary Acquisition of Neural Topologies (EANT)

and the state of the touch sensor. Depending on the state it perceives, the
controller is expected to change the angles of the joints appropriately so
that the robot can move forward as fast as possible. The first joint angle
θ1 is bounded between 55̊ and 94̊ , and the second joint angle θ2 lies in the
range [−34̊ , 135̊]. For both of the joints, the angles are measured from the
vertical as shown in Figure 5.16. The angle ranges are chosen so that they
are equivalent to the angle ranges chosen by Kimura and Kobayashi. They
measured the first joint angle from the horizontal and the second joint angle
from the first link. The touch sensor φ takes the value 0 for non-touch state
and 1 for touch state.

Let the coordinates of the first and the second joints be (x0, y0) and
(x1, y1), respectively and let the coordinate of the tip of the arm be (x2, y2).
The state of the robot at each time step t = 0, 1, . . . is given by st =
(x0, y0, x2, y2, θ1, θ2, φ). Since the coordinate (x1, y1) can be calculated given
a state s, it is not listed in the definition of the state of the robot. The state
transition of the system is governed by equations (5.7) and (5.8). If the tip
of the arm is not touching the ground (φ(t) = 0), then the state transition
equation is given by

θ1(t + 1) = θ1(t) + δ1

θ2(t + 1) = θ2(t) + δ2

x0(t + 1) = x0(t)
y0(t + 1) = y0(t)
x2(t + 1) = x0(t + 1) + l1 sin θ1(t + 1) + l2 sin θ2(t + 1)
y2(t + 1) = y0(t + 1) + l1 cos θ1(t + 1)− l2 cos θ2(t + 1)

, (5.7)

and if the tip of the arm is touching the ground (φ(t) = 1), then the state
transition equation takes the form

θ1(t + 1) = θ1(t) + δ1

θ2(t + 1) = θ2(t) + δ2

x2(t + 1) = x2(t)
y2(t + 1) = y2(t)
x0(t + 1) = x2(t + 1)− l2 sin θ2(t + 1)− l1 sin θ1(t + 1)
y0(t + 1) = l2 cos θ2(t + 1)− l1 cos θ1(t + 1)

. (5.8)

The quantities δ1 and δ2 are the outputs of the neural controller to be de-
signed, and l1 and l2 are the lengths of the first and the second link. The first
link is between the first joint and the second joint while the second link is
between the second joint and the tip of the arm. For the experiment, l1 = 34
cm and l2 = 20 cm are chosen. The first joint is located at right upper corner
of the rectangular body of the robotic insect which has a height of 18 cm

5.4. Experimental Evaluation 103

and width of 32 cm. A trial contains 50 time steps and at the beginning of a
trial the robot is placed at the origin. The fitness function used to evaluate
a neural controller is given by

f =
1

N

N
∑

t=1

(x0(t)− x0(t− 1)), (5.9)

where the difference x0(t)− x0(t− 1) is the velocity of the system at time t
in the direction of the x−axis and f is the average velocity of the robot for
a trial. The number of time steps used per trial is represented by N .

Tsuchiya et al. [100] applied their policy learning by genetic algorithm us-
ing importance sampling (GA-IS) for learning to move forward. They defined
a three dimensional vector X = (x1, x2, x3) for representing the state space.
The dimensions of the state space is made up of the joint angles and the state
of the touch sensor. The policy used in their experiment is a 7 dimensional
feature vector F = [x1, x2, x3, x4 (= 1− x1) , x5(= 1− x2), x6(= 1− x3), 1.0].
A weight vector Λ = (λ1,i, λ2,i, λ3,i, λ4,i, λ5,i, λ6,i, λ7,i) is used to select
the action ai(t) from normal distribution with mean value µi = 1/(1 +

exp(−
6
∑

k=1

λk,ixk)) and standard deviation σi = 1/(1 + exp(−λ7,i)) + 0.1.

If the selected action is out of range then it is resampled. The number of the
policy parameters is 14 and hence the search space for the genetic algorithm
has 14 dimensions.

In our experiment, the structure shown in Figure 5.17 (a) containing
two output neurons connected to three input nodes (θ1, θ2, φ) is used as
the initial controller. The best controller shown in Figure 5.17 (b) is found
after running EANT. Note that the best controller is more complex than the
initial structure. Figure 5.17 (c) shows the waveforms of the joint angles and
the touch sensor for the first 20 time steps as the robot moves forward and
being controlled by the best controller, and Figure 5.18 shows the sample
evolutionary run in obtaining the neural controller.

The method introduced by Tsuchya et al. (GA-IS) needed on the average
10000 interactions with the environment for learning to move forward. We
have run EANT 50 times and obtained on the average 3520 interactions
for learning the task. As compared to the GA-IS, EANT has reduced the
number of interactions with the environment necessary to learn to move
forward. The reduction in the number of interactions is due to the direct
search for an optimal policy in the space of policies, starting minimally and
increasing the complexity of the neural network that represents the policy.

104 Chapter 5. Evolutionary Acquisition of Neural Topologies (EANT)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
−1

−0.5

0

0.5

1

1.5

2

Forward steps taken by the robot

An
gl

e
in

 ra
di

an

θ
1

θ
2

φ

(a) (b) (c)

Fig. 5.17: Learning to move forward. (a) The initial structure. (b) The best
controller found by our algorithm that enables the robot to move
forward. (c) The waveforms of the joint angles and the touch sensor
as the robot moves forward.

5.4.3 Pole Balancing

The inverted pendulum or the pole balancing system has one or several poles
hinged to a wheeled cart on a finite length track. The movement of the cart
and the poles are constrained within a vertical plane. The objective is to
balance the poles indefinitely by applying a force to the cart at regular time
intervals such that the cart stays within the track boundaries. A trial to
balance the poles fails if either the angle from vertical of any pole exceeds a
certain threshold or the cart leaves the track.

The problem has been a standard benchmark for the design of controllers
for unstable systems over 30 years [91]. The first reason for using the problem
as a standard benchmark is that it is a continuous real-world task that is
easy to understand and visualize. Moreover, it can be performed manually
by humans and implemented on a physical robot. The second reason is
that it embodies many essential aspects of a whole class of learning tasks
that involve temporal credit assignment [37]. The controller is expected to
discover its own strategy based on the reinforcement signal it receives every
time it fails to control the system.

For modern reinforcement learning methods, the basic pole balancing
problem, which has only one pole hinged to a wheeled cart, is obsolete since
especially for those methods that evolve neural networks the solution is of-
ten found in the initial random population [34, 37]. To make the problem
challenging, the basic pole balancing is extended in two ways [105]. The first
extension is the addition of a second pole next to the other and the second
one is the restriction of the state information received by the controller. In
the latter case the controller is provided only with the cart position and the

5.4. Experimental Evaluation 105

Generation 0

Species 0 → N1:3 I2 I0 I1 N2:3 I1 I0 I2

Generation 1

Species 0 → N1:3 I2 I0 I1 N2:4 N3:3 I2 I0 I1 I1 I0 I2

Species 1 → N1:3 I2 I0 I1 N2:3 I1 I0 I2

Generation 2

Species 0 → N1:4 JR1 I2 I0 I1 N2:3 I1 I0 I2

Species 1 → N1:3 I2 I0 I1 N2:4 N3:3 I2 I0 I1 I1 I0 I2

Generation 3

Species 0 → N1:4 JR1 I2 I0 I1 N2:4 N4:3 I0 I2 I1 I1 I0 I2

Species 1 → N1:4 JR1 I2 I0 I1 N2:3 I1 I0 I2

Fig. 5.18: A sample evolutionary run for the learning to move forward prob-
lem. The species are sorted in descending order according to their
fitness values. The first two best solutions are shown for each gen-
erations. The input nodes I0, I1 and I2 are connected to θ1, θ2

and φ, respectively.

angles from the vertical of both poles. The first extension makes the task
more difficult by introducing non-linear interactions between the poles. The
second makes the task non-Markovian which forces the controller to employ
short term memory to disambiguate underlying process states. Figure 5.19
describes the double pole balancing problem for poles having unequal lengths.
This is the most challenging of the pole balancing versions.

The equations of motion of a cart with N poles are given by [105]

106 Chapter 5. Evolutionary Acquisition of Neural Topologies (EANT)

Center

Fig. 5.19: The double pole balancing problem. The poles must be balanced
simultaneously by applying a continuous force F to the cart. The
parameters x, θ1 and θ2 are the offset of the cart from the center
of the track and the angles from the vertical of the long and short
pole, respectively.

ẍ =

F − µcsgn (ẋ) +

N
∑

i=1

F̃i

mc +

N
∑

i=1

m̃i

θ̈i = − 3

4li

(

ẍ cos θi + g sin θi +
µiθ̇i

mili

)

F̃i = miliθ̇i
2
sin θi +

3

4
mi cos θi

(

µiθ̇i

mili
+ g sin θi

)

m̃i = mi

(

1− 3

4
cos2 θi

)

(5.10)

for i = 1, . . . , N . In the equation, F is the force applied to the cart, x is
the offset of the cart from the center of the track, and g is the acceleration
due to gravity. The quantities mi, li, θi and µi stand for the mass, the half
of the length, the angle from the vertical, and the coefficient of friction of
the ith pole, respectively. The mass and coefficient of friction of the cart are
denoted by mc and µc, respectively. The effective force from pole i on the

5.4. Experimental Evaluation 107

cart is denoted by F̃i and its effective mass is given by m̃i.

For our benchmark double pole experiments, N = 2, mc = 1 kg, m1 = 0.1
kg, l1 = 0.5 m, l2 = 0.1l1, m2 = 0.1m1, µc = 5.10−4 and µ1 = µ2 = 2.10−6.
The length of the track is set to 4.8 m. The parameters are the most common
choices for the double pole experiments. The dynamical system is solved
using fourth-order Runge-Kutta integration with step size τ = 0.01 s.

Experimental Setup

The experiments are setup in order to be comparable to the results reported
in [36, 51, 73, 95]. The controllers perceive continuous states and produce
continuous control signals rather than jerk left-right or “bang-bang”. Two
balancing configurations with and without complete state information are
used in the experiments.

Double Pole Balancing with Velocities

In this experiment the controller is provided with full state information
(x, ẋ, θ1, θ̇1, θ2, θ̇2) and the initial state of the long pole is set to θ1 = 10.
The controller is expected to balance the poles for 105 time steps so that the
angles of the poles from the vertical lie in the range [−36̊ , 36̊]. Each time
step corresponds to 0.01s. The descriptions of the experiment are based on
that reported in [36, 51, 95].

Double Pole Balancing without Velocities

In this setup, the controller observes only x, θ1 and θ2. A fitness function
introduced by Gruau et al. [41] together with a termination criterion is used
in this task. The same fitness function is used by Gomez and Miikkulainen
[35], Stanley and Miikkulainen [94], and Igel [51].

The fitness function is the weighted sum of two separate fitness measure-
ments 0.1f1 + 0.9f2 taken over 1000 time steps:

f1 = t/1000, (5.11)

f2 =

0 if t < 100

0.75
t
∑

i=t−100

(

|xi|+ |ẋi|+ |θi
1|+ |θ̇i

i|
)

otherwise, (5.12)

108 Chapter 5. Evolutionary Acquisition of Neural Topologies (EANT)

where t is the number of time steps the pole is balanced starting from a
fixed initial position. In the initial position, all states are set to zero except
θ1 = 4.5̊ . The angle of the poles from the vertical must be in the range
[−36̊ , 36̊]. The fitness function defined favors controllers that can keep the
poles near the equilibrium point and minimize the amount of oscillation.
The first fitness measure f1 rewards successful balancing while the second
measure f2 penalizes oscillations.

The evolution of the neural controllers is stopped when a champion of a
generation passes two tests. First, it has to balance the poles for 105 time
steps starting from the 4.5̊ initialization. Second, it has to balance the poles
for 1000 steps starting from at least 200 out of 625 different initial starting
states. The ranges of the input variables are ±2.16 m for x, ±1.35 m/s for
ẋ, ±3.6̊ for θ1, and ±8.6̊ for θ̇1. The starting states are generated using

x = 4.32 ki − 2.16
ẋ = 2.70 kj − 1.35
θ1 = 0.123 km − 0.062

θ̇1 = 0.3 kn − 0.15
θ2 = 0

θ̇2 = 0

, (5.13)

where i, j, m, n ∈ {0, 1, 2, 3, 4}, and k0 = 0.05, k1 = 0.25, k2 = 0.5, k3 =
0.75 and k4 = 0.95. The number of successful balances is a measure of the
generalization performance of the best solution.

Results

Table 5.1 shows the average value of network evaluations needed by vari-
ous methods in solving the double pole balancing task. For our algorithm
(EANT), the experiments are done for 120 times for both test scenarios.

From Table 5.1 one can see that our algorithm performs better than other
algorithms that evolve both the structure and weights of a neural network
(CE, ESP, NEAT). The results are highly significantly better (p < 0.001)
than the best algorithms which evolve both the network structure and weights
of the neural networks. The CMA-ES has outperformed EANT on both
double pole balancing tasks. But for CMA-ES the topology (structure) of
the neural network has to be chosen manually before optimizing the weights of
the network. Figures 5.22 and 5.23 show examples of the results obtained for
both test scenarios. For double pole balancing with velocities, our algorithm
found a controller having only one output node. Since the evolution starts
with neural controllers of minimal structures, the algorithm was able to find
this minimal structure for most of the experiments. Figure 5.20 shows a

5.4. Experimental Evaluation 109

Double pole balancing Double pole balancing
Method with velocity without velocity

Evaluations Evaluations Generalization

CE [41] 34000 840000 300
ESP [37] 3800 169466 289

NEAT [96] 3600 33184 286
CMA-ES [51] 895 6061 250

EANT 1580 15762 262

Tab. 5.1: The average network evaluations (trials) needed by various methods
in solving the double pole balancing tasks. For CMA-ES, results for
a neural network having 3 hidden nodes without a bias are shown.

Generation 0

Species 0 → N1:6 I0 I3 I1 I4 I5 I2

Generation 1

Species 0 → N1:6 I0 I3 I1 I4 I5 I2

Species 1 → N1:7 N2:6 I4 I3 I2 I0 I5 I1 I0 I3 I1 I4 I5 I2

Fig. 5.20: A sample evolutionary run for the double pole balancing with ve-
locity. The species are sorted in descending order according to
their fitness values. The first four best solutions are shown for
each generations. The input nodes I0, I1, I2, I3, I4 and I5

are connected to x, ẋ, θ1, θ̇1, θ2 and θ̇2, respectively.

sample evolutionary run in solving the double pole balancing problem with
velocity. As can be seen from the sample run the initial structure is complex
enough in solving the problem.

For double pole balancing without velocities, our algorithm found a con-
troller having one output neuron and one hidden neuron. Both neurons have
a self-recurrent connection. Once again, one can see that because of starting
minimally, it is possible to obtain compact, efficient and clever solutions in
the design of controllers. Figure 5.21 shows a sample evolutionary run for
the double pole balancing without velocity information.

Our algorithm found both structures consistently for both test scenar-
ios. The waveforms generated by the controllers depend on the connection

110 Chapter 5. Evolutionary Acquisition of Neural Topologies (EANT)

Generation 0

Species 0 → N1:3 I1 I2 I0

Generation 1

Species 0 → N1:4 JR1 I1 I2 I0

Species 1 → N1:3 I1 I2 I0

Generation 2

Species 0 → N1:5 N2:3 I1 I2 I0 JR1 I1 I2 I0

Species 1 → N1:4 JR1 I1 I2 I0

Species 2 → N1:3 I1 I2 I0

Species 3 → N1:4 N3:3 I0 I2 I1 I1 I2 I0

Generation 3

Species 0 → N1:5 JR1 N3:3 I0 I2 I1 I1 I2 I0

Species 1 → N1:6 N4:4 JF:2 I0 I1 I2 N2:3 I1 I2 I0 JR1 I1 I2 I0

Species 2 → N1:5 N2:3 I1 I2 I0 JR1 I1 I2 I0

Species 3 → N1:4 JR1 I1 I2 I0

Generation 4

Species 0 → N1:5 JR1 N3:4 JR3 I0 I2 I1 I1 I2 I0

Species 1 → N1:5 JR1 N3:3 I0 I2 I1 I1 I2 I0

Species 2 → N1:6 N4:4 JF:2 I0 I1 I2 N2:3 I1 I2 I0 JR1 I1 I2 I0

Species 3 → N1:5 N2:3 I1 I2 I0 JR1 I1 I2 I0

Fig. 5.21: A sample evolutionary run for the double pole balancing without
velocity. The species are sorted in descending order according to
their fitness values. The first four best solutions are shown for each
generations. The input nodes I0, I1 and I2 are connected to x,
θ1 and θ2, respectively.

5.5. Summary 111

weights. Since for the same structure there are many weight combinations
that solves a given task, the waveforms of the force exerted or the waveforms
of the angles from the vertical could be different. Figures 5.22 and 5.23 show
one possible waveform that can be generated by the structure shown in the
respective figures.

0 1 2 3 4 5
−4

−2

0

2

4

Time in seconds

F
or

ce
 in

 n
ew

to
ns

0 1 2 3 4 5
−0.1

0

0.1

0.2

0.3

0.4

Time in Seconds

P
os

iti
on

 in
 m

et
er

s
0 1 2 3 4 5

−0.1

−0.05

0

0.05

0.1

Time in seconds

A
ng

le
 in

 r
ad

ia
ns

Long pole

0 1 2 3 4 5
−0.2

−0.1

0

0.1

0.2

Time in seconds
A

ng
le

 in
 r

ad
ia

ns

Short pole

(a) (b)

Fig. 5.22: Double pole balancing with velocities. (a) The best controller
found by our algorithm. Note that the minimum neural struc-
ture necessary to balance double poles with velocities has only one
output neuron. (b) Waveforms of the force exerted, position of the
cart on the track and the angular positions from the vertical of
both poles.

5.5 Summary

A system that enables autonomous and situated agents to learn and adapt
to the environment in which they live and operate is developed. The sys-
tem exploits both types of adaptations: namely evolutionary adaptation and
adaptation through learning. Moreover, self-organization is inherent in the
system in that the system starts with networks of minimal structures and
increases their complexity along the evolution path. The self-organization
process is an emergent property of the system.

EANT introduces a novel compact genetic encoding that encodes a neu-
ral network implicitly in the ordering of the elements of the linear genome
representing the neural network. The linear genome enables one to evaluate

112 Chapter 5. Evolutionary Acquisition of Neural Topologies (EANT)

0 1 2 3 4 5
−10

−5

0

5

10

Time in seconds

F
or

ce
 in

 n
ew

to
ns

0 1 2 3 4 5
−0.2

−0.1

0

0.1

0.2

Time in seconds

P
os

iti
on

 in
 m

et
er

s

0 1 2 3 4 5
−0.15

−0.1

−0.05

0

0.05

0.1

Time in seconds

A
ng

le
 in

 r
ad

ia
ns

Long pole
0 1 2 3 4 5

−0.2

0

0.2

Time in seconds

A
ng

le
 in

 r
ad

ia
ns

Short pole

(a) (b)

Fig. 5.23: Double pole balancing without velocities. (a) The best controller
with minimum neural structure found by our algorithm. The con-
troller has one output neuron and one hidden neuron where both
neurons have a self-recurrent connection. (b) Waveforms of the
force exerted, position of the cart on the track and the angular
positions from the vertical of both poles.

the neural network encoded by it without some type of ontological process of
transforming the genotype into phenotype. The presented genetic encoding
is complete in that it can encode any type of neural network, and closed
under structural mutation and a specially designed crossover operator. The
crossover operator exploits the fact that neural structures that come from
some initial neural structures have some parts in common. By aligning the
common parts of two randomly selected structures, it is possible to generate
a valid third structure which contains the common and disjoint parts of the
two mother structures.

In addition to this, a nature inspired meta-level evolutionary process is
introduced that is suitable to explore new structures incrementally and ex-
ploit the existing ones. Structural mutation and crossover operators are used
to search for structures at larger timescale, and parametric mutation and
recombination operators are used to optimize the weights of the existing
structures at smaller timescale.

Structural discoveries or innovations of the evolutionary process are pro-
tected by carrying on young structures, which are few years old with respect
to larger timescale, along the evolution regardless of the selection operator.
This gives the young species to optimize their newly acquired structures be-

5.5. Summary 113

fore they compete with other individuals globally.
Through introduction of neural structures by structural mutation, there

is a gradual increase in the complexity of structures along the evolution.
Those structures that are better according to fitness evaluations survive and
continue to exist in the population. The complexification process enables
EANT to search for an optimal solution starting from a minimum structural
complexity specified by the domain expert.

114 Chapter 5. Evolutionary Acquisition of Neural Topologies (EANT)

Chapter 6

VISION BASED ROBOT NAVIGATION

The aim of this chapter is to demonstrate the automatic design of neural
controllers for robots using EANT. The problem of robot navigation with
obstacle avoidance is chosen as a test bed where controllers are expected to
give the robot the ability of exploring the environment.

We start with sonar based robot navigation for developing the controllers
in simulation and then transfer the developed controllers to real robot. After
having a controller that can control the robot in the environment, the inputs
to the controller are exchanged with the inputs from the camera system of the
robot. Based on stereo matching technique, we give a method of detecting
obstacles which is equivalent to the obstacle detection using sonar sensors.

6.1 The Physical Robot

The B21 robot from Real World Interface (RWI) [83] is used for experiments
in this chapter. The robot has a cylindrical body with two parts: a base and
an enclosure. It uses its four-wheeled synchronous drive to move on indoor
flat platform. The base has 32 infra-red and 32 tactile sensors, whereas the
enclosure has a belt of 24 tactile, 24 infra-red and 24 sonar sensors each
evenly placed around the robot’s perimeter. On the top of the enclosure
a two finger Scara robot manipulator with 6 DOF and a binocular CCD
camera are mounted. In addition, the robot is equipped with two on board
computers running a Linux operating system. One of the computers controls
the base, the manipulator and the pan-tilt unit carrying the cameras of the
robot. Moreover, it is used to acquire data from the sonar, tactile and infra-
red sensors. The other computer is connected to the CCD cameras and is
used to acquire images that are perceived by the cameras. The computers
are connected to each other by a local LAN network. Figure 6.1 show the
B21 experimental robot.

116 Chapter 6. Vision Based Robot Navigation

Fig. 6.1: The B21 experimental mobile robot. The robot is equipped with 24
sonar, 56 infra-red, 32 tactile sensors, and a binocular CCD camera.

6.2 Reactive Navigation with Obstacle Avoidance

We evolved the structure and weights of the neural controller which enables
B21 robots to autonomously explore the environment and avoid obstacles.
The controller is expected to avoid dead lock situations where Braitenberg-
like controllers [15] have difficulties of escaping them. In these situations,
they either come to a rest or start to oscillate left to right.

We first used the sonar sensors of the B21 robot for detecting the ob-
stacles. This helps us to design the controller in simulation and transfer it
to real robot. After testing the controller on the real robot, we introduce a
vision module which detects obstacles using stereo matching technique and
feed the neural network with information obtained from the vision module
for controlling the robot in the environment.

The B21 robot has 24 sonar sensors which are symmetrically distributed
around its cylindrical body. We used the 8 in front and 2 in the rear sonar
sensors as inputs to the neural controller. Figure 6.2 shows the 8 frontal

6.2. Reactive Navigation with Obstacle Avoidance 117

sonar sensors used in the experiment.

Fig. 6.2: The 8 frontal sensors used in the experiment. The 2 in the rear
sonar sensors not shown in the figure are at the opposite side of the
two frontal sensors.

The sonar sensors give the distance of obstacles in millimeters measured
from the center of the robot. The values returned by the sonar sensors are
transformed using equation (6.1) before feeding them to the neural controller.

Vn =

−Vs + 2000

2000
if Vs < 1000

0 otherwise

. (6.1)

In the equation, Vn is the transformed and normalized sonar reading and Vs

is the actual reading returned by a particular sonar sensor. The value of Vn

lies between 0 and 1 for obstacles which are located at a distance less than
2 m from the center of the robot. The value of Vn increases as the obstacle
come near to the center of the robot.

The initial controller has two output neurons and each neuron is con-
nected to all sensors. The outputs of the neurons are connected to the motor
apparatus of the robot. In addition to the sensor inputs, each neuron has a
constant bias input connected to it. The forward translational velocity and
rotational velocity of the robot is given by

Vt = 0.5(O1 + O2)
Rt = O1 −O2

, (6.2)

where O1 and O2 are the outputs of the neural network, and Vt and Rt are
the translational and rotational velocity of the robot. Since the output of the
neurons is between −1 and 1, the maximum and minimum forward velocity

118 Chapter 6. Vision Based Robot Navigation

of the robot is 1 m/s and −1 m/s, respectively. The rotational velocity is
bounded between 2 rad/s and −2 rad/s.

The initial controller is similar to Braitenberg-like controller and is not
capable of avoiding dead lock situations. The algorithm is expected to find a
controller which is complex enough for solving the navigation problem with
the ability of avoiding dead lock situations. The fitness function used to
evaluate the controllers is given by

F =

T
∑

t=1

D(t)e−100(H(t)−H(t−1))2 (1− Smax(t)), (6.3)

where D(t), H(t) and Smax(t) are the distance traveled, the heading of
the robot, and the maximum value of the currently perceived normalized
sonar readings respectively. The fitness function favors controllers that move
straight as long and as fast as possible and controllers that give the robot
the maximum distance from the obstacles.

Figure 6.3 shows the initial neural controller and the final controller ob-
tained by our algorithm. The ability of avoiding the dead lock situations
comes because of the recurrent connections. The result is similar to that
obtained by Nolfi and Floreano [75] and Hülse and Pasemann [50] but in
both cases the structure of the neural controller is determined manually be-
forehand.

Ahrns et.al [1] designed a fuzzy-neuro controller for solving the robot
navigation with obstacle avoidance. They solved the dead lock situations
problem by designing a feature extraction mechanism that extracts a free
space direction closest to the heading of the vehicle. They further stored
the sonar readings in a short time memory to extract the coarse model for
the direct robot surroundings. They used the feature extraction mechanism
since the fuzzy-neuro controller does not have recurrent connections.

It is difficult to make performance comparisons between the algorithms
tested on the obstacle avoidance problem. This is because the controllers
used are manually designed in case of other algorithms but in our case it is
evolved automatically. However, we made 50 independent runs and averaged
the number of evaluations necessary to get a neural controller for solving the
obstacle avoidance problem using our method. The result shows that our
algorithm needed on average about 4500 evaluations to solve the task. Figure
6.4 shows a sample evolutionary run while evolving the neural controller.

The initial Braitenberg-like controller and the best neural controller found
are tested in an environment with sharp corners. The sharp corners form dead
lock situations where Braitenberg-like controllers have difficulties of escaping
them. Figure 6.5 shows an example of the performance of both controllers in

6.3. Vision Module 119

(a) (b)

Fig. 6.3: (a) The initial Braitenberg-like controller (b) The best neural con-
troller found by EANT that is capable of avoiding dead lock situa-
tions.

a given environment. The best neural controlled found by EANT shows the
behavior of avoiding dead lock situations and exploring the environment.

After transferring and testing the neural controller on real robot, we de-
veloped a vision model based on stereo matching which is equivalent to the
sonar sensors on the robot. The only difference is that the vision module can
not perceive obstacles which lie in opposite direction to the current heading
of the robot.

6.3 Vision Module

The vision module uses stereo matching and the fact that the indoor platform
on which the robot navigates is flat for the purpose of detecting obstacles.
Anything that is above the floor is considered as an obstacle. The cameras are
oriented in parallel to each other but both have the same tilt angle measured
from horizontal. Figure 6.6 shows the side and top view of the cameras on
the B21 robot.

The forward projective mapping [107] of a point with coordinates (x, y, z)
with respect to the world coordinate system onto the plane image of a camera
with coordinate (u, v) is given by

120 Chapter 6. Vision Based Robot Navigation

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

Generation

F
itn

es
s

va
lu

e
of

 th
e

be
st

 s
tr

uc
tu

re

Fig. 6.4: Sample evolutionary run while evolving the neural controller. Note
that as the fitness value of the best structure increases, its topology
assumes the optimal structure.

s · u
s · v
s

 = H ·

x
y
z
1

(6.4)

where s is a scaling factor and H is a 3×4 projection matrix. The projection
matrix can be defined to take the form

H =

h11 h12 h13 h14

h21 h22 h23 h24

h31 h32 h33 1

 . (6.5)

Inserting equation (6.5) into equation (6.4) we obtain

s · u
s · v
s

 =

h11 h12 h13 h14

h21 h22 h23 h24

h31 h32 h33 1

 ·

x
y
z
1

(6.6)

If we eliminate the unknown s in equation (6.6), we get

6.3. Vision Module 121

(a)

(b)

Fig. 6.5: (a) Trajectory of the robot controlled by the initial Braitenberg-like
controller in a simulated environment. Note that the controller can
not escape the sharp corner. (b) Trajectory of the robot controlled
by the best neural controller. The controller found is capable of
avoiding dead lock situations.

u = xh11+yh12+zh13+h14

xh31+yh32+zh33+1

v = xh21+yh22+zh23+h24

xh31+yh32+zh33+1
.

(6.7)

122 Chapter 6. Vision Based Robot Navigation

Fig. 6.6: The top and side views of the camera system used to detect obstacles
above the ground. The axes of world coordinates are designated by
x, y and z. The axes u and v are parallel to the image plane of a
camera while w is perpendicular to it.

If we define

A =

[

x y z 1 0 0 0 0 −xu −yu −zu
0 0 0 0 x y z 1 −xv −yv −zv

]

,

B =

[

u
v

]

and

V =
[

h11 h12 h13 h14 h21 h22 h23 h24 h31 h32 h33

]t
,

equation (6.7) can be compactly written in matrix form as:

6.3. Vision Module 123

A · V = B. (6.8)

In order to calibrate a camera, one needs at least six pairs of {(u, v), (x, y, z)},
where each pair provides two constraints. Assume that a set of n pairs of
{(u, v), (x, y, z)} are available (n ≥ 6), the optimal solution which minimizes
the squared error ‖ A · V −B ‖2 given by

V = (AtA)−1 · (AtB) (6.9)

contains the elements of the projection matrix H .
Using the above calibration method, both cameras are calibrated with

respect to a common world coordinate system. As shown in Figure 6.6, the
x and y coordinates of the common world coordinate system lie on the flat
indoor platform.

The detection of obstacles begins with the detection of corner points using
the Harris corner detector [46] on left image. We assume that the obstacles
have some corner points which are going to be detected by the corner detector
algorithm. Figure 6.7 shows the corner points of the obstacles detected on
the image perceived by the left camera.

Fig. 6.7: Example of corner points detection using the Harris corner detector.

After the corner points are detected on the left image, 3D imaginary
projection lines which pass through the corner points detected on the image
plane and intersect the flat indoor platform are drawn. The equation of a
projection line that passes through a corner point with image coordinate
(uc, vc) is given by

124 Chapter 6. Vision Based Robot Navigation

p × r −m = 0, (6.10)

where p is a 3D point on the projection line, r is direction vector along the
line and m is the moment of the line. The direction vector and the moment
of the line are calculated as follows. Assuming that the calibration matrix
HL of the left camera is given by

HL =

h′

11 h′

12 h′

13 h′

14

h′

21 h′

22 h′

23 h′

24

h′

31 h′

32 h′

33 1

 . (6.11)

The direction vector in the direction of the focal point of the left camera
from the indoor platform is calculated as follows. First a direction vector r

′

given by

R = (h′

21h
′

32 − h′

22h
′

31)uc + (h′

31h
′

12 − h′

32h
′

11)vc + h′

22h
′

11 − h′

21h
′

12

r′x =
(h′

32
h′

23
+h′

33
h′

32
)uc+(h′

13
h′

31
−h′

12
h′

33
)vc+h′

12
h′

23
−h′

13
h′

23

R

r′y =
−((h′

21h′

33−h′

23h′

31)uc+(h′

31h′

13−h′

33h′

11)vc+h′

23h′

11−h′

21h′

13)
R

r′z = 1.0
(6.12)

is determined. Then the direction vector is calculated using

r =
r
′

‖ r′ ‖ . (6.13)

In order to calculate the moment of the projection line, one has to get at
least one point that lies on the line. The intersection point between the line
and the indoor platform given by

p′x =
(h′

34h′

22−h′

32h′

24)uc+(h′

14h′

32−h′

12h′

34)vc+h′

12h′

24−h′

14h′

22

R

p′y =
−((h′

24
h′

31
−h′

21
h′

34
)uc+(h′

31
h′

14
−h′

34
h′

11
)vc+h′

24
h′

11
−h′

21
h′

14)
R

p′z = 0.0

(6.14)

can be used in calculating the moment of the projection line which can be
calculated using m = p

′ × r.

6.3. Vision Module 125

Once the equations of the projection lines are determined, it is possible to
search for the corresponding point on the right image for every corner point
detected on left image. The search is accomplished as follows. We start from
an intersection point of the projection line with the indoor platform which
can be calculated using equation (6.14) for a given detected corner point with
image coordinates (uL

c , vL
c). We move along the projection line in small steps

until the height of the point above the indoor platform is 1 m. The position
of the point along the line is updated using

p
′ = p + hr (6.15)

where h is the step size, p is the old position, and p
′ is the current position

on the line. The value of h is determined by

1

krz
(6.16)

where k is the number of steps needed to traverse the projection line from
the indoor platform to a height of 1 m, and rz is the z-component of the di-
rection vector of the projection line. While moving along the line, the point
is projected onto the image plane of the right camera using its projection
matrix. Moving along the imaginary projection lines is equivalent to moving
on epipolar lines in the image plane of the right camera. Let the coordinate
of the projected point in the right image be (uR

c , vR
c). A measure of simi-

larity between two regions centered around (uL
c , vL

c) and (uR
c , vR

c) called the
correlation coefficient [53] defined by

r =

∑

(x,y)∈S

[

fL(x, y)− fL

] [

fR(x + dx, y + dy)− fR

]

∑

(x,y)∈S

[

fL(x, y)− fL

]2 ∑

(x,y)∈S

[

fR(x + dx, y + dy)− fR

]2

1

2

(6.17)

is calculated. In the equation, fL and fR are the left and right images respec-
tively, and (dx, dy) is the disparity between the corner point and the point
projected on the right image plane of the camera.

The correlation coefficient is calculated for every point along the line
selected using equation (6.15). The point at which the maximum correlation
coefficient occurs gives us the 3D coordinates of the corner point relative to
the common world coordinate system. The projection of the point onto the
image plane of the right camera, at which the maximum correlation coefficient

126 Chapter 6. Vision Based Robot Navigation

(a)

(b)

Fig. 6.8: (a) There is no need to search the whole epipolar line to find the
corresponding point to the corner point detected on the left image.
(b) The corresponding point on the right image occurs where the
correlation coefficient becomes maximum.

occurs, gives us the coordinate of the corresponding point to the corner point
detected on the left image. Figure 6.8 illustrates the idea.

After the corresponding points for every left corner detected in the left
image are found, the position of obstacles relative to the world coordinate

6.3. Vision Module 127

system is determined. The most important coordinates of the obstacles are
the x and y coordinates. The x-coordinate of the world coordinate system is
perpendicular to the heading of the robot while the y-coordinate is parallel
to it. The origin of the world coordinate system is translated to the center
of the robot. That means the coordinates of the obstacles will be adjusted
according to

x′ = x
y′ = y + d
z′ = z

(6.18)

where d is the distance between the common world coordinate system and
the center of the robot. Figure 6.9 shows the vision module used to perceive
the distance of obstacles from the center of the robot. Radial imaginary
lines that start from the center of the robot are constructed to divide the
perception field of the vision module into perception regions. The number of
perception regions is equal to the number of the in front sonar sensors used
for designing the neural controller.

If more that one corner points of an obstacle (obstacles) are detected in a
perception region of the vision module, the corner point of an obstacle which
is nearer to the center of the robot is taken. The distance of a corner point
of an obstacle from the center of the robot falling in one of the perception
regions n is calculated by

dn =

√

x′2 + y′2 (6.19)

where x′ and y′ are the coordinates of the corner point relative to the world
coordinate system translated to the center. Before feeding the distance to
the corresponding input of the neural network, it is scaled using

d′

n =

0 if dn ≤ 2

dn − 2

3
if dn is in the interval (2, 5)

0 otherwise

. (6.20)

where all the distances are in meters. The scaled distance lies between 0 and
1 for corner points which are at a distance between 2 m and 5 m from the
center of the robot.

Figure 6.10 shows a result of an experiment in detecting obstacles using
the vision module developed. In the experiment, three objects namely office
chair, a small black box and a flat paper with a white object drawn on it

128 Chapter 6. Vision Based Robot Navigation

Fig. 6.9: Perception regions of the vision module developed. Note that the
perception regions are equivalent to sonar sensors.

are placed in front of the robot at a distance between 2 m and 5m from
the center of the robot. One can see in Figure 6.10 (b) that only the chair
and the box are considered as obstacles. The paper is not considered as an
obstacle eventhough a corner point is detect on it. This is because it has no
significant part that lies above the indoor platform.

The main problem of the vision module is the detection of corner points
of obstacles that are not texturized. A very good example is a white colored
wall which is common in indoor platforms. To avoid collisions with obstacles
having no texture, the neural controller switches to sonar sensors if one of
the sonar sensors detects an obstacle which is at a distance less than 2 m
from the center of the robot. That means if one of the sonar sensors is
active, the controller uses inputs from the sonar sensors, otherwise it uses
the information obtained from the vision module.

6.4. Summary 129

(a)

(b)

Fig. 6.10: (a) The corner points detected in the left image with their corre-
sponding points in the right image. (b) Result of obstacle detec-
tion. Note that the paper lying on the flat platform is not detected
as an obstacle.

6.4 Summary

In this chapter we have demonstrated the automatic design of controllers for
real robots using EANT taking as an example robot navigation with reactive
obstacle avoidance. EANT found a clever solution that gives the robot the
ability to explore the environment without being trapped in dead-lock sit-

130 Chapter 6. Vision Based Robot Navigation

uations. Simple designs like Braitenberg-like controllers have difficulties of
escaping dead-lock situations.

A vision module based on stereo matching is developed for detecting
obstacles above the flat indoor platform for vision based robot navigation.
The perception field of the vision module is designed so that it is equivalent
to the sonar sensors on the B21 robot. This helps us to directly use the
controller developed for the sonar sensors.

Chapter 7

CONCLUSION

In this chapter a summary of the main ideas raised throughout the previous
chapters and an outline of possible future directions of research are presented.

7.1 Summary

In the thesis a system that enables autonomous and situated agents to learn
and adapt to the environment in which they live and operate is developed.
The system exploits both types of adaptations: namely evolutionary adap-
tation and adaptation through learning. Self-organization is inherent in the
system in that the system starts with networks of minimal structures and
increases their complexity along the evolution path.

The thesis started with ways of improving the learning and adaptation
capabilites of agents using a navigation problem in an artificial robot world.
The agents are expected to learn through interaction with the environment,
and are not provided with the dynamics of the environment a priori. From the
results of the experiments, it is concluded that the learning and adaptation
time required in continual learning is shorter than that required in learning
from scratch and under various learning conditions and at both individual
and population levels. The learning time depends on the number of states of
a policy, which is going to be learned, that are contained in the previously
learned optimal policy. The more states the two policies have in common,
the shorter will be the time required in continual learning. Hybridization of
learning algorithms such as reinforcement learning with evolutionary meth-
ods give the agents two levels of learning and adaptation capabilities. The
first is an individual level adaptation capability and the second is a popula-
tion level adaptation capability. The individual level adaptation capability
depends on the learning algorithm used. The most important conclusion
derived from the experiments is that with adequate combination of learning
and adaptation algorithms which occur at individual and population levels,
it is possible to design better agents with better learning and adaptation

132 Chapter 7. Conclusion

capabilities. This motivated the realization of a unified approach to learning
and adaptation.

The unified approach to learning and adaptation which combines the
concepts from neural networks, reinforcement learning and evolutionary al-
gorithms is used for the design of the learning system for autonomous in-
telligent systems. Neural networks are used to represent value functions or
policies. The structure and weights of neural networks are altered through
genetic operators. The agents which embed the neural networks are tested in
the environment and performance measures (rewards) are given to the neural
structures.

Based on the unified approach to learning and adaptation, a novel method
of evolving the structure and weights of neural structures (EANT) is devel-
oped. The method starts with neural networks of minimal structures, whose
initial complexity is specified by the domain expert. The complexity of the
neural structures increases along the evolution path until a solution is found.
A new genetic encoding of neural networks that is suitable for evolving the
structure and weights of neural networks is introduced. The genetic encoding
uses linear genomes of genes that encodes the topology of the neural network
implicitly in the ordering of the elements of the linear genome. This type
of encoding enables one to evaluate the linear genome without having some
ontological process of developing the neural network encoded by it. Fur-
thermore, the genetic encoding has some interesting properties that makes
it useful for the evolution of neural networks:

1. The genetic encoding is complete in that it can encode any type of
neural network.

2. It is a compact encoding of neural networks since the length of linear
genome is the same as the number of synaptic weights of the neural
network.

3. It is closed under structural mutation and under specially designed
crossover operator, where the crossover operator exploits the fact that
structures which originate from the initial minimal structure have some
parts in common. By aligning the common parts of two randomly
selected structures, it is possible to generate a third structure which
contains the common and disjoint parts of the two mother structures.
The resulting structure formed in this way maps to a valid phenotype
network.

4. Genes that make up a sub-network of the network encoded by a linear
genome can be easily identified. This feature can be used in designing
the evolution of hierarchical and modular neural networks.

7.1. Summary 133

The main search operators used in EANT are the structural mutation, struc-
tural crossover and parametric mutations. The structural mutation adds or
removes forward or a recurrent jumper connection between neurons, or adds
a new sub-network to the linear genome. It operates only on neuron nodes.
The weights of a newly acquired topology are initialized to zero so as not to
disturb the performance of the network. Structural crossover operates on two
randomly selected mother species to generate a new species. The parametric
mutation is accomplished by perturbing the weights of the neural networks.

The developed method introduces a biologically motivated meta-level evo-
lutionary process where each structure represents a particular species. All
species start to develop from an initial species or structure. The initial struc-
ture is generated using either the grow or full method. Its initial complexity
is determined by the domain expert and is specified by the maximum depth
that can be assumed by the initial structure. At each generation, existing
species are exploited. Exploitation implies optimization of the weights of
the structures that is accomplished by an evolutionary process that occurs
at smaller timescale. The evolutionary process at smaller timescale uses
parametric mutation and recombination as search operators. Exploration of
structures or creation of new species is done through structural mutation and
crossover operators. The structural selection operator that occurs at larger
timescale selects the best individuals to form the next generation.

In order to protect the structural innovations or discoveries of the evolu-
tion, young structures that are few generations old with respect to the larger
timescale are carried over along the evolution regardless of the results of the
selection operator. This gives them time to optimize their newly acquired
structures before they compete with other individuals globally.

New structures that are introduced through structural mutation and
which are better according to the fitness evaluations survive and continue to
exist. Survival of the fittest results from both intraspecies competition which
occurs during exploitation of species and interspecies competition which oc-
curs at larger timescale. Since sub-networks that are introduced are not
removed, there is a gradual increase in the complexity of structures along
the evolution. This allows EANT to search for a solution starting from a
minimum structural complexity specified by the domain expert. The search
stops when a neural network with the necessary minimal structure that solves
a given task is obtained.

From the result of experiments, one concludes that the developed sys-
tem is suitable for reinforcement learning tasks. Moreover, the results show
that the solution obtained by the system is efficiently found with higher re-
peatability rate and has the optimal structure necessary for solving a given
learning task.

134 Chapter 7. Conclusion

Parts of this thesis are published in [56, 57, 58, 59, 60, 61, 62].

7.2 Outlook

The work presented in this thesis is a step forward in the unified approach
to learning and adaptation. But still there are open questions and therefore
the work can be directed to many different aspects. In this section, we try
to point out the main possible future directions of research.

An immediate logical extension of the genetic encoding is the introduc-
tion of input delay genes. In addition to recurrent connection gene, the input
delay gene will help the neural network to capture the dynamics of the en-
vironment, where the system has the ability of predicting the next state of
the environment based on the current perceived state.

The development of behavior based evolutionary robotics using the learn-
ing system developed is a very interesting research area. For such systems,
the learning system should handle the evolution of hierarchical structures
and modular networks. In order to direct the evolution efficiently, ways of
describing the search space as well as the final resultant networks should be
developed.

The genetic encoding can also be extended to the areas of indirect encod-
ing where developmental rules that are used in constructing the phenotype
are encoded. An indirect encoding based on the principles of developmen-
tal biology enables the system in evolving and representing very large neural
networks and complex structures. Moreover, it enables one in designing com-
pact and efficient genetic encoding schemes for representing repetitive and
recurrent structures.

Since the neuron nodes of the linear genome can assume any function,
non-neural structure evolution is another area of research where the devel-
oped genetic encoding can be used. Application areas could be evolution
of structures for image processing and object recognition, robot body mor-
phologies, electrical circuits and finite automata.

We hope that the developed genetic encoding gives a good basis for the
design and development of evolutionary systems that evolve the necessary
optimal structure starting from some initial structures.

BIBLIOGRAPHY

[1] I. Ahrns, J. Bruske, G. Hailu, and G. Sommer. Neural fuzzy techniques
in sonar-based collision avoidance. In L.C. Jain and T. Fukuda, editors,
Soft Computing for Intelligent Robotic Systems, Studies in Fuzziness
and Soft Computing, pages 185–214. Physica-Verlag (Springer), 1998.

[2] P. J. Angeline, G. M. Saunders, and J. B. Pollack. An evolutionary al-
gorithm that constructs recurrent neural networks. IEEE Transactions
on Neural Networks, 5:54–65, 1994.

[3] R. C. Arkin. Behaviour-Based Robotics. MIT Press, Massachusetts,
London, 1998.

[4] T. Bäck. Evolution strategies: An alternative evolutionary algorithm.
In Artificial Evolution, pages 3–20, 1995.

[5] K. Balakrishnan and V. Honavar. Properties of genetic representa-
tions of neural architerctures. In Proceedings of the World Congress on
Neural Networks, pages 117–146, 1995.

[6] W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone. Genetic Pro-
gramming: An Introduction on the Automatic Evolution of Computer
Programs and Its Applications. Morgan Kaufmann, San Francisco, CA,
1998.

[7] A. Barto, R. Sutton, and C. Anderson. Neuronlike elements that can
solve difficult learning control problems. IEEE Transactions on Sys-
tems, Man, and Cybernetics, 13:835–846, 1983.

[8] A. G. Barto, S. J. Bradtke, and S. P. Singh. Learning to act using
real-time dynamic programming. AI Journal on Special Volume on
Computational Research on Interaction and Agency, 72:81–138, 1995.

[9] G. Bebis, S. Louis, Y. Varol, and A. Yfantis. Genetic object recogni-
tion using combinations of views. IEEE Transactions on Evolutionary
Computation, 6(2):132–146, 2002.

136 Bibliography

[10] P. J. Bentley and D. W. Corne. Creative Evolutionary Systems. Aca-
demic Press, San Diego, CA, 2002.

[11] P. J. Bentley and S. Kumar. The ways to grow designs. In Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO-
1999), pages 35–43, 1999.

[12] R. Beveridge and M. Riseman. How easy is matching 2D line mod-
els using local search? IEEE Transaction on Pattern Analysis and
Machine Intelligence, 6(1), 1997.

[13] C. M. Bishop. Neural Networks for Pattern Recognition. Clarendon
Press, Oxford, 1995.

[14] J. C. Bongard and R. Pfeifer. Repeated structure and dissociation of
genotypic and phenotypic complexity in artificial ontogeny. In Pro-
ceedings of the Genetic and Evolutionary Computation Conference,
GECCO-2001, pages 829–836, 2001.

[15] V. Braitenberg. Vehicles. Experiments in Synthetic Psychology. MIT
Press, Massachusetts, London, 1994.

[16] R. A. Brooks. Elephants don’t play chess. Robotics and Autonomous
Systems, 6:3–15, 1990.

[17] R. A. Brooks and A. M. Flynn. Fast, cheap and out of control: A
robot invasion of the solar system. Journal of the British Interplanetary
Society, 42:478–485, 1989.

[18] R.A. Brooks. A robust layered control system for a mobile robot. IEEE
Journal of Robotics and Automation, 2(1):14–23, 1986.

[19] R.A. Brooks. A robot that walks; emergent behaviors from a carefully
evolved network. Neural Computation, 1(2):253–262, 1989.

[20] R.A. Brooks. Intelligence without representation. Journal of Artificial
Intelligence, 47:139–159, 1991.

[21] J. Bruske, I. Ahrns, and G. Sommer. Practicing Q–learning. In Pro-
ceedings of the European Symposium on Artificial Neural Networks
(ESANN), pages 25–30, Brugges, 1996.

[22] A. Bunten. Ein Autonomes Robotersystem zum Folgen einer Person.
Diplomarbeit, Institute of Computer Science and Applied Mathemat-
ics, Christian-Albrechts University, Kiel, Germany, January 2002.

Bibliography 137

[23] K. Chellapilla and D. B. Fogel. Evolving an expert checkers playing
program without using human expertise. IEEE Transactions on Evo-
lutionary Computation, 5:422–428, 2001.

[24] N. L. Cramer. A representation for the adaptive generation of simple
sequential programs. In Proceedings of an International Conference on
Genetic Algorithms and Applications, pages 183–187, 1985.

[25] C. Darwin. On the Origin of Species by Means of Natural Selection
or the Preservation of Favoured Races in the Struggle for Life. John
Murray, 1859.

[26] D. Dasgupta and D. McGregor. Designing application-specific neural
networks using the structured genetic algorithm. In Proceedings of the
International Conference on Combinations of Genetic Algorithms and
Neural Networks, pages 87–96, 1992.

[27] F. Dellaert and R. D. Beer. A developmental model for the evolution
of complete autonomous agents. In Proceedings of the Fourth Interna-
tional Conference on Simulation of Adaptive Behavior, 1996.

[28] A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing.
Springer Verlag, Berlin, Heidelberg, New York, 2003.

[29] D. Floreano and J. Urzelai. Evolution of neural controllers with adap-
tive synapses and compact genetic encoding. In Proceedings of the 5th
European Conference on Artificial Life (ECAL), pages 13–17. Springer
Verlag, 1999.

[30] D. Floreano and J. Urzelai. Evolutionary robots with on-line self-
organization and behavioral fitness. Neural Networks, 13:431–443,
2000.

[31] D. B. Fogel. Evolving Artificial Intelligence. PhD thesis, University of
California, San Diego, CA, USA, 1992.

[32] L. Fogel, A. Owens, and M. Walsh. Artificial intelligence through a
simulation of evolution. In Biophysics and Cybernetic Systems, pages
131–155. 1965.

[33] I. Gerdes, F. Klawonn, and R. Kruse. Evolutionäre Algorithmen.
Vieweg-Verlag, Wiesbaden, Germany, 2004.

[34] F. J. Gomez and R. Miikkulainen. Incremental evolution of complex
general behavior. Adaptive Behavior, 5:317–342, 1997.

138 Bibliography

[35] F. J. Gomez and R. Miikkulainen. 2-D pole balancing with recurrent
evolutionary networks. In Proceedings of the International Conference
on Artificial Neural Networks, Skovde, Sweden, 1998.

[36] F. J. Gomez and R. Miikkulainen. Solving non-markovian control tasks
with neuroevolution. In Proceedings of the International Joint Confer-
ence on Artificial Intelligence, Stockholm, Sweden, 1999.

[37] F. J. Gomez and R. Miikkulainen. Robust non-linear control through
neuroevolution. Technical Report AI-TR-03-303, Department of Com-
puter Sciences, The University of Texas, Austin, USA, 2002.

[38] W. E. L. Grimson. Object Recognition by Computer. MIT Press, Mas-
sachusetts, London, 1990.

[39] F. Gruau. Genetic synthesis of modular neural networks. In S. For-
rest, editor, Proceedings of the 5th International Conference on Genetic
Algorithms, ICGA-93, pages 318–325. Morgan Kaufmann, 1993.

[40] F. Gruau. Neural Network Synthesis Using Cellular Encoding and the
Genetic Algorithm. PhD thesis, Ecole Normale Superieure de Lyon,
Laboratoire de l’Informatique du Parallelisme, France, January 1994.

[41] F. Gruau, D. Whitley, and L. Pyeatt. A comparison between cellular
encoding and direct encoding for genetic neural networks. In J. R.
Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo, editors, Genetic
Programming: Proceedings of the First Annual Conference, pages 81–
89, Standford University, CA, USA, 1996. MIT Press.

[42] G. Hailu. Towards Real Learning Robots. PhD thesis, Technical Re-
port 9906, Institute of Computer Science and Applied Mathematics,
Christian-Albrechts University, Kiel, Germany, October 1999.

[43] G. Hailu and G. Sommer. On amount and quality of bias in reinforce-
ment learning. In IEEE International Conference of System, Man, and
Cybernetics, Tokyo, Japan, pages 728–733, 1999.

[44] N. Hansen and A. Ostermeier. Completely derandomized self-
adaptation in evolution strategies. Evolutionary Computation,
9(2):159–195, 2001.

[45] M. Haralick and G. Shapiro. Computer and Vision, volume II. Addison-
Wesley Publishing Company, 1993.

Bibliography 139

[46] C. G. Harris and M. Stephens. A combined corner and edge detector.
In 4th Alvey Vision Conference, pages 147–151, 1995.

[47] D. Hestens and G. Sobczyk. Clifford Algebra to Geometric Calculus:
A Unified Language for Mathematics and Physics. Springer-verlag,
Berlin, Heidelberg, New York, 1987.

[48] J. H. Holland. Adaptation in Natural and Artificial Systems. MIT
Press, Massachusetts, London, 1975.

[49] M. K. Hu. Visiual pattern recognition by moments invariants. RE
Transaction on Information Theory, 8:179–187, 1962.

[50] M. Hülse and F. Pasemann. Dynamical neural schmitt trigger for robot
control. In Proceedings of International Conference on Artificial Neural
Networks (ICANN 2002), pages 783–788. Springer-Verlag, 2002.

[51] C. Igel. Neuroevolution for reinforcement learning using evolution
strategies. In R. Sarker, R. Reynolds, H. Abbass, K. C. Tan, B. McKay,
D. Essam, and T. Gedeon, editors, Congress on Evolutionary Compu-
tation (CEC2003), volume 4, pages 2588–2595. IEEE Press, 2003.

[52] C. Jacob. Illustrating Evolutionary Computation with Mathematica.
Morgan Kaufmann, San Francisco, CA, 2001.

[53] R. Jain, R. Kasturi, and B. G. Schunck. Machine Vision. McGraw-Hill,
New York, Tokyo, Toronto, 1995.

[54] N. Jakobi. Harnessing morphogenesis. In Proceedings of Information
Processing in Cells and Tissues, pages 29–41, 1995.

[55] J. Jung and J. Reggia. A descriptive encoding language for evolving
modular neural networks. In Proceedings of the Genetic and Evolu-
tionary Computation Conference (GECCO), pages 519–530. Springer-
Verlag, 2004.

[56] Y. Kassahun and G. Sommer. Learning and adaptation: A comparison
of methods in case of navigation in an artificial robot world. Technical
Report 0309, Institute of Computer Science and Applied Mathematics,
Christian-Albrechts University, Kiel, Germany, November 2003.

[57] Y. Kassahun and G. Sommer. Improving learning and adaptation
capability of agents. In Proceedings of 8th Conference on Intelligent
Autonomous Systems (IAS-8), pages 472–481, Amsterdam, November
2004.

140 Bibliography

[58] Y. Kassahun and G. Sommer. Model based evolutionary object recog-
nition system. In Proceedings of 8th Conference on Intelligent Au-
tonomous Systems (IAS-8), pages 925–934, Amsterdam, November
2004.

[59] Y. Kassahun and G. Sommer. Automatic neural robot controller design
using evolutionary acquisition of neural topologies. In 19. Fachgespräch
Autonome Mobile Systeme (AMS 2005), pages 259–266, Stuttgart, Ger-
many, December 2005.

[60] Y. Kassahun and G. Sommer. Efficient reinforcement learning through
evolutionary acquisition of neural topologies. In Proceedings of the 13th
European Symposium on Artificial Neural Networks (ESANN 2005),
pages 259–266, Bruges, Belgium, April 2005.

[61] Y. Kassahun and G. Sommer. Evolution of neural networks through
incremental acquisition of neural structures. Technical Report 0508,
Institute of Computer Science and Applied Mathematics, Christian-
Albrechts University, Kiel, Germany, June 2005.

[62] Y. Kassahun and G. Sommer. Evolutionary reinforcement learning for
simulated locomotion of a robot with a two-link arm. In Proceedings of
the 9th Conference on Intelligent Autonomous Systems (IAS-9), 2006.

[63] H. Kimura and S. Kobayashi. Reinforcement learning for locomotion of
a two-linked robot arm. In Proceedings of the 6th European Workshop
on Learning Robots, pages 144–153, 1997.

[64] H. Kitano. Designing neural networks using genetic algoithms with
graph generation system. Complex Systems, 4:461–476, 1990.

[65] T. Kohonen. Self-organization and Associative Memory. Springer-
Verlag, Berlin, Heidelberg, New York, 1989.

[66] R. Kortmann. Embodied cognitive science. In Proceedings of Robo
Sapiens: the First Dutch Symposium on Embodied Intelligence, pages
173–182. Springer Verlag, 1999.

[67] J. R. Koza. Genetic programming: A paradigm for genetically breed-
ing population of computer programs to solve problems. Technical
Report STAN-CS-90-1314, Computer Science Department, Standford
University, Stanford, CA, USA, 1990.

Bibliography 141

[68] J. R. Koza. Genetic Programming: On the Programming of Computers
by Natural Selection. MIT Press, Massachusetts, London, 1992.

[69] A. Lindenmayer. Mathematical models for cellular interactions in de-
velopment, parts I and II. Journal of Theoretical Biology, 18:280–315,
1968.

[70] M. L. Littman and A. W. Moore. Reinforcement learning: A survey.
Journal of Artificial Intelligence Research, 4:237–285, 1996.

[71] S. Luke and L. Spector. Evolving graphs and networks with edge en-
coding: Preliminary report. In Late-breaking papers of Genetic Pro-
gramming 1996. Stanford, CA, 1996.

[72] W. McCulloch and W. Pitts. A logical calculus of the ideas immanent
in nervous activity. Bulletin of Mathematical Biophysics, 5:115–133,
1943.

[73] D. Moriarty and R. Miikkulainen. Efficient reinforcement learning
through symbiotic evolution. Machine Learning, 22:11–33, 1996.

[74] H. Murase and S. Nayar. Visiual learning and recognition of 3d objects
from appearance. International Journal of Computer Vision, 14:5–24,
1995.

[75] S. Nolfi and D. Floreano. Evolutionary Robotics. The Biology, In-
telligence, and Technology of Self-Organizing Machines. MIT Press,
Massachusetts, London, 2000.

[76] S. Nolfi and D. Parisi. Growing neural networks. Technical Report
PCIA-91-15, Institute of Psychology, Rome, 1991.

[77] F. Pasemann. Evolving neurocontrollers for balancing an inverted pen-
dulum. Network: Computation in Neural Systems, 9:495–511, 1998.

[78] R. Pfeifer and C. Scheier. Understanding Intelligence. MIT Press,
Massachusetts, London, 1999.

[79] I. Rechenberg. Evolutionstrategie: Optimierung Technischer Systeme
nach Prinzipien des Biologischen Evolution. Fromman-Hozlboog Verlag,
Stuttgart, 1973.

[80] R. Rojas. Neural Networks: A Systematic Introduction. Springer-
Verlag, Berlin, Heidelberg, New York, 1996.

142 Bibliography

[81] F. Rosenblatt. The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological Review, 65:41–43,
1958.

[82] B. Rosenhahn. Pose Estimation Revisited. PhD thesis, Technical Re-
port 0308, Institute of Computer Science and Applied Mathematics,
Christian-Albrechts University, Kiel, Germany, September 2003.

[83] RWI. Homepage of real world interface.
http://www.irobot.com/rwi/index.asp.

[84] A. Samuel. Some studies in machine learning using the game of check-
ers. In Computers and Thought. McGraw-Hill, New York, 1963.

[85] N. Saravanan and D. B. Fogel. Evolving neural control systems. IEEE
Expert, 3:23–27, 1995.

[86] T. Sasaki and M. Tokoro. Adaptation toward changing environments:
Why darwinian in nature? In Proceedings of 4th European Conference
on Artificial Life (ECAL-97), 1997.

[87] H. P. Schwefel. Numerische Optimierung von Computer-Modellen mit-
tels der Evolutionsstrategie. volume 26 of Interdisciplinary Systems.
Birkhaeuser, Basel, 1977.

[88] H. P. Schwefel. Evolution and Optimum Seeking. John Wiley & Sons,
New York, 1995.

[89] H. P. Schwefel and G. Rudolph. Contemporary evolution strategies. In
Advances in Artificial Life, pages 893–907. Springer-Verlag, 1995.

[90] B. Sendhoff and M. Kreutz. Variable encoding of modular neural net-
works for time series prediction. In Congress on Evolutionary Compu-
tation (CEC’99), pages 259–266, 1999.

[91] J. Shaffer and R. Cannon. On the control of unstable mechanical sys-
tems. In Proceedings of the Third Congress of the International Feder-
ation of Automatic Control, 1966.

[92] P. Soille. Morphological Image Analysis: Principles and Applications.
Springer-Verlag, Berlin, Heidelberg, New York, 1999.

[93] G. Sommer. Algebraic aspects of designing behavior based systems.
In G. Sommer and J.J. Koenderink, editors, Algebraic Frames for the
Perception-Action Cycle (AFPAC 97), pages 1–28. Lecture Notes in
Computer Science 1315, 1997.

Bibliography 143

[94] K. O. Stanley. Efficient Evolution of Neural Networks through Complex-
ification. PhD thesis, Artificial Intelligence Laboratory. The University
of Texas at Austin., Austin, USA, August 2004.

[95] K. O. Stanley and R. Miikkulainen. Efficient reinforcement learning
through evolving neural network topologies. In Proceedings of the Ge-
netic and Evolutionary Computation Conference, San Francisco, CA,
2002.

[96] K. O. Stanley and R. Miikkulainen. Competitive coevolution through
evolutionary complexification. Journal of Artificial Intelligence Re-
search, 21:63–100, 2004.

[97] R. Sutton and A. Barto. Reinforcement Learning. An Introduction.
MIT Press, Massachusetts, London, 1998.

[98] G. Tesauro. Temporal difference learning and td-gammon. Communi-
cations of the ACM, 38(3):58–68, 1995.

[99] P. Tondeur. Introduction to Lie Groups and Transformation Groups.
Springer Lecture Notes, Berlin, Heidelberg, New York, 1965.

[100] C. Tsuchiya, H. Kimura, and S. Kobayashi. Policy learning by GA
using importance sampling. In Proceedings of 8th Conference on In-
telligent Autonomous Systems (IAS-8), pages 385–394, Amsterdam,
November 2004.

[101] S. Ullman. High-level Vision. MIT Press, Massachusetts, London,
1996.

[102] J. Vaario, A. Onitsuka, and K. Shimohara. Formation of neural struc-
tures. In Proceedings of the Fourth European Conference on Articial
Life, ECAL97, pages 214–223, 1997.

[103] D. Whitley. An overview of evolutionary algorithms: Practical issues
and common pitfalls. Journal of Information and Software Technology,
43:817–831, 2001.

[104] D. Whitley, F. Gruau, and L. Pyeatt. Cellular encoding applied to
neurocontrol. In L. Eshelman, editor, Genetic Algorithms: Proceed-
ings of the Sixth International Conference (ICGA95), pages 460–467,
Pittsburgh, PA, USA, 1995. Morgan Kaufmann.

144 Bibliography

[105] A. Wieland. Evolving controls for unstable systems. In Proceedings of
the International Joint Conference on Neural Networks, pages 667–673,
1991.

[106] E.O. Wilson. Sociobiology. The Belknap Press of Harvard University
Press, Cambridge, Massachusettes, 1975.

[107] M. Xie. Fundamental of Robotics: Linking Perception to Action. World
Scientific Publishing, New Jersey, London, Singapore, Hong Kong,
2003.

[108] X. Yao. Evolving artificial neural networks. Proceedings of the IEEE,
87(9):1423–1447, 1999.

[109] C. T. Zahn and R. Z. Roskies. Fourier descriptors for plane closed
curves. IEEE Transactions on Computers, 21(3):269–281, 1972.

