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Zusammenfassung

Die vorliegende Arbeit befasst sich mit der Konstruktion und der mathema-
tischen Analyse von mehrdimensionalen, nicht separablen Wavelets und deren
effizienter Anwendung im Bereich Computer Vision. Wavelets sind eine erst
relativ kurz bekannte Klasse von mathematischen Funktionen mit einer Rei-
he charakteristischer Eigenschaften, welche sie für den Einsatz in der nume-
rischen Signalverarbeitung besonders attraktiv machen. Zu den wesentlichen
Eigenschaften zählen hierbei die Zugehörigkeit zum WG!$��X(����J raum L YDZ1[]\ ,
ihre Skalierbarkeit, das Besitzen verschwindender Momente, eine Basis- oder
Frame-Eigenschaft und im besonderen die Tatsache, dass sie eine gute Lokali-
sierungseigenschaft sowohl im Zeit- als auch im Frequenzraum besitzen. Aus
diesen Merkmalen lassen sich speziell zwei fundamentale Konzepte zur Ver-
wendung von Wavelets ableiten: Zum eine ist dies die Benutzung von Wavelet-
Basen zur Repräsentation von mehrdimensionalen Daten und zum anderen han-
delt es sich um die effiziente Beschreibung von Operatoren in Wavelet-Basen.
Aus der Verbindung dieser beiden Konzepte lassen sich schnelle Algorithmen
für eine Vielzahl von Anwendungen erzeugen.

Diese Dissertation besteht im wesentlichen aus drei Teilen. Der erste Teil
erörtert die fundamentalen Prinzipien, die dem Entwurf mehrdimensionaler
Wavelet-Filter zu Grunde liegen. Hier geht es zum einen um die Wahl der im
Mehrdimensionalen nicht mehr trivialen (geometrischen) Form der Unterab-
tastung des zu bearbeitenden Signals. Diese Fragestellung wird in einer ein-
gehenden Untersuchung mehrdimensionaler Skalierungsmatrizen im Kapitel 3
beantwortet. Das zweite, wesentlich fundamentalere Problem bei der Erzeu-
gung mehrdimensionaler Wavelets ist das Problem des Filter-Designs an sich.
Es wird hierbei gezeigt werden, dass (eindimensionale) Wavelet-Filter typi-
scherweise mittels Spektralfaktorisierung trigonometrischer Polynome erzeugt
werden können. Da in höheren Dimensionen jedoch keine generellen Fakto-
risierungsaussagen getroffen werden können, ist die Verwendung alternativer
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viii Zusammenfassung

Konzepte gefragt. Im Verlaufe des ersten Teils dieser Arbeit werden verschiede-
ne Filter-Design-Verfahren für mehrdimensionale Wavelets hergeleitet werden.

Im zweiten Teil geht es um die Untersuchung der analytischen Eigenschaften
mehrdimensionaler Wavelets. Es werden verschiedene Approximationsaussa-
gen und die schnelle Wavelet-Transformation für mehrdimensionale Signale
bereit gestellt. Anschließend wird die effiziente Repräsentation von Operato-
ren in mehrdimensionalen Wavelet-Basen untersucht und einige Beispiele mit
Bezug zu Computer Vision Anwendungen, wie Differential- oder Translati-
onsoperatoren, werden ausführlich diskutiert. Um mit den Operatoren in die-
ser Form (numerisch) arbeiten zu können, werden in der Folge verschiedene
Methoden zur Wavelet basierten Lösung inverser Probleme behandelt. Hierbei
wird sich zeigen, dass sowohl die intrinsischen (durch den Filter determinier-
ten) Eigenschaften der Wavelets als auch deren generelle Approximations- und
Frame-Eigenschaften von fundamentaler Bedeutung für die Qualität der ent-
sprechenden Algorithmen sind.

Teil drei der Arbeit ist konkreten Computer Vision Anwendungen gewid-
met. An Hand dieser Anwendungen soll die Umsetzung der zuvor entwickelten
Theorie in die Praxis demonstriert werden. Zunächst werden lineare und nicht
lineare Skalenraumkonzepte vorgestellt, im Anschluß daran geht es um die
(Wavelet basierte) Berechnung von optischem Fluss in Bildsequenzen. Skalen-
raumtheorien sind im Hinblick auf Computer Vision für sich selbst ein inter-
essantes Studienobjekt, da sie ein hierarchisches Bildmodell über einem freien
Skalenparameter, der dem Fokus eines natürlichen Beobachters nahe kommt,
entwickeln. Insbesondere nicht lineare Skalenräume eignen sich aber auch im
Kontext anderer Computer Vision Anwendungen zur Regularisierung von un-
erwünschten Effekten wie der Glättung von signifikanten Kanten. Diese Eigen-
schaft wird bei der Berechnung von optischem Fluß zur besseren Herausbildung
von Bewegungskanten von hohem Nutzen sein. Im Verlaufe dieses dritten Teils
der Arbeit wird sich zeigen, wie die zuvor entwickelten Wavelet basierten Kon-
zepte zur effizienten und zuverlässigen Lösung der genannten Computer Vision
Probleme eingesetzt werden können.

Naturgemäß sind in einer wissenschaftlichen Forschungsarbeit nicht aus-
schließlich neue Ideen und Theorien zu finden, sondern auch viel grundlegen-
des Material zur Verbesserung des Verständnisses. In dieser Dissertationsschrift
wurde versucht, fremde Quellen und Resultate so weit wie möglich anzugeben,
was in einem recht umfangreichen Literaturverzeichnis seinen Ausdruck fin-
det. Um die eigenen Beiträge des Autors besser hervorzuheben, wurden die
entsprechend gefassten mathematischen Aussagen mit einem hochgestellten
Stern versehen (z.B. “ KL� ��� �_^*`baDc ” o.Ä.). Eine derartige Kennzeichnung in



Zusammenfassung ix

laufendem Text oder Formeln ist selbstverständlich nicht möglich — jedoch
sollte aus den entsprechenden Formulierungen stets klar werden, wann es sich
um Resultate handelt, die nicht auf den Autor zurückgehen.





Summary

The present work deals with the construction and the mathematical analysis
of multidimensional, nonseparable wavelets and their efficient application in
the area of computer vision. Wavelets are a rather newly known class of math-
ematical functions with a set of characteristic properties, which make them
especially attractive for the usage in numerical signal processing. Some of the
essential properties are the membership in the WG!$��X(����J space L Y
Z1[]\ , their
scalability, the possessing of vanishing moments, a basis or frame property and
especially the fact, that they are well localized in the spatial as well as in the fre-
quency domain. There are two very special fundamental concepts to be derived
out of this features: For the first, this is the usage of wavelet bases to represent
multidimensional data and for the second, this is the efficient description of
operators by means of waveletbases. The conjunction of these both concepts
leads to fast algorithms for a number of concrete applications.

This thesis consists mainly out of three parts. The first part discusses the
fundamental principles, that lie at the heart of multidimensional wavelet filter
design. Hereby, one has to get along with the choice of the in higher dimensions
no longer trivial (geometric) shape of oversampling of the signal to be processed.
This question will be answered in a thorough investigation of multidimensional
dilation matrices in Chapter 3. The second, much more fundamental problem
in the creation of multidimensional wavelets is the filter design problem itself.
It will be shown that (onedimensional) wavelet filters are typically produced
via spectral factorization of certain trigonometric polynomials. But since there
exist no general factorization theorems in higher dimensions, the application of
alternative concepts is required. During the running of the first part of this work,
various filter design methods for multidimensional wavelets are developed.

In the second part, the analytical properties of multidimensional wavelets are
investigated. Various approximation results and the fast wavelet transform are
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provided. In the sequel, the efficient representation of operators in bases of mul-
tidimensional wavelets is investigated and some examples related to computer
vision applications, like differential or translation operators, are discussed in
some detail. In order to work with these form of operator representation, varied
methods for the wavelet based solution of inverse problems are investigated af-
terwards. It will turn out that the intrinsic properties (which are determined by
the filter) as well as the general approximation and frame properties of wavelets
are of fundamental significance for the quality of the corresponding algorithms.

Part three of this work is dedicated to concrete computer vision applications.
By means of these applications, the realization of the developed theory in a
practical surrounding shall be demonstrated. First, linear and nonlinear scale
space concepts are introduced, followed by the discussion of (wavelet based)
optical flow estimation in image sequences. In regard of computer vision, scale
space theories are an interesting subject for theirselves, since they produce a hi-
erarchical image model with a free scaling parameter that corresponds in some
sense to the focus of a natural observer. But especially nonlinear scale spaces
are also very well-suited in the context of other computer vision applications
as regularizers for undesired by-effects like smoothing across significant edges.
This property will play a prominent role in the motion boundary recovery within
the optical flow estimations and lead to noteworthy improvements. During the
running of this third part of the work, it will turn out how the developed wavelet
based concepts and theories can be applied in order to obtain efficient and reli-
able solutions to the abovementioned computer vision problems.

Naturally, there are not only new results and theories included in a scientific
research work, but also lots of basic material to assure a better understanding
of the complete text. In this thesis, the author tried to quote external sources
and results as far as possible; this fact finds its expression in a very com-
prehensive reference list. To better emphasize the original contributions of
the author, the accordingly captured mathematical statements were marked by
a high-positioned star (e.g. “ KL� ��� �d^*`ba c ” or similarly). A corresponding
marking would be obviously unfeasible during the running text, but it should
always be clear from of the formulations, if a certain result is not due to the
author.
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Notation

The best notation is no notation.
— �M���M�Q�����O���T�)�D�

This thesis is mainly concerned with the processing of multidimensional data
via wavelet methods. In order to make the text better readable, some specific
multidimensional notation is collected first.

Throughout the whole text, operators and matrices are represented by bold-
faced capital letters, i.e. A w B w�`t`t`���hOi��Mi , while vectors are given in the
common notation, that is�u��¡ ¢u � w£u
YDw�`t`t`¤w£u i(¥ ¦ �§h i w
where ¨¢`t`t` © ¦ denotes the usual transposition. The power function of two vectors�u�w �ª �«h�i is defined by�u�¬­ �¡ ¢u ­¯®� w£u ­Q°Y w�`t`t`¤w£u ­²±i ¥ ¦ `
For
�³ �µ´�i� and a function ¶�Z �u�\ with ¶z·�h�iA¸�¹ h , the vector differential

operator will be written as

D ¬º Z$¶¤\RZ �u)\G� » ¼ ¬º ¼Z » �u�\ ¬º ¶½Z �u)\�w with ¾ �³ ¾&�¿¾ ³ � ¾ÁÀ3¾ ³ Y�¾�ÀÃÂtÂtÂ¤À3¾ ³ i ¾Á`
Still assuming

�³ �«´ i � , the vector faculty is expressed as�³�Ä � ³ � Ä Â ³ Y Ä ÂtÂtÂ ³ i Ä `
With this statement at hand, the vector faculty function may be extended to
non-integer and negative vector entries under usage of the E²=)�D��� - Å -function.

xxi



xxii Notation

Finally, for
� Æ �§ÇÈi , the vector HI� � �)�*%(<��*� delta function is given byÉ ¬ n �ËÊÍÌ �Æ � �ÎÎ

otherwise.



Chapter Ï
OUVERTURE

Jedem Anfang wohnt ein Zauber inne, der uns beschützt und der uns hilft zu leben
— �LÐ¤Ñ�����ÒMÒÓ�LÐ¤�Ô�ÁÐ

The goal of the research presented in this thesis is to give an introduction
to multidimensional non-tensor-product wavelet theory and its application to
computer vision problems, especially those arising in the context of image and
image sequence analysis.

Instead of directly delving into the theoretical work, the main topics of this
thesis shall be introduced from a certain point of view first. We start by giv-
ing a brief historical overview of the development of wavelet theory within the
last century from a pure mathematical concept to a widely applicable tool for
diverse scientific problems. On one hand, this may just stimulate the readers
interest to wavelet theory in general, but on the other hand, this survey shall
also be viewed as an introduction to better understand the close relationships
between the mathematical theory and its scientific relevance in physics, engi-
neering, medicine, . . . (this enumeration is far from being exhaustive and could
be prolonged arbitrarily). Because — varying a word of EÕ!1��#-J��Ö!1� — even the
most beautiful mathematical theory is completely useless without any connec-
tion to the real world; and wavelets have in fact a very high significance for
several concrete research areas.

Among these areas is also the research in computer vision, which shares
the fundamental idea of the scale concept with the mathematical wavelet the-
ory. This conceptual parallelism will give us a mathematical bridge leading
to multiscale representations of images, theoretical results and several efficient

1



2 Chapter 1. Ouverture

algorithms for computer vision problems that will be developed in the course of
this thesis. To introduce the involved problems, the second part of this ouver-
ture is dedicated to give an overview about what computer vision is and what
its fundamental concepts are. In particular, we will describe some of its main
roots, its connection to other scientific branches, which are very widespread and
range from psychology and biology to information theory and (of course) ap-
plied mathematics. Furthermore, the general ideas, mathematical methods and
problems are introduced to equip the reader with a basic feeling and understand-
ing for the computer vision applications examined in the third part of this thesis.

This ouverture closes with a brief outline of the text explaining its structural
organization and introducing the single chapters.

1.1. A Brief History of Wavelets
. . . the development of wavelets is an example where ideas from many different fields
combined to merge into a whole that is more than the sum of its parts.

— ×ØÒMÙDÑ�ÚÜÛ
Ý����MÞ¤Ð¤ß½àMÚáÐ¤�
Within the last decade, wavelet theory has developed into an imposing math-

ematical tool, that finds application in a big variety of mathematical as well
as engineering, physical,. . . problems. However, things started about a cen-
tury ago with the fundamental work of â
��ã������¿WG�)��� [101].1 His famous
construction of the function systemä n { º Zvu�\G�å} nçæèY ä Zv} n u¯é ³ \ with

ä Zvu�\�� êëbì Ì if u«�V¨ Î w Ìtí }*\�wé Ì if u«�V¨ Ìtí }�w Ì \�wÎ
else

gave rise to the first orthonormal wavelet basis of the function space L YDZ1hÕ\ ,
even though the term wavelet was not invented for a long time yet. WhileW������ s original results were primarily of interest for pure mathematicians,
most of the fundamental concepts of wavelet theory originate from his work,
since WG�)��� s construction gave the first time-frequency representation for func-
tions ¶�� L YDZ1hÕ\ , which means a unification of two classical representations of
functions: Of course, the arithmetical notion of a function as a varying entity
associated to another entity, which may be interpreted as a time- or space-
dependent relation is in fact much older and goes back to ideas of î � '����)�������� � =)����! ( e p e q ) and was formulated in full mathematical strength by H6�����
1An even much older mathematical concept that obeys the principles of wavelet representations is musical
notation, whose roots are found in Egypt and date back to about ï�ðÁñèñ�ò½ó ô . On the other hand, todays notation
system, which is the first that implicitly contains wavelet ideas was invented in the Florentine school during
the basso continuo period around the year õ÷öèñèñ .



1.1. A Brief History of Wavelets 3ø �Ö!1�*�)#-J�����#&# about 150 years later. The idea of splitting functions into parts
of different frequencies was first introduced by î*�Ö���ù��� P J�!,#-J��ú� � =)��!$��� ine q s p in the context of investigations of heat diffusion processes [87].

The first conceptual generalizations of the WG�)��� system in terms of time-
frequency representations of functions originated about e-r�f�m , these were the
introduction of

ø ���D#-' function series [229], which may be seen as the first
prototype of a wavelet packet basis [52] on one hand and the functions nowadays
called �+�����)<��M!$� wavelets [88] [111], which belong to the class of piecewise
linear spline wavelets on the other hand. Afterwards, at the latest from e-r�g½s
on, the development of theory started to grow in parallel within many differ-
ent disciplines such as harmonic analysis, engineering or quantum mechanics
(often independently and without awareness of similar results in other scien-
tific branches) and therefore, it would expand the scope of this introduction to
consider all the aspects and influences that led to todays wavelet theory — this
might require (and in fact deserves by the authors’ opinion) a whole book on
its own. For this reason, we will concentrate on some few but striking events
in the theories’ evolution that followed the abovementioned pioneering works.

A major contribution from communications engineering is the
� '����)� � �

sampling theorem ( e-r l r )2 , which states, that every frequency-banded function,
that is sampled at least with its û�ü�ý�=�!,#-J rate, may be reconstructed exactly by
the sampled values. This theorem, which caused a little revolution in radioelec-
tronics and neighbouring disciplines must be viewed in the greater context of
parallel developments in harmonic analysis, where distributional � � =)��!$��� the-
ories came up while a group of mathematicians around

ø !1���)�*�Oþ�:�ü�; � =)���ÿþ��������üÈþQW������(ü and KO!$J�J(�D� 9 ��� � [139] [178] [177] were building up the
foundings of a generalized harmonic analysis. One result of particular interest
in the context of wavelets is the so-called KO!$J(J��D� 9 ��� ��7��������Öü decomposi-
tion, which yields a dyadic decomposition of a given function in the � � =)��!1���
domain, from whose atoms, the KO!1J�J���� 9 ��� ��7���������ü blocks, one may derive
simple L� characterizations for functions in more general function spaces. Such
characterizations are direct predecessors of ���*# � > space characterizations by
thresholded wavelet coefficients, which on the other hand play an important role
in optimal lossy coding, denoising or nonlinear diffusion processes in computer
vision [73] [41] (this connection will become clearer in Part III of this thesis).
Later on

��� !1ã � ���Lþ ø �Ö!$#¤# [51] and others were trying to find atomic expan-

2The sampling theorem is named after ����������	�� , nevertheless it was stated and proven independently
of ����������	�� and some years before him by 
�����
�
�������� (in õ��èï�� ) and also by ��	�
�����������	�� ( õ������ ).
The sampling theorem originally goes back to ���! ¤ô"��# s cardinal series theorem ( õ�$�%�õ ) and to ideas of& ��'!��(����!' and '��)���+*,�����,-����.0/�	� �1213��� concerning the theory of entire functions.
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sions of functions and general characterizations of certain function spaces, like��� X � ����> or WG�����(ü spaces (see also Appendix B), which also play a funda-
mental role in the theory of partial differential equations. These works finally
led to

� J��²���� X(����; s construction [215] of orthonormal spline wavelet bases
for WG�����(ü spaces in e-r q g .

However, lets turn back to the past for a moment: Inspired by the discovery
of the WÓ�Ö!$#&���)X(���(; uncertainity principle ( e-r�f p ), the physicist and engineerC
���)��!,#/�Ó��X � � gave a new time-frequency decomposition of functions in
terms of the windowed � � =)��!1�*� transform [89] in order to overcome the
limitations in spatial processing of the classical � � =)��!1�*� transform. Simi-
lar ideas led to further contributions like the :���< transform or the ambiguity
transform and to the formulation of the frame concept for nonharmonic series
[79]. Though all these inventions gave better time-frequency decompositions
than the classical methods, they were still unsatisfying in various aspects, for
example, �
��X � � s transform yielded a uniform time-frequency zoom into theZvu�wyx \ -plane.3 This was overcome by the introduction of scale, the next remark-
able development in the step towards wavelet theory, namely the discovery of� ���������54� � s reproducing formula [35]¶�Zvu�\G� 6"798:6�7;6"7 ä Z3<!= � w3>�éùu�\�Â-¶�Z@?N\�Â ä Z3<!= � w3>GéA?N\CB > B ? B << (1.1)

for a well-suited distribution
ä

. This is exactly todays well-known continuous
wavelet transform formula; the reader familiar with wavelet theory should note
the similarity between the inner integral and the wavelet coefficients on one
scale.4 Although the identity (1.1) dates back to e-r o l , it took 20 more years
since its discrete version was developed and the full meaning of this transform
was realized. . .

Meanwhile, engineers working on signal and image processing problems,
were trying to find sets of linear filters (filter banks) that obey a perfect recon-
struction property, which is desirable for several communication and coding
applications. This finally led to the discovery of quadrature mirror filters [55]
in e-r p o ; these type of filters do not only yield unaliased subband coding schemes

3Another aspect concerning the non-optimality that comes along with the D��-ò!	�� transform is the celebratedE ����������.0FG	�H theorem [13] [141], which states that a frame consisting of any two-parameter family of
window functions I�JLK ±NMPO�Q °�R�S JUTWV I�X Y = i�Z with ­ { i\[^] is either spatially or frequencially
completely unlocalized, i.e. either

¼ I_JLK ± ¼ ° or
¼ `I�JLK ± ¼ ° have an infinite second moment.

4Seen from group theory, the windowed aG	� ��!���"� transform and the wavelet transform are the same [99]:
While the first is the square-integrable representation of the 
b�c#��d. & �"�e13���-ò����!f group of shifts and phase-
shifts, the latter one is the accordant representation of the affine group. Recently, a unification of these
concepts via a certain intertwining Fg��� group operator could be achieved [119] [203].
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but are also a major component in the multiresolution analysis setting applied to
generate orthonormal wavelet bases. A short time later, ��=)��J and â
���*�D# � �
formulated the KO� P ���)%�� -pyramid as an alternative method for efficient im-
age coding [29]; from todays point of view, this concept belongs into the class
of (non-tight) wavelet frames. Related ideas led C
�*#&�M��=)��!$���)# and C
=)X(=�%
to the dyadic interpolation scheme [72]. The moment, wavelets became the
popular tool they are nowadays coincides with the moment of understanding,
that all the mathematical and physical theories and the engineering methods
could be formulated in a unifying manner and efficient algorithms are accessi-
ble simultaneously. This breakthrough was achieved by

� J 4� P '������ .0���D�M��J
and 5Ó>��*# .V��ü���� in autumn of e-r q�o and was published in the fundamental
article [144], where also the first discrete variant of the reproducing formula
(1.1) appeared. Even a few years earlier, � F 2 !,%�'�J(�*� applied discrete WG�)���
transforms independently in the context of astronomical image analysis [186]
[187]. Consequently, his construction must be seen as the real first occurence
of the discrete wavelet transform, even though it was not build in the same
generality as .0���D�M��J s method and also did not achieve the same popularity.

After this large step ahead was once made, things evolved in a breathtak-
ing speed: In e-r q�q , hy��;���!$�åC4��=)X(�*%('�!1��# constructed the first compactly
supported orthonormal wavelet bases of arbitrary regularity [60] with the con-
sequence, that cut-off errors could be completely avoided. Wavelets became
more and more attractive for various applications, when some limitations of
orthonormal wavelets — for example non-symmetry and boundary handling
problems — could be overcome by the introduction of biorthogonal wavelets
[49] [225], wavelet frames [61] and wavelets on intervals [50]. The mathemat-
ical foundations for wavelet based numerical analysis were built by ���Öü���<�!1�Lþ��� !$ã � ��� and

24� <�')�M!$� in [20], while the treatment of PDEs was first ad-
dressed in [92]. The first attempts to non-trivial multidimensional wavelet
generalizations were made by H � >
�;i%(��>�!G4% and U6��J�J(�*���M! , who is also one
of the pioneers of subband coding theories, for the orthogonal case [127] and
by
��� ')��� and C4��=)X(�*%('�!1�*# for the biorthogonal case [47], but the achieved

results were not very satisfying, since either worse regularity or extremely huge
filters (thousands of taps) had to be accepted as drawbacks. Some improvements
in this direction could be realized by

24� � and
� ')�*� for higher dimensional

tight wavelet frames via box-spline constructions [195].

The period of rapid developments lasted about seven or eight years, in which
nearly the whole theory was built up. Within the last few years the barycen-
ter of wavelet research tended more and more to concrete applications rather
than new theoretical results. Many of these applications deal with the process-
ing and evaluation of higher dimensional data (e.g. images, atmospheric data,
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medical data, . . . ), but on the other hand, most of the related algorithms rely
on intrinsically onedimensional wavelet methods due to the abovementioned
disadvantages coming along with multidimensional wavelet systems. But usu-
ally, the objects or structures in higher dimensional signals are not reducible
to (essentially) onedimensional tensor product entities and from this point of
view, it seems to be more natural to consider real multidimensional wavelets
as bases (or frames). The overcoming of this gap is one of the fundamental
intentions of this thesis: In the upcoming investigations, we will describe new
ideas how to create and apply wavelets in more than one dimension (Part I),
we will generalize several principles of onedimensional wavelet analysis to the
more general case (Part II) and finally, we will consider concrete algorithms for
the developed concepts in computer vision applications (Part III).

1.2. About Computer Vision
Das Bild ist ein Modell der Wirklichkeit.

— j��MÛlk"ÚÜÙnmNÚpogo�ÙDÐ¤ÒM�do�Ð&ÚÜÒ
Computer vision is the theory of processing and manipulating discrete (or

better: discretized) visual information by a machine. It is concerned with
the task of finding meaningful and useful information within the given visual
patterns of data. Of course, the definitions of meaningfulness and usefulness
considered in this context highly depend on the target of the processing and
on the complexity level of abstraction.5 Typical high-level applications are
e.g. to provide robots with the capability of seeing in order to employ them in
industrial manufacturing or to implement autonomous driving and navigation
systems into vehicles of any kind. Applications like these can be subdivided into
a set of physical models of the environment and a set of lower-level tasks like
image representation, image segmentation, object recognition, regularization,
. . . acting on the physical models. Due to the fact that one deals with visual
data (images), image processing is a major component in nearly all computer
vision problems. The partitioning of a problem into a set of subproblems is a
very natural technique to simplify the situation on one hand, but it also supplies
one with the possibility to incorporate the vision problem into an even bigger
context: from (visual) information to a learning process which shall endow

5Many scientists in computer vision divide vision tasks into three layers of abstraction, these are low-level,
intermediate-level and high-level vision tasks. Roughly, low-level vision means the computational theory
standing at the beginning of any vision taks. The intermediate-level deals with representation of information
and the transformations to model the processes, while all the higher physical and model-theoretic conforming
laws are collected under the term high-level vision. Only a well-formulated high-level vision layer makes
sensible physical realizations of a vision system in a concrete environment feasible at all [153]. Despite this
separation in terminology, in many practically oriented problems the differences between the three layers
are usually rather diffuse than sharp.
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the machine with some competence in order to act by own means. This is
the essential problem of implementing a perception-action cycle — a principal
goal of many cognitive scientists. Formally, this is described by the relational
scheme

syntax q
¹ semantics q
¹ pragmatics `
The visual system of humans (and also that of most animals) has highly

evolved capabilities. Consequently, a natural approach to computer vision is
that of simulating the human (or animal) visual system on a machine. This
approach involves biological and psychological knowledge about visual per-
ception in order to reproduce the events occuring in the retinal ganglion cells
and in the brain. For example, the existence of neurophysiological and psy-
chological evidences for a processing on multiple scales in biological vision
systems [243] [249] gives rise to embed computer vision processes into a cor-
responding mathematical multiscale framework as it is given for example by
wavelet theory. On the retinal level, this corresponds to choose a certain math-
ematical way of representing the visual information. On the other hand, the
cortical processing should be mapped onto a set of information processing tasks
like segmentation or extraction of boundaries, motions, . . . , depending on the
application in mind. The cortical level is usually formulated mathematically by
differential equations, variational problems or stochastic modelling to connect
the represented visual data with the physical assumptions (kinematics, illumi-
nation models, . . . ) about the environment in order to make reliable conclusions
about observable events within the perceived information. Anyway, the reader
should keep in mind that while a biological lifeform always acts autonomous,
the machine unconditionally requires human interaction (since the human su-
pervisor defines the goals of the machine at the beginning and is also the final
evaluating institution by all means).

Most higher level problems in vision are (at least partially) mathematically
ill-posed in the sense of WG����� � ����� . This fact has various causes, one very
fundamental one goes back to the fact that visual perception involves a reduc-
tion of information from the threedimensional world to a twodimensional image
plane. Other problems making vision processes ill-posed (at least on the com-
putational level) are immediate changes of exterior conditions (e.g. somebody
is switching on a light), the finiteness of optical resolution or the incorporation
of noise. There are strong indications that humans (as well as animals) are
able to deal with these problems by accumulated experience, that is, biological
vision is closely tied to the actions of the individuum and its attending and re-
sponding to dynamic changes in the perceived environment. These observations
have lead to the active vision methodology, see e.g. [12]. On the other hand,
there must be some fundamental mechanisms to solve basic ill-posed problems
implemented in biological vision systems, since the external stimuli leading



8 Chapter 1. Ouverture

to experiences must be processed somehow by the individuum. Therefore, in
computer vision, the efficient mathematical solution of such problems is a very
fundamental task and the problems we will discuss in Part III of this thesis will
essentially be posed and solved as such. Hereby, the wavelet formalism will
again turn out to be a strong and efficient tool.

1.3. Organization of the Thesis
This work is divided into three parts. The first part treats the theory, con-

struction principles and requirements to build multidimensional wavelets. It
starts with a presentation of the connections between wavelets, � � =)��!1�*� the-
ories and harmonic analysis and recalls the fundamentals of onedimensional
wavelet theory to equip the reader with the basic mathematical concepts and
some ideas about the difficulties in higher dimensions. In the following chapter,
the properties of matrix subsampling in higher dimensions are investigated in
some detail. This forms the fundamental for multidimensional multiresolution
analyses, the main concept to build nonseparable wavelets in higher dimensions.
The main chapter of Part I is the final one, it addresses the issue of designing
multidimensional wavelet filters. Hereby, several design aspects like regular-
ity, vanishing moments, linear phase property, . . . are considered and weighed
against each other. The advantages and disadvantages of different wavelet fam-
ilies (orthogonal, biorthogonal, frames) are discussed and some new and much
simpler construction methods are also derived.

Part II is concerned with wavelet analysis in higher dimensions. It begins with
a generalization of several 1D wavelet tools like the .0���D�M��J algorithm, prop-
erties of projection operators and the statement of various useful approximation
results. This introductory chapter is followed by a survey of the representation
of operators in wavelet bases. The concept of connection coefficients, includ-
ing their claculation is transferred into the multidimensional case and some
relationships to discrete operators are derived. This chapter is closed by the
discussion of the two principle ways to represent operators in terms of wavelet
bases. Afterwards, the solution of ill-posed problems using wavelet methods is
investigated. This concluding chapter of the second part builds the bridge to the
intended computer vision applications, since these latter ones usually occur as
mathematically ill-posed problems. Several different numerical treatments of
such problems are considered and optimized for operator equations described
in terms of multidimensional wavelets.

The final part of this thesis deals with computer vision applications, mainly
with the task of the analysis of images and image sequences. First, linear and
nonlinear scale-spaces, their description by PDEs and integral equations, as
well as their connections to wavelet representations of images and certain func-
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tion spaces are discussed. Especially the involved characterizations of nonlinear
scale-spaces will be a helpful tool in the problem of regularizing vision tasks
depending on noisy data. In the following, the main computer vision problem
considered in this thesis shall be introduced and solved: the computation of
the optical flow for a given sequence of images. All the theoretical and prac-
tical results obtained so far will flow into the approach(es) we propose and
apply. Various flow models and different additional phenomena as illumination
changes or occlusions are taken into account. The presented results will be
compared and discussed in relation to the outcome of various other successful
approaches that appeared so far.

The thesis is closed by some concluding remarks and a brief outlook into
remaining problems, further generalizations and other thinkable applications.
Finally, two appendices provide the interested reader with a collection of wavelet
and scaling filters that are (at least indirectly) used in this work and with a
survey about the function spaces the considered problems were mathematically
embedded into.
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MULTIDIMENSIONAL WAVELETS





Chapter r
WARMING UP:
ONEDIMENSIONAL WAVELETS

A journey of a thousand miles must begin with a single step.
— j��½�,s3t��ÁÐ

To start with the presentation of the mathematical concepts of multidimen-
sional wavelets, it is quite useful to consider the onedimensional case first.
This usefulness stems from two main facts: First, the presentation of the sim-
pler onedimensional theory allows one to carry over some of the main results
that do not depend on the dimensional structure of the considered physical space
directly to higher dimensions and simultaneously, the problems that arise for
other theorems get directly evident. The second point is, that it is also pos-
sible to derive multidimensional wavelets directly from their onedimensional
prototypes via tensor product constructions. These wavelets are separable in
the spatial domain and yield some principal disadvantages, however, they build
the natural bridge between one- and multidimensional wavelet bases; walking
over this bridge is the best way to nonseparable multidimensional wavelets.

This chapter is subdivided into three sections. In the first section, the basic
paradigms of (not necessarily onedimensional) wavelet theory are derived from
the � � =)��!1��� transform and its properties. Starting from the uncertainity prin-
ciple of communication, the �
��X � � transform and later on the introduction of
scale leading to the wavelet transform are motivated. The notion of multireso-
lution analysis is introduced here and the special meaning of dyadic dilations
is also enlightened. Section 2 mainly deals with the conditions to build one-
dimensional wavelet bases via multiresolution analyses. Several fundamental
assertions concerning the design of wavelet filters for one dimension are pre-
sented. Additionally, we discuss some special properties of wavelets which are

13
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desirable for certain applications. Finally, the third section classifies the pre-
sented results into a context of related works. The presentations in the whole
chapter are mostly very brief and partially not held in full generality. This is
due to its introductory character and shall not be seen as incompleteness but as a
reduction to the essential; the multidimensional case will of course be discussed
in a much wider extent.

2.1. Wavelet Paradigms —
From the Fourier Transform to Multiresolution
Analyses

The representation of a signal as a function of time does not bring out the frequencies
in play, whereas on the other hand, the Fourier representation conceals the moment
of emission and the duration of each of the components of the signal. An adequate
representation ought to combine the advantages of the two complementary descriptions;
it ought also to be in a discrete form, which is better suited to the theory of communications.

— ���DÙDÐ¤Ñ�u����TÚ¢�DÒ
The � � =)��!1��� transform is the classical tool to decompose a function ¶

into parts of different frequencies. While it exactly specifies the allotments
of all oscillations of ¶ , no information about the local spatial behaviour of¶ is accessible in the � � =)��!1��� domain. This is due to a very well-known
mathematical principle.v ')� � ��� �xw F3y{z�|Ó��%(����J���!1��!$J*ü P ��!$��%�! P �D� � ãN% ����� =���!$%���J(! � �Lþ e-r l o~}
Suppose that ¶�� L Y
Z1hÕ\ with �R¶�� L ° � Ì . Then� I Z���w3??\Ó� 6 7 Zvu¯é��*\ Y Â�¾ ¶½Zvu�\è¾ Y B uÓÂ 6 7 Z÷x éA?N\ Y Â�¾ �¶�Z÷xz\è¾ Y B x�� Ì~ (2.1)

holds for all ��w3? �«h .

Seen from the � � =)��!$��� transform point of view, we may interpret the un-
certainity principle of communication as follows. The basis functions in the
frequency domain are the }G� -periodic functions ¶ º Zvu�\ � �!� º Y w ³ � Ç for
which one easily verifies6�7 Zvu4é��*\ Y ÂM¾ ¶ º Zvu�\è¾ Y B u � � and6�7 Z÷x é�?N\ Y ÂM¾ �¶ º Z÷xz\è¾ Y B x � }G�úÂ
Z ³ éA?N\ Y `
This confirms the abovemade statement about the bad spatial resolution capa-
bilities of the � � =)��!1��� transform and moreover, one is left with an infinite
uncertainity � I except for the trivial case ¶�� const. In order to overcome these
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limitations, C
���)��!,#I�Ó��X � � suggested to consider a windowed version of the� � =)��!1��� transform [89].1C
��ã
!1��!$J�! � � w F w z ø !$�)� � 9 ����� � =)��!$�����Ö�Ó��X � �/J�������#&ã � � � }��� Z$¶ \RZvu)wyxz\ � 6�7 ¶�Z��*\�Â ä Z��Qéùu�\�ÂG��= �3��� B �*`
Hereby,

ä Zvu�\ is a (rapidly decaying) distribution often referred to as window
function.2 Probably the most popular choice for

ä Zvu�\ is the normalized �
��=�#&#
function ä Zvu�\G��� <� Âg� =9� Y ° w <�� Î w
since this function satisfies the uncertainity relation (2.1) with the optimal

value � � � �� and gives thus an ideally accurate time-frequency localization
for functions ¶�� L YDZ1hÕ\ . But on the other hand, one is also interested to have a
good representation in the sense, that the family of functions

ä Zvu�é�kQ\tÂ2� = Y�� � ­ Y
forms an (orthonormal) basis or a frame for L Y
Z1hÕ\ in order to be also able to get
a stable reproduction of the original function from a (in some sense) simplified
phase-space version. Unfortunately, several years later it was found that this
hope can never be fulfilled for any kind of �
��X � � frame transform no matter
how the window function

ä Zvu�\ is chosen. This is the main statement of the
famous �����M!1����7RK � 9 theorem.v ')� � ��� �xw F���zè������!v����7RK � 9 þ e-r q e � e-r q m } Suppose that ¶�� L Y
Z1hÕ\ and¶ ­ { i Zvu�\Ó� � Y"� � ­ Y Â-¶�Zvu�é kQ\�w ª w÷k3�§Ç `
If ¡�¶ ­ { i · ª w÷k3�§Ç£¢ is a frame for L Y
Z1hÕ\ then either6�7 u Y ¾ ¶�Zvu�\è¾ Y B u��¤� or

6�7 x Y ¾ �¶MZ÷xz\è¾ Y B xË�¥�_`
Proof. See [62], pp. 108–112. ¦ .

1The uncertainity principle of communication possesses many parallel statements in somewhat related sci-
entific areas. Maybe the most famous among these is the

& ���e13�"�-ò����!f uncertainity principle of quantum
mechanics. It mainly states that the impulse and the spatial localization of any elementary particle cannot
be exactly determined at the same time, see also [175].
2In practice, some additional conditions on the distribution

� X�Y Z are sensible: In order to obtain sharp
time-frequency localization for the D§�-ò!	�� transform, one might require

� X V Z to be in the ��ô��!H¨����
�© classª X 7 Z of rapidly decaying functions. A weaker possible condition would be

id V � X V ZG[ L ° X 7 Z and id V `� X V ZG[ L ° X 7 Z0«



16 Chapter 2. Onedimensional Wavelets

Remark. If one oversteps the critical û�ü�ý�=�!,#-J sampling rate, that means
one considers a family¶ ­ { i Zvu�\Ó� � �2�­¬ ­ Y Â&¶�Zvu4éùu � kQ\�w ª w÷kµ�§Ç
with x � Â&u �5® }G� , it is possible to generate (even tight) frames with a good
phase-space localization. However, orthogonal windowed � � =)��!$��� bases with
this property can never exist.

The fundamental idea of the wavelet transform is now to replace the phase-
shift maintained by the factor � Y�� � ­ Y by a scaling u � u � Âg< = n of the spatial
variable. Hereby, ¾ <M¾U� Ì denotes the scaling (or dilation) factor and

Æ �µÇ
is the scale number. In the discrete case, it is sensible to choose u � to be the
coarsest sampling level and to require

Æ �N´ � . These are the prerequisites for
the following definition.C
��ã
!1��!$J�! � � w F@¯�zèCÓ!,#&%(����J�� 9 �D>����D��JùJ�������#&ã � � � } Given a function

ä �
L YDZ1hÕ\ such that ° � �å}G�úÂ 6�7 ¾��ä Z÷x \è¾ Y¾ xz¾ B x ® � (2.2)

and consider the two-parameter familyä n { º Zvu�\G� ¾ <�¾ = n æÁY Â ä Z3< = n u4é ³ \�w ³ �§Ç¯w Æ �§´ � w
with <¯�§Ç²±³¡£é Ì w Î w Ì ¢ . The discrete wavelet transform of a function ¶�� L Y
Z1hÕ\
is then defined to be3́ � Z$¶¤\RZ Æ w ³ \?� 6�7 ¶�Z��*\�Â ä n { º Z��*\ B �*` (2.3)

A function
ä

that satisfies (2.2) is called wavelet.

Remark. The admissibility condition (2.2) guarantees the stable invertibility
of the wavelet transform (2.3). This technical requirement is mild and shall not
be discussed here in further detail. We only point out that the wavelet transform

3The continouus wavelet transform can be analogously defined byµ·¶ XpI Z X � {¸Y Z Mº¹ � æ�» ¶ V_¼2½ I�X � Z V �¿¾ � = Y�ÁÀÃÂ � � {�Y [ 7 «
This definition is more general than its discrete counterpart and yields a highly redundant description of the
function. Since this thesis targets at applications that require discretizations at some stage of processing,
only the discrete version is considered here. By introducing the theory of wavelet frames later in this thesis,
we will obtain another way to get redundant representations, which might be desirable for some applications
as well as for numerical stabilization. The reader interested in the continouus wavelet transform may look
into the books [147] or [140].
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Figure 2.1. Various pavings of the time-frequency plane ÆÈÇ~ÉdÊÌË . Upper left: Í��D�MÑ�ÚáÐ¤Ñ domain.
Upper right: ÝÿÚÜÑ½��ß pulses. Lower left: Îÿ��Þ¤�DÑ transform. Lower right: Wavelet basis
representation (note that ÏÑÐ)Ç and Ò Q,Ó Ð¿Ê ).

is an isometry and its inverse is thus given by the adjoint operator

´
c� .

By construction, the wavelet transform leads indeed to a stable and well
localized time-scale representation of L Y
Z1hÕ\ functions. Moreover, it can be
shown, that similar statements are possible for functions in several other spaces
like L��Z1hÕ\ with Ì¿®\ÔÕ® � or certain

��� X � ����> or ���*# � > spaces. However,
the question that arises at this point is what type of functions

ä
are good wavelets

and how to construct them. From the mathematical point of view, a good idea
would be to have a function family

ä n { º that forms an orthonormal basis of
L YDZ1hÕ\ . This directly leads to the concept of multiresolution analyses, which
will be introduced now.

C
��ã
!1��!$J�! � � w F×ÖØzè.V=)�&J�!$���*# � ��=�J�! � �/��������ü�#t!,# } A multiresolution anal-
ysis (MRA) is a nested sequence of function spaces Ù�n�Ú L Y
Z1hÕ\�w Æ �VÇ , that



18 Chapter 2. Onedimensional Wavelets

fulfills the following conditions for some <¯�§Ç :Ù+n¸Û � ÚÜÙ�n for all
Æ �§Ç¯w (2.4)¶½Zvu�\L�£Ù�n if and only if ¶�Z3< n Âçu�\L�ÝÙ �

for all
Æ �§Ç¯w (2.5)Þn [�] Ù�n+�Ü¡ Î ¢�w (2.6)ßn [�] Ù�n+� L Y
Z1hÕ\�w (2.7)à:á Zvu�\O�âÙ � such that ¡ á Zvu�é ³ \�w ³ �«Ç£¢

is an orthonormal basis for Ù � . (2.8)

The generator function
á Zvu�\ is called scaling function or father wavelet of

the MRA. We additionally remark, that the condition (2.8) may be relaxed by
assuming that ¡ á Zvu�é ³ \�w ³ �§ÇÑ¢ forms a

2 !$�*#�ã basis for Ù � .4
The conditions (2.4) and (2.5) have the intuitive meaning that Ù4n is ¾ <�¾ times

as big as Ù�n�Û � and hence the orthogonal complement

´
n¸Û � of Ù�n�Û � in Ù�n is

spanned by ¾ <�¾$é Ì functions. Seen from the communications engineering point
of view, ¾ <�¾ is the number of different channels, the signal is passed through.
The wavelet transform itself may thus be interpretated as a bandpass filtering
of a signal. Anyway, the case <��åäQ} is of special interest, because only one
function is needed to span the orthogonal complement; the function generating
this orthogonal complement

ä Zvu�\O�
´
� will then be denoted as mother wavelet

or just wavelet. The desirability of such dyadic dilations will become clear in
the upcoming section, when concrete multiresolution analyses will be created.

2.2. Construction of Onedimensional Wavelets
So far we have described what the (discrete) wavelet transform is and we

introduced the concept of MRAs, which are the fundamentals in designing
orthonormal wavelet bases. Now, we will care about the concrete design of
scaling functions and wavelets. We start by giving a general representation for
scaling functions that mainly goes back to the property (2.5).

4Recall that a family æèçUX�Y = º Z { º [)]¨é forms a êë����12© basis forì M span æ3çUX Y = º Z { º [W]¨é
if and only if there exist constants íïîÌð5í�ñ¨ð � such that for every sequence æpò Ó é {cò Ó [ 7 we haveí ñ V ¾_ó_ô ¼ ò ô ¼ ° À ®öõÔ°�÷ùøøø ódô ò ô!ú X V = º Z øøø ÷ í î V ¾_ódô ¼ ò ô ¼ ° À ®öõ£° «



2.2. Construction of Onedimensional Wavelets 19KL� ��� � w F�û Every scaling function of a MRA satisfies a scaling equation, that
is, there exists a sequence ¡ � º ¢ º [l] of real numbers such thatá Zvu�\G� ¾ <�¾ � æÁY Âlüº [�] � º Â á Z3<²Â�u4é ³ \è` (2.9)

Proof. It follows from Definition 2.5 that
á Zvu�\��¤Ù = � if and only ifá Z3<GÂ�u�\z�PÙ � . Together with (2.8) it follows, that

á
must be written in a

linear combination of the form (2.9). ¦ .

The scaling equation thus relates the scaling function to a discrete filter¨ � º © º [�] , which explains — in combination with the hierarchical scaling struc-
ture — the close connection between MRA wavelets and subband coding
schemes. Taking the � � =)��!1�*� transform of (2.9), we directly obtain�á Z÷xz\G�¥ý Z÷x í <�\)Â �á Z÷x í <�\è` (2.10)

The new function ý Z÷x \ is called transfer function or symbol of the filter¨ � º © º [�] . It is verified to be given byý Z÷x \Ó� ¾ <�¾ = � æÁY Â üº [�] � º Âg� = � º � ` (2.11)

The symbol has the advantage, that it is analytically more accessible than the
scaling equation and many properties of the scaling function and the wavelet
may be expressed via ý Z÷x \ as we shall see. Equipped with this formulation, we
are at first ready to give a characterization of the desired pairwise orthonormality
of the shifts

á Z£Â¤é ³ \ .�²� ��P*� #t!$J(! � � w F×þ Let
á Zvu�\L� L YDZ1hÕ\ be a scaling function as in (2.9). Then

the following statements are equivalent:ÿ á Zvu�\�w á ZvuGé ³ \�� L ° � É º ` (2.12)üº [�] � º Â&� º Û � ­ � É ­ ` (2.13)¼ � ¼ = �ü n M � ¾ ý Z÷x À]}G� Æ í ¾ <M¾ \è¾ Y � Ì ` (2.14)

Proof. See [184], pp. 95–102. ¦ .

Remark. The reader should carefully note, that not every scaling function,
that fulfills (2.13) or (2.14) automatically generates an orthonormal function
system in L YDZ1hÕ\ . On the other hand, there exist various mild criterions on the
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symbol (or the filter) that directly guarantee the L Y existence of
á

.5 We point
out without (the very simple) proofs, that all the scaling functions presented in
this thesis satisfy such criteria.

From now on, we only consider dyadic dilations for the rest of this section,
that means we assume <N�Í} . As mentioned before, this case is especially
desirable, since only one function (wavelet) is needed to span the orthogonal
complemtent in a subspace Ù²n and thus, its scaled and translated versions make
up the complete MRA. Moreover, the wavelet for a dyadic dilation is very easy
obtainable.KL� ��� � w F�� Given a scaling function

á Zvu�\ whose integer translates
á º Zvu�\��á ZvuÕé ³ \�w ³ �§Ç form an orthogonal series spanning a subspace Ù � Ú L YDZ1hÕ\ .

Then its orthogonal complement

´
� of Ù � Ú Ù = � is spanned by the integer

translates of the functionä Zvu�\�� | }�Â�üº [l] Z,é Ì \ º Ât� � = º Â á Zv}ÓÂ�u4é ³ \è`
Moreover, ¡ ä n { º Z£Â8\���} = n æÁY ä Zv} = n Â é ³ \Ö¾ Æ w ³ �§Ç£¢ forms an orthonormal basis
for L Y�Z1hÕ\ .6
5Two widely known criteria on the symbol �­X � Z satisfying the relation (2.14) are the following ones [44]
[134]:���!��
����!�e	�������óC� 	����"�	� Let �­X � Z M � and a set 
 congruent to � = � { �
� mod Y�� be given
such that

i. ¼ Ó�� ¬ inf����� ¼ �­X � Q,Ó � Z ¼ ð �
ii. 
 contains a neighbourhood of � M � «

Then the scaling function çUX Y Z generates an orthonormal sequence in L ° X 7 Z .���!��
����!�e	����¸
 óÃFg��H³
�	��	� Suppose without loss of generality, that the filter � ô is supported in� � { i � . Let ��X � Z M � and define a Y i = � � Y i = � matrix A byX�� Ó3K ô Z M ±óJ�� ¬ �~J�� ô Q��èÓ
8 J { � = i ÷ n { º ÷ i = � «

If the eigenvalue � of A is nondegenerate, then the associated scaling function çUX Y Z generates an
orthonormal sequence in L ° X 7 Z .
It can be shown that the criteria of � 	����"� and Fg��H³
!	�� are equivalent. They mainly rely on
convergence properties of the cascade algorithm, that is the repeated application of (2.10) leading to`çUX � Z M `çUX � Z V��J�� ¬ ��X � Q~J � Z×« (2.15)

6For non-dyadic dilations, finding the wavelet filters becomes significantly harder — this is especially
true for the multidimensional case. Formally, the problem reduces to complete a given vector containing the
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Proof. The orthogonality
á º! ä can be directly verified by simply calcu-

lating the inner product and using the pairwise orthogonality of the
á º . The

last assertion follows from the construction of a MRA via (2.5) and (2.8). ¦ .

The reader may verify, that the function
ä

satisfies the admissibility condi-
tion with

° � ��} ln } and is thus indeed a wavelet in the sense of Definition 2.4.

As a next point, we may ask, what kind of wavelet properties are good for
certain applications and how to achieve them. From the mathematical point of
view, it seems natural to ask for wavelets, which have a number of vanishing
moments, i.e. all polynomials up to a certain order, say k , are already orthogonal
to
ä n { º Zvu�\ for all

Æ w ³ �«Ç . This property may be characterized as follows.KL� ��� � w F�" Let
á

be a scaling function associated with a filter ¨ � º © º [l] andä
be the related wavelet. Then the following are equivalent:6"7 u ­ Â ä n { º Zvu�\ B u � Î Æ w ³ �§Ç¯w$# ª&% k�w (2.16)B ­B x ­ ý Z÷xz\�'' � M � � Î # ª&% kQ` (2.17)üº [�] Z,é Ì \ º Â ³ ­ Ât� º � Î # ª&% kQ` (2.18)

Proof. See e.g. [140]. ¦ .

Relations of type (2.16) are called moment cancellations, while (2.17) is
usually called

� J�������;)7R�"!)( condition (after [85]) and (2.18) is mainly referred
to as sum rules up to order ª . Equipped with this, we are ready to attack the
problem of designing filters that lead to onedimensional compactly supported
wavelets. Since orthogonality as well as vanishing moments may be described
in terms of the symbol ý Z÷xz\ , the starting point for this will be the relation
(2.14). Several methods to obtain filters from this equation exist:

1 C¯��=�X��*%('�!$�*#+* original construction [60]. Suppose the wavelet shall haveª vanishing moments. This may be characterized by (2.17) and yields a
factorization¾ ý Z÷x \è¾ Y �¥ý Z÷x \ ý Z÷xz\ � cos Y ­-, x }!. Â�¾ Ô Z÷xz\è¾ Y w (2.19)

polyphase components of the scaling filter to a paraunitary matrix. This matrix can always be easily obtained
by a D��!��(�. �tô"��(���'�
 procedure [96], however, the resulting wavelets are no longer finitely supported and
may suffer from worse spatial resolution. The derivation of compactly supported wavelets from a given
scaling function is a generally unsolved problem, it was attacked by several wavelet researchers, see e.g.
[189] [136]. A certain way to obtain such wavelets for a special case is presented in Chapter 3.2.2.
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with some real trigonometric polynomial Ô Z÷xz\ . Now using the shorthands/ � cos Y Z÷x í }*\ and 0"Z Ì é / \��¿¾ Ô Z÷x \è¾ Y , we can rewrite (2.14) to/ ­ Â10"Z Ì é / \²À Z Ì é / \ ­ Â10ÈZ / \â� Ì
with 0 � Î . This equation is solved by the ���9ã � =�J polynomials0"Z / \§� ­ = �üº M � 2 ª é Ì À ³³ 3 Â / º À / ­ Â54 Z / \�w
where 4 Z / \ is an arbitrary odd polynomial.

2 The second approch is due to .V��ü��*� [157]. Here, one considers¾ ý Z÷x \è¾ Y � Ì é�6 ­ Â 6 �� sin Y ­ = � Z)7�\ B 7
and has to choose the factor 6 ­ � 8 X ­ Û � æÁY Z8 X � æÁY Z 8 X ­ Z to guarantee ý Z×�ÿ\�� Î .

3 Maybe the most elegant way is to expand the trigonometric identity,
sin Y Z÷x \QÀ cos Y Z÷x \ . Y ­ = � � Ì

and to rearrange the terms in a special way to obtain an equation that fits
(2.14). This was done in [214].

These methods — as well as some others not mentioned here — lead to
a description of the squared symbol ¾ ý Z÷x \è¾ Y . In order to eliminate the filter
coefficients � º from this representation, we have to take the square root of this
expression, which is maintained by the following classical result.v ')� � ��� �xw F3y+9�zè�+��S����(7 2 !1�*#�ã } Let ¶�Z÷xz\ be a nonnegative trigonometric
cosine polynomial with real coefficients,

¶�Z÷xz\?� iüº M �;: º cos Z ³ x \Rw : º � hÕ`
Then there exists a trigonometric polynomial <*Z÷x \G�>= i º M �@? º �!� º � with real
coefficients ? º such that ¾ <*Z÷xz\è¾ Y � ¶½Z÷x \è`

The classical proof is found in [190], a constructive one yielding all coeffi-
cients ? º is given in [184]. ¦ .
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At this stage it is urgently induced to give a first anticipation of the general
multidimensional case.KL� ��� � w F3y¨y The �+��S����(7 2 !1�*#�ã Theorem 2.10 does not generalize to higher
dimensions.

A counterexample with detailed explanation can be found in [198]. ¦ .

Lemma 2.11 is the main obstacle in general multidimensional wavelet con-
structions. The absence of factorization theorems causes all abovementioned
filter design methods to fail here. One way to circumvent this problem is
the usage of tensor product wavelets, which can be directly built up from the
onedimensional prototypes; these constructions only lead to spatially separa-
ble wavelets — a property which is undesired especially if one works with
visual data. Another more general way around the factorization problem can
be direct design methods, a certain one of these will be introduced (for the
onedimensional case) in the sequel. The main idea of this new concept is the
decomposition of wavelet filters into a set of basic filters.C
��ã
!1��!$J�! � � c w F3y w Denote by ¨ � º © c ­ the ª times repeated convolution of
the discrete filter ¨ � º © º [BA , i.e.¨ � º © c ­ �Ë¨ � º © º [BADC ¨ � º © º [BADC ÂtÂtÂ C ¨ � º © º [BAE FHG I­ times

`
As next, we introduce the candidates for our basic filters itself, which are

defined via ¨ �KJ { ­º ©4�Ë¨ Ì é Ì © c J C ¨ Ì Ì © c ­ ` (2.20)

These filters have been known as binomial filters in the engineering society
for a while. The building W������ filters ¨ Ì Ì © and ¨ Ì é Ì © are also referred
to as fundamental filters, since all basic filters may be obtained from these. The
basic filters have the following useful features.KL� ��� � c w F3y�� The filter ¨ � ­º ©«� ¨ � � { ­º © satisfies the sum rules up to orderª é Ì .

Proof. Applying a classical theorem due to ����#&%���� , we can directly verify
the representation ¨ � ­º ©�� L 2 ª Î 3 2 ª Ì 3 ÂtÂtÂ 2 ªª 3NM `
Inserting this into (2.18) and using the induction principle, the result follows
together with the binomial identity O ­ Û �º Û �+P �QO ­ º P À-O ­º Û ��P . ¦ .
An immediate consequence of Lemma 2.13 is



24 Chapter 2. Onedimensional Wavelets��� � � ���M����ü c w F3yG¯ All filters ¨ � J { ­º © satisfy the sum rules up to order ª é Ì .
Obviously, any filter ¨ � J { ­º © is of length R À ª À Ì and without loss of generality,
its coefficients may be numbered by � J { ­� wT� J { ­� w�`t`t`&wT� J { ­J Û ­ . Now, we can prove
the following nice property of a certain collection of basic filters.

�²� ��P*� #t!$J(! � � c w F3y~Ö Let A i be the Z8kNÀ Ì \�S/Z8k À Ì \ matrix

Ai � TUUUV
� i � � � { i = �� � Y { i = Y� ÂtÂtÂ � i { ��� i � � � { i = �� � Y { i = Y� ÂtÂtÂ � i { ��...

...
...

. . .
...� ii ��� { i = �i � Y { i = Yi ÂtÂtÂ � i { �i

WYXXXZ w
then

det A i � Z,é²}*\ ±�[ ±
8 ®]\° `

Especially, det A i_^� Î for all k3�«´ c and from this, we directly deduce that
the k?À Ì filters ` � i wT� � { i = � wT� Y { i = Y w�`t`t`-� i { �Ba
form a linear independent family of basic filters and moreover, every subfamily` � i wT� � { i = � wT� Y { i = Y w�`t`t`&� i = º { º a (2.21)

additionally satisfies all sum rules up to order
³ é Ì by Lemma 2.13 and Corollary

2.14. Furthermore, this family of basic filters yields a natural decomposition
of every scaling filter that satisfies the sum rules up to order

³ é Ì into an even
(symmetric) and an odd (antisymmetric) part since � i is always even and � n { i = n
is even for

Æ
even and odd for

Æ
odd.

Proof of Proposition 2.15. Again, we will make use of the induction princi-
ple. For k � Ì we easily obtain

A � � L Ì ÌÌ é Ì M and det A � �3é²}*`
In the second step, we will evaluate det A i Û � from det A i . In particular, we
acquire
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det A i Û � � '''''''''
� i Û �� �*� { i� � Y { i = �� ÂtÂtÂ � i Û � { ��� i Û �� �*� { i� � Y { i = �� ÂtÂtÂ � i Û � { ��...

...
...

. . .
...� i Û �i Û � � � { ii Û � � Y { i = �i Û � ÂtÂtÂ � i Û � { �i Û �

'''''''''� i Û �ü n M � Z,é Ì \ i Û � Û�n Â�� i Û � { �n Â ''''''
...

...
... b�bcb ...d5e	fKgh i gkj eh iml j e	nKgh b�bcb i e5jogh

...
...

... b�bcb ...

'''''' �]pM n� Z,é Ì \ i Û � Â i Û �ü n M � 2 kNÀ ÌÆ 3 Â ''''''
... bcb�b ...d5ehrq d5eh fKg bcb�b i e5joghsq i e5jogh fKg
... bcb�b ...

'''''' �tpM n� Z,é Ì \ i Û � Â i Û �ü n M � 2 kNÀ ÌÆ 3�Â det A i� Z,é²}*\ i Û � Â det A i `
By induction, we obtain the desired relation

det A i � det A � Âvu i n M Y Z,é²}*\ n � Z,é²}*\ ±�[ ±
8 ®]\° ` ¦ .

It is thus possible to describe all onedimensional wavelet filters by unique
linear combinations built over filter families of the type (2.21). For a better un-
derstanding, we shall give another interpretation of the abovemade construction.
The B-spline w � Zvu�\ of zeroth order is identical to the W������ scaling function,
which may also be described by the discrete filter ¨ Ì�Ì ©G� � � . In this sense,
the scaling function associated to a wavelet with ª vanishing moments may
thus be also specified by the spatial convolution of the B-spline w ­ Û � Zvu�\ with
a well-suited distribution xDZvu�\ in order to achieve orthogonality. This convolu-
tion product is given via (2.21) in the filter coefficient domain. We close this
section by a short example, that shall explain the filter design procedure.Ey()� ��P �D��c y We will describe all orthogonal scaling filters of length a yield-
ing at least } vanishing moments. Following Proposition 2.15, the space of
these filters is a subspace of the span¡��{zOw�� � { | w�� Y { � w(� � { � w(� � { � ¢Ö`
Establishing orthogonality via (2.13) or (2.14), we obtain the filters®®,°t} V �K~ Û º V�� ® K � Û Xo| � V º ° = ~°]� � Z V�� ° K � Û�� ° V��m��K � Û Xo| � V ò Û � �® ¬ ° � Û�Y�Y � V º ° = Y | Y � �c� V º � Z V����!K �
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where
³

is a free parameter and � satisfies�V� ºYH� Â = | � V Y ~ V º = � V Y °Á° V º � ÛÖY � � V º � =�� �m�è� V Y ® � V º ° =�� � V Y ° � V º � Û � V Y �]� V º � = Y � � V º } =�� � �� Û�Y ® � V º ° `
The variable

³
may for example be used to optimize the regularity or symmetry

properties of the according scaling function or to maximize the energy com-
paction in the low pass band of the filter. Using the �6�4�� X(�)��� basis algorithm,
closed form descriptions for higher order filter coefficients are also accessible.

2.3. Related Work
Many of the work related to the material in this chapter was already men-

tioned in the short wavelet history at the beginning of this text. For sake of
completeness, we recall the main contributions here. The classical � � =���!1���
transform was first formulated in e q s p and published in e q f�f in � � =)��!$��� s
main work [87]. The theory of the windowed � � =)��!1�*� transform goes back to
[89], while frames were introduced in [79]. A more recent article on the theory
of �Ó��X � � functions and frames containing several new results is [116].

As already mentioned, the continouus wavelet transform originally goes back
to
� ��������� 4� � [35], who introduced the first reproducing integral transform

based on a time-scale decomposition. This idea was rediscovered in the mid-
dle of the

q s ’s by several mathematicians of the new french harmonic analysis
school ( 5§F¯.V��ü����OþÓ��Fv�«F�KL� � ����!g4��þ
� FG����J(J��D� ) — in [137] the term
wavelet was first used in the context of reproducing kernels. Anyway, a simi-
lar construction was done about five yeras earlier by

� J�� ���� X�����; [215] and
therefore, 5§FO.V��ü���� calls him “the inventor of wavelets”.

The main contributors to the discrete wavelet theory are
� FL.0��������J , who

was the first to realize the relations between subband filtering schemes, repro-
ducing integral transforms and discrete time-scale decompositions (see [144])
and h&F
C4��=)X(�*%('�!1�*# who is responsible for the construction of compactly
supported wavelets [60], which just caused the popularity, wavelet transforms
achieved within the last decade. Several other constructions followed, e.g.
[224], [225] or the direct method presented at the end of this chapter, which is
due to the author [169]. A similar method to this one, but incorporating less
design features was independently introduced in [1].

Chapter Summary
We have introduced the most fundamental principles of � � =)��!1�*� analy-

sis. From these, we have derived the concept of scaling and the notion of a
multiresolution analysis, leading to the basic ideas of discrete wavelet theory.
Furthermore, the general characterization of onedimensional wavelets in terms
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of the related discrete filter were presented. Out of these relations, a new method
for onedimensional filter design that does not rely on spectral factorizations (and
is thus extendable to multiple dimensions) could be developed. Finally, a short
example illustrating the working way of this new method was given.





Chapter �
MULTIDIMENSIONAL SIGNAL PROCESSING —
MRA AND SAMPLING IN ���

It should be stated at the outset place that the multivariable theory is much less developed
and much more complicated than the one-variable theory.

— �M���DÐ¤�+mú�K�öo����]�Tß	���K�
The computation, evaluation and efficient storaging of higher dimensional

data — like images or image sequences in the case of computer vision tasks —
naturally requires multidimensional signal processing theories. In the discrete
case, such a theory mainly relies on the concepts of linear filtering and affine
sampling, since these are involved in the discretization of several basic mathe-
matical operations like function interpolation, partial differentiation or dilation.
Moreover, they also build the fundamental for wavelet transforms in arbitrary
dimensions. This is the point of consideration in the actual chapter.

In Section 1, we will generalize the concept of a multiresolution analysis
(MRA) to the multidimensional case and we will introduce the related scaling
equation and the new scaling matrix, which mainly describes the up- and down-
sampling between various scales within the multidimensional MRA. In Section
2, the most common scaling matrices and their induced sampling lattices in
the twodimensional case — which is of special interest for the applications
regarded in this thesis — are investigated and some simple transformation ex-
amples are given. Section 3 deals with the more general k -dimensional case,
which only plays a minor role in this work. Nevertheless, we will deduce a
general design principle for scaling matrices and give the first classification of
a certain family of matrices yielding dyadic sampling. This section is closed
by some new results regarding the sampling quality in terms of an isotropy
measure and its asymptotical behaviour for increasing numbers of dimensions.

29
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Finally, some possible extensions and some other articles related to the contents
of this chapter are quoted.

3.1. Multiresolution Analyses
in Higher Dimensions

This section is mainly devoted to the multidimensional generalization of the
MRA setting developed in Chapter 2. The reformulation of the basic definitions
and properties is straightforward:C
��ã
!1��!$J�! � � ��FèyÕzè.V=)�&J�!$�)! � ����#t! � ����� � =)�-J(!1����# � ��=)J(! � �/��������ü�#t!$# } A
multidimensional multiresolution analysis for L Y
Z1h�i�\ is a sequence of nested
subspaces Ù�n³Ú L YDZ1h i \�w Æ �?Ç , that fulfills the following conditions for some
expansive matrix Q:

Q Z$Ç i \·ÚÍÇ i i.e. Q � Mat Z8ksSzk�wÁÇ4\ (3.1)Ù�n@Û � ÚÜÙ�n for all
Æ �§Ç¯w (3.2)¶½Z �u�\L�ÝÙ+n if and only if ¶½Z Q n Â �u�\L�ÝÙ �

for all
Æ �§Ç¯w (3.3)Þn [l] Ù�n+� ¡ Î ¢�w (3.4)ßn [l] Ù�n+� L Y
Z1h i \�w (3.5)à:á Z �u�\L�£Ù � such that ¡ á Z �u�é �³ \�w �³ �§Ç i ¢

is an orthonormal basis for Ù � . (3.6)

Q is called scaling matrix or dilation matrix. Hereby, the matrix Q is said to
be expansive, if all eigenvalues 6 � {Q of Q are stricly larger than 1, which has
the geometrical interpretation, that all principal axes of the linear transform
induced by Q are stretched, i.e. Q evokes genuine sub-sampling in all directions.

From this definition, we may directly deduce the multidimensional equivalent
to the scaling equation formulated in Lemma 2.6:��� � � ���M����ü���F w Every scaling function of a k -dimensional MRA satisfies a
scaling equation. There exists a multisequence ¡ � ¬º ¢ ¬º [l] ± of real numbers such
that á Z �u�\G� ¾ det Q ¾ � æÁY Â¿ü¬º [l] ± � ¬º Â á Z Q Â �u4é �³ \è` (3.7)

Proof. Similar to that of Lemma 2.6. ¦ .
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Again, the scaling equation may be transformed into the � � =)��!$��� domain.
This directly leads to �á Z �x \Ó� ý Z Q = ¦ �xz\�Â �á Z Q = ¦ �x \�w (3.8)

where Q = ¦ denotes the transposed inverse matrix of Q. The transfer function
or symbol ý Z �x«\ can be evaluated toý Z �x \G� ¾ det Q ¾ = � æÁY Â ü¬º [�] ± � ¬º Âg� = � V�� ¬º { ¬��� ` (3.9)

From the algebraic fact, that the number of different cosets of Q
¦ Â�Ç i inÇ i is equal to ¾ det Q ¾ , another immediate consequence for the MRA can be

formulated.��� � � ���M����ü���F�� In accordance to the remarks following Definition 2.5, a
multidimensional MRA with an associated scaling matrix Q with det Q ���
requires ¾ ��¾�é Ì wavelets

ä ��w��L� Ì w�`t`t`¤w�¾ ��¾�é Ì to be complete.

The sub-sampling evoked by Q keeps every � -th sample and discards the
rest, which means that the local information of � points is packed into one
point on the next scale. By means of the cosets of Q

¦ ÂyÇ i in Ç i , we define theU � � � � � ! cell of the dilation matrix Q to be the set�
Q � � �u«�«h i ''' � �uÃ� % � �u¯é �Ô ��w�# �Ô � Q

¦ Â¤Ç i ±L¡ Î ¢D¡
w
that describes the local area of information concentration of the sub-sampling.

This is all we require for the moment. Equipped with the concept of scaling ma-
trices, we shall closer investigate their properties and influence on the wavelet
transform next. We mainly focus on the twodimensional case, since this shows
all properties of multidimensional filtering in a quite vivid manner and addi-
tionally this instance also plays the major role in image processing.

3.2. Uniform Affine Sampling Lattices in ¢¤£
What is more beautiful than the Quincunx, which, from whatever direction you look, is
the same.

— ¥G��Ñ ß½�M�LÍ ��Þ Úá���§¦ÿ�MÚÜÒGo�Úá�TÚ¢�DÒ
The scaling matrix Q is the higher dimensional pendant to the scaling factor< in the previous chapter. However, due to the increased number of spatial

dimensions, we have to take much more care in choosing Q than choosing < ,
which was (more or less) straightforward. Following Corollary 3.3, it would
again be a good idea to maintain a scaling matrix Q with det Q � äQ} . But
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additionally, it also makes sense to have a nearly isotropic sub-sampling, which
means that all directions of the data grid should be sampled in a very similar
way. Full isotropy would correspond to radial symmetric sampling, which is
of course impossible since a set of even-sized circles can never form a disjoint
covering of the plane. As an approximation of radial symmetric sampling, one
might use convex regular tesselations of the considered space h i , that means
using a scaling matrix Q such that its U � � � � � ! cell is a convex regular polytope
with a space tiling property. This shall be investigated for the case kd� } in
the following. We start with the remark, that there exist exactly three different
convex and regular tesselations of h Y , these are given by the equilateral triangle,
the square and the regular hexagon.

3.2.1. Regular Sampling
The simplest regular and convex tesselation of h Y is that consisting of

squares. A corresponding sampling may be realized by extending both axes
with the same factor ¨ . In order to keep the number of associated wavelets
as small as possible, ¨3� } is the optimal and very widely used choice. This
yields the scaling matrix

Qreg � L } ÎÎ } M�` (3.10)

One directly verifies, that © wavelets are necessary to build up a MRA for Qreg.
This choice of scaling matrix is also implicitly used in tensor product wavelets
built from a dyadic onedimensional wavelet basis: Given a scaling function and
a wavelet

á Zvu�\�w ä Zvu�\O� L Y
Z1hÕ\ , one can directly build tensor product functions
by ª Zvu�w / \
� á Zvu�\�Â á Z / \�w ä � Zvu)w / \Ó� á Zvu�\�Â ä Z / \�wä Y Zvu)w / \Ó� ä Zvu�\�Â á Z / \�w ä � Zvu)w / \Ó� ä Zvu�\�Â ä Z / \è`

Then, the function family� ä � n { ¬º Z£Â8\��¿¾ det Q ¾ = n æÁY ä � Z Q = n Â&é �³ \ '' Æ �§Ç]w �³ �úÇ Y w«���^¡ Ì w£}�wk©G¢D¡
forms an orthonormal basis for L YDZ1h Y \ . The related filters are obviously given
by simple convolutions of the onedimensional filters. Such wavelets have be-
come very popular for several applications, since they are easy to build (as seen
above) and additionally, the wavelet transform itself is also easy to implement,
since it can be subdivided into onedimensional transforms. It is not exagger-
ated to assert, that such separable wavelets are used in more than ¬¤^ % of all
higher dimensional wavelet applications. The working way of transforms with
dilation matrix Qreg is illustrated in Figure 3.1.
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Figure 3.1. Two steps of a separable wavelet decomposition of the Lena test image. In each
transformation step, the (remaining) image is decomposed into low-low-pass (remaining local
averages ­¯®5° , cf. (2.3)), high-low-pass (vertical details ­ ¶ g ° ), low-high-pass (horizontal
details ­ ¶ l ° ) and high-high-pass (diagonal details ­ ¶²± ° ) information channels. Most of the
significant information is contained in the low-low-pass channel. The sampling factor of ³ along
each spatial direction cf. (3.10) causes the halving of the axes lengths in each transformation
step.

The original motivation for this regular sub-sampling was to achieve a sam-
pling pattern close to a circular U � � � � � ! cell (radial symmetry). In order to
assess the quality of this sampling scheme, we evaluate the areal coincidencej reg between the circle

�
circ and the induced square

�
reg of the same area as a

sampling isotropy measure. It is defined byj reg � vol Z � reg ´ � circ \
vol Z � circ \ `

The value j reg � Î `µ¬ Î ¬&~Q`t`t` is easily verified, which means that the regular
sampling induced by Qreg achieves about ¬ Î `µ¬&~ % of a perfect radially symmetric
sampling for functions with an ideal uniform spectrum.

3.2.2. The Quincunx Lattice
The regular sampling achieves good sampling quality, but on the other hand

we have det Qreg � ~ which is not optimal and also leads to much more compli-
cated schemes for building the wavelets from the scaling function in the case of
nonseparable filters (see also the last endnote of Chapter 2). A regular twodi-
mensional two-channel sampling can be realized by an axis scaling of | } and
a rotation about � í ~ (or a similar reflection) to stay on the grid. This so called
quincunx sampling is maintained by both of the following scaling matrices:

Qquin { � � L Ì ÌÌ é Ì M or Qquin { Y � L Ì é ÌÌ Ì M `
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Figure 3.2. The quincunx sampling lattice. — The shaded area is the ¶���Ñ ��ÒM�DÚ cell · quin of
information concentration, while the thin circle indicates how ideal sampling would look like.
The black and white dots represent the two cosets of Qquin ¸]¹ ° in the sampling lattice.

These dilation matrices induce a U � � � � � ! tesselation with � í ~ rotated
squares of area } , this is shown in Figure 3.2. Such dilations are good can-
didates for various vision purposes, because the human eye is less sensitive
to resolution along diagonals than horizontals or verticals [127] that appear
in regular sampling schemes. Since the circle is rotation invariant, the sam-
pling quality again achieves ¬ Î `µ¬&~ % of the ideal value in terms of the areal
coincidence. Although the scaling matrices Qquin { � and Qquin { Y look very simi-
lar and generate the same sampling lattice, they imply remarkable differences,
which will be demonstrated now. Since the matrix Qquin { � fulfills the identity
Q Yquin { � � }zÂ Id, iterated application of equation (3.8) leads to the spectral
factorization�á Z �x \ � º»º M � ý , Z Q = ¦ \ º �x . � º»º M � ý Zv} = º �x \�Â¼º»º M � ý Zv} = º Q = ¦ �xz\� �ª Z÷x � wyx�Y
\�Â �ª Z÷x �yí }QÀ x�Y í }�wyx �Rí }Qé x�Y í }*\�w

which also implies a spatial factorization of the scaling function
á Z �u�\ .1 This

factorability is explained by the fact, that Qquin { � is similar to the antidiagonal

1If one uses onedimensional filters with the scaling matrix Qquin K ® , this leads directly to separable wavelets,
since then the symbol �­X � Z is also onedimensional. This utilization of such plain filters gives a very simple
construction of multidimensional wavelets of arbitrary smoothness, since the regularity properties can be
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Figure 3.3. The �O�M��Ñ scaling function indicator sets for Qquin K ® (left) and Qquin K ° (right).

matrix   �Õ�Y � ¥ , which incorporates a directed dilation followed by a change of
axes. In comparison to this, the second quincunx dilation matrix Qquin { Y has
complex-valued eigenvalues 6�½µ� Ì ä¾� inhibiting such similarites. We also
have Q Yquin { Y ^�å}�Â Id but Q �quin { Y � ÌÀ¿ Â Id, which makes a decomposition as
above impossible and always leads to nonseparable wavelets. To illustrate this
fundamental difference between the scaling matrices, we show the indicator
sets Á ç of the associated WG�)��� scaling functions and wavelets in Figure 3.3.
While the first matrix indeed yields a separable scaling function indicator set,
namely a simple parallelogram, the second matrix creates a fractal called twin
dragon as the indicator set of the related WG�)��� scaling function.

A step of a quincunx wavelet transform looks like Figure 3.4 shows. There
occurs one obvious problem: Given some discrete data on a rectangular grid
and applying a wavelet transform step to this data, one obtains two rotated and
downsampled data sets which cannot be directly represented on a computer. The
data has to be reorganized into a rectangular structure before the processing can
proceed. There are various ways to do this, two of them will be explained now.
First, one could rewrite the downsampled data set as follows''''''''

u Â(� u Â YÂD� u Â � uu Â � u Â |Â z u Â � u
'''''''' ¸�¹

''''''''
Â YÂ � Â � Â |Â � Â � Â �Â z

'''''''' w
to maintain the � í ~ rotation. In this scheme, u denotes samples to be dropped
by the quincunx downsampling. This type of rearrangement leads again to a

directly carried over from the onedimesional prototypes. A generalization of this approach to other scaling
matrices Q with

¼
det Q
¼ M Y and Q

° M ½ Y Id such that all eigenvalues of Q are real numbers can be found
in [17]. This approach leads to nonseparable wavelets for Qquin K ® , but these have some structural deficiencies
making them inappropriate for most applications. To mention the main drawback, the filters are aligned
along two rows leading to a strongly favoured sampling along the row direction, which gives similar results
than separable filtering. Moreover, this construction cannot yield good wavelets for the matrix Qquin K ° .
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Figure 3.4. One step of a quincunx wavelet transform with the dilation matrix Qquin K ° . After
filtering with the scaling and wavelet filter, the original image is downsampled by a factor of Ã ³
and rotated by ÄHÅ ¬ leading to the two smaller copies containing averages (scaling function) and
details (wavelet).

data set on a rectangular grid and must be repeated in every further transforma-
tion step. One drawback of this method is that storage space is wasted in the
corners of such an arrangement, since there occur (many for big data sets) zero
entries.

The second method to be presented relies on the idea of wavelet packet
decompositions [52] [199]. This generalization of MRA gives a decomposition
not only of the low pass but (at least possibly) also of the high pass part of a
sampled signal.2 The quincunx scheme can be kept on regular grids in this sense

2The original idea behind wavelet packet decompositions is that of the search for a best basis in terms of
its coding entropy. Having a signal I [ ì ¬ existing on some level on a MRA and applying one wavelet
transform step to I , we obtain a lowpass part Idñ [ ì Q ® and a highpass part I�Æ [ µ Q ® . In a standard wavelet
transform, only I ñ will be further transformed to reduce the coding size of I ñ . But probably, an additional
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by doing two transform steps in one, which correspondends to a rotation of the
grid about � í } or

Î
— this keeps the grid structure by all means. However,

if one does so, the high pass portion of data after the first step has also to be
further transformed. Therefore, this double quincunx scheme gives similar to
the regular case a four-channel sampling. Having scaling and wavelet equations
of the formá Z �u)\ � ¾ det Q ¾ � æÁY Â¿ü¬º [l] ± � ¬º Â á Z Q Â �u¯é �³ \ andä Z �u�\ � ¾ det Q ¾ � æÁY Â ü¬º [l] ± � ¬º Â á Z Q Â �u¯é �³ \
double application easily leads toá Z �u�\ � ¾ det Q ¾�Â¿ü¬º [l] ± ü¬ J [l] ± � º Â-� ¬ J Â á Z Q Y Â �u4é Q Â �³ é �RT\

� ¾ det Q ¾�Â ü¬­ [l] ± ˜� ¬­ Â á Z Q Y Â �u4é �ª \
with ˜� ¬­ � = ¬º [l] ± � ¬º Â�� ¬­ = Q ¬º as the new scaling filter. The waveletsä � Z �u)\�w ä Y Z �u�\ and

ä �DZ �u�\ correspondend to three other filters, which are build
analogously via

˜� � ¬­ � ü¬º [l] ± � ¬º Â�� ¬­ = Q ¬º w (3.11)

˜� Y ¬­ � ü¬º [l] ± � ¬º Â-� ¬­ = Q ¬º and (3.12)

˜� � ¬­ � ü¬º [l] ± � ¬º ÂM� ¬­ = Q ¬º ` (3.13)

The double quincunx scheme is very similar to the regular sampling presented
in Section 3.2.1, but there is one fundamental difference: While it is very diffi-
cult to derive compactly supported wavelets from a given scaling function on a
regular grid, the double quincunx scheme gives such wavelets in a straightfor-
ward manner by the above relations (3.11)–(3.13). In the applications presented
in Part III, a wavelet transform based upon this sampling scheme is employed
successfully.

transform of I Æ might also give a sparser representation of I Æ . This is what the wavelet packet algorithm
does: An incoming signal is completely decomposed and afterwards it is checked, which decomposition
trees require the smalllest amount of storage. Finally, this coding is applied.
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This ends the discussion of quincunx sampling matrices. We close this

section with an overview over all dyadic dilation matrices Q � Mat Zv}ÇS«}�wÁÇ4\
for h Y . In particular, one obtains the following classification:�²� ��P*� #t!$J(! � � c ��F¸¯ In two dimensions, there exist — up to similarity trans-
forms — exactly six different dyadic scaling matrices, these are the already-
mentioned quincunx matrices Qquin { � and Qquin { Y as well asL é Ì é ÌÌ é Ì M w L Î é²}Ì Î M w L é Ì é²}Ì Î M and L Ì é²}Ì Î M `

Proof. A straightforward eigenvalue analysis and simple case distinctions
give the result. ¦
`

All of these matrices also give either a quincunx subsampling or a horizon-
tal/vertical subsampling lattice, since these are obviously the only possibilities
for dyadic subsampling in two dimensions. But except from the first of these
sampling matrices, which describes a rotation of ©g� í ~ , the latter three dilation
matrices possess no desirable symmetry properties as the ones presented before
and are thus used rather seldom in practice.

3.2.3. The Hexagonal Case
. . . eine endlose Erfindungslust in der Abwandlung und allerfeinsten Ausgestaltung eines
und immer desselben Grundschemas, des gleichseitig-gleichwinkligen Sechsecks, herrschte
da; aber in sich selbst war jedes der kalten Erzeugnisse von unbedingtem Ebenmaß
und eisiger Regelmäßigkeit, ja, dies war das Unheimliche, Widerorganische und Lebens-
feindliche daran; sie waren zu regelmäßig, die zum Leben geordnete Substanz war es
niemals zu diesem Grade, dem Leben schauderte vor der genauen Richtigkeit, es emp-
fand sie als tödlich, als das Geheimnis des Todes selbst, und Hans Casdorp glaubte zu
verstehen, warum Tempelbaumeister der Vorzeit absichtlich und insgeheim kleine Abwe-
ichungen von der Symmetrie in ihren Säulenordnungen angebracht hatten.

— t�àM�D�����r¥G��ÒMÒ�ÈYÉmÊ�Ë�Ì
So far we only contemplated the grid ÇÎÍ�Ç , which is of course especially well-

suited for computer processing purposes. Unfortunately, this grid also yields
some principal drawbacks. For example, there are no uniform neighborhood
relations, in particular, the four horizontal and vertical neighbouring points on
a grid have exactly the grid size � as distance to a considered point, while
the diagonal neighbours are | }�� units away. Of course, having uniformly
spaced neighbours would be a desirable property for vision purposes, since no
direction would be preferred in that case. Another motivation for the utilization
of different grids could be the wish for better sampling isotropy than the ¬ Î `µ¬&~ %,
that were achieved in the rectangular or quincunx case. So as to realize these



3.2. Uniform Affine Sampling Lattices in h Y 39

properties, we define the hexagonal gridÅ¿� Ï Z ª À Ì} Â�k?w | ©} ÂTk \ '' w ª w÷k3�§ÇNÐµ`
A straightforward capable dilation matrix for this grid could consist of a rotation
or reflection about any multiple of � í © followed by an integer stretching about
some <
�?´ÒÑÖY . This leads to dilation matrices Q with �§� < Y or �§� é:< Y í } .
However, there is a more beautiful one, which additionally keeps the hexagonal
structure of the grid after downsampling. This hexagonal sampling matrix is
given by

Qhex � L } é | ©| © } M `
It causes a rotation of ÓV� arctan Y� � and a dilation by the factor <
� | Ô .

The sampling scheme is shown in Figure 3.5. Hereby, each seven cells within a
colored hexagon are downsampled to one point in the first sampling step, while
in the second step, the seven colored cells are further downsampled to one point
and so on.

Figure 3.5. Hexagonal sampling lattice with seven channel sampling.

It is immediately clear that the U � � � � � ! cell
�

hex to the hexagonal sampling
grid consists of an equilateral hexagon and moreover, one accomplishes ¬ ¿ ` }�a %
of the energy of an ideal isotropic sampling scheme again measured probabilis-
tically via the areal coincidence j hex between

�
hex and a circle of the same area.
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The hexagonal sampling scheme plays an important role in many biological

vision processes. For example, the eyes of most mammals and insects are built
out of hexagonally ordered retinal receptors. In the same context,

ø ��J�# � � andâÓ'�= � ����� applied a hexagonal sampling scheme to create a model of image
representation in the visual cortex [232] [231]. On the other hand, hexagonal
sampling has also proven to be useful in non-biological but technical vision
processes. In particular, KL� 9 J � � and

2 �*#&��!1< � ã�ã have successfully applied
nonseparable wavelets associated to this sampling scheme in a patent for optical
telescopes to reduce arising �Ó!$X�X�# effects [135]. In [136] complex-valuedW������ wavelets for Qhex were built by the straightforward constructionä ­ � züº M � � Y�� � X ­ = � Z X º = � Z æ zÈÂ á Z Qhex Â �u¯é �x º \�w
where ¡ �x � w�`t`t`&w �x z ¢ denotes a complete set of representatives of the cosets of the
lattice Q

¦
hex Â�Å . By solving a certain set of eight nonlinear equations of order

two, we can also build real-valued wavelets for Qhex, these are shown in Figure
3.6. The indicator set of these functions is a fractal set known as � � # P ��� island.

Figure 3.6. The hexagonal �O����Ñ scaling function (upper left) and the six associated (real-
valued) wavelets. Light regions indicate positive and dark regions negative function values. The
three wavelets in the upper row are symmetric, those in the lower row are anti-symmetric.

Hexagonal sampling is a highly efficient scheme for image processing pur-
poses with a big relevance for biological vision systems and moreover, it attains
a very good sampling isotropy ( ¬ ¿ ` }�a %). Unfortunately, there exist no cameras
or machines working with hexagonal resolutions and data structures, except the
more than 20 years old TAS B system by Cambridge Instruments — by personal
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opinion of the author, this omission is a mistake, since the theoretical results
give hope for a very effective modelling of vision processes on hexagonal grids,
that are very close to the vision processes of the biological world and may also
lead to a better understanding of the latter ones. The power of hexagonal sam-
pling schemes was also confirmed by several experiments in [245]. Anyway,
using suited linear transforms, the hexagonal grid Å could be rectangularized
to perform quasihexagonal image processing, but otherwise, this would also
destroy several of its beautiful properties, for example symmetry or uniform
neighborhood relations get lost this way.

We close the discussion of twodimensional fully regular sampling schemes
with a brief presentation of the outstanding equilateral triangular case. Triangu-
lar sampling also lives naturally on the same grid Å as above. Again, there are
several obvious possibilities to implement various subsampling schemes, this
shall not be discussed here. In the typical cases, the corresponding U � � � � � !
cell consists — as desired — of an equilateral triangle. By simple calculus, one
evaluates, that this scheme accomplishes only a ^*` }�} % of the ideal isotropic
sampling energy and is thus much less fitted for applications than the cases dis-
cussed so far. The issue of triangular sampling lattices was discussed in more
detail in [126].

3.3. Higher Dimensions
To complete the investigations about sampling in higher dimensions, we shall

also discuss the general case. We start with some considerations about fully
regular sampling schemes. Recall that this means to have a U � � � � � ! cell
consisting of a convex regular polytope, that gives rise for a disjoint covering
(tesselation) of the considered space. These polytopes can be categorized by
the following theorem borrowed from geometry:v ')� � ��� � ��F×ÖØz ��� (���J���� } For all k �ù´�±�¡,}�w÷~,¢ , there exists exactly one
fully regular tesselation or honeycomb of the h i , this is given by the k -cube.
For k ��} and k � ~ there exist three fully regular tesselations.3

Proof. See [54]. ¦
`
This result may look surprisingly at a first glance, but it isn’t that much

(maybe only for k3�Õ© the result is really surprising). Viz recalling KL=)� 9 !$;
3For i M � , these honeycombs are given by the

�
-cube, the

�
-simplex — this is the fourdimensional

generalization of the equilateral triangle — and a regular polytope called Y � -cell consisting of Y � octahedrons
arranged in

7 � , it was discovered by F�ó���ô����
Ö�À×c��� . More about honeycombs and regular polytopes in higher
dimensions can be found in the classical book [54].
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cept for k ® ^ there exist exactly three convex regular polytopes, these are
the k -cube, the k -simplex and the k -crosspolytope. Excluding the latter two
cases for dimensions greater than ~ , ��� (���J���� s result becomes much less a
surprise. For us, the essence of this theorem is that if one is interested in fully
regular sampling schemes, one has to rely on k -cubic sampling lattices as long
as one does not work in dimensions two or four. Another way around could be
to allow also convex quasiregular tesselations, i.e. using polytopes consisting
of two different kind of faces but having one fixed vertex constellation (by the
duality principle for polytopes, the vice versa case might also be admissible) asU � � � � � ! cells. This alternative gives rise to some highly efficient sampling
schemes that are very close to ideal isotropic sampling, in Example 2, we will
present one such possibility.

3.3.1. Classification of Dilation Matrices
In order to categorize, what makes a good dilation matrix, we may join all the

ideas presented so far in this whole chapter into a design principle for dilation
matrices.�
���)�*�����«�²��!$��%�! P �D��c5��F¸û A matrix Q � Mat Z8kØSùk�wÁÇ4\ that builds the
fundamental for a multidimensional MRA shall satisfy the following properties:

det Q �¤äQ} ( ¸*¹ simpler wavelet construction).

Q must be strictly expansive, even better would be that all eigenvalues 6 � of
Q have the same modulus, i.e. ¾ 6 � ¾�� ±| } ( ¸�¹ same dilation factor along
all principal axes).

The induced U � � � � � ! cell shall have a great areal coincidence to an ideal
circle, i.e. j Q is close to Ì ( ¸�¹ nearly isotropic sampling).

Recalling the presentation so far, we know that the quincunx matrices satisfy
this design principle. To illustrate the General Principle 3.6 at a higherdimen-
sional but still vivid situation, we will give an example in 3D:Ey()� ��P �D��c w z 2 ' ��� X�!$%ù� � ���*%���')�*�������«#t� �QP ��!1��; } Consider the scal-
ing matrix

QRD � TV Ì Î é ÌÌ é Ì ÌÎ é Ì Î WZ `
It is directly verified that QRD follows the first two items of the General Principle
3.6, since

det QRD � } and ¾ 6 � ¾�� �| }
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for all three eigenvalues of QRD. The reader may check that the associatedU � � � � � ! cell
�

RD is given by a rhombic dodecahedron, i.e. a dual quasireg-
ular polyhedron consisting of Ì } rhombics as faces and Ì ~ vertices arranged
in two different vertex constellations (see Figure 3.7). The areal coincidencej RD can be evaluated to attain the very good value of ¬¤^*` ^½~ % of an ideal
isotropic sampling in three dimensions, which is even better than the closely
related quincunx sampling in 2D. A similar sampling called FCO scheme (face
centered orthorombic sampling) using a different scaling matrix was used for
video coding purposes in [128].

Figure 3.7. The rhombic dodecahedron and the associated tesselation of Ù � .
As mentioned above, this example can be seen as the natural generalization

of quincunx sampling to three dimensions. We will show that such generalized
quincunx dilation matrices having two entries of modulus Ì and else zeros in
every column exist for all dimensions kÃ�«´ .�²� ��P*� #t!$J(! � �)cb��F×þØz � ����#&#-!1ã
!$%���J(! � � � ã �(ü����)!,%ù��!1����J�! � � � ��J���!$%(�*# }
For every k �ú´ with k ��} there exist a dilation matrix Q X i§Z that fulfills the
General Design Principle 3.6 and its sampling scheme is the k -dimensional
analogue to quincunx sampling. Such matrices are given by

Q X i§Z � TUUUUUUUV
Ì Î Î Î ÂtÂtÂ é ÌÌ é Ì Ì Ì ÂtÂtÂ ÌÎ é Ì Î Î ÂtÂtÂ ÎÎ Î Ì Î ÂtÂtÂ Î
...

...
. . . . . . . . .

...Î Î ÂtÂtÂ Î Ì Î
WYXXXXXXXZ ` (3.14)

Remark. For a given k these matrices are not unique. The number > i of
different dilation matrices depends on the number of different polynomials of
degree k with coefficients in ¡Dé²}�wèé Ì w�`t`t`½w£}�¢ having all its roots on the circle
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of radius } (note that these are not only cyclotomic polynomials). One obtains
e.g. >
Y
�Ú© (see previous section), > � � ~ and > � � ¿ . On the other hand, it
seems like there always exists a unique generalized quincunx matrix having de-
terminant det Q X i�Z � é²} , but a proof for this conjecture could not be found yet.

Proof of Proposition 3.7. Since the case kV��} was already explained in the
previous section, we may suppose, that k �-© . As first, we can evaluate the
determinant by expanding for the last column of Q X i§Z and obtain

det Q X i§Z � Z,é Ì \ i Â det Q X i§ZY «�« i { � «�« i = � À Z,é Ì \ i Â det ¨ Q X i§Z ¦� { � «�« i = � Q X i§Z ¦��«�« i { � «�« i = � © ¦� Z,é Ì \ i Û � Â�}V�¤äQ}*`
To show that Q X i§Z is expansive, we calculate its characteristic polynomial Á Q.
Denote X X i�Z � Q X i�Z éÕ6úÂ Id X i§Z , then Á Q ZÛ6�\Ã� det X X i§Z . Evolving this
determinant with respect to the first column, we get

det X X i§Z � Z Ì é�6�\�Â det X X i§ZY «�« i { Y «�« i é det ¨ X X i§Z ¦� { Y «�« i X X i§Z ¦��«�« i { Y «�« i © ¦� Z Ì é�6�\�Â det X X i§ZY «�« i { Y «�« i À Z,é Ì \ i = � Â det ¨ X X i§Z ¦��«�« i { Y «�« i X X i�Z ¦� { Y «�« i © ¦ `
The second matrix in this expression is an upper triangular matrix whose de-
terminant is obviously equal to Ì and the determinant of the first matrix can be
computed by an induction over k yielding

det X X i�ZY «�« i { Y «�« i � Z,é Ì \ i = � Â i = �üº M � 6 º `
Inserting this into the above relation, we obtainÁ Q ZÛ6�\G�Ü6 i éù}*`
Thus, all eigenvalues of Q X i�Z lie on a circle of radius } , which completes the
proof. Additionally, we can conclude that Q X i§Z ± �å}�Â Id X i§Z holds true. ¦
`

Proposition 3.7 makes no assertions about the sampling quality in the sense
of its closeness to isotropy. The reason is the following: In order to measure
the isotropy, one would have to calculate the volume of the intersection of theU � � � � � ! cell of the sampling matrix with a k -sphere of volume } (since this is
the cells area by construction). Unfortunately, there exist even no general for-
mulas to evaluate the volumes of higherdimensional polytopes and especially
none for more complicated sets like the termed intersection sets. Therefore,
we can only give the approximated numerical values for the areal coincidencej i between the k -dimensional U � � � � � ! cell and the k -sphere of the same
volume for some k in the following Table 3.1.



3.3. Higher Dimensions 45Ý ³ Þ Ä Å ß à]á ³�áâ ± ã á
ä Ä1å % ã Å	ä Å�Ä % ã ³	ä ã % æHå % <60% <10% <1%ç ± 0.7979 0.7816 0.7979 0.8240 0.8537 0.9760 1.2429

Table 3.1. Isotropy measures for generalized quincunx sampling in higher dimensions. The
second row gives the radius for the Ý -sphere of volume ³ .
3.3.2. The Isotropy Measure è+é for Increasing ê

The worse sampling isotropy for bigger values of k may surprise a little. But
it turns out that such behaviour is coercive. If the number of spatial dimensions
tends to infinty, sampling becomes fully anisotropic for any dyadic dilation
matrix. In particular, we can prove the following result.v ')� � ��� � cb��F�� Let Q X i§Z be a dyadic dilation matrix for h i as in (3.14) of
Proposition 3.7. Then

limi�ë º j i � Î `Proof.We will estimate the areal coincidence j i from above and from below.
First, it is evident that the k -volume of the U � � � � � ! cell

�
Q
[ ± \ equals } by

construction. Due to the symmetry of the dyadic sampling scheme,
�

Q
[ ± \ can

be characterized by�
Q
[¢± \ � � �u«�«h i ''' � �u�� % � �u4é �Ô ��w �Ô � Q X i�Z Â-Ç i ±)¡ Î ¢ ¡� � �u«�«h i ''' ¾ u
nÁ¾�À3¾ u º ¾ % Ì w Æ ^� ³ ¡G`

This representation makes it directly evident that the cube� i Z É \?� ` �u«�«h i '' ¾ u�nè¾ % É w Æ � Ì w£}²`t`t`èk a
always lies completely within

�
Q
[¢± \ for

É % �Y . Using some fundamental
geometric calculus, one evaluates the radius of the k -sphere with volume } to
be x i � ±ì }�Â½Å�Z i Y À Ì \| � w
where Å�Z£Â8\ denotes the E²=)�D��� Gamma function. From simple calculations it
then follows that the cube � i Z]í i \ with í i �-x i í | k always lies within thek -sphere

� i = sphere of volume } . This gives the lower estimationj i � Ì} Â vol
, � i , min O Ìtí }Qwîí i P .ï. � Ì} Â min O Ì w�}¯ÂKí i P i `
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Applying the factorial relation to the Gamma function and using k Ä % Z8k í }*\£i
for sufficiently large numbers k , one may verify the following estimationí i � ±ì }¯Â
Z i Y Ä \| kùÂ!� % ±| }| k0Â�� Â � k ~ � ±| }}�Â | � ¸(¹ Ì}�Â | � ` (3.15)

It can be checked that we have in fact í i ® Ìtí } for k �Ã} which means that
the cube circumscribed by the k -sphere is totally intersecting with

�
Q
[¢± \ . To

estimate an upper value for j i , we introduce the cuboid pairs� i Z É w ³ \ � ` �u �«h i '' ¾ u
nÁ¾ % É w Æ � Ì w£}²`t`t`èk?w Æ ^� ³ñð É % ¾ u º ¾ % Ì a `
Since the set

�
Q
[ ± \ is convex and � i Z]í i \ ´ � Q

[¢± \ � � i Z]í i \ for k �0} , we
have ò

i � ißº M � � i Z�í i w ³ \Îó � i Z�í i \õô �
Q
[ ± \ ´ � i = sphere w (3.16)

see also Figure 3.8 and it immediately follows the upper boundÌ} Â vol Z ò i \·� Ì} Â vol Z � Q
[ ± \ ´ � i = sphere \Ó� j i ` (3.17)

To complete the proof, we have to evaluate the limit of vol Z ò i \ as k tends

Figure 3.8. Geometrical interpretation of the sets ö ± Æø÷ ± Ë (left figure) and ù ± Æø÷ ± Ë (right
figure) in (3.16) yielding an upper and lower estimation of

â ± .
to infinity. We first insert the cuboid volumes for the sets � i and � i into the
estimation (3.17) yieldingj i % } i = � Â O í ii À�k0ÂBí i = �i Â
Z Ì éúí i \ P% } i = � Â O í ii À�k0ÂBí i = �i P
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for k �N© . Using (3.15), this givesj i % } i = � Â�O�}?À k/Â�} Y = � æ i P Â
Zv} | �È\ = i� Ì À k/Â�} � = � æ i| � i `
Since the numerator grows sublinear and the denominator grows exponentially,
we can conlude that lim iûë º j i � Î , which is the claimed result. ¦6`
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Figure 3.9. Upper and lower bounds for the areal coincidence
â ± in the case of dyadic Ý -

dimensional sampling.

By slightly modifying the argumentation in the previous proof, one can also
obtain a more general version.��� � � ���M����ü�c���F�" For any dilation matrix Q of an infinite-dimensional space
inducing finite subsampling, i.e. ¾ det Q ¾ ® � , the associated sampling scheme
is fully anisotropic: j Q � Î `

The proof of this result is left to the reader. We only point out that it works
absolutely similar to that one of Theorem 3.8; just the helping sets � i and � i
have to be chosen in a more general way, which makes the numerical estima-
tions a little harder. ¦
`

These last two results are unpleasant from a certain point of view. But seen
from a more practical position, these negative findings are not a too big obstruc-
tion, since typical wavelet applications require rather low-dimensional spaces
as fundamentals. In this sense, the dyadic dilations classified in Proposition 3.7
give very good results at least for all k ®s¿ . On the other hand, the reader may
expect that the asymptotical behaviour of the isotropy measure j i for regular
sampling matrices like Q � }�Â Id X i§Z gives better results. Unfortunately, this is
also not the case.
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dilation matrices Q � ³ Â Id X i�Z becomes fully anisotropic as k tends to infinity
for all

³ �V} .
Proof. The principle is again the same as in the proof of Theorem 3.8. TheU � � � � � ! cell according to Q is given by the k -cube of volume

³ i , that is�
Q � � i Z ³ í }*\ and the radius of the k -sphere of the same volume is easily

evaluated to fulfill x i � ³ Â ±ì Å�Z i Y À Ì \| � `
Using the estimation (3.15), the statement can now be proven by the same
conclusions as above. This is just some basic calculus and is thus left to the
interested reader. ¦6`

Concluding these last findings, none of the typical sampling schemes used in
dimensions Ì , } or © gives rise to nice generalizations to arbitrary dimensional
spaces. Nevertheless, as was pointed out above, for typical application spaces
(dim % ¿ ) good dilation matrices are given by our design principle and the
existence result in Proposition 3.7. We finish this section with the remark, that
it is not clear at all whether families of dilation matrices exist such that their
scaling isotropy j i does not tend to zero as k goes to infinity.

3.4. Extensions and Related Work
The notion of a multiresolution analysis can be generalized in many different

ways. The direct k -dimensional extension presented in Section 1 is used here
since this setting is sufficiently suited for the applications we are targeting at.
A very elaborate work with detailed explanation and many illuminating exam-
ples of such multidimensional MRAs is [143]. Constructions of this kind were
further generalized to multidimensional multiwavelet MRAs in [32] [34] [31],
leading to subspace sequences formed from multiple scaling functions. This
approach allows even symmetric orthogonal wavelets which were inaccessible
in the case of standard MRAs. Moreover, the wavelets could be designed to be
piecewise polynomial in 1D. Onedimensional multiwavelets were successfully
applied to numerical solutions of advection-diffusion equations [2].

Another much more general extension of MRAs is that coming along with the
so-called lifting scheme [216] [218] of

ø F � 9 ����������# . This can be applied
completely detached from any fixed dilation matrix and allows one to build
wavelets on arbitrary complete metric spaces. Hereby, the dilation is (mostly)
maintained by triangulations of the considered space and newly chosen filters
on each scale. Lifting allows simple construction of biorthogonal filters, but
full orthogonality is not possible in general. Due to its flexibility, lifting is
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especially well-suited for numerical applications on non-regular domains, but
the huge technical machinery coming along with domain decompositions and
establishing of regularity [66] [65] [100] makes it less attractive for image pro-
cessing, where one mainly deals with simple rectangular (or cuboidal) data sets.
A similar formulation to the lifting scheme can also be found in the work ofC4��' � ��� and his co-workers working on wavelet-based numerical solutions
for PDEs [40] [58].

Much less work has been done so far regarding the design or classification
of scaling matrices. Most considerations were focussing on the regular or the
quincunx sampling in 2D, the close-to-isotropic hexagonal sampling in 2D or
any higherdimensional cases were investigated quite rarely. The author does
only know about one work, where the general case was directly addressed
and this was in a very rudimentary manner. Namely, in [127], two classes
of scaling matrices for abitrary dimensions were introduced, but while one of
these classes was not even expansive, the other class always induced preferred
scaling directions, which is in general not desired. Our Proposition 3.7 and
Theorem 3.8 give the first sensible classification of dyadic dilation matrices in
arbitrary dimensions together with an evaluation of the sampling quality that
comes along with these matrices. Additionally, as we argued above, we believe
that dilations for higher dimensions should strictly follow the General Design
Principle 3.6.

Chapter Summary
The multiresolution analysis concept, the basic relations defining discrete

wavelets in higher dimensions as well as the meaning of dilation matrices were
discussed at the beginning of this chapter. In the sequel, some typical twodimen-
sional sampling schemes were investigated and compared to each other. After-
wards, we have considered the general multidimensional case and introduced
some principal guidelines how a dilation matrix for an arbitrary dimensional
space should look like. We have also shown the existence of an infinite family
of multidimensional dyadic scaling matrices which generalize the important
quincunx sampling scheme. The chapter was closed by a more theoretical in-
vestigation about the asymptotic behaviour of the sampling isotropy for large
classes of dilation matrices with increasing dimensions.





Chapter ü
DESIGNING WAVELETS

Design is an art.
— ÎÈÚá�DÑ¤Ù
Úá�þýLÑ�����ÒMÚ

In the multidimensional case, there are two main factors that influence the
properties of nonseparable wavelets. The first is the dilation matrix used to
build up a multiresolution analysis; this issue was thoroughly discussed in the
previous chapter. The second, even more important thing is the discrete filter
that implies the spatial and spectral properties of the resulting wavelets. Conse-
quently, we will now present criteria and methods for multidimensional wavelet
filter design.

The actual chapter is organized as follows. In the first section, a formal
generalization of some important mathematical relations from onedimensional
wavelet theory is given as well as a new type of characterization of multidi-
mensional filters in terms of lowerdimensional subfilters which are implicitly
contained in these. Furthermore, we will sketch how the concept of basic filters
is generalizable to higher dimensions. Once, this is done we argue that the
more complicated nonseparable wavelets have in fact some principal advan-
tages over their tensor product counterparts and are thus indeed considerable
for applications. The second chapter deals with several different types of or-
thogonal wavelets. Starting with the presentation of general design principles,
different examples of multidimensional wavelets representing the implementa-
tion of different features are presented. Afterwards, we discuss the advantages
and differences to other filter design approaches. The short third section gives
an overview over the concept of biorthogonal wavelets in more than one di-
mension. It follows the presentation of the idea of tight wavelet frames, which

51
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make it possible to combine the features of orthogonal wavelets (stable repre-
sentations, inversion by adjoint operators) with other features as symmetry and
higher smoothness which are somewhat contrary to the concept of ortogonal
wavelets. This section also implies a construction of arbitrary regular tight
wavelet frames in any dimension obtained by a rather simple combinatorial
lemma. Finally, the chapter is closed by a discussion about which kind of
wavelets shall be applied in what kind of application.

4.1. Conceptual Generalization
To build wavelets in arbitrary dimensions, we do not only need a generalized

concept for the necessary sampling and filtering operations, but also a complete
new way for the design procedure for scaling and wavelet filters is required.
This goes back to the fact that some of the convenient properties of the onedi-
mensional case like the factorability of the transfer function are no longer valid,
see also the results mentioned in Paragraph 2.2.2. Consequently, this section
shall build the fundamental to implement the suited methods that are necessary
to design multidimensional wavelets and to extend the direct design method
also sketched in Paragraph 2.2.2. Afterwards, we will argue, why we propose
to use nonseparable multidimensional wavelets instead of the simpler tensor
product wavelets. This discussion will be supported by some simple examples
from image processing.

4.1.1. Some Fundamental Relations
We start the development of strategies for multidimensional wavelet filter

design with the prerequisite, that we are interested in orthogonal wavelets.
This restricition at the early stage is useful to explain the mechanisms in a clear
way, since the orthogonal case is mathematically paradigmatic for this problem
— nevertheless, in the Sections 4.3 and 4.4 we will introduce generalizations
to non-orthogonal wavelets, which will also be profitable in certain situations.
So, the first thing to be done is to generalize the orthogonality constraint (2.14)
to higher dimensions. This is done in the following matter.KL� ��� ��¯�F3y Let ¡ �Î � �x � w �x�Y
w�`t`t`&w �x ¼ ÿ¤¼ ¢ be a complete set of representatives of
the cosets of the reciprocal sampling lattice ÅG� Q

¦ Â-ÇÈi in ÇÈi , that is

Ç i � ¼ ÿ&¼ßn M � Z �xtnÖÀ Å�\�w
where Q � Zk� � { nÔ\ again denotes a scaling matrix with det Q �Ú� . Suppose now
that

á Z �u�\ satisfies a scaling equation (3.7) with filter coefficients � ¬º w �³ � Ç i
such that ¡ á Z£ÂÖé �³ \g¢ ¬º [l] ± forms an orthonormal system. Then the transfer
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function given by (3.9) must fulfill the orthogonality constraint¼ ÿ¤¼ü n M � ¾ ý Z �x_Àù}�Â��úÂ Q = ¦ Â �x�nÁ\è¾ Y � Ì almost everywhere. (4.1)

As in Proposition 2.7, this relation is equivalent toü¬º [l] ± � ¬º Ât� ¬º Û Q V ¬­ � É ¬­ ` (4.2)

Proof. See [184], Chapter 7. ¦ .

Filters with a dyadic dilation matrix, whose transfer functions satisfy the con-
dition (4.1) are also called quadrature mirror filters (QMF) in the engineering
literature. Again, we remind the reader, that (4.1) and (4.2) are only necessary
conditions and an additional criterion like the

�4� ')�*� or KO� 9 J � � criterion has
to be satisfied to guarantee L Y -existence and orthogonality. Furthermore, from
the requirement ý Z �Î i \�� Ì , we can directly deduce that the useful relationsý Zv}�Â!�§Â Q = ¦ Â �xtnÁ\G� É � { n (4.3)

must hold true for all representatives
�xtn . These equations may — as in the

onedimensional case — be interpreted as zeroth order vanishing moments for
the associated wavelet. Even more interesting is the fact that we can conclude
that k -dimesional orthogonal filters may contain subfilters of lower dimensionsª ® k which are also orthogonal:KL� ��� ��c�¯�F w Suppose ý Z �x«\ with

�x �Ah i is the transfer function of an
orthogonal filter with a generalized quincunx matrix Q. Let

�� ·Èh ¹ h�i
denote any k -fold sign permutation, that is either � � Zvu�\Õ�du or � � Zvu�\Õ� é²u
for all �ÿ� Ì w�`t`t`¤w÷k . Then, the symbol ˜ý Z ˜x \�w ˜xA�«h with

˜ý Z ˜x \G�¥ý Z �� Z ˜x«\è\ (4.4)

is the transfer function of an onedimensional orthogonal filter with integer
dilation factor } .

Proof. We have ˜ý Z ˜x \Ó� ý Z � � Z ˜xz\�w�`t`t` w � i Z ˜x«\è\ and due to the periodicity
of the complex exponential function, we also have� � V�� Ó X � Û � Z � � � V X � Ó X � Z Ûë� Z
for all

Æ � Ì w�`t`t`¤w÷k . Recalling Proposition 3.7, the set ¡ �Î w �� � ¢ is obviously a
complete set of representatives of the cosets of the reciprocal lattice Åz� Q

¦ ÂÜÇ i .
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Together with Lemma 4.1 and the fact that ý Z �x«\ is a trigonometric polynomial
this gives us¾ ˜ý Z ˜x \è¾ Y À ¾ ˜ý Z ˜x_À �ÿ\è¾ Y � ¾ ý Z �� Z ˜x«\è\è¾ Y À ¾ ý Z �� Z ˜x ÀÕ�ÿ\è\è¾ Y� ¾ ý Z �� Z ˜x«\è\è¾ Y À ¾ ý Z �� Z ˜xz\�À ��ÿ\è¾ Y� ¾ ý Z �� Z ˜x«\è\è¾ Y À ¾ ý Z �� Z ˜xz\�À]}¯Â��§Â Q = ¦ Â �� � \è¾ Y� Ì almost everywhere.

Since ý Z �x \ leads to an orthonormal scaling function, it must satisfy
��� '���� s

criterion. By construction, the same must be true for ˜ý Z ˜x \ and this guarantees
the existence of an orthonormal scaling function in 1D. ¦ .

In the same manner, one may show that in the generalized quincunx case,
there exist orthogonal subfilters of any dimension ª ® k by replacing the sign
permutation

�� by a suited sign-and-variable permutation�� ·�h ­ ¸*¹ h iZvu � w�`t`t`¤w£u ­ \ � ¸*¹ ��	� Ç S gkg � Ç S g l ä]ä]ä � Ç S g�
 g
...� Ç S e5g � Ç S e l ä]ä]ä � Ç S e�
 e 
� `

Subfilters do not only exist in the dyadic case. Under some additional con-
ditions, their existence may also be shown for several other dilations. In the
following, we will show such a result for a regular sampling matrix.KL� ��� ��c�¯�F�� Suppose ý Z �x«\ with

�x � h i is the transfer function of an
orthogonal filter for the regular scaling matrix Q �¡ ¢}IÂ É n { º ¥ n { º . Then, any

onedimensional symbol function ˜ýzZ÷xz\ with

˜ý Z ˜x \G�¥ý Z Î w�`t`t`½w Î w ˜x«w Î w�`t`t`½w Î \ (4.5)

is the transfer function of an onedimensional orthogonal filter with dilation
factor } if and only if ý Z �x \�� Î for any

�xA� h�i such that xÓn)��� for at least
one index

Æ � Ì w�`t`t` w÷k .

Remark. The additional condition may look very restrictive at a first glance.
But since the scaling filter is usually interpreted as a lowpass filter, it is quite
natural to demand the symbol to vanish not only at the aliasing frequencies
but also anywhere on the highpass boundaries which are just given by those
frequencies

�x which have at least one component x6n attaining the value � .

Proof. Since we have det Q �3} i and a regular sampling lattice, the cosets
of the reciprocal lattice are given by all elements of � i Z0¡ Î w Ì ¢Á\ where � i Z��I\
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denotes the set of all possible vector combinations of k not necessarily different
elements of � . Assuming the additional condition, we are allowed to add the}½i6éù} zero terms in the following calculation.¾ ˜ýzZ ˜xz\è¾ Y À ¾ ˜ý Z ˜x À{�ÿ\è¾ Y� ¾ ý Z Î w�`t`t`½w Î w ˜x§w Î w�`t`t` w Î \è¾ Y À ¾ ý Z Î w�`t`t` w Î w ˜x À �Èw Î w�`t`t`¤w Î \è¾ Y� ü¬� [�� ± X æ � { � éèZ '' ý O�Z Î w�`t`t`½w Î w ˜x«w Î w�`t`t` w Î \�À �§Â �x P '' Y� ü¬� [�� ± X æ � { � éèZ '' ý O�Z Î w�`t`t`½w Î w ˜x«w Î w�`t`t` w Î \�Àù}¯Â!�§Â Q = ¦ Â �x P '' Y� Ì almost everywhere.

The proof can again be concluded by the remark that the validity of the
��� ')���

criterion is preserved by our construction. ¦ .

Lemma 4.2 and Lemma 4.3 are quite useful for the design of higherdimen-
sional orthogonal filters, since they tell us that any filter contains simpler filters
of lower dimension that might be easier obtainable. On the other hand, these
lemmata do not give a constructive method to build higherdimensional filters
directly from lowdimensional ones — this seems to be impossible due to the
nonseparability, which prevents direct filter decompositions. But the knowl-
edge can and will help us in building multidimensional filters by providing
information about how the filters must look like and by reducing the algebraic
complexity of the design procedure itself. All this will become clearer within
the discussion in the following sections. We additionally mention that recently,
a very special case of Lemma 4.3 was formulated in [105] to show that wavelets
with regular dilation matrices in higher dimensions can never exceed the regu-
larity level of their (bi)orthogonal onedimensional counterparts with maximally
flat scaling filters.

4.1.2. Basic Filters in Higher Dimensions
Two questions naturally arise when one wants to generalize the concept of

decomposing filters into basic filters that was presented at the end of Chapter 2.
The first concerns the optimal shape of the filters to be designed. Hereby, opti-
mality shall mean to find the best possible pay-off between filter shape and size
(number and arrangement of taps) and number of orthonormality constraints as
given by (4.1) or (4.2). The second is the question of how to build the basic
filters in a (preferably) simple way. Both questions shall be discussed in this
paragraph.

First, we will care about the filter shape. As we learned from Lemmata 4.2
and 4.3, orthogonal multidimensional filters contain orthogonal subfilters of
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lower dimension. These subfilters can be obtained by summing the filter taps
along certain discrete hyperplanes as one sees from the defining relations (4.4)
and (4.5). Since onedimensional filters obviously have a unique shape, namely
a line arrangement, the onedimensional subfilters of any multidimensional filter
must be given by projections of the hyperplanes onto lines. This means that
the optimal filter shape is that, for which the projections of the hyperplanes
of the multidimensional filter give lines of minimal length. This fact shall be
illustrated in the following:Ey()� ��P �D� c �ùzR@ P J(! � ���§#-'�� P �*#
ã � �Vý�=�!$��%(=)�@( ã
!1�-J����)# } We choose a
dummy filter ¨ ��n { º © and Q �   �ù�� = � ¥ to be a quincunx dilation matrix. Following
the results of this chapter, any onedimensional subfilter is given by a summation
of the coefficients ��n { º along the two diagonals

Æ �Nä ³ . This means that the filter
shall be rhombic or diamond shaped. Since we also have a dyadic sampling,
the projection of the diagonals onto lines must yield lines of even length and
therefore, the filter taps of a quincunx filter are ideally arranged in a number
of double diagonals each of the same length. Consequently, taps of this shape
can be found anywhere (but generally without any detailed justification) in the
literature about wavelets based on quincunx matrix dilations [129] [169] [212].

The answer to the second question is pretty simple. Knowing the optimal
shape of the basic filters, one has to build a collection of fundamental filters
whose repeated convolution yields exactly this shape and such that the collection
contains a filter of each of the } i possible different symmetries in k -dimensional
space, since every (transfer) function can be uniquely decomposed into its
symmetric and anti-symmetric parts with respect to the axes; this guarantees
the completeness of the filter family. Additionally, the fundamental filters must
satisfy sum rule conditions like (2.18) to ensure that repeated convolutions of
the fundamental filters lead to higher order basic filters to get a similar situation
to that of Lemma 2.13 and Corollary 2.14. Actually, this is all, just a little flair
is needed to find these fundamental filters. Building basic filter families will be
demonstrated in more detail in Subsection 4.2.2.

4.1.3. Why Using
Nonseparable Multidimensional Wavelets?

So far we have seen that the design of nonseparable wavelets is significantly
harder than building tensor product wavelets from their well-known onedi-
mensional prototypes and therefore, one should ask for the sensibility of using
nonseparable wavelets at all. In other words, we must ask the question, whether
the harder work of building nonseparable wavelets and working with them is
really worth while. Consequently, it will be argued now that these wavelets have
in fact some principal advantages in comparison to tensor product wavelets and
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are thus attractive for applications.

By construction, tensor product wavelet transforms yield preferred direc-
tions along the spatial axes, which leads to inhomogeneous sensitivity against
structures within the data and thus gives undesired processing artefacts in most
applications. In contrast to this, nonseparable wavelets give a richer struc-
tural description in the sense that they are principally closer to homogeneity,
because they have no such preferred processing directions. This fact is also
demonstrated by the example shown in Picture 4.1.

Figure 4.1. Spatial resolution of wavelet frames with two vanishing moments. Left. Separable
case. Right. Nonseparable case. While the tensor product filters are only sensitive with respect
to the axes, the nonseparable counterparts are also receptive against rotations.

Let us now consider the total number of free variables in the case that the
filters are separable and nonseparable. In the first case, a k -dimensional filter
has

# Ù � � iü � M � Z ³ � é Ì \
degrees of freedom where the

³ � denote the filter length in the � -th dimension.
Note that the substraction of Ì is for normalization reasons. Now, if the filter is
nonseparable, the number of free variables is

# Ù i � i» � M � ³ � é Ì w
which makes it evident that

# Ù i � # Ù � ` (4.6)
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This means that one has (for bigger filters significantly) more design freedom.
These degrees of freedom can be utilized to implement several desired features
into nonseparable filters, which are unaccessible with separable filters.

One example of such a desired feature is to build low-pass filters such that
the associated scaling functions are close to radial symmetric functions. This
feature is somehow connected to the abovementioned richer structural descrip-
tion, since it yields close-to-isotropic data sampling and thus improves the
homogeneity of the wavelet transform. Another important feature that could be
implemented using the additional degrees of freedom is to optimize the energy
compaction of the low-pass filter in frequency domain in order to compress data
representations or to reduce the computational amount of processing tasks. The
concrete realization of such a feature will be presented in the paragraph about
filter optimization within the next section.

There are even more reasons to prefer nonseparable wavelets rather than ten-
sor product ones. It is a commonly known fact, that wavelets have a very close
connection to operators on function spaces (see [157] [159]). This connection
will play an important role in the considerations of Chapter 6. At this stage,
we just point out examplarily that differential operators, that stem from tensor
product wavelets correspondend to intrisically onedimensional finite difference
schemes, while their nonseparable counterparts in fact correspondend to mul-
tidimensional schemes and are thus better capable to register the intrisically
multidimensional local behaviour of the signal under consideration.

All this justifies the employment of nonseparable wavelets for applications.
A discussion about the differences between separable and nonseparable filters
that mainly takes the aspect of polyphase representations into account can be
found in the fundamental article [127].

4.2. Orthogonal Wavelets in ¢ é
This must have been the schedule’s only occasion for drifting into reverie – there would
seem to have been no other room for speculations, dreams, fantasies, fiction. Life in that
orthogonal machine was supposed to be nonfiction.

— t�àM�D�����È���
ÒMß½àM��Ò
This section is devoted to the design of nonseparable orthonormal wavelets in

arbitrary dimensions. Since the fundamental relations and design mechanisms
were already presented, we mainly discuss the general criteria that should be
taken into account when building scaling (and wavelet) filters. The presentation
will be supported by several examples involving different features. Some of
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these features will be discussed in greater detail in the paragraph dealing with
optimization strategies for scaling filters. The section is closed by a brief
discussion and comparison to other approaches for orthogonal filter design
in higher dimensions.

4.2.1. General Design Principles
What makes a good filter? This question must stand at the very beginning

of any filter design procedure and there are in fact many different thinkable
properties one might like to integrate. Some of these need extra requirements,
some are (at least partially) excluding others and it is definitely impossible
to unite all nice features into one filter. But anyway, it is useful to set up
some general guidelines one should always follow. First, there is one criterion
that should be fundamental for any filter independently of the purpose one is
targeting at, namely to have a certain number of vanishing moments for the
associated wavelets. These vanishing moments make sure that all polynomials
up to the same degree are already contained in the base space Ù � of the MRA.
This compactifies representations of functions in wavelet bases and therefore
reduces the amount for storage and/or computation in applications. We defineC
��ã
!1��!$J�! � ��¯�F¸¯ Let ¶Q� L YDZ1h i \ be any function and

�ª �§´ i � . Then� I ¬­ { ¬º � 6"7 ± ¶½Z �u¯é �³ \�Â �u�¬­ B �u
is called the

�ª -th moment of ¶ shifted by the moment shift
�³
. When no confusion

can occur, we use the simplification� I ¬­ � � I ¬­ { ¬� `
Recalling Lemma 2.9 and the relation (4.3), we can give the following char-

acterization of the vanishing moment property:�²� ��P*� #t!$J(! � �Ø¯�F×Ö Use the notation of Lemma 4.1 and let ¡ �Î � �7 � w�`t`t`&w �7 ¼ ÿ&¼ ¢
be a complete set of representatives of the cosets of � � Q Â¤Ç i in Ç i . Then
the following statements are equivalent:

1 All associated wavelets
ä n Z �u)\ , Æ � Ì w�`t`t`¤w�¾ ��¾�é Ì have at least ¨ vanishing

moments, that is � � Ó¬­ � Î w # ¾ �ª ¾ % ¨«` (4.7)

2 For all
Æ � }�w�`t`t` w�¾ ��¾ and

�ª �3´�i with = i º M � ª º % ¨ the generalized� J(������;�7R�"!Û( conditions»�� ­ ô» �x ¬­ ý Zv}�Â��úÂ Q = ¦ Â �xtnÁ\G� Î (4.8)
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hold true.

3 For all
�ª �«´ i with = i º M � ª º % ¨ the multidimensional sum rulesü¬º [ X ¬� ® Û�� Z �³ ¬­ Â-� ¬º � ÂtÂtÂ�� ü¬º [ X ¬��� ��� Û�� Z �³ ¬­ Â-� ¬º � ¾ det Q ¾ = � (4.9)

are valid.

Proof. The equivalence between (4.8) and (4.9) can be easily deduced by in-
serting (3.9) into (4.8) and using (4.3) and Lemma 4.1. Proving (4.7)  "! (4.9)
is nontrivial and very space consuming. A proof can be found in [34]. ¦ .

The required number of vanishing moments varies between different applica-
tions, but it is a meaningful entity anyway. For example, in image compression
wavelets with two vanishing moments seem to be the optimal compromise be-
tween polynomial reproducibility on one hand and filter size (decorrelation and
ringing effects) on the other [8]. In applications in numerical analysis a higher
number like five or six vanishing moments can yield better results for e.g. sparse
operator representations [21], while multiscale preconditioning again seems to
work optimal with only two or three vanishing moments [131]. Finding the
optimal value for a certain application is mostly a matter of experience and
some trial-and-error.

The first (but not the only) fundamental thing wavelets are used for in image
processing is representation. In order to obtain visually good image represen-
tations and accessible norm estimations (see Appendix B, Proposition B.4),
the utilized wavelets must have some degree of smoothness or regularity. Re-
searchers working on image coding agree that a regularity order between Ì and} (depending on the type of image) in terms of the W �� �D����� exponent is the
optimal value to achieve visually satisfying and efficient representations for
images.1 This can be motivated by the fact that the best performing wavelets
for image coding all have regularity values in this area; for example, the famous
(and up till today most successful) 9/7 tap of [8] gives a smoothness value ofÌ ` Ô Î Ì for the synthesis functions. Another justification is the intrisinic smooth-
ness of an image in terms of its ���*# � > norm [75], that seem to give perception
quality measures which agree well with the capabilities of the human visual
system [41]. It was shown by several experiments in [38] that typical natural
images have a maximum local regularity of about Ì ` ¿ , which confirms the claim.

1Smoothness orders greater than Y seem to have no remarkable improving effect on image codes [226],
since higher order smoothness requires rapidly increasing filter lengths. But long filters yield ringing and
decorrelation effects which are obviously undesirable in image coding, since they have to be compensated
by greater codelengths.
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Nevertheless, we should remind the reader to read this argumentation with care,
because we did something like comparing apples and oranges by switching be-
tween W �� �D����� and ���*# � > regularity; the plausibility for this can be found in
the Appendix about function spaces. Coming back to the issue of filter design
now, we need a technique to estimate the smoothness of the wavelets for a given
filter in order to measure its suitability for image processing purposes. This is
maintained by the following theorem that generalizes the results in [69] [47].v ')� � ��� � ¯�F�û Again using the notation of Lemma 4.1, we define the transition
operators Z T � \ ¬ n { ¬º � � Q V ¬ n = ¬º Û ¬� S w �7 � � Q Â-Ç i
with ��� Ì w�`t`t` w�¾ ��¾ . These operators act on a discrete set <{Ú�Ç Y i given by
those vectors

�Æ w �³ such that all the operators T � are non-singular. Suppose
now, that conditions (4.9) are valid for a certain ¨ ��´ . Then for each

Æ %¨�w ³ % ¾ ��¾ there exist O i Û�n = �n P eigenvalues of Tk
¦

with ¾ 6 � { nÔ¾�� ¾ ��¾ = n æ i for all�L� Ì w�`t`t`¤w O i Û*n = �n P and define # � { n to be the eigenspace of 6 � { n . If # denotes the
orthogonal complement of all # � { n , Æ % ¨ in the discrete set < , that is<¿�$#&% ßn ÷(' { � ÷ Z ± 8 Ó0Q ®Ó \ # � { n
and there exist 6 ® Ì and ��� Î such that)))) ­»º M � T * ô ''�+ )))) % �NÂ16 ­ (4.10)

for all possible combinations of , º �º¡ Ì w�`t`t` w�¾ ��¾ ¢ and all ª � ´ , then the
solution

á Z �u�\ of the scaling equation (3.7) is ¨ times continuously differentiable
and all its ¨ th derivatives are Wù�� �D����� continuous with critical exponentÓ?�3é log 6

log ¾ ��¾ � æ i `
Proof. The complete proof of Theorem 4.6 would be very lengthy and tech-

nical. Since it generalizes results in [69] and [47], we refer to these articles,
where this more general case is at least outlined. The main idea of the proof is
to show that points

�u�w �/ �§h�i which are close have (at least one among a num-
ber of possibilites) similar Q-adic representations. From these representations
one may evaluate their function values

á Z �u�\�w á Z �/ \ , which are then given by
infinite products of the transition operators T � (depending on the Q-adic rep-
resentations of

�u and
�/ ). The decisive point is now that these infinite products

coincide in the first ª factors due to their similar Q-adic representation. Since
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the smoothness for
á

is thus given by the spectral properties of the collection
of transition operators, one obtains an estimation like (4.10) and this yields the
desired W �� ������� regularity characterization. ¦ .

Remark. The question of determining the regularity of wavelets or, more
generally, any refinable functions, has been a very active area of mathematical
research within the last decade. The first results for onedimensional refinable
functions were obtained by C¯��=�X��*%('�!$�*# [60] and E²!1� � ��� [81] and were
subsequently improved in the work of U
!1�D��� ��� �*# [227],

2 ! � =)� [191] andC4��=)X(�*%('�!1�*# and KO�);�����!v��# [69], where the first special results for the mul-
tidimensional case were outlined. A special case of Theorem 4.6 was shown
in [47] for checking the continuity in the quincunx case. A very similar result
to that one can also be found in [228]. There exist many more approaches
to estimate the smoothness of refinable functions in terms of different regu-
larity statements like the membership in some

��� X � ����> or KL! P #¤%('�!1J§ã space
[48] [117] [196]. These latter works yield somewhat weaker results than those
determinig the critical W �� ������� exponent, but on the other hand, these are usu-
ally easier to implement and also allow some asymptotic characterizations of
smoothness, which are inacessible with methods like Theorem 4.6.

Theorem 4.6 states that the Wù�� ������� smoothness of any refinable function
can be estimated by the joint spectral radius of the transition operators Z T � \ ¬ n { ¬º .
Since an exact computation of the joint spectral radius would require an infinite
number of matrix multiplications, one has to rely on estimations via upper
bounds.2 A technique to obtain such upper bounds for the joint spectral radius
of a collection of operators was developed in [95] and we used this technique to
determine the regularity of all those wavelets we will present in the following
paragraphs.

4.2.2. A First Example
Now, the time has come to give a first simple example of wavelet filter design

to illustrate the developments presented so far. Since this is the best-suited non-
standard case, we will again consider the quincunx sampling grid. First, we
have to find suited basic filters to start with the design procedure. As we have
already explained in Example 3, the ideal shape for a quincunx scaling filter
is that of a rhombic consisting of ª � double diagonals each of length ª Y
and therefore, suited basic filters representing all possible symmetries in two
dimensions may be built from the fundamental filters

2The lower bound is obviously given by the largest eigenvalue of all operators X T S Z.-ÓèK -ô .
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� � � TV ÌÌ ~ ÌÌ
WZ w ��Y²� TV é ÌÌ Î Ìé Ì

WZ w � � � TV é ÌÌ Î é ÌÌ
WZ

and � � � TV é Ìé Ì Î ÌÌ
WZ `

While � � and ��Y satisfy the multidimensional sum rules of first order, the an-
tisymmetric filters � � and � � fulfill the sum rules of only zeroth order. Because
orthogonal filters for the quincunx grid have to be of even length, we should
additionally maintain the WG�)��� filters� � �   Ì Ì ¥ and ��Y��   Ì é Ì ¥

in order to get filters of the correct shape. Suppose now, that one wants to
design a twodimensional orthogonal filter for the quincunx grid such that this
additionally leads to a wavelet with one vanishing moment. Then, all convolved
filters � � C ��n satisfying at least the sum rules of first order, build the family of
basic filters for the design procedure. In particular, these are` � � C � � wN� � C �MY�wN�)Y C � � wN�)Y C �MY�wN� �ÒC � � wN� � C � � a `

Building a linear combination of these basic filters and solving for the or-
thogonality constraint (4.2) under consideration of Lemma 4.2, one obtains the
solutions

� � ÌÌÀ¿ Ât� � C � � À Ìa Â-��Y C � � ä | ©ÌÀ¿ Ât� � C ��Y²ä | ©a Ât� � C � � w (4.11)

which reproduces the famous H � >
�:i%(��>�!�4%�7èU6��J�J������M! scaling filter (see
also [127]), the first known orthogonal filter that leads to a continouus wavelet
for the quincunx dilation matrix Qquin { Y . Higher order filters can be built in a
similar manner using basic filters consisting of longer convolutions in order to
achieve more vanishing moments.

Finally, we shall illustrate Lemma 4.2 by means of this first example by con-
sidering one particular solution of (4.11). In Figure 4.2 one directly sees, how
the onedimensional subfilters (which must be and in fact are the C4��=)X(�*%('�!1�*#
tap-4 filter in this case) are contained in the original filter in the quincunx case.
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� �
� Û � � �� | � Û � �� |= � =�� �� | � Û � �� | � =D� �� | = � Û � �� |� = � �� | � = � � �� |

� Û � �� � Û � �� � = � �� � = � ��

� = � �� � = � �� � Û � �� � Û � ��

Figure 4.2. Illustration of Lemma 4.2. Onedimensional subfilters of quincunx filters are given
by summation along the diagonals.

4.2.3. Coiflets
So far, we have focussed ourselves to design wavelets with some degree

of regularity and a certain number of vanishing moments, which are closely
related to regularity issues. But for (numerical) applications it is often use-
ful to have also some vanishing (shifted) moments for the scaling functions to
get e.g. reliable one-point quadrature formulae from wavelet representations
[20] [161], see also Proposition 5.3. Such wavelets were first constructed by h¤FC4��=)X(�*%('�!1�*# [63] for one dimension and named coiflets after

2 F 2 F �4� !$ã � ���
who was the one to suggest designing such a wavelet family. In this paragraph,
we will give a generalization by building nonseparable coiflets in multiple di-
mensions. We start by formally describing the general case, i.e. giving the
mathematical characterization of multidimensional coiflets.C
��ã
!1��!$J�! � � c ¯�F×þ Suppose ¡ á w ä � w�`t`t`¤w ä ¼ ÿ&¼ = � ¢¯·�h�i�¸*¹ h is a family of a
compactly supported scaling function and ¾ ��¾$é Ì associated wavelets in h i . If� � Ó¬­ � Î # Æ � Ì w�`t`t` w�¾ ��¾yé Ì and (4.12)� ç ¬­ { ¬� � É ¬­ (4.13)
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for a fixed
�<z�]h�i and all exponents

�ª �]´�i� with ¾ �ª ¾ % ¨ �ù´ holds true,
then ¡ á w ä �&w�`t`t` w ä º ¢ is called a coiflet family of order ¨ with moment shift

�< .3
By a straightforward calculation, the vanishing shifted moments condition

(4.13) may also be given in the filter domain:��� � � ���M����ü�c ¯�F�� Relation (4.13) is equivalent to = ¬ n [l] ± �Æ ¬­ Ât� ¬ n � �< ¬­ .

While equations (4.12) are the usual vanishing moment conditions for the
wavelet(s), whose fulfillment may be guaranteed by the choice of the basic
filters, the relations in Corollary 4.8 must be implemented afterwards and lead
to a set of linear equations in the coefficients of the basic filters.Ey()� ��P �D��c ¯ Consider the task of building a nonseparable twodimensional
quincunx coiflet filter of e.g. first order and with moment shift

�<Q� O YY P . Again,
the fundamental filters � � wÔ�)YDwÔ� � wÔ� � and � � wT��Y of Paragraph 4.2.2 may be
chosen to build a suited family of basic filters. Additionally, we know the
optimal shape of such a filter from Example 3 and since onedimensional coiflet
filters with integer shift <Q� } are well-known [63], we also may apply Lemma
4.2 within the filter design procedure. One obtains a set of solutions, from which
we quote the following solution, which corresponds to the closest-to-symmetry
coiflet filter with the claimed properties.

� Ó3K ô M �Y � | V
/0000000000001

= z = � � z = z Û � z� � = Y � z � Y9Û | � z � � = Y � z = � � Û | � z� = � z � Û � z � � Û²Y � � z � � = Y � � z � = � z = � Û � z� � = � � � z � Y9Û | � z � � = � � � z = � � Û | � z= z Û � � z = z Û � z

2 3333333333334
Applying Theorem 4.6, we find that the corresponding scaling function and

wavelet are (as their onedimensional counterparts) continuous but not differ-
entiable functions

á w ä · h ¸�¹ h Y . A plot of
á Z �u�\ is given in Figure 4.3.

4.2.4. Filter Optimization
Die Möglichkeit ist stets größer als die Wirklichkeit.

— 5�Ñ�ÒM�donu��T��ß½à
3In the original coiflet construction [63] only integer moment shifts were considered, while we use the more
general case by allowing real valued shifts as it was proposed in [204] [161].
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Figure 4.3. The scaling function for Example 4.

It was already shown that nonseparable filter design yields some more de-
grees of freedom in the design procedures than it is the case with separable
filters. In this paragraph, we will show some examples, how these degrees
of freedom might be employed to optimize the filters with respect to certain
criteria. In particular, we will give examples that show how an optimized fre-
quency resolution might be achieved, how close-to-isotropy solutions may be
found and finally, we will design a filter which leads to a scaling function with
a possibly high smoothness value.

Optimized frequency resolution. The scaling filter ý Z �x«\ of a MRA might
always be interpreted as a lowpass filter. Therefore, it is a desirable property
to have high energy compaction in the lowpass band of the filter, that is, a
preferably large part of the signal information shall be preserved by lowpass
filtering. Hereby, we want the lowpass band 6âÚ ¨ é¿�Èw_��©$i to be defined by the
set of all frequencies

�x with6 � ` �x '' � �xA� % í a w í
�«h ð � w
where �ÿÂ � denotes some suited norm. The filter optimization now consists in
solving the maximization problem# � Z�6�\ � 687 ¾ ý Z �x§\è¾ Y B �x � max

Ä ` (4.14)

We consider two different examples in 2D. In the first case, we take the E²=�7%���!1� ean 1-norm and í¯��� . Then 6 � ` �x '' ¾ x � ¾�À3¾ x�Y�¾ % � a , which means
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that the lowpass band coincides with the shape of an ideal quincunx filter. We
obtain# � Z�6�\ � 6 ¼ � ® ¼ Û ¼ � ° ¼ ÷ � ¾ ý Z �x§\è¾ Y B �x� 6 ¼ � ® ¼ Û ¼ � ° ¼ ÷ � ü¬º [�] ° ¶ º ® { º ° Â cos Z ³ � x � À ³ Y�xGY�\ B �x� 6 ¨ = R ° { R ° © ° ü¬º [�] ° ¶ º ® { º ° Â cos Z ³ � Z÷x � À xGYD\�À ³ Y
Z÷x � é xGY�\è\ B �x� ü¬º [l] ° ¶ º ® { º ° Â

6 ¨ = R ° { R ° © ° cos Z ³ � Z÷x � À xGYD\�À ³ Y
Z÷x � é xGY�\è\ B �xz`
Since the coefficients ¶ º ® { º ° are polynomials of degree } in the filter coeffi-
cients � º ® { º ° , the same is true for the lowpass energy functional # � Z�6�\ . Now
the optimization of the lowpass energy is simply done by taking the partial
derivatives with respect to the filter coefficients � º ® { º ° and solving the resulting
linear equation system with respect to these filter coefficients.

In our second example, we choose to consider the EQ=�%(�M!1� ean 2-norm and
assume

Î ® í Y % � Y . This choice corresponds to a lowpass band with radially
isotropic frequency resolution. Now, the energy functional reads# � Z�6)\ � 6 ¼ � ® ¼ ° Û ¼ � ° ¼ ° ÷:9 ° ¾ ý Z �x«\è¾ Y B �x� 6 ¼ � ® ¼ ° Û ¼ � ° ¼ ° ÷:9 ° ü¬º [l] ° ¶ º ® { º ° Â cos Z ³ � x � À ³ Y�x�Y�\ B �x `
Replacing the frequency coordinates Z÷x � wyx�Y
\ by polar coordinates Z<;�wyxz\ and
using the abbreviation =¯� arctan i ®i ° , this expression becomes# � Z�6�\ � 6 9� 6 Y��� ü¬º [�] ° ¶ º ® { º ° Â½x Â cos O x?> ³ Y � À ³ YY Â sin Z@=�éA;(\ P B ; B x� }G� Â ü¬º [�] ° ¶ º ® { º ° Â

6 9� xdÂ�B � OÁxC> ³ Y � À ³ YY P B x
� }G� í4Â�ü¬º [�] ° ¶ º ® { º ° Â B � O í > ³ Y � À ³ YY P> ³ Y � À ³ YY `

Hereby, B ­ Z£Â8\ denotes the ����#&#-�*� function of first kind of order ª ; the ���*#&#&���
function values can be evaluated numerically with arbitrary precision. Thus,
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the energy functional is again given by a polynomial of degree two in the filter
coefficients and the optimization may be done as in the first case. A completely
different approach to optimized frequency resolution is the splitting trick [46],
which targets at dividing the frequency bands into narrower passbands.

Close-to-isotropy solutions. A filter with filter coefficients � ¬º is called
linear phase if the phase of the transfer function ý Z �x«\ is a linear function in�x , that is for a suited

� RÈ� �Y ÇÈi we haveý Z �x«\ � '' ý Z �x \�'' ÂG� = � � ¬ J { ¬��� `
It is easy to prove that the linear phase property is equivalent to have a sym-
metric filter with respect to the point

� R and this consequently also gives a sym-
metric scaling function. However, it is a known fact, that nontrivial orthogonal
wavelets with compact support can never be fully symmetric with respect to
the axes (and especially not radially symmetric) and therefore, it might be nec-
essary to find filters that lead to least asymmetric scaling functions. Given a
symmetry center

� R this problem is solved by minimizing the functional# � Z � RR\?� ü¬º [l] ± { ¬� [�� ± X æ = � { � é Z { ¬ n [D� ± X ¬º Z Z1� ¬ J Û ¬º é/� ¬ J Û ¬� ¬ n \ Y w
which gives a symmetry distortion measure for the filter coefficients. As in
the frequency optimization procedure, this is a quadratic functional and the
minimization essentially reduces to the solution of a set of linear equations in
the filter coefficients.4

Ey()� ��P �D� c Ö We shall try to find the least asymmetric ~¯S]~ filter for the
regular sampling matrix Q ��}6Â Id Y satisfying at least the sum rules of first
order. Such a filter might be seen as a generalization of the C¯��=�X��*%('�!$�*# tap-4
filter in 1D. Obviously, this filter consists of 16 taps and it turns out, that only 14
conditions are to be fulfilled to create such a filter (4 orthogonality constraints,
9 sum rules and one for normalization). The remaining two degrees of freedom
are utilized to reduce the asymmetry of the filter as much as possible. We choose
the center as

� RO� O �� P and obtain the solution

4In 1D, this procedure may be done in a more elegant way: the onedimensional transfer function �­X � Z
can be decomposed into linear factors and by simple calculus, the phase function � X � Z can be explicitly
evaluated in this case. However, such factorizations do not exist in higher dimensions and therefore, this
method cannot applied in the present situation.
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which is symmetric with respect to the diagonal

³ � � ³ Y and least point-
asymmetric with respect to the point

� R�� O ��kP .

Figure 4.4. The scaling function for Example 5.

Remark. Using polynomial connection coefficients, which will be introduced
later in this thesis, is another possibility to design filters that yield scaling func-
tions optimally close to (radial) symmetric functions.

Possibly high smoothness. For visual representation, we have already
learned that it is a good property to have basis (or more generally: representing)
functions with some degree of smoothness [8] [245]. On the other hand, for the
important quincunx sampling scheme, not even one nice nonseparable orthog-
onal scaling functions with one time continuous derivatives is known till today
[47] [228].5 Using all the filter design techniques we have presented in this
chapter, we have found the following scaling filter after searching the whole

5This is not exactly true. There exist two design methods to find nonseparable filters that might give smooth
orthogonal scaling functions by perturbing 1D filters [17] [11]. However, the resulting functions are close
to separable solutions and do not possess any desirable properties to apply them in image processing.
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space of possible orthogonal filters with the same shape having at least two
vanishing moments. By minimizing the largest eigenvalues of the operators T �and T Y (see Theorem 4.6), we obtain the filter

E �!K �GF æmÞ�ÅÀå Þm³IH ßtÄÀß�ÞHß8JLK�³mÅ�³	à�MNH¼Åm³DJOMÄ1å�Þ�ß�ámá�áE � K � F à]ß�å1àcÄÀß ÄPH à ³ ã ³Àåt³DJQK�Å�átÄH³�MRHÇà]átÄ�JOMÄ1å ÞHßmá�á�áE ��K � F Þ�Þ�ß�³�ÄÀæSH�³Há ã á Ä�JLH ßmæ�æmáDMNK�Þ
à ³DJOMÄ1å ÞHß�ámá�áE �!K � F ÞHámæ�³mÅvàTKÇàká Ä�Å�³DJLH�Å�ÄH³HáDMNH à�Å�ß8JOMÄ1å ÞHß�ámá�áE � K � F Ä�Þ ã á1à]ßSK�Å	à ³UJVH!Þ�ÞmÞHáDMÄÀå�ÞHßmá�ámáE �"K � F æHå�æ�á�Þm³IKÇàká�³�Ä�JLH!ßmß�ß�áUMÄÀå�Þ�ß�á�ámáE ° K �WF à ÅHæ Ä�á�ß�æSK!ß Ä�ßmÞHß�JLK�Å�Å�åUMNK¼Åm³DJOMÄ1å�Þ�ß�ámá�áE ��K �WF ³HÞ ã àmàkÞHßSK à ³ ã ³Àåt³DJQK ß ã á ÄXMRKÇà]átÄ�JOMÄ1å ÞHßmá�á�áE �!K �WF à]ámßHå ã æ ÄPH Ä�Ä�ámÞm³UJLKÇà�àkæ ÄÀáUMÄ1å ÞHßmá�á�áE � K � F H;æ Å�á�Þ�ÄH³YK�³�³Há
à]ß�JLKÇà�Ä�æ�áDMÄ1å ÞHß�ámá�áE �"K �WF Hràmà�ÄmÄH³�æZH ß ã à]ß8JNK æ�á ã MNK¼Å�³UJOMÄÀå�Þ�ß�á�ámáE ~ K �WF Hî³m³�æmæ�Å�ßZHÇàkÞ�æmÞm³UJLKÇà]ß1à]æDM[KÇà]á ÄDJOMÄ1å ÞHßmá�á�áE ® K �\F ³�æ�å ³Há�³IK�³Há ã á Ä�JLH�Å�Ä�Ä�æDMNH�Þ
à ³DJOMÄ1å ÞHß�ámá�áE ° K � F HràcÄ�Þ�ß�á
à]JQHÇà]á Ä�Å�³�MNKÇà Å�ß�JOMÄ1å�Þ�ß�ámá�áE ��K �\F àtå�ß�á ³�ß ÄPH¼Åvà�³DJLK àmà�à]áUMÄÀå�Þ�ß�á�ámáE �!K �\F ÞHámæ ã ³�æSHÇàká�³�Ä�JLH!æmæ�æ�áUMÄÀå�Þ�ß�á�ámáE � K �\F à ÅHæ�ßtÄÀæSKÇà]å Å�åmß8JLH¼Ä ã ßmáDMNH�Þ
à ³DJOMÄ1å ÞHß�ámá�áE �"K � F Hî³�Þ ã Þ�Ä ã H æHå�æ�æ8JNK!Þ ã Ä�áDMNKÇà�Å�ß8JOMÄ1å ÞHß�ámá�áE ° K ° F Hrà ã Å�Þ�åmßtÄPK¼ÄmÄÀámÞ�³DJLK æmæ�æ�áUMÄ1å ÞHßmá�á�áE ��K ° F ã å�ß�æmæ�³IH�³m³�á1à]ß8JLH¼ÄmÄ�Ä�áDMÄ1å�Þ�ß�ámá�áE �!K ° F ³HÞ
àkÞ ÄÀæSK ß ã àkß8JLH àkß�ßHå8MNH�Å�³UJ^MÄÀå�Þ�ß�á�ámáE � K ° F Hî³Hæ ÄÀåmá ÄIKÇàkÞ�æmÞm³UJLKÇà ã åmßDM[HÇà]á ÄDJOMÄ1å ÞHßmá�á�á
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WYXXXXXXZ `
The choices ÓÃ� | }+©B¬ and _ � | Ì © Ì ©½^ give in fact a continuously differ-
entiable scaling function for the quincunx dilation matrix Qquin { Y . This is the
first algebraically given filter that leads to a � � function for this scaling matrix.
Its W �� �����*� exponent can be estimated to attain at least the value Ì ` Î ~ and we
conjecture Ì ` Î Ô ^ Ô ÂtÂtÂ to be the true value, which is the upper bound given by
the largest eigenvalue. The estimations were found by applying the techniques
developed in [95] to Theorem 4.6. A plot of the related scaling function is given
in Picture 4.5.

Figure 4.5. The first orthogonal ` ® scaling function for the quincunx dilation matrix Qquin K ° .
The methods developed in this Chapter make it possible to design nonsep-

arable wavelets with certain features. But we shall also remark that they do
not help to design infinite function families of increasing smoothness which
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generalizes the famous construction of C4��=)X(�*%('�!1��# [60]. Although several
researchers tried to attack this problem over the last 10 years, a positive answer
to this question seems to be still out of reach.

4.2.5. Other Approaches
For completeness and comparability reasons, we will briefly review and com-

ment some other approaches to multidimensional wavelet filter design now.

Maybe the most popular method for multidimensional (wavelet) filter design
is the usage of polyphase lattice structures as developed in [224] [223]. It goes
back to the work of UÈ�)!$�(ü�������J�'���� and his co-workers. The main idea of this
method depends on the polyphase representation of a set of filters with a perfect
reconstruction property by a product of paraunitary matrices. In particular, this
means that the polyphase matrix can be written as

H �   ý � n�Z �x \ ¥ � n � R a ¬ { ��¬ { b ¬ Â '»º M � J ¬­ ô { c ô Â R a ô { � ô { b ô w (4.15)

where R a ô { � ô { b ô denotes a �Ó!v>�����# rotation about the angle Ó º with respect to
the axes � º wed º and

J ¬­ ô { c ô � Id i À O � � V�� ¬� { ¬­ ô � é Ì P Â �� c ô Â �� ¦c ô
are the elementary paraunitary building blocks (

��-n denotes any unit vector inh i ). Due to the orthogonality of �
!8>�����# rotations, this obviously gives a
set of orthogonal filters by construction. This so-called lattice factorization
attracted many researchers working with multidimensional filter banks, since
it could be implemented in a way that it automatically generates sets of or-
thogonal (or optionally linear phase) filters, which is in contrast to the more
difficult orthogonality constraints given by the quadratic equations (4.2). But
this easy-to-achieve orthogonality has to be paid by the price of significantly
harder conditions to obtain filters with some vanishing moments. Using the
method described in the previous sections, vanishing moments could be es-
tablished by solving a set of linear equations, while in the case of paraunitary
lattice factorizations, this becomes a set of nonlinear equations of degree ¨ .
Clearly, especially for large values of ¨ (bigger filters) the total complexity for
the design procedure is thus much higher than with our method. Another disad-
vantage of lattice factorization is that due to the non-commutativity of matrices,
there exists no unique ordered factorization for (4.15) and it is not a priori clear
which factorization should be ideally used to implement desired features into
a filter bank. Finally, as we shall see in Section 4.4, lattice structures are con-
ceptually unsuited to build wavelet frames, which do not fit into the polyphase
framework, since they yield overdetermined representations.
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In [142], .0�)�Zf constructs dyadic orthogonal twodimensional wavelets by
describing the set ý4Y of all scaling coefficients satisfying the orthogonality
condition as an implicit function. By computing the tangent space

� ÚºýÓY of
onedimensional scaling coefficients in ý � Ú�ý�Y , nonseparable twodimensional
scaling filters are obtained. Mathematically, this may be formulated as follows.KL� ��� ��¯�F�" Let ý Z÷xz\È�Aý � denote the transfer function of the scaling filter¡Ø� º ¾ ³ � Î w�`t`t`¤w£}½k]é Ì ¢ for a dyadic orthogonal 1D wavelet. Denote the tan-
gent vector by g�Z÷x \+� � . Let 0"Z÷x � wyxGYD\�w�4 Z÷x � wyx�YD\ be any Z×�Èw_�ÿ\ -periodic
trigonometric polynomials satisfying¾ 0ÈZ÷x � wyxGY�\è¾ Y À ¾ 4 Z÷x � wyxGYD\è¾ Y � Ì w 0ÈZ Î w Î \�� Ì `
Then

˜ý Z÷x � wyx�YD\ � 0"Z÷x � wyx�Y�\�Â�ý Z÷x � \²À 4 Z÷x � wyx�YD\�Â�g�Z÷x � \
satisfies the 2D orthogonality relation for the quincunx dilation matrix.

Proof. See [142]. ¦ .

This construction can be easily modified to other dilations than quincunx
and also to higher dimensions. However, as was stated in [140], it was not
possible to derive filters that lead to differentiable wavelets or to find closed
forms for filters with a higher number of vanishing moments via this method.
Additionally, the tangent space construction leads to rather large filters since
the trigonometric polynomials 0*w�4 cannot be chosen arbitrary but have to sat-
isfy a criterion which increases their number of coefficients and therefore also
the filter size. Also the integration of other properties into the filters is more
complicated, since it has to consider the constraint on 0 and 4 . Except the very
descriptive geometric construction, this method does not help to overcome the
problems in multidimensional filter design.

A more theoretical approach to multidimensional orthogonal filter design
was made by W � �D#¤%(')�)�Ö!$����� and �Õ!$�)<������ in [112]. They showed that the
transfer function of a quadrature mirror filter associated to a grid Å·Ú�Ç�i can be
identified with the group of polynomial loops ¡�¶+·�h i ¹ ò ZÔ¾ Ç i í Å�¾ \Õ·�¶Q�ji º ¢
( h i denotes the k -unit sphere and

ò Z ³ \ the set of unitary
³ S ³ matrices).

Moreover, they could also prove that QMFs with vanishing moments can be
identified with cosets of certain subgroups and therefore, the multidimensional
filter design problem can be shown to be equivalent to the problem of factoring
all polynomial loops. However, since this problem is unsolved for more than
one dimension, this only yields another formulation of the original problem and
does not give rise to a general filter design procedure as long as the factorization
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problem remains open. On the other hand, in [113] some very specific new filter
examples were obtained using this method.

The presented list of approaches to multidimensional filter design is of course
not exhaustive, but it demonstrated the specific difficulties from different points
of view and stressed the advantages of the methods presented in this thesis. Sev-
eral more approaches to the problem are thinkable. One such possibility might
be an algebraic geometry method by considering the orthogonality constraints
and other design equations (some vanishing moments, close-to-isotropic solu-
tions, . . . ) as varieties in a suited highdimensional space and trying to specify
intersection points of these algebraic curves. Unfortunately, this is again an
unsolved problem for dimensions greater than one, but gives again another
mathematical characterization, which might be helpful in future approaches.

The author also tried to attack the problem by maintaining so-called hy-
percomplex � � =)��!1�*� transforms [27] [168] in the definition of the transfer
function associated to a multidimensional filter in order to circumvent the non-
validity of the �+��S����(7 2 !$�*#�ã Theorem 2.10. But since hypercomplex number
systems do not have an algebraic field structure, we were not successful in the
trial to generalize the result of �+��S���� and

2 !1�*#�ã to algebraic structures of this
kind.

4.3. Biorthogonal Wavelets in ¢ é
Symmetry, as wide or as narrow as you may define its meaning, is one idea by which man
through the ages has tried to comprehend and create order, beauty, and perfection.

— �LÐ¤Ñ�����ÒMÒ�m?ÐÀ�D� [241]

Orthogonality for wavelets is a strict requirement, which involves some ad-
vantages (basis property, stable inversions) but also some deficiencies as non-
symmetry or rather low smoothness for the scaling functions and wavelets6 as
well as the hard problem of the filter design itself. Mathematically, orthog-
onality does mean to use the same bases for the analysis as well as for the
synthesis operation in a signal processing task. Giving up this restriction and
allowing different bases for the analysis and synthesis but preserving the stable
reconstruction property, we arrive at biorthogonal wavelets which were origi-
nally introduced in [45]. These are given by a pair of two scaling filters ýIw�g
6A onedimensional orthogonal filter of length Y i is known to give approximatety a

& Ö	���'��"� regularity of
only a ±Lk � « Y � z �èi [60], while a B-spline of the same length achieves the smoothness order Y i = Y = * .
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satisfying the biorthogonality relation¼ ÿ&¼ü n M � ý Z �x À]}�Â!�§Â Q = ¦ Â �xtnÔ\�Â g�Z �x_Àù}�Â��úÂ Q = ¦ Â �xtnè\ � Ì a.e. w (4.16)

which is the biorthogonal generalization of (4.1). The design of biorthogonal
multidimensional filters is much simpler than in the orthogonal case, because
it is possible to choose any desired filter as a primal filter ý and one directly
obtains the according dual filter g by solving (4.16) which are just linear equa-
tions in the filter coefficients; vanishing moments or other desired properties
can be implemented analogously to the orthogonal case by solving another set
of linear equations.

Another possibility for biorthogonal filter design is the application of the. % � �����D�M��� transform. Given a pair ý � w�g � of linear-phase onedimensional
dual scaling filters written as

¡_ý �Rí g � ¢RZ÷xz\N� nüº M = n ¡ � � í � � ¢ º Â cos Z ³ xz\ � nüº M = n ¡ � � í � � ¢ º Â � º O cos Z ³ xz\ P w
where

� º denotes the
³

-th
v %(')��X*ü�%(')��ã�ã polynomial, a pair of multidimen-

sional biorthogonal filters is given by

¡_ý í gÑ¢�Z �x \ � nüº M = n ¡ � � í � � ¢ º Â � º O Ô Z �xz\ P
if Ô Z �x \ is the transfer function of an arbitrary multidimensional filter with linear
phase. Usually, the argument Ô Z �xz\ of the . % � ���*���M��� transform is chosen
to implement vanishing moments into the new filters, since these are preserved
by construction, as one easily verifies. The fact that the new filter pair also
satisfies (4.16) can be proven by simple evaluation and application of the fact
that

v %(')��X*ü�%(')��ã�ã polynomials form an orthonormal system.

There are more approaches to biorthogonal filter design. The most widely
known (and maybe also the most comfortable) one among these is the lifting
scheme [216], which was briefly presented at the end of the previous chapter.
While lifting allows some interesting generalizations to wavelets on manifolds
or more general algebraic structures (e.g.

� ��!1ã�ã � ��� algebras [160]), it does
not give any new results for (bi)orthogonal wavelets on h i which are consid-
ered in this thesis.
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We may conclude that biorthogonal multidimensional wavelets are much
easier obtainable and can be equipped with nice features such as symmetry
or higher regularity than orthogonal wavelets. On the other hand, especially
establishing regularity comes along with dramatically increasing filter sizes. In
[47], a dual pair of biorthogonal quincunx wavelets such that both primal and
dual functions are at least once contiuously differentiable were constructed.
While the primal filter of this example consists of 13 taps, its dual counterpart
has a size of more than 1350 taps which seems to be very impracticable. The
reader may compare this size to the comparably small 24-tap orthogonal filter
giving a � � scaling function presented in the previous section. Biorthogonal
wavelets will not play any further role in this thesis, since we will now intro-
duce another theory which allows us to join all the advantages of orthogonal
wavelets, biorthogonal wavelets and multidimensional splines into one mathe-
matical concept.

4.4. Tight Wavelet Frames
So far we have only considered bases, i.e. complete function systems for

signal processing and representation purposes in this thesis. But for several
reasons, it might also be of interest to have an overcomplete (i.e. redundant)
function system at hand. Overcompleteness is mostly helpful to stabilize ill-
posed numerical problems or to better suppress the effects caused by noise in
data measurements [164]; both are typical problems occuring in computer vi-
sion. The requirement for function systems with such capabilities leads us to the
theory of wavelet frames (sometimes also called skew structures). It will turn
out, that the allowance of overdeterminant systems will have the nice by-effect
that properties like higher order regularity for relatively small filters, vanishing
moments and symmetry are no longer exclusive, even if perfect reconstruction
is requested.

4.4.1. Introduction
As already mentioned in Chapter 1, frames were introduced about 50 years

ago in [79] developing the theory of nonharmonic � � =���!1��� series. To start
with our investigations, we choose the following more recent definition of a
frame (see also [109]).C
��ã
!1��!$J�! � ��¯�Fèy+9 A family of functions Z á º \ º [BA in a WG!$��X(����J space Ù is
called a frame if there exist positive constants � �µ�Pl�� � J � Î such that for
all ¶��ÝÙ � J Â �R¶�� Y % ü º [KA ¾ ÿ ¶ w á º �T¾ Y % � l Â��R¶�� Y (4.17)

holds true. If the frame bounds �Yl�w�� J are equal, the frame is called tight.
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For a tight frame, we have �Sl �¿� J and thus equality in the defining equation
(4.17). Using this fact and applying the polarization equation, we obtain a
resolution of identity ¶�� Ì�ml Â�ü º [BA ÿ ¶½w á º ��Â á º w (4.18)

which holds almost everywhere except (possibly) on a set of zero measure.7

If the frame is built up by dilated and translated versions of a set of ª À Ì
fundamental functions

ä � that satisfy a scaling equation like (3.7), i.e.` Z á º \ º [BA a � ` ¾ det Q ¾ = n æÁY ä � Z Q = n Â&é �³ \@'' Æ �§Ç]w �³ �§Ç i wK���²¡ Î w�`t`t`¤w ª ¢ a
the frame is called a wavelet frame and analogously a tight wavelet frame if�ml§��� J . In a series of papers,

24� �Lþ � ')��� and �
� �� %(')���)!$; developed the
mathematical theory of (tight) wavelet frames whose fundamental construction
principle we will now recall [192] [193] [194] [195] [98].v ')� � ��� � ¯�F3y¨y As in Lemma 4.1, let Q be an integer dilation matrix and¡ �Î � �x � w �x�YDw�`t`t`¤w �x ¼ ÿ¤¼ ¢ be a complete set of representatives of the cosets of the
reciprocal sampling lattice Å3� Q

¦ ÂÖÇÈi in ÇÈi . Additionally, let
ä � be a

scaling function that is refinable with respect to Q associated to a symbol
function ý � Z �x«\ . If there exist ª measurable symbol functions O ý � Z �x \ P � M � { «�«�« { ­satisfying­ü n M � ý�n�Z �xz\�Â ý�nRZ �x À }GÂ!�§Â Q = ¦ Â �x º \ � É � { º w ³ � Ì w�`t`t`¤w�¾ ��¾èw (4.19)

then the wavelets defined via�ä � Z �x \G�¥ý � Z Q = ¦ Â �x \�Â �ä � Z Q = ¦ Â �x«\�w �ÿ� Î w Ì w�`t`t`¤w ª w
form a tight wavelet frame for the L Y
Z1h�iÕ\ given byn � Ê§¾ det Q ¾ = n æÁY ä � Z Q = n Â¤é �³ \ '' Æ �§Ç]w �³ �§Ç i wK���²¡ Î w�`t`t`¤w ª ¢^oÕ`
The frame bound for

n
is �Sl«�¿� J � Ì .

Proof. This theorem summarizes several results from [193] and [194]. We
refer the interested reader to these articles. ¦ .

7For í î M í ñ , (4.18) looks similar to the classical orthogonal wavelet expansion, however, tight frames
are generally not orthogonal bases, even for í�î M í¨ñ M � . It can be easily shown that this is only the case
for tight frames with frame bound � and under the additional condition that p�ç ô p M � for all

º [yA [61].
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The condition (4.19) looks very much alike the orthogonality condition (4.1)
at a first glance. And there is in fact some similarity:

24� � and
� ')��� es-

tablished a unitary extension principle for the design of tight wavelet frames
[195], which can be viewed as a generalization of KL� 9 J � � s construction of
orthonormal wavelets in [134]. However, there is a fundamental difference;
while in orthogonal wavelet constructions, the number of basic wavelets is
strictly limited to ¾ ��¾-é Ì , for the construction of tight wavelet frames one is
allowed to choose ª � ¾ ��¾-é Ì wavelets to supplement the scaling function
in order to build up a frame. This gives additional degrees of freedom and
allows the abovementioned improvements in the filter design procedure. But
the direct design of tight wavelet frames is in general as hard as the design of
orthogonal wavelets, since it again comes essentially down to the problem of
solving a set of nonlinear equations. This can be directly done for small filters8

and becomes unfeasible for very large filters. For this reason, in [194] an algo-
rithm was developed to build bigger tight wavelet frames with (possibly) more
vanishing moments and increasing smoothness from smaller prototypes which
can be found algebraically. For this simplified construction, one has to pay the
price that the number ª of required wavelets increases by a constant in each
step; the area of the support of the new frame functions even increases much
faster, because these are essentially given byá i O � � ¾ ��¾ = � Â ä � Z �x \ C ª n Z Q = � Â �xz\�w
where

ª n is some suited smoothness and/or vanishing moments increasing dis-
tribution.

4.4.2. A New and Easy Way to Build Tight Wavelet Frames
Our plan for the rest of this section is to develop an alternative construction

method for tight wavelet frames derived from simple prototypes. This new
method will have the advantage that the support area of the new functions will
be significantly smaller than in the construction [194]. On the other hand we
have to accept (at least in the most cases) the drawback of higher values for ª .
Before we can state this result , we need to evolve some polynomial identity,
that we will use for the proof. To start with this, we introduce the k -tuple setq Z8k�w Æ \?� Ï �³ � Z ³ � w ³ Y�w�`t`t` w ³ i \�w ³ � � Î w�`t`t`¤w Æ # � '''' iü � M � ³ � � Æ Ð
8 êë	�� and ������� used box splines [25] to construct such smaller basic frames. Box splines are a multidimen-
sional generalization of B-splines and share the property of being refinable with respect to a suited scaling
matrix with their onedimensional prototypes.
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of all possible ordered partitions of
Æ �«´ into at most k nonnegative numbers³ � � ´ � . It is a well known combinatorial fact and easy to prove, that'' q Z8k�w Æ \@'' � 2 k?é Ì À ÆÆ 3

holds true for all k�w Æ �§´ . Equipped with this, we can prove the following.KL� ��� ��c�¯�F3y w For all
Æ �«´ and kÃ�«´ the following identity holds true:Z¤u � ÀÃÂtÂtÂ¤À u i \ n � üX º ® { «�«�« { º ± Z×[ 
9X i { n Z 2

Æ Ä³ � Ä Â ³ Y Ä ÂtÂtÂ ³ i Ä 3 Â�u º ®� Âtu º °Y ÂtÂtÂ�u º ±i `
Proof. The claim can be easily shown by direct evaluation under repeated

application of the binomial theorem:, u � À ÂtÂtÂLÀúu i . n � nüJ ®dM � 2
ÆR � 3 Âtu n = J ®� ÂDZvuDYÈÀùu � ÀÃÂtÂtÂ À]u i \ J ®

� nüJ ®�M � J ®üJ °�M � 2
ÆR � 3 Â 2 R �R Y 3 Âtu n = J ®� Â�u J ® = J °Y Â
Zvu � ÀÃÂtÂtÂ¤Àùu i \ J ° `

After kNé Ì repeated applications of the binomial theorem, we obtain

� nüJ ®�M � ÂtÂtÂ J ± Q
°üJ ± Q ®dM � 2 ÆR � 3 Â 2 R �RØY 3 ÂtÂtÂ 2 R i = YR i = � 3 Âçu n = J ®� Âçu J ® = J °Y ÂtÂtÂbu J ± Q ° = J ± Q ®i = � Âçu J ± Q ®i

� nüº ® M � n =
º ®üº ° M � ÂtÂtÂ
n = º ® = «�«�« = º ± Q °üº ± Q ® M �

Æ Ä Âtu º ®� ÂtÂtÂèu º ± Q ®i = � Â�u n = º ® = «�«�« = º ± Q ®i³ � Ä Â ³ Y Ä ÂtÂtÂ ³ i = � Ä Â
Z Æ é ³ � é3`t`t`&é ³ i = � \ Ä� üX º ® { «�«�« { º ± Z0[ 
ëX i { n Z 2
Æ Ä³ � Ä Â ³ Y Ä ÂtÂtÂ ³ i Ä 3 Â�u º ®� Â�u º °Y ÂtÂtÂ�u º ±i `

This is exactly the desired relation. ¦ .

Applying this lemma, we are ready to state and prove the new tight wavelet
frame construction.v ')� � ��� � c ¯�F3y�� Given a set of filters ý � Z �x \�wK�I� Î w Ì w�`t`t`½w ª that satisfy
the tight wavelet frame conditions (4.19)­üº M � ý º Z �x«\�Â ý º Z �x_Àù}¯Â!�§Â Q = ¦ Â �x J \ � É � { J w R�� Ì w�`t`t`¤w�¾ ��¾Á`
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As before, Å denotes the complete set of representatives of the reciprocal latticeÇ i�r Q
¦ Â�Ç i , where Q is the related scaling matrix. Then, for any positive

integer
Æ �«´ , the O ­ Û�nn P filtersg X º ¬ { «�«�« { º J Z Z �x \?� 2 Æ Ä³ � Ä Â ³ � Ä ÂtÂtÂ ³ ­ Ä 3 � æÁY Â ­» � M � ý � Z �x«\ º S

with Z ³ � w�`t`t`¤w ³ ­ \O� q Z ª À Ì w Æ \ also satisfy the frame conditionsü¬º M X º ¬ { «�«�« { º J Z0[ 
ëX ­ Û � { n Zg ¬º Z �x«\ÁÂ g ¬º Z �x_Àù}¯Â!�úÂ Q = ¦ Â �x J \ú� É � { J w R�� Ì w�`t`t`¤w�¾ ��¾
and thus generate a new tight wavelet frame for the space 6(Y�Z1h i \ .

Proof. With the result of Lemma 4.12, we can do the following straightfor-
ward computation, which remains obviously valid for all R�� Ì w�`t`t`¤w�¾ ��¾ .ü¬º M X º ¬ { «�«�« { º J Z0[ 
ëX ­ Û � { n Z g ¬º Z �x«\�Â g ¬º Z �x_À]}�Â!�§Â Q = ¦ Â �x J \� üX º ¬ { «�«�« { º J Z×[ 
9X ­ Û � { n Z 2

Æ Ä³ � Ä Â ³ � Ä ÂtÂtÂ ³ ­ Ä 3 Â ­» � M � ý � Z �x«\ º S Â ý � Z �x À]}GÂ��úÂ Q = ¦ Â �x J \ º S� s ­üº M � ý º Z �x«\�Â ý º Z �x Àù}¯Â!�§Â Q = ¦ Â �x J \Xt n � É n � { J � É � { J `
And this completes the proof of Theorem 4.13. ¦ .

We should add some remarks to this theorem. First, it seems to be disadvan-
tageous, that the number of involved filters increases very fast with

Æ
. But since

the new filters are only products of the initial filters (up to scalar multiples)
in � � =)��!1��� space, the new filters can be realized by repeated convolution of
the initial filters in spatial domain and thus, no additional effort is necessary to
perform the filtering. This is in contrast to the construction of

24� � and
� '���� ,

who obtain successively higher order tight frames byá i O � � ¾ ��¾ = � Â ä � Z �x \ C ª n Z Q = � Â �xz\�w
On one hand, their construction increases the number of functions only by a
constant in each convolution step, but on the other hand, the support size of the
frames designed this way increases ¾ ��¾ times faster in each step by construction.
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Furthermore, if one applies Theorem 4.13 to a pair of a dyadic orthogonal
scaling function and wavelet, then we have ª �¿¾ ��¾£é Ì � Ì and thus, we only
need O n�Û �n P � Æ À Ì functions to build up the new frame. This means, that we
can reach a lower number of functions than [194] to form a tight frame in this
special case; on the other hand, these functions cannot be symmetric, which
may be a drawback in certain applications. But at least partial symmetry can
be achieved by the following trick:KL� ��� ��c�¯�F3yG¯ Given a pair

á Z �u)\�w ä Z �u�\ of a dyadic orthogonal scaling func-
tion and wavelet with corresponding symbol functions ý � Z �xz\�w�ý � Z �xz\ . A tight
wavelet frame consisting of three functions can be built from the new symbolsg � �¥ý � Â ý � w g � � | }�Â�ý � Â ý � and g"Y?�¥ý � Â ý � `
At least the functions corresponding to g � Z �x \ and g+Y
Z �x \ are symmetric and
antisymmetric respectively and moreover, the scaling function associated to g �
is interpolating.

Proof. That the three functions form a frame can be shown by direct evalu-
ation under application of Lemma 4.12 (see also the proof of Theorem 4.13).g � and g+Y are (anti)symmetric by construction. The scaling function is also
interpolating since its symbol satisfies the interpolatory condition [72]¼ ÿ¤¼ü J M � g ¬º Z �x_Àù}�Â��úÂ Q = ¦ Â �x J \�� Ì
by the construction via an orthonormal filter. ¦ .

A final remark concerns the smoothness of the built frames: similarly to
the tight frames of

24� � ,
� ')��� and �6���� %�'�����!$; [98], the frames obtained by

application of Theorem 4.13 can be made arbitrarily regular. We will show this
fact now.�²� ��P*� #t!$J(! � � c ¯�F3y~Ö Consider a given tight frame

n � ` á w ä � w�`t`t`&w äG­ a
with frame bound �Zl0� � J � Ì , such that

ª �0� a for all

ª � n . Then all
functions of the tight frame

n n obtained by applying Theorem 4.13 to the gener-
ating filters of

n
are in �Iu for some _{� Æ Ó+é Ì éj, with ,5� Î arbitrarily small.

Proof. We only need to show the assertion for the scaling function
á n , since

all other
ä � { n � n n can be written as finite linear combinations of the formä � { n Z �u)\ú��ü ¬J � � { ¬ J Â á n Z Q �u4é �Ry\
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and are thus of the same regularity. We consider the � � =)��!1�*� transform ofá ZDÂ-\ and assume that
á ZDÂ-\4�/� a . Since

á ZDÂ-\ is also compactly supported,
we know from harmonic analysis that¾ �á Z �x«\è¾ % � � Â
Z Ì À3¾ �x ¾ \ = a w # �xA� h i
must hold for some positive constant � � . On the other hand, the k -dimensional
cascade algorithm (2.15) gives us�á Z �x \ � �á Z Î \�Â º» J M � ý � Z Q = J ¦ Â �x \�w
where ý � Z �x«\ denotes the � � =)��!1�*� transform of the related scaling filter. Now,
we evaluate the modulus of �á n and what we get is (with positive constants��YDw�� � )''' �á n Z �x \ ''' � ''''' �á n Z Î \)Â¼º» J M � ý � Z Q = J ¦ Â �xz\ n ''''' � ''' ��Y²Â �á Z �x«\ n '''% ��YÕÂ�¾ �á Z �xz\Ö¾ n % � � Â
Z Ì À ¾ �x«¾ \2= nea w # �x �«h i `
Since

á n is given by a finite number of convolutions of
á

with itself,
á n is also

compactly supported. Thus, we have proven that all functions

ª n � n n must
be in the W �� �D����� class � u for some _ � Æ Ó é Ì év, . ¦6`

We additionally mention, that the estimate
Æ ÓÓé Ì éA, is only a lower bound

for the W]�� �D����� exponent; the defacto value of _ turns out to be much better
in many cases. A — for bigger filters very time consuming — way to get more
exact (sometimes even sharp) estimates for the smoothness value _ is the ap-
plication of Theorem 4.6.

Epilogue —
Which Class of Wavelets Should One Use Eventually?

To end with the chapter about wavelet design, we will briefly discuss, which
of the presented wavelets — or more general — wavelet classes, should be
taken into account when one is targeting at certain applications. Of course, we
will focus ourselves to applications related to computer vision.

For tasks like image/signal compression or transmission, the most impor-
tant requirement is to generate short codes in order to spend less storage space
or short transmission time. This demand leads naturally to use orthogonal or
biorthogonal wavelets, since these are minimal function families and thus also
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create a minimal number of coefficients. Additionally, the (at least possibly)
symmetric biorthogonal wavelets are better suited for lossy image compres-
sion, since the human visual system is more tolerant to symmetric errors than
asymmetric ones; in fact, the most successful image coders (like SPIHT or the
new JPEG2000 standard) work with symmetric biorthogonal wavelets.

But as soon as one does not only need to represent data in a possibly compact
way but also wants to analyse the data or some of its substructures, a minimal
number of coefficients is no longer a desirable property. Contrarily, it may even
be a drawback, since redundancy of function systems leads to more robustness
and higher error tolerance in numerical data analysis [164] [62]. This is also
reflected by the fact, that for most low level vision tasks, redundant function
systems like �Ó��=�#&# ians or �Ó��X � � frames are applied successfully. Conse-
quently, we will follow this way and make mostly use of families of symmetric
tight wavelet frames, which may be viewed as discrete relatives of �Ó��X � �
functions. The intrinsic properties (vanishing moments, regularity,. . . ) of the
applied frames will vary from case to case, depending on the concrete require-
ments. For simplicity, all the experiments in the third part of this thesis will
be executed with the tight frame example given in the appendix about filter
families.

Chapter Summary
After specifying some fundamental constraints for multidimensional wavelet

design, we have introduced the concept of lowerdimensional subfilters and
proven some results about how they are contained in higherdimensional scaling
filters. From these results, we were able to derive optimal shapes for filters
in multiple dimensions. Since it became clear that multidimensional wavelets
are harder to find and more difficult to implement in practical applications, we
argued why it still makes sense to use these latter ones. In this context, we
have given a number of general guidelines that should be considered in the de-
sign procedure of scaling and wavelet filters. Because multidimensional filters
usually leave some degrees of design freedom (one of their advantages), we
have demonstrated a number of possibilities how these free coefficients might
be utilized in order to optimize the resulting wavelets into the one or another
direction. In the sequel, other design methods were discussed and compared to
the methods developed within this work. This was followed by a brief presen-
tation of the biorthogonal case and by the introduction of tight wavelet frames.
Due to their redundancy, these latter function systems allowed the integration
of several desirable properties which were exclusive in the (bi)orthogonal case.
In order to apply this theory successfully, we have developed a new and very
efficient filter design method for building tight wavelet frames and prove some
related results regarding their symmetry and regularity properties. The chapter
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was closed by a brief discussion about the right choice of wavelet family for
certain kinds of applications.



II

WAVELET ANALYSIS IN
HIGHER DIMENSIONS





Chapter w
BASICS

Wir kommen nun zur Analysis, diesem kunstvollsten und am feinsten verzweigen Gebilde
der mathematischen Wissenschaft.

— Ý����DÚÜÛÓ�ÿÚá�TÞ¤Ð¤Ñ�o
To apply multidimensional wavelet transforms successfully and effectively

to applications of any kind, it is necessary to study its analytical properties first.
Therefore, the goal of the actual chapter is the introduction of some fundamental
wavelet based analytical tools. A very basic requirement to work with wavelets
in real-world situations is to have a suited finite-dimensional approximation of
the data to be represented. In the first section, the simplest form of such approx-
imations are deduced from the operators that project functions into subspaces
of L Y . Section 2 introduces the .0��������J algorithm which calculates wavelet
approximations in linear time depending on the data size. It is presented in a
generalized form that also considers the multidimensional case using arbitrary
integer scaling matrices. In the final section of this chapter, some improved
wavelet approximations in more general function spaces are deduced. Most of
the material presented within this chapter is standard (as e.g. in [140] [184]
[74]) and only adapted here and there for the multidimensional case (mainly
Proposition 5.3). The terminology and notation in this chapter is oriented to
orthogonal wavelets just for simplicity of notation; the reader shall keep in mind
that all the concepts are also applicable to tight wavelet frames.

5.1. Wavelet Approximation and the
Projection Operators P x

Recalling the definition of the discrete wavelet transform (Definition 2.4)
and of a MRA (pages 17, 30), this transformation yields a representation of any
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function ¶ú� L YDZ1h�iÕ\ as a series of weighted functions in a nested sequence
of subspaces Ù�n . For this reason, we define operators which represent these
approximations of ¶ on Ù²n .C
��ã
!1��!$J�! � �NÖ�Fèy Given a multidimensional MRA

n
spanning a nested se-

quence ÂtÂtÂÌÚÜÙ � Ú Ù � ÚÜÙ = � Ú ÂtÂtÂ Ú L YDZ1h i \
of subspaces. Then, for any ¶Q� L YDZ1h i \ and

Æ �§Ç the projection operator

P n�· L YDZ1h i \]¸*¹ Ù�n
is defined by

P n�Z$¶ \RZ �u�\?� ü¬º [l] ± ÿ ¶�w á n { ¬º ��Â á n { ¬º Z �u�\è` (5.1)

P nÁZ$¶ \ is sometimes said to be the representation of ¶ on the
Æ
-th scale andÿ ¶�w á n { ¬º � is called the expansion coefficient of ¶ with respect to
á n { ¬º (compare

this to (2.3)).

By the construction of a MRA, we clearly have the limit cases

limn ë º � P nèZ$¶ \�� L ° � Î and limn ë = º � P n�Z$¶¤\�é/¶,� L ° � Î ` (5.2)

As was shown earlier, for a MRA built from a Q-adic dilation with � � ¾ det Q ¾ ,
the complement of the space ÙÕn in Ù+n = � is spanned by �Èé Ì spaces

´ ­n withÙ�n = � � Ù+nX% ÿ = �ß­ÌM �
´ ­n and Ù�n  ´ ­n # ª � Ì w�`t`t` wH��é Ì `

Associated to the spaces

´ ­n are the wavelets
ä ­n Z �u�\ . This decomposition

directly induces the definition of the complementary operators U
­n Z$¶ \ via

P n = � Z$¶ \G� P nèZ$¶¤\*À ÿ = �ü­ÌM � U ­n Z$¶ \Ö` (5.3)

Rewritten in terms of the transformation, the complementary projectors read

U
­n Z$¶ \RZ �u)\ � ü¬º [�] ± ÿ ¶�w ä ­n { ¬º ��Â ä ­n { ¬º Z �u�\è` (5.4)

This leads to the decomposition¶½Z �u�\ � P n�Z$¶¤\RZ �u)\²À nüº M = º
ÿ = �ü­ÌM � U ­º Z$¶ \RZ �u�\� üº [�]

ÿ = �ü­ÌM � U ­º Z$¶ \RZ �u)\
(5.5)
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for all ¶�� L Y�Z1h�iÕ\ and all
Æ �§Ç . The relations (5.2) and (5.5) imply that P nèZ$¶¤\

is indeed an approximation of ¶ in the L Y -sense, but they don’t give any concrete
information about the rate of convergence.�²� ��P*� #t!$J(! � ��Ö�F w Given a Q-adic MRA built from a scaling function

á Z �u�\
and �¯é Ì wavelets

ä ­ Z �u�\ such that� � J¬� � Î ª � Ì w�`t`t` wH�¯é Ì
for all

�Ô with ¾ �Ô ¾ % ¨ � ´ . Then, for every compactly supported function ¶
having at least ¨ continuous derivatives, the following estimate holds true� P nèZ$¶ \*é0¶�� L ° % �NÂD¾ det Q ¾ n V ' ` (5.6)

Proof. The approximation via P n�Z$¶¤\ is very similar to finite element approxi-
mation and the error estimates can be proven in exactly the same way [85]. ¦ .

In practice, one usually samples a given signal ¶¯� L Y
Z1[]\ in order to work
with the finite-dimensional discretized series ¶ i � l Y�Z1[ ´ Ç i \ . Therefore,
it also might be useful to have a wavelet-based operator that approximates
functions ¶N� L Y by sampled function values rather than by transformation.
For this reason, we define

S nÁZ$¶ \RZ �u)\ �¡¾ det Q ¾ nçæèY Â+ü¬º [�] ± ü¬ J [�] ± 6 ¬ J Â-¶ O �R(À Q n Â �³ P Â á n { ¬º Z �u�\ (5.7)

to be the wavelet sampling operator of step size Q n . Hereby, the weighting
coefficients 6 ¬ J are obtained as the solution of the linear equation systemü ¬ J 6 ¬ J Â � ç ¬­ {Q Q,Ó V ¬ J � É ¬­ ` (5.8)

As in the case of the projectors P n�Z$¶¤\ , the following convergence result is valid.�²� ��P*� #t!$J(! � � c Ö�F�� With the same hypotheses as in Proposition (5.2) and
additionally assuming that

á Z �u)\ is at least continuous and the dilation matrix
Q satisfies

Q n � O det Q P � æ i Â Id w (5.9)

we have the error estimation� S n�Z$¶¤\�é/¶,� L ° % �NÂM¾ det Q ¾ n V ' ` (5.10)

Proof. Postponed to Appendix 5.A. ¦ .
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Remark 1. Similar results for the onedimensional case were introduced in
[184] and [217]. In 1D, a criterion similar to (5.9) is not necessary. Even in
higher dimensions, the restrictive condition (5.9) may be relaxed in the follow-
ing sense: if there exists an increasing sequence Z3<!��\0� [Uy with ¡�<��¨¢�Ú Æ ÂèÇ such
that O S� P � [Dy � , O det Q = �{z æ i P Â Q �|z . � [Dy
forms a

� ��=�%�'�ü sequence with respect to the usual matrix norm and tends to
the limit

lim� ë º S� � Id w
then Proposition 5.3 holds also true (only the weights 6 ¬ J have to be chosen
differently). Since the proof of this relaxation would be very time consum-
ing and involve additional techniques like diophantine approximation, it is not
presented here. However, two contrary examples to this issue are discussed
in Appendix 5.B. We shall finally remark that the condition (5.9) is not a too
big obstruction in practice, since it is satisfied by all regular dilation matrices
as well as by the quincunx matrices and its higherdimensional generalizations
(see Proposition 3.7).

Remark 2. If one uses coiflets, i.e. � ç ¬­ � Î for
Î ® ¾ �ª ¾ % ¨ , it directly

follows that (5.7) becomes the simple one-point quadrature formula

S n�Z$¶¤\RZ �u)\ �¡¾ det Q ¾ n æÁY Â¿ü¬º [�] ± ¶«O Q n Â �³ P Â á n { ¬º Z �u�\Ö` (5.11)

Although it is constructed by usage of coiflet scaling functions, the simpler
sampling scheme (5.11) approximates ¶�Z �u�\ not only in the coiflet case, but for
any arbitrary scaling function

á Z �u�\ — only the convergence is slower in the
non-coiflet case. This universality of (5.11) will play a role in the following
section.

5.2. The Fast Matrix Dilation Wavelet Transform
The approximation properties of the sampling operator S n�Z$¶¤\ play a major

role in practical considerations. Commonly, a sampled discrete data set is
interpreted as a wavelet representation of the considered signal on some fixed
scale

Æ � (mostly taken to be
Æ � � Î for simplicity). This results in the idealized

assumption ¶�Z �u�\~} S � Z$¶ \ � ü¬º [�] ±
° � ¬º Â á � { ¬º Z �u�\�w (5.12)



5.2. The Fast Matrix Dilation Wavelet Transform 91

where the coefficients are the sampled function values, i.e.

° � ¬º � ¶ ¬º . We are
now interested in finding an associated wavelet expansion of the form¶�Z �u�\?� ü¬º [l] ±

° � ¬º Â á � { ¬º Z �u�\QÀ ¼ ÿ¤¼ = �ü� M � �ü n M � ü¬º [�] ± B n { �¬º Â ä � n { ¬º Z �u�\ (5.13)

and therefore, it is necessary, to successively obtain the expansion coefficients
° n ¬º w B n { �¬º for the higher scales. This is the discrete wavelet transform itself; we
only need to evaluate the inner products in (5.1) and (5.4). This is done in the
following way:° n�Û �¬ J � ü ¬º

° n ¬º Â 6 7 ± á n { ¬º Z �u)\�Â á n = � { ¬ J B �u�¡¾ det Q ¾ = � æÁY Â�ü ¬º ü ¬­
° n ¬º Ât� ¬­ Â 6�7 ± á n { ¬º Z �u�\�Â á n {Q V ¬ J Û ¬­ B �u�¡¾ det Q ¾ = � æÁY Â�ü ¬º ü ¬­
° n ¬º Ât� ¬­ Â É Q V ¬ J Û ¬­ Û ¬º�¡¾ det Q ¾ = � æÁY Â ü ¬º

° n ¬º Â-� ¬º = Q V ¬ J `
(5.14)

Hereby, we used the scaling equation (3.7) and the pairwise orthonormality of
the

á ¬º Z �u�\ . The analogous relation for the wavelet coefficients B n�Û � { �¬º can be
found in a similar manner, it is stated asB n¸Û � { �¬º � ¾ det Q ¾ = � æèY Â ü ¬º B n { �¬º Â�� � ¬º = Q V ¬ J Ô � Ì w�`t`t` w�¾ ��¾yé Ì ` (5.15)

This wavelet decomposition of the coefficients is very efficient, since it is done
by a simple discrete convolution followed by a subsampling with the sampling
matrix Q. This procedure is known as .0��������J s algorithm in the wavelet liter-
ature. It makes the remarkable property of the discrete wavelet transformation
evident, that one only needs to know the scaling and wavelet coefficients to
work with the transform; no further knowledge about the wavelets themselves
is necessary in any manner.

The wavelet reconstruction of a signal is the inverse process to what happens
in (5.14) and (5.15). From the orthonormality of the filter, it directly follows
that the reconstruction is done by the adjoint of the decomposition operators.
Formally, this reads° n = �¬ J �¡¾ det Q ¾ = � æÁY Â , ü ¬º

° n ¬º Ât� Q V ¬º = ¬ J À ¼ ÿ&¼ = �ü� M � ü ¬º B n { �¬º ÂM� �Q V ¬º = ¬ J . ` (5.16)
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A simple complexity analysis shows that the wavelet decomposition as well
as the wavelet reconstruction algorithm both have a complexity of �IZ�� \ op-
erations, where � denotes the size of the data set. This makes it even faster
than most standard integral transformations, even faster than the successful fast� � =)��!1��� transform (requiring � Z�� Â log � \ operations). Additionally, the
wavelet coefficients give a signal representation that is localized in time (space)
and in frequency.

5.3. Generalized Wavelet Approximation
Although this may seem a paradox, all exact science is dominated by the idea of approx-
imation.

— u�Ð¤Ñ�o½Ñ½�DÒMÛG���M�Á�ÁÐ&�T�
This section is devoted to give a simple generalization of the convergence

results presented in the first section of this chapter. It is the approximation in��� X � ����> spaces, which is of particular interest, since it plays a prominent role
in solving ill-posed problems or systems of PDEs (see also Chapter 7).

Using the wavelet expansion coefficient characterization (B.11) of functions
in
��� X � ����> spaces, the approximation error of the projection operator P nèZ$¶¤\

can be evaluated to be�R¶Oé P nÁZ$¶ \�� W �z � 2 ü � ÷ n
¼ ÿ¤¼ = �ü­ÌM � ü ¬º ¾ det Q ¾ � V X � = Y Z Û � V � V � ÂM¾ B � { ­¬º ¾ � 3 � æ � ` (5.17)

Under application of the W �� �����*� inequality, one immediately gets the fol-
lowing approximation order estimation in terms of the

��� X � ���Ö> norm.��� � � ���M����ü Ö�F¸¯ Let ¶4� W �� and a MRA with
á � W

�� such that
Î % < ® 7

be given. Then the approximation error of P n�Z$¶¤\ is bounded by�R¶Oé P nÁZ$¶ \�� W îz �¡� ÂM¾ det Q ¾ n V X ��= l Z Â��R¶,� W �z (5.18)

for all éÎ7 ® � ® 7 with � % < .
Equations like (5.18) are sometimes called îÖ�)%(<�# � � -type inequalities due to
their similarity to error estimations in polynomial approximation established
by C FÿîÖ�)%(<�# � � . Unfortunately, these error estimates do not give theoretical
optimal approximation orders for smooth functions, but at least for the spaces
W �Y we can derive the following result.��� � � ���M����ü�cnÖ�F×Ö Under the conditions of Proposition 5.2, we have the esti-
mate � P nèZ$¶ \*é0¶,� W �° % � ÂM¾ det Q ¾ n V X ' =9� Z (5.19)
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for integer values < . If the additional conditions of Proposition 5.3 are also
met, the same estimate holds true for the operator S nèZ$¶¤\ .

Proof. This result will become clear as an immediate consequence of Corol-
lary 6.8. ¦ .

For regularization purposes, we will also use best approximations of ¶ with
respect to ���*# � > norms. However, this kind of approximations will not directly
depend on the projectors P nÁZ$¶ \ ; they will be introduced in Chapter 8.

Chapter Summary
The wavelet projection and sampling operators were introduced. These build

the basis for any sensible approximation done prior to a wavelet transform.
Some important approximation results were given (and one will be proven in
an upcoming appendix). Furthermore, the closely related fast matrix dilation
wavelet transform was also presented. In a second appendix, a well-behaving
and a pathological case for the approximation order of the sampling operator
under two certain non-regular dilation matrices will be compared.

APPENDIX 5.A: Proof of Proposition 5.3
By expanding ° into a tÖ���D�T��Ñ series in the sampling points, that is, developing around°�Æ����K Q Ó ¸ �ÏïË , one obtains

S Ó Æ�°�ËöÆ �Ç,Ë F � det Q � Ó õ£° ¸S�-ô ��� e �- ñ ��� e K � - ñ � �D�O� - ñ ¸ °�� ���K Q Ó ¸ �Ï�� ¸�� Ó3K -ô Æ �Ç~ËF � det Q � Ó õ£° ¸ �-ô ��� e �- ñ ��� e K � -ñ � �D� � -ñ ¸]� �-J ��� e K � -J � �X� à���� ¸ D -J °�Æ �Ç~Ë ¸ � ���K Q Ó ¸ �ÏPH �Ç � -JK �-J ��� e K � -J � � � à��&� ¸ D -J °"Æ �� -ÏïË ¸ � ���K Q Ó ¸ �ÏPH �Ç � -JY� ¸�� ÓèK -ô Æ �Ç~Ë
with some well chosen �� -ÏQ��� . We shall assume for the moment that

Æ���Ë F � -ô � - ñ � -ñ ¸ � ���K Q Ó ¸ �ÏPH �ÇU� -J ¸�� Ó3K -ô Æ �Ç,Ë�� ö ¸@� -ñ for � �� �� ¢¡ (5.A.1)

with some constant ö holds true. Then the representation of S Ó Æ�°cË simplifies to

S Ó Æ�°�ËöÆ �Ç,Ë F °"Æ �Ç,Ë£K � det Q � Ó õÔ° ¸]� -ô � - ñ � -J � -ñ���� ¸ D -J °�Æ:�� -ÏïË ¸ � ���K Q Ó ¸ �ÏIH �Ç � -J ¸�� ÓèK -ô Æ �Ç,Ë
ä
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From this, we can directly deduce the error description as¤
S Ó Æ�°�ËDH ° ¤ L l F � det Q � Ó õÔ° ¸U¥¥¥¥¥ � -ô � - ñ � -J � -ñ���� ¸ D -J °"Æ:�� -ÏïË ¸ � ���K Q Ó ¸ �ÏPH �Ç � -J ¸�� Ó3K -ô Æ �Ç,Ë ¥¥¥¥¥ L lF � det Q � Ó õÔ° ¸U¥¥¥¥¥ � -ô � - ñ � -J � -ñ���� ¸ D -J °"Æ �� -ÏïË ¸ � ���K Q Ó ¸ �Ç � -J ¥¥¥¥¥ L l ¦� det Q � Ó õÔ° 8 Ó�§ � ¸{� ÆY³ ¸ Ò�Ë ± ¸ Æ Q Q,Ó K{à�Ë ¸ ¨@©Zª � - ñ � -J � -ñ���� ¸max«­¬¬¬D -J °"Æ �� Ë®¬¬¬ ¸ � Q Q,Ó ¸ ���K �Ç � -JY¯ °^° �Ç � ®2õÔ°

This last estimation is valid, since ° is compactly supported and we may thus assume that
supp Æ�°cË^±³² HÃÒëÉlÒ|´ ± and supp Æ � Ë�±³² HÃÒ9É�Ò|´ ± for some ÒPµÇá . Furthermore, we note that the
double sum in the integral is finite and the polynomial Æ Q Q�Ó ¸ ��DK �Ç~Ë -J is uniformly bounded on� . This finally results in ¤

S Ó Æ�°cË�H ° ¤ L l   ö ¸ � det Q � Ó�§ � É
with a constant ö that only depends on ° and � . We are completely done with the proof, if we
can verify the assumption (5.A.1). For this reason, consider for any given �� the moments¶ ® -J F � -ô E -ô ¸ �Ï -JF � det Q � Q ®öõÔ° ¸¸· � -J � ¸ D -JY¹ Æ �Ê Ë®¬¬¬ -� � ° § R § -ô �ÏQ� ¹ ± ä
The second equality follows from (3.9). Application of (3.8) leads to· � -J � ¸ D -J»º� Æ×ÊÌË®¬¬¬ -� � ° § R § -ô F � -ô ¸ ¶ ® -J É
which yields — under usage of the ����ÚÜ�Á�Ô�DÒ summation formula — the identity¶ ® -J � � -ô Æ �ÇIH �Ï,Ë -J ¸�� Æ �ÇIH �Ï~Ë
ä (5.A.2)

By a simple translation, a similar identity assertion to (5.A.2) can be given for shifted moments.
Application of the condition (5.9) and inserting (5.A.2) into (5.A.1) finally givesÆ���Ë F � det Q Q,Ó õÔ° � ¸�� -ô � -ñ � -ñ ¸ � ���K Q Ó ¸ �ÏIH �Ç � -J ¸�� Æ Q Q,Ó ¸ �ÇIHj�Ï~ËF � � det Q QB�dÓ õÔ° � ¸ Æ¼H�à�Ë � -J � ¸�� - ñ � -ñ ¸@� -ô � Q Q,Ó ¸ �ÇPH �ÏIH Q Q,Ó ¸ ���� -J ¸�� Æ Q Q,Ó ¸ �ÇPH �Ï~ËF � � det Q QB�dÓ õÔ° � ¸ Æ¼H�à�Ë � -J � ¸ � - ñ � -ñ ¸ ¶ ® -J­K Q nU½ § - ñF � det Q QB�dÓ õÔ° � ¸]� -J
by the presumption (5.8), which finishes the proof. ¾ .

APPENDIX 5.B: Two examples
We will give one example and one counterexample for the relaxed condition remarked fol-

lowing Proposition 5.3: first consider the dyadic dilation

Q FÀ¿ àÁHrà³ áÃÂ ä
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Observe, that the eigenvalues of Q are given by� ® K ° F à³ � ·³ ¸ Ã å F Ã ³ ¸�Ä@Å S § arctan Æ ~ ä
Since the exponent is an irrational number, the eigenvalues � ± ® K ° of Q

±
lie dense on the circle

of radius Ã ³ . By a theorem of Ç�ÚáÐ¤ÙDÐ¤� about diophantine approximation [208], there always
exists a subsequence Æ�� ô Ë ô � Ó � of Æ � ± ® K ° Ë ± ��� such that � ô converges to Ã ³ and since � ® F � °the associated normed matrix powers S ñ 
 converge to the identity operator. For example, takingÈ F Å one obtains a sequenceº M � { � � � { � ��� { Y | � { � �R� {)| | � { � � | � { Y z � � { � � � �÷� { � � | � � { � �&� � Y � { � ��� | Y � { Y � � | | � � { «ö«�« {
for which arg Æ � ® K ° Ë decreases and � ô ® K ° converges against Ã ³ . For some values of Ï the matrix
powers Q

ô
are

Q
� k Y ��õÔ° V®É � « � �Á�m� � « � z | z= � « ������� � « � | � z"Ê { Q � ¬�¬ k Y ° ¬�¬ V@É � « � � | z � « � Y � �= � « � � � � � « �-� Y � Ê {

Q
° ~ � � k Y ô�Ë õ£° V É � « ����� � = � « �R��� z� « ���-� � � « ��� � | Ê { Q

° � ¬ �]��� � k Y ô g ± õ£° V É � « ��� � � � | Y � « �����R��� z z= � « ���R���-� � � � « �����R��� �m� Ê «
For the second example, which does not satisfy the relaxed convergence condition, take the

tetra-adic dilation matrix

Q F	¿ ³ Ìá ³CÂ
with some ÌL� ¹ . By a simple calculation, one evaluates the Ï -th matrix power of Q to be

Q

ô F ³ ô ¸ ¿ à � § ô°á à Â
and it easily follows that this can obviously neither converge to a multiple of the identity operator
nor does any subsequence so as long as ÌÎÍF á .





Chapter Ï
OPERATORS IN BASES
OF NONSEPARABLE WAVELETS

. . . there are large classes of operators for which wavelets are nearly their eigenvectors.
— ��àMÚÜ�yÚ.Ð8Ð¤Ð t�ß½à����)ÚÈo�ß½àMÚ¢�DÒÇÈ�ÑvÉ]Ò�Ì

In this chapter, we will introduce some material concerning the application
of wavelet-based operators. The focus will be set on such operators that will
be useful for our computer vision purposes, although similar results to those
presented here are also valid for a much broader class of operators. We consider
an operator T as an integral transform

T Z$¶¤\RZ �u)\ú� 6"7 ± ³ Z �u�w �/ \�Â&¶�Z �/ \ B �/ w (6.1)

with the transformation kernel
³ Z �u)w �/ \ . The quotation that introduces this chap-

ter already suggested that wavelet-based operators have the nice property, that
their eigenvectors are close to those wavelets the operator is built from — a
very useful feature that is explained by the good localization wavelets have in
time and frequency. In terms of the transformation kernel

³
, this means that³ Z �u�w �/ \ is strong diagonally dominant, which makes (among other things) the

efficient calculation of inverse operators possible.

In the first section, we will discuss the properties of differential operators
in the wavelet domain and introduce connection coefficients, which represent
the discrete version of the differential operator kernel

³
. Together with the

approximation properties of wavelets derived in the previous chapter, this will
yield approximative characterizations for functional derivatives and also allows
us to relate this to classical finite difference schemes. Section 6.2 deals with
affine transformations and a short sketch about

2 !$�*#�ã transforms in wavelet

97
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coordinates. Mainly, we will obtain a technique for efficient image warping
based on an efficient calculation of translational operators in the wavelet domain.
In the third section, we will introduce the two different ways how to represent
operators in wavelet bases, namely the so-called standard and non-standard
representation. This chapter closes with some brief remarks about more general
operator classes — in particular

� ���������^4� ��7T:�ü�; � =)��� operators — and some
related work is quoted.

6.1. Differential Operators
and Connection Coefficients

In the previous chapter, we have shown how to use wavelet series for the
representation of functions in certain spaces. Such a representation leads to
an infinite series on the theoretical level or to a finite-dimensional approxima-
tion of arbitrary precision in a more practical context. As a natural question,
the requirement for approximations of functional derivatives also arises in this
context. Such derivatives are of essential value for doing calculus or solving
problems of integro-differential type within the wavelet framework.

6.1.1. Definition and Fundamental Properties
Following this plan, we will now investigate the representation of differential

operators in the wavelet domain. In particular, we consider operators of the type

D ¬­ Z$¶¤\RZ �u)\ � » ¼ ¬­ ¼» �u ¬­ ¶�Z �u�\�w (6.2)

and will develop a representation of D ¬­ Z$¶¤\ as a wavelet series

D ¬­ Z$¶¤\RZ �u)\Ó} ü¬º [l] ± � � ¬º Â á ¬� { ¬º Z �u�\ÕÀ
¼ ÿ¤¼ = �ü� M � �ü n M � ü¬º [�] ± > n { �¬º Â ä � n { ¬º Z �u�\ (6.3)

similar to (5.13). Hereby, the wavelet expansion coeffcients are given by

� � ¬º � 6�7 ± D ¬­ Z$¶¤\RZ �u)\�Â á � { ¬º Z �u�\ B �u and> n { �¬º � 6 7 ± D ¬­ Z$¶¤\RZ �u)\�Â ä � n { ¬º Z �u�\ B �u4` (6.4)
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Assuming ¶�Z �u�\ has in fact a representation (5.13), we may insert it into the
defining relation (6.4) yielding� � ¬º � ü¬ J [l] ±

° � ¬ J Â 6"7 ± D ¬­ Z á � { ¬ J \RZ �u�\�Â á � { ¬º Z �u�\ B �u6À¼ ÿ¤¼ = �ü� M � �ü n M � ü¬J [�] ± B n { �¬ J Â 6"7 ± D ¬­ Z ä � n { ¬ J \RZ �u)\�Â á � { ¬º Z �u�\ B �u (6.5)

and an analogous expression for the coefficients > n { �¬º . That means, we can
compute the derivatives of ¶ if we are able to compute the inner products between
the scaling functions/wavelets and their partial derivatives. This motivates to
defineC
��ã
!1��!$J�! � ��cnû�F3y Let ¡ á w ä � w�`t`t`&w ä ¼ ÿ&¼ = �ë¢ form a MRA with a integer dilation
matrix Q with � � det Q. Then, the inner productsÅ çç){ ¬­ Z)�-w �³ w Æ w �Rtw�¨�\ � ÿ

DQ Q � V ¬­ á � { ¬º w á n { ¬ J �ÕwÅ � zç){ ¬­ Z)�-w �³ w Æ w �Rtw�¨�\ � ÿ
DQ Q � V ¬­ á � { ¬º w ä � n { ¬ J �+wÅ ç� z { ¬­ Z)�-w �³ w Æ w �Rtw�¨�\ � ÿ
DQ Q � V ¬­ ä � � { ¬º w á n { ¬ J �+wÅ �£Ô� z { ¬­ Z)�-w �³ w Æ w �Rtw�¨�\ � ÿ
DQ Q � V ¬­ ä � � { ¬º w ä � n { ¬ J �

are called connection coefficients of order
�ª and exponent ¨ for wavelet dif-

ferentiation.

Obviously, the connection coefficients are the discrete version of the transfor-
mation kernel of the differential operator DQ Q � V ¬­ . This idea originally goes
back to ����ü���<�!1� [21], while the term connection coefficient in conjunction
with wavelets was formally introduced in [132]. The multidimensional, matrix
dilation generalization of this concept is due to the author and was first pre-
sented in [170].

In order to work with the connection coefficients, we have to calculuate
them first. One possibility is to evaluate the integrals numerically by suited
quadrature formulae, but such a proceeding might cause numerical inaccuracies
as well. Therefore, we will develop a different way using the special properties
of wavelets that gives the exact values for the connection coefficients by solving
a linear system of equations. This requires some lemmata summarizing the
elementary properties of connection coefficients.



100 Chapter 6. Operators in Bases of Nonseparable WaveletsKL� ��� � c û�F w With the preliminaries of Definition 6.1, the following relations
are valid Å çç){ ¬­ Z)�tw �³ w Æ w � RTw�¨�\ � Z,é Ì \ ¼ ¬­ ¼ ÂMÅ çç){ ¬­ Z Æ w �Rtw �-w �³ w�¨�\�wÅ � zç){ ¬­ Z)�tw �³ w Æ w � RTw�¨�\ � Z,é Ì \ ¼ ¬­ ¼ ÂMÅ ç� z { ¬­ Z Æ w � R�w �tw �³ w�¨�\�wÅ �:Ô� z { ¬­ Z)�tw �³ w Æ w � RTw�¨�\ � Z,é Ì \ ¼ ¬­ ¼ ÂMÅ �:Ô� z { ¬­ Z Æ w � R�w �tw �³ w�¨�\Ö` (6.6)

Proof. Since all scaling functions and wavelets tend to zero as ¾ �u�¾ tends to
infinity by definition, the multidimensional integration by parts rule and the
transformation formula immediately give the result. ¦ .KL� ��� ��cbû�F�� With the same assumptions as before and any decompositions�³ � �³ � À �³ Y and

� RO� � R � À � R Y , the following holds true.Å çç){ ¬­ Z)�-w �³ w Æ w � R�w�¨�\ � Å çç){ ¬­ Z)��w �³ � é Q n = � Â � RØYÈw Æ w � R � é Q � = n Â �³ YDw�¨�\�w (6.7)Å çç){ ¬­ Z)�-w �³ w Æ w � Rtw�¨úÀ Ì \ � ¾ det Q ¾ = � Â�Å çç�{ ¬­ Z)��é Ì w �³ w Æ é Ì w �Rtw�¨�\è` (6.8)

Analogous relations are also valid for Å �ç){ ¬­ , Å ç� and Å �� .

Proof. Application of the transformation formula with the substitution�u_¸�¹ �u¯À Q n Â �R Y"À Q � Â �³ Y
directly gives the relation (6.7) and similarly, the substitution

�u]¸*¹ Q = � Â �u
gives (6.8). ¦ .KL� ��� � c û�F¸¯ Let � ¬º and � � ¬º denote the scaling and wavelet coefficients.
Then we haveÅ çç){ ¬­ Z)��À Ì w �³ w Æ w �Rtw�¨�\ � ¾ det Q ¾ � æÁY Â ü ¬ÿ � ¬ÿ Â½Å çç){ ¬­ Z)�)w Q Â �³ À ��)w Æ w �Rtw�¨�\�wÅ � zç){ ¬­ Z)��À Ì w �³ w Æ w �Rtw�¨�\ � ¾ det Q ¾ � æÁY Â ü ¬ÿ � ¬ÿ Â½Å � zç){ ¬­ Z)�)w Q Â �³ À ��)w Æ w �Rtw�¨�\�wÅ ç� z { ¬­ Z)��À Ì w �³ w Æ w �Rtw�¨�\ � ¾ det Q ¾ � æÁY Â ü ¬ÿ � � ¬ÿ Â½Å çç){ ¬­ Z)��w Q Â �³ À ��)w Æ w � RTw�¨�\�wÅ � Ô� z { ¬­ Z)��À Ì w �³ w Æ w �Rtw�¨�\ � ¾ det Q ¾ � æÁY Â ü ¬ÿ � � ¬ÿ Â½Å � zç){ ¬­ Z)��w Q Â �³ À ��)w Æ w � RTw�¨�\Ö`

(6.9)

Proof. The results in (6.8) follow directly from the application of the scaling
equation ¦ .
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Combining these three lemmata, it is possible to calculate all connection
coefficients once the fundamental connection coefficientsÅ çç�{ ¬­ Z Î w �Î w Î w � RTw�¨�\
are known, and it remains the task to evaluate them.

6.1.2. Calculation of
Fundamental Connection Coefficients

In order to obtain a unique linear equation system, from which the connection
coefficients are available, two additional propositions are necessary.�²� ��P*� #t!$J(! � � c û�F×Ö With the same notation and assumptions as before, we
have the following identityÅ çç){ ¬­ Z Î w �Î w Î w �³ w�¨�\Ó�¤ü ¬J ü ¬ÿ � ¬ J Â1� ¬ÿ Â Å çç){ ¬­ Z Î w �Î w Î w Q Â �³ é �RtÀ ��)w�¨�À Ì \Ö` (6.10)

Proof. To show this result essentially bases again on the scaling equation
and some integral calculus. We haveÅ çç�{ ¬­ Z Î w �Î w Î w �³ w�¨�\Ë� 6 7 ± DQ Q � V ¬­ á Z �u)\�Â á Z �u¯é �³ \ B �u� ¾ det Q ¾TÂgü ¬J ü ¬ÿ � ¬ J Ât� ¬ÿ Â 6 7 ± DQ Q � V ¬­ á Z Q Â �u4é � Ry\�Âá Z Q Â �u¯é Q Â �³ é ���\ B �u� ü ¬J ü ¬ÿ � ¬ J Ât� ¬ÿ Â 6 7 ± DQ Q � Q ® V ¬­ á Z �u)\�Âá Z �u4é Q Â �³ À �R�é ���\ B �u¯w
which is exactly the desired relation. ¦ .�²� ��P*� #t!$J(! � � c û�F�û If the scaling filter Z1� ¬º \ ¬º [�] ± satisfies the sum rules of
order ¾ �ª ¾ (see also (4.9)), then for all

�� with ¾ ��)¾ % ¾ �ª ¾ , we haveü ¬º �³ ¬ÿ Â½Å çç){ ¬­ Z Î w �Î w Î w �³ w�¨+\N� Z,é Ì \ ¼ ¬ÿ½¼ Â �� Ä Â É ¬ÿ { ¬­ ` (6.11)

Proof. Since the scaling filter satisfies the according sum rules, the related
wavelets have

�� vanishing moments by Proposition 4.5. This means
�u ¬ÿ ��Ù �
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and leads to a wavelet expansion�u ¬ÿ � ü ¬º 6�7 ± �/ ¬ÿ Â á Z �/ é �³ \ B �/ Â á Z �u�é �³ \� ü ¬º 6 7 ± Z �/ À �³ \T¬ÿ Â á Z �/ \ B �/ Â á Z �u�é �³ \� ü ¬º ü ¬ J 6 7 ± 2 �� � R 3 Â �³ ¬ÿ = ¬ J Â �/ ¬ J Â á Z �/ \ B �/ Â á Z �u�é �³ \� ü ¬º ü ¬ J
2 �� � R 3 Â �³ ¬ÿ = ¬ J�Â � ç¬ J Â á Z �u�é �³ \è`

Next, we apply the operator D ¬­ to both sides of this equation, multiply by
á Z �u�\

and integrate over hOi obtaining�� Ä Â É ¬ÿ { ¬­ � 6�7 ± �� Ä Â É ¬ÿ { ¬­ Â á Z �u)\� 6 7 ± ü ¬º ü ¬J
2 �� � R 3 Â �³ ¬ÿ = ¬ J�Â � ç¬ J Â D ¬­ á Z �u¯é �³ \�Â á Z �u)\ B �u� ü ¬º ü ¬J

2 �� � R 3 Â �³ ¬ÿ = ¬ J)Â � ç¬ J Â�Å çç Z Î w �³ w Î w �Î w Î \� Z,é Ì \ ¼ ¬ÿ½¼ Â ü ¬ J
2 �� � R 3 Â � ç¬ J Â ü ¬º �³ ¬ÿ = ¬ J ÂMÅ çç�{ ¬­ Z Î w �Î w Î w �³ w Î \

By Lemma 6.2, the inner sum vanishes for all
� R with

�R ^� �Î and for
�R¯� �Î it

vanishes at least as long as
�� ^� �ª . Since � ç ¬� � Ì , we have shown the claim for¨ � Î . For ¨ ^� Î , the proof is completely analogous, one only has to replace�u ¬ÿ by Z Q' Â �u(\ ¬ÿ . ¦ .

Now, we can conclude our investigations about the properties of connection
coefficients.v ')� � ��� � cbû�F×þ If a given scaling filter is finite and the dilation matrix of a
MRA satisfies

Q
9 � Diag Z8ksS kQ\

for some í«� ´ , then all fundamental connection coefficients are exactly cal-
culable by a finite set of linear equations.

Proof. Proposition 6.5 makes it possible to calculate Å çç){ ¬­ Z Î w �Î w Î w �³ w�¨úÀ Ì \
out of a set of linear equations in Å çç){ ¬­ Z Î w �Î w Î w �³ w�¨�\ , then Å çç){ ¬­ Z Î w �Î w Î w �³ w�¨4À }*\
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out of Å çç�{ ¬­�Z Î w �Î w Î w �³ w�¨¯À Ì \ and so on. To close this chain of equation systems,
we need to find a set of linear relations to calculate Å çç){ ¬­�Z Î w �Î w Î w �³ w Î \ out ofÅ çç�{ ¬­ Z Î w �Î w Î w �³ w � \ for some suited � � ´ . Suppose now, that

Q
9 � TUV 6 � Î

. . .Î 6 i
WYXZ

and
�6 � ¨ 6 � w�`t`t`&wk6 i © ¦ , then it is directly verified that

DQ Q�Õ V ¬­ � �6 ¬­ Â D ¬­ `
This can be directly plugged into (6.10) yieldingÅ çç�{ ¬­ Z Î w �Î w Î w �³ w�íÕé Ì \ � ü ¬ J ü ¬ÿ � ¬ J Â-� ¬ÿ Â�Å çç�{ ¬­ Z Î w �Î w Î w Q Â �³ é �R(À ��)w�í�\� �6 ¬­ Âlü ¬J ü ¬ÿ � ¬ J Ât� ¬ÿ Â�Å çç){ ¬­ Z Î w �Î w Î w Q Â �³ é � R�À ��)w Î \�w
which gives the desired relationship. Since the equations given by (6.10) lead
to one degree of underdetermination for each differential exponent ¨ , the addi-
tional identities (6.11) for ¨ù� Î w Ì w�`t`t` w�í²é Ì make the system unique. ¦ .

Remark 1. Connection coefficients are a very useful and effective tool, since
they can be computed offline (which may take quite some time) and stored into
lookup-tables afterwards. This makes them directly and very fast accessible for
all times once they are known.

Remark 2. In a very similar manner, connection coefficients can be gener-
alized in several ways. One such example are � -factor connection coefficients
defined byÅ�Z Æ � w �³ � w �ª � w�`t`t`¤w Æ � w �³ � w �ª � \?� 6 7 ± �» � M � D ¬­¿S á n S { ¬º S Z �u�\ B �u4`
Another useful extension are polynomial connection coefficients, which are
given asÅ�Z Æ � w �³ � w �ª � w�`t`t`¤w Æ � w �³ � w �ª � w � Ry\?� 6 7 ± �u ¬ J Â �» � M � D ¬­¿S á n S { ¬º S Z �u�\ B �u�`
The calculation of such generalized connection coefficients is analogous to the
way presented for simple connection coefficients. They mainly rely on the
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refinable properties of the scaling functions and wavelets as well as on their
vanishing moments.Ey()� ��P �D� c û We shall calculate the connection coefficients for first order dif-
ferentiation in an explicit example now. Once again, we consider the quincunx
dilation matrix

Q � L Ì ÌÌ é Ì M `
One directly sees that Q Y ��}�Â Id. For

�ª � ¨ Ì w Î © ¦ , the relations (6.10) becomeÅ çç){µ� � { � �×Ö Z Î w �Î w Î w �³ w Î \ � ü ¬ J ü ¬ÿ � ¬ J Ât� ¬ÿ Â�Å çç){µ� � { � �.Ö Z Î w �Î w Î w Q Â �³ é � R�À ���w Ì \�wÅ çç){µ� � { � � Ö Z Î w �Î w Î w �³ w Ì \ � }¯Âlü ¬J ü ¬ÿ � ¬ J Ât� ¬ÿ Â�Å çç){µ� � { � � Ö Z Î w �Î w Î w Q Â �³ é � R�À ��)w Î \�w
while equations (6.11) turn intoü ¬º �³ � � { � � Ö Å çç){�� � { � �.Ö Z Î w �Î w Î w �³ w Î \Ë� é Ì wü ¬º �³ � � { � � Ö Å çç){�� � { � �.Ö Z Î w �Î w Î w �³ w Î \Ë� Î `
If we exemplarily apply the � � 9 ���D��7T: 9 ����J scaling filter mask

� � � { � � ��� � � { � � ��� � � { � � ��� � � { � � � | }~ w
to this situation, the fundamental connection coefficients with respect to the
exponent ¨ Ì w Î © ¦ (this means the operator D Y ® ) are calculated as

Å çç){µ� � { � � Ö � TUUUUUUUUUUUUV

Î �Y � � Î é �Y � � Î
�� | � Y �Y � � Î é Y �Y � � é �� | �zY � � � �| � 0 é � �| � é zY � ��� | � Y �Y � � Î é Y �Y � � é �� | �Î �Y � � Î é �Y � � Î

WYXXXXXXXXXXXXZ
`

Hereby, the boldface printed zero indicates the coordinate origin.
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6.1.3. Relations to Finite Difference Schemes
In the previous paragraph, we have shown that the fundamental connection

coefficients (and thus all connection coefficients) are calculable under a certain
mild criterion regarding the scaling matrix Q. Assuming now, that we have
a set of connection coefficients at hand, we may return to the question of the
evaluation of functional derivatives. If we insert a given set of connection
coefficients into the representation (6.3), we obtain

D ¬­ Z$¶ \RZ �u)\Ó} ü ¬º ü ¬ J
° � ¬º ÂMÅ çç�{ ¬­ Z Æ w �³ w Æ w � RTw Î \)Â á n { ¬º Z �u�\MÀ¼ ÿ¤¼ = �ü� M �
nü � M � ü ¬º ü ¬ J B � { �¬º Â½Å ç� z { ¬­ Z)�-w �³ w Æ w � R�w Î \)Â á n { ¬º Z �u�\MÀ¼ ÿ¤¼ = �ü� M � nü � M � ü ¬º ü ¬ J

° n ¬º Â�Å � zç�{ ¬­ Z Æ w �³ w �-w � RTw Î \)Â ä � � { ¬º Z �u�\MÀ¼ ÿ¤¼ = �ü� M �
¼ ÿ&¼ = �ü � M � nü � M � ü ¬º ü ¬ J B � { �¬º ÂMÅ � Ô� z { ¬­ Z)�tw �³ w �tw �RTw Î \)Â ä � � { ¬º Z �u)\Ö`

(6.12)

This expression may look rather complicated at first sight, but a closer look
shows that these expressions are just discrete convolutions between the data
(

° � ¬º , B n { �¬º ) and the connection coefficients if the scales coincide, which means
that they can be computed in linear time. Between different scales, the eval-
uation becomes a dilated convolution that is only feasible in log-linear time,
which means that data described as a multiscale decomposition requires more
computational amount (but on the other hand less storage). However, later in
this section we will present a method to evaluate the full operators even for
multiscale decomposed data in linear time. Anyway, this representation makes
it evident that the connection coefficients are in fact the discrete transformation
kernel for the differential operator D ¬­ in the wavelet basis. And due to the rapid
decay of wavelets, only very few connection coefficients are significantly away
from zero, which means that D ¬­ is very narrow-banded in the wavelet domain
(recall the remarks at the beginning of this chapter) giving a very efficient way
of calculation of partial derivatives.

Connection coefficients share the property of giving approximative represen-
tations of functional derivatives by discrete convolutions with classical finite
difference schemes like e.g. the

��� X��*� operator or more sophisticated schemes
originating from

� J(!1���M!$��; s approximation formula. By using the commuta-
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tion rule
D ¬­vØ P n�Z$¶¤\?� P n Ø D ¬­ Z$¶ \�w (6.13)

we can directly give the following estimate for the approximation quality of the
wavelet based differentiation.��� � � ���M����ü�c�û�F�� Given a Q-adic MRA built from a scaling function

á Z �u�\
and ¾ ��¾vé Ì wavelets

ä � Z �u�\ such that the connection coefficients are known and� � z¬ J � Î w Ô � Ì w�`t`t` w�¾ ��¾�é Ì
for all

�R with ¾ �Ry¾ % ¨A�µ´ . Then, for every compactly supported function ¶
having at least ¨ continuous derivatives and all

�ª with ¾ �ª ¾ % ¨ , we obtain� D ¬­ Ø P nèZ$¶¤\*é D ¬­ Z$¶ \�� L ° % �NÂ�¾ det Q ¾ n V X ' = ¼ ¬­ ¼ Z ` (6.14)

Proof. Follows directly from (6.13) and Proposition 5.2. ¦ .

This approximation order coincides with those achieved by
� J�!$���M!$��; op-

erators in the onedimensional case for first order derivatives and gives thus an
optimal exponential decay of the approximation error. However, since the de-
sign of multidimensional filters with optimal zero orders (giving the required
vanishing moments) leaves some degrees of freedom for further design fea-
tures, one can additionally optimize the connection coefficients in such a way
that they also give an optimized approximation error with respect to other cri-
teria. For example, in image analysis it is of special interest to have filters that
minimize the angular errors of gradient vectors; the usefulness of such filters
as well as their derivation was first demonstrated in [83] and further improved
in [200]. Maintaining the remaining degrees of freedom in the wavelet filter
design procedure, we can do the same yielding competetive results.Ey()� ��P �D��c5þ Suppose that we want to optimize the connection coefficients
for a symmetric ~ Sú~ filter ¨ � ¬º © ¬º [�] ° that belongs to a scaling function with
the regular dilation matrix Q �Í} Â Id with respect to the isotropy criteria
developed in [200]. To guarantee some polynomial reproducibility, the filter
may be equipped with one vanishing moment which (after normalization) yields

� � TUUUUUV
®° H�³®ÙLH�Ú Ù Ù ®° H ³@ÙVH�ÚÙ Ú Ú ÙÙ Ú Ú Ù®° H�³®ÙLH�Ú Ù Ù ®° H ³@ÙVH�Ú

WYXXXXXZ
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with free parameters d and � that will be used for our optimization purposes.
Calculating the connection coefficients for first order differentiation for the filter¨ � ¬º © ¬º [�] ° leads to a coefficient set given by rational functions in d and � . The
angular error that is to minimize is given by,d� ''''' arctan

� Å çç){µ� � { � �.Ö Z �³ \� Å çç){µ� � { � �.Ö Z �³ \ é arctan
³ Y³ � ''''' (see [200]),

where � Å çç){µ� V { V � Ö Z �³ \ denotes the � � =)��!$��� transform of the connection coefficient
mask. A by-hand minimization of this expression leads to the near-optimal
(dyadic rational) values dN� Y zY � | and �0� | �Y � | , which give (approximately) the
connection coefficients

Å çç�{µ� � { � �×Ö }
TUUUUUUUUUUUUUUV

Î ` Î�Î�Î ^ Î } Î ^ Î ` Î�Î ~M^K¬¤^+©½} Î é Î ` Î�Î ~M^K¬¤^+©½} é Î ` Î�Î�Î ^ Î } Î ^Î ` Î Ì�Ì ^ Ô Î ¬¤} Î ` Î a+¬½a Ì ~�~ Ì Î é Î ` Î a+¬½a Ì ~�~ Ì é Î ` Î Ì�Ì ^ Ô Î ¬¤}Î ` Î }�av© Ì ^�} Î Î ` } Î ¿ }�^�a }�^ Î é Î ` } Î ¿ }�^�a }�^ é Î ` Î }�av© Ì ^�} ÎÎ ` Î Ì�Ì ^ Ô Î ¬¤} Î ` Î a+¬½a Ì ~�~ Ì Î é Î ` Î a+¬½a Ì ~�~ Ì é Î ` Î Ì�Ì ^ Ô Î ¬¤}Î ` Î�Î�Î ^ Î } Î ^ Î ` Î�Î ~M^K¬¤^+©½} Î é Î ` Î�Î ~M^K¬¤^+©½} é Î ` Î�Î�Î ^ Î } Î ^

WYXXXXXXXXXXXXXXZ
and Å çç){µ� � { � �×Ö � Å çç){µ� � { � �.Ö ¦ `
These connection coefficients give indeed very well-performing derivative filters
in 2D. In Figure 6.1, the magnitude of the absolute angular error is compared
to the results achieved by two other commonly used derivative filters.

We conclude that the optimized connection coefficients do not only perform
even slightly better than the optimized filters from [200], but they also can
be applied extremly efficiently directly in the multiscale wavelet domain (i.e.
without back-transformation), while other derivative operators can only be
applied on the discrete data in single-scale representation.

The reader may ask why derivative filters derived from connection coeffi-
cients can perform better than optimized derivative filters — aren’t they really
optimized eventually? The simple answer to this questions is: they are opti-
mized, but they are built in a separable manner. It is again the nonseparability
of the applied wavelet filters that makes further improvements possible.
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Figure 6.1. Absolute values of the angular errors. The reader should note the different axis
scalings. Upper Left. Ç½��Þ Ð&� filter. Upper Right. Optimized ÅLÛ Å filter from [200]. Lower
Row. Optimized ÅRÛÎÅ connection coefficient mask.

6.2. Affine Transforms in Wavelet Domain
In this section we will investigate operators for affine transforms in the

wavelet domain. Such transformations are of special interest in image sequence
analysis, since motion in real-world scences is physically modelled by transla-
tion and scaling in the image plane. In our considerations, we will mainly care
about translation operators, that is

T ¬Ü ·�¶�Z �u)\]¸*¹ ¶ O �u¯é �� Z �u�\ P (6.15)

with a translation field
�� ·
h�i ¹ h�i . To stay consistent with the modelling

done so far, we will only use discretized translations, which means that the
translation field is given by a discrete array   �� ¬º ¥ ¬º [DÝ �«h ¼ Ý ¼ , where [ denotes
the data range. Recalling the idealized assumption (5.12), the discrete version
of (6.15) in the wavelet domain reads

T ¬Ü ·�¶�Z �u)\ú� ü¬º [�] ±
° � ¬º Â á � { ¬º Z �u)\ ¸*¹ ü¬º [l] ±

° � ¬º Â á � { ¬º Z �u4é �� ¬º \Ö` (6.16)

Since an efficient processsing requires to have a corresponding operator at a
multiscale-decomposed data set at hand, one obtains under usage of (5.14) and
(5.15)

T ¬Ü ·�¶½Z �u�\]¸�¹ ü¬º [l] ±
° � ¬º Â á � { ¬º Z �u4é Q � Â �� ¬º \MÀ¼ ÿ¤¼ = �ü� M � �ü n M � ü¬º [l] ± B n { �¬º Â ä � n { ¬º Z �u¯é Q n Â �� ¬º \Ö` (6.17)
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It is evident that the fundamental need is now to find a simple and efficient way
to get a representation

T ¬Ü Z$¶ \RZ �u)\ú� ü¬º [�] ± Ó � ¬º Â á ¬� { ¬º Z �u�\²À
¼ ÿ&¼ = �ü� M � �ü n M � ü¬º [l] ± _ n { �¬º Â ä � n { ¬º Z �u�\ (6.18)

from (6.17). Again, the problem essentially reduces to evaluate the expansion
coefficientsÓ � ¬º � ü¬ J [l] ±

° � ¬ J Â 6"7 ± á � { ¬º Z �u4é Q � Â �� ¬º \�Â á � { ¬º Z �u�\ B �uIÀ¼ ÿ¤¼ = �ü� M � �ü n M � ü¬J [�] ± B n { �¬ J Â 6 7 ± ä � n { ¬º Z �u�é Q n Â �� ¬º \�Â á � { ¬º Z �u�\ B �u (6.19)

and _ n { �¬º which is given by a similar expression. Obviously, the inner products
in (6.19) can be evaluated exactly for all Q-adic rational numbers by (probably
many) repeated applications of the scaling equation. However, this proceeding
gets very lengthy in common and is not fitted to deal with non-Q-adic rational
shifts. In this situation, it is preferrable to approximate the inner products by
suited quadrature formulae.1 Hereby, the connection coefficients introduced in
the previous section will be an important helping tool. We have to consider the
integrals 7�Z �� \ú� 6"7 ± á Z �u�\)Â á Z �u�é �� \ B �uúw
where

�� �úh i is an arbitrary vector (possibly of not too large absolute value).
The more complicated integral expressions in (6.19) can be reduced to integrals
of this simple type under usage of the refinable properties of

á
(as in the previous

section). Returning to the question of the effcient approximative calculation of7MZ �� \ , we choose
�j?��ÇÈi to be the integer vector which is closest to

�� in theE²=�%(�M!$� ean norm, i.e. � �� é �jë�èY�� min!. Then, a
v ��ü�� � � expansion leads to7MZ �� \ � 6"7 ± á Z �u)\�Â á Z �u�é �� \ B �u� 6 7 ± á Z �u)\�Â 2 ü¬­ [Uy ± ¬ Ì�ª Ä Â
Z �j+é �� \ ¬­ Â+» ¼ ¬­ ¼» �u ¬­ á Z �u¯é �j�\ 3 B �u

1There may be exceptions to this situation. For example, under certain conditions, refinable functions may
coincide with splines and for such piecewise polynomial functions, expressions like Þ ½ e çUX ¬Y Z V çUX ¬Y =+¬Ü Z Â ¬Ycan be evaluated exactly, but this is not true in general.
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and cutting off the
v ��ü�� � � series yields an approximation2

7�Z �� \Ó} 6"7 ± á Z �u�\�Â 2 ü¼ ¬­ ¼ ÷(' Ì�ª Ä)ÂDZ �j+é �� \ ¬­ Â+» ¼ ¬­ ¼» �u ¬­ á Z �u¯é �j
\ 3 B �u� ü¼ ¬­ ¼ ÷(' Ì�ª Ä ÂDZ �j"é �� \ ¬­ Â�Å çç){ ¬­ Z Î w �jÖw Î w �Î w Î \�w (6.20)

that is expressed by a weighted number of fundamental connection coefficients.
In a completely analogous manner, all the expansion coefficients from (6.19)
can be calculated directly as weighted sums of higher order connection coef-
ficients giving us the desired representation of the translated data as a wavelet
series.

This treatment already implies the announced fast algorithm for image warp-
ing, which is nothing else but calculating a translated image representation for a
given translation field

�� . The algorithm is very fast (linear time for single-scale
and log-linear time for multiscale representations) since for every data point
(pixel) only a fixed number of multiplications of shifts with connection coeffi-
cients have to be performed, followed by a discrete filtering with the expansion
coefficients

° � ¬º and B n { �¬º of the original data by (6.19).

We conclude this section with some remarks about other operators, which
have some significance in image processing. The first such class are scaling op-
erators, that can be approximated in an analogous way as translation operators,
with the slight difference that in this situation, integrals of the type� Z�� ¬º \ú� 6"7 ± á Z �u)\�Â á Z�� ¬º Â �u4é �³ \ B �u
with scaling matrices � ¬º � Mat Z8k S"k�wÔh²\ have to be approximated. This again
requires the usage of connection coefficients as well as polynomial connection
coefficients. However, we will not need scaling operators for the applications
in this thesis and consequently, we will not go further into the details here.

Another transform of importance in image analysis is the WG!1��X(����J transform
and its multidimensional generalizations, the

2 !1�*#�ã transforms R n . A repre-
sentation of the WG!1�DX�����J transform in wavelet coordinates was developed in
[22]. This construction is again similar to that for connection coefficients and

2In practice, we will cut off the ßG�c#���	�� series after the first or second order derivatives, which gives reliable
results for translations of not too big absolute values.
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is easily extendible to its k -dimensional generalizations of
2 !1�*#�ã transforms.

Their description in the wavelet domain is given via the integralsxtn�Z �³ \ � lim* ë � 6�7 ± 6 ¼ ¬à ¼ Ñ * á Z �u¯é �³ \�Â á Z �u�é �/ \�Â Å�Z i Û �Y \� X i Û � Z æÁY Â / n¾ �/ ¾ i Û � B �/ B �u�`
Following [22], this discrete transformation kernel can be evaluated up to ar-
bitrary precision under exploitation of the asymptotics for the x�n�Z �³ \ . These
asymptotics are, under the assumption that the applied wavelets have a certain
number of vanishing moments, given byxtn�Z �³ \]¸*¹ Å�Z i Û �Y \� X i Û � Z æÁY Â ³ n¾ �³ ¾ i Û �
for large absolute values of

�³
. This can be easily verified by a series expansion.

6.3. Two Ways to Represent Operators
in Wavelet Coordinates

Representations of operators in the wavelet domain are feasible in more than
one way. A description as e.g. in (6.12) was straightforward obtainable via the
operators P nÁZ$¶ \ and U n�Z$¶ \ . This is called the standard form of representation,
but we had to state that their execution is only feasible in log-linear time as long
a the data is given in the sparser multiscale representation; this will be briefly
concluded in the first paragraph of this section. In the second paragraph, we will
introduce a generalization first given in [20] leading to the non-standard form of
representation yielding linear time algorithms. Following our intentions for this
thesis, we will present this in a generalized form suited for multidimensional
data and matrix dilations with not necessarily dyadic subsampling.

6.3.1. The Standard Form
Suppose that we are given any operator T for which we want to give a

wavelet-based description. Assuming that there exists a finest scale, say
Æ � Î ,

the operator T satisfies

T � P � TP � � P � TP n"À nü � M �
¼ ÿ¤¼ = �ü­ÌM � P � TU

­� `
The second equality follows from the defining relation (5.5). Repeated appli-
cation of this procedure leads to a representation

T � P n TP n+À nü � M � nüº M �
¼ ÿ¤¼ = �ü­ÌM �
¼ ÿ&¼ = �ü� M � U� º TU

­� ` (6.21)
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Reviewing the example of differentiation, the projections P n TP n and U� º TU
­�are described by the different connection coefficients. Writing T via (6.21) in

matrix notation, one obtains a sparse matrix T̃ whose entries are the related
connection coefficients, that looks like in Figure 6.2.

Figure 6.2. Typical sparsity patterns for matrices associated to an operator in the standard form.
Left. Dyadic wavelets — 1D example with data length á F ³mÅ�ß giving an operator matrix T̃ of
size ³�Å�ß[ÛÎ³�ÅHß . Right. Triadic wavelets — 1D example of length á F å ³ ã .

This means that at least for orthogonal wavelets, several operators T acting on
a discrete data set of size � �¿¾ ��¾ ' V i can be efficiently represented by a sparse
matrix T̃ � Sparse ZÔ¾ ��¾ ' V i S�¾ ��¾ ' V iLwÔhÕ\ .3 It is easily proved that only �IZ��åÂ¨?ÂTkQ\ entries of the matrix are significantly larger than zero and consequently,
the numerical cost for the evaluation of the matrix-data product yielding the
operation can be essentially done in log-linear time.

6.3.2. The Non-Standard Form
Representation (6.21) is the straightforward way to describe operators in

the wavelet domain. This leads to sparse and hierarchical structures yielding
fast transformation algorithms. However, the representation can be made even
sparser by decoupling the scales, that is, finding a decomposition that does not
mix information from different scales as it is the case in (6.21). The key to this

3Again, the reader should note that the same is true for a tight wavelet frame. But since the overdetermination
of such a system, the matrix T̃ is of larger size.
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is the operator decomposition (5.3) and the usage of a telescopic sum giving

T � P � TP � � P � TP � À ¼ ÿ¤¼ = �üº M � U
º � TP �

� P n TP n+À nü � M �
¼ ÿ¤¼ = �üº M � , U º� TP � À P � TU

º� À ¼ ÿ¤¼ = �ü J M � U
º� TU J� . ` (6.22)

Obviously, the goal to completely separate the scales is achieved by this de-
composition. But one should also note, that the representation requires low
pass information on all scales (not only on the coarsest as in a usual wavelet
representation) due to the presence of the projectors P � for all � � Ì w�`t`t`¤w Æ ,
which means, that this operator representation acts on an overdetermined data
representation. This fact causes some consequences, namely one is urged to
preserve all expansion coefficients

° � ¬º during a wavelet decomposition, the dec-
sribing operator matrix T̃ becomes larger than in the standard form and a suited
back-transformation into the original wavelet domain is necessary after the op-
erator is executed. To give a short example, the derivative operator D ¬­ , whose
standard form for a wavelet-approximated function ¶½Z �u�\ is (6.12), is given by

D ¬­ Z$¶ \RZ �u)\Ó} ü ¬º ü ¬J
° � ¬º Â½Å çç){ ¬­ Z Æ w �³ w Æ w � RTw Î \�Â á n { ¬º Z �u�\MÀ¼ ÿ¤¼ = �ü� M � nü � M � ü ¬º ü ¬ J B � { �¬º Â�Å ç� z { ¬­ Z)�-w �³ w �-w � RTw Î \�Â á � { ¬º Z �u�\MÀ¼ ÿ¤¼ = �ü� M � nü � M � ü ¬º ü ¬ J

° � ¬º Â�Å � zç){ ¬­ Z)�-w �³ w �tw �R�w Î \�Â ä � � { ¬º Z �u)\MÀ¼ ÿ¤¼ = �ü� M �
¼ ÿ&¼ = �ü � M � nü � M � ü ¬º ü ¬J B � { �¬º Â½Å � Ô� z { ¬­ Z)�tw �³ w �tw �R�w Î \�Â ä � � { ¬º Z �u�\

(6.23)

in the non-standard form. This is now obviously a genuine convolution operator
and thus feasible in linear time depending on the data size. It is an easy task
to verify that the describing matrix T̃ in the non-standard form for a data set of
size � �¿¾ ��¾ ' V i is in

T̃ � Sparse
, ¾ ��¾�Â ¾ ��¾ ' V i é Ì¾ ��¾�é Ì S]¾ ��¾�Â ¾ ��¾ ' V i é Ì¾ ��¾�é Ì wÔh . w

which is between Ì Àâ, and ~ times larger than in the standard form. But the
matrix has a more sparse and stricter hierarchical structure, allowing it to be
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executed in � Z�� \ significant operations [20]. A typical example how the non-
standard form matrices look like is given in Figure 6.3.

Figure 6.3. Typical sparsity pattern for matrices associated to an operator in the non-standard
form. Left. Dyadic wavelets — 1D example with data length á F ³�ÅHß giving an operator matrix
T̃ of size Å	à]áVÛïÅvà]á . Right. In comparison the corresponding áAÛÎá F ³mÅ�ßVÛï³�Å�ß standard
form representation as shown in the left illustration of Figure 6.2. Obviously, the non-standard
form is vastly sparser.

We conclude that both operator representations have their advantages as
well as disadvantages and it is not to say that one of the both is preferrable in
general. Even the faster execution of the non-standard form might be valueless
when the data size is not too large and an extra back-transformation into the
wavelet domain is necessary for further purposes. On the other hand, the more
compact representation of the standard form might become problematical even
for smaller data sizes if one is interested in efficient inversions. In practice,
the decision between the both approaches should depend on a balancing of the
different requirements.

6.4. Related Work
Not only differential and affine operators as presented in the first parts of this

chapter possess sparse and diagonally dominant representations in the wavelet
domain. This is in fact true for a much wider class of operators, which are
contained in the classical algebra of operators of

� ���������²4� ��7T:�ü�; � =)�)� type
[36] [37] as well as for so-called pseudo-differential operators. The investi-
gation of the properties of such operators and their description in the wavelet
domain requires several deeper results from harmonic analysis and lies beyond
the purposes of this thesis. The interested reader will find lots of material in
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the books of .V��ü��*� and
��� !$ã � ��� [157] [159] as well as in the lecture notes

[118]. However, to give the reader an idea about the magnitude of the class of
operators that have sparse and simple representations in wavelet coordinates,
we quote the following result.v ')� � ��� � û�F�" Given a scaling function

á Z �u�\ and an associated set of ¾ ��¾$é Ì
wavelets

ä � Z �u�\ having at least ¨ vanishing moments and an operator T with
transformation kernel

³ Z �u�w �/ \ such that¾ ³ Z �u�w �/ \è¾ % � �¾ �u�é �/ ¾ and¾D ¬Y -J ³ Z �u)w �/ \è¾�À ¾D ¬à -J ³ Z �u)w �/ \è¾ % � ¬­¾ �u�é �/ ¾ � Û ¼ ¬­ ¼ `
Under the additional condition, that either T is uniformly bounded or satisfies
(at least) the weak cancellation property''' 6 Ý4��Ý ³ Z �u�w �/ \ B �u B �/ ''' % �NÂ vol Z1[]\
for all Q-adic subsets [ Ú h�i , the following estimate holds true¼ ÿ&¼ = �ü � M � ¼ ÿ¤¼ = �ü� M � '' � n { � { �¬º { ¬ J '' % � 'Ì À3¾ �³ é �RT¾ ' Û � ` (6.24)

Hereby, the � n { � { �¬º { ¬ J are the connection coefficients describing the operator in the
wavelet domain, in particular� n { � { �¬º { ¬ J � 6"7 ± 6�7 ± ³ Z �u)w �/ \�Â ä � n { ¬º Z �u�\�Â ä � n { ¬ J Z �/ \ B �u B �/ `
Of course, the estimate (6.24) allows one to drop all those coefficients � n { � { �¬º { ¬ Jbelow a significance threshold , and thus yields a sparse non-standard repre-
sentation of T in the wavelet domain. In this sense, Theorem 6.9 gives indeed a
characterization of all those operators having an efficient description via wavelet
transformations.

The proof of Theorem 6.9 is found in [20] for the 1D case. Since its k -
dimensional generalization is straightforward, it is omitted here. We finally
quote that similar results were also obtained in [219]. ¦ .

Chapter Summary
The actual chapter dealt with the representation of operators in wavelet bases.

Hereby, connection coefficients turned out to be the key concept, since it was
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demonstrated that they yield a discrete finger-banded matrix representation of
the considered operator. We have shown that connection coefficients are always
calculable under a mild condition regarding the involved dilation matrix. Out of
this result, we have exemplarily presented a way to calculate connection coef-
ficients associated to differential operators and have shown their close relation
to other finite difference schemes. A result about the approximation quality for
this type of wavelet-represented operators was also given. Two examples show-
ing the potential of such differentiation schemes followed afterwards. In the
second section, a framework for the representation of affine operators, which
play a prominent role in image analysis, was sketched (the details were left out
due to their similarity with the differential connection coefficients). The chapter
ended by recalling some older results about the different possible wavelet-based
matrix representations of onedimensional operators and the (straightforward)
generalization to the higherdimensional situation was also included there.



Chapter ã
REGULARIZATION AND SOLUTION
OF ILL-POSED PROBLEMS

Es lassen sich positive Zahlen ÷ und ä finden, so daÃŸ bei einem etwaigen Zusammen-
stoÃŸ von Erde und Sonne der Mond mindestens den Abstand ÷ von der Erde hat und
dann noch mindestens die Zeit ä braucht, bis auch er vielleicht mit ihr zusammenstÃ¶ÃŸt.
Dieses Ergebnis wird uns dabei helfen, zuversichtlich in die Zukunft zu schauen

— å���Ñ��+j*�MÛlk"ÚÜÙæÇ½ÚÜÐ&Ù
Ð&� È�Ñ�Ë8çHÌ
This chapter is dedicated to develop efficient wavelet-based methods to solve

various mathematically ill-posed problems. In the first section, we will give
a mathematical formulation of a model problem, that will be fundamental for
all further investigations. Furthermore, the main method we will use in appli-
cations, namely the �Ó���D����<�!1� projection method, will be introduced. The
second part of this chapter is concerned with some considerations about the
numerical realization of solving ill-posed problems. Hereby, the interest is
first put on preconditioning of the equation systems and on time discretization
schemes; afterwards, we will develop a strategy to reduce the dimensional com-
plexity and increase the stability and convergence of the numerical procedure to
solve the original problem. Most of the results in this chapter are well-known to
numerical analysts, but we recall them here for the sake of completeness, for as-
suring that they also work in our generalized setting of multidimensional, matrix
dilation multiresolution analyses and for combining them in a new fashion.

7.1. Problem Statement
In many scientific applications, the problem occurs to recover the initial or

an intermediate state of some system from a set of measured incidents. Mathe-
matically, such a system can be usually formulated by means of (not necessarily
linear) operators of integro-differential type, while the measured incidents as

117
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well as the systems’ intermediate states are modelled as functions of time and/or
space. So, the problem may be written as the search for a function ¶�Z �u�\ that
satisfies

T Z$¶¤\RZ �u�\ � ��Z �u�\ (7.1)

where the operator T and the measurement(s) ��Z �u�\ are assumed to be known.
Sometimes, different types of additional boundary conditions (e.g. of ûÓ��=�7� ����� or CÓ!1��!,%(')����J type) are also to be satisfied. The difficulty that often
occurs is, that there exists no continuous inverse of T and that the measure-
ment(s) are usually polluted by some kind of noise. Therefore, numerical
approximations are needed to establish some regularity and soundness in this
situation. Problems of this kind are usually called inverse problems or ill-posed
problems.1

7.1.1. The Galerkin Method
in the Wavelet Domain

The fundamental idea of the �
�����*��<�!$� method is to project problems like
(7.1) onto local subspaces instead of considering it globally. Hereby, the nested
MRA decomposition of the signal space via the wavelet transform is a very
attractive choice. It is well-known from linear algebra that the orthogonal
projection of a vector

�? onto a subspace Ù is given by taking the inner product
of
�? with the basis elements spanning Ù . In terms of a wavelet decomposition,

this is maintained by the operators P n and U
­n defined in Chapter 5. The wavelet�Ó���D����<�!$� formulation of (7.1) then reads

P n T Z$¶ \RZ �u)\�À ü º ÷ n ÿ = �ü­ÌM � U ­º T Z$¶¤\RZ �u�\?� P nèZ£�(\RZ �u�\)À ü º ÷ n ÿ = �ü­ÌM � U ­º Z£�(\RZ �u�\Ö` (7.2)

Hereby, the wavelet representation P n T of the operator T should follow the
guidelines developed in the previous chapter. This gives a description of the
original problem in terms of local subspaces, but the statement itself remains
global. To test the validity of (7.2) locally, one has to take the inner products
of (7.2) with the local scaling functions

á n { ¬º Z �u�\ and wavelets
ä � n { ¬º Z �u�\ yielding

1In the sense of
& ��'!��(����!' , a problem is called well-posed if a unique solution exists and this solution

depends continuously on the initial data. Otherwise, it is called ill-posed.
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an equation systemè
P n T Z$¶ \RZ �u)\ÕÀÁü º ÷ n ÿ = �ü­ÌM � U ­º T Z$¶¤\RZ �u�\�w á n { ¬º Z �u�\êé �è

P n�Z£��\RZ �u)\ÕÀ ü º ÷ n ÿ = �ü­ M � U ­º Z£�(\RZ �u)\�w á n { ¬º Z �u�\êé (7.3)

with similar equations for all
ä � n { ¬º Z �u�\ . Since the inner products occuring in (7.3)

are nothing else than the connection coefficients associated to the operator T,
the approximate solution to (7.1) in wavelet coordinates can be now found by
solving (7.3) over all considered scales

Æ
and all possible translations

�³
within

the data range [ .

Recalling the results of the previous chapter, for several operators T Z$¶¤\RZ �u)\ ,
system (7.3) becomes a system of (linear) equations given by a matrix T̃, which
is sparse in the wavelet representation. It must be now the goal to compute the�
������� ’s function to the problem (7.1), which is given by the inverse matrix
T̃ = � . Usually, this inverse matrix is a full matrix making the solution an � Z�� Y \
problem where � denotes the data size. But fortunately, the inverse operator
becomes again (essentially) sparse in the wavelet domain (at least if they are of� ���������54� ��7T:�ü�; � =)��� or pseudo-differential type, cf. Theorem 6.9 and see
also [219]) and this fact will give us efficient inversion algorithms.

7.2. Numerical Treatments — Time Discretization Schemes
This section is dedicated to study the numerical behaviour of wavelet-based�Ó���D����<�!$� methods applied to ill-posed problems for time discretized schemes.

In the first paragraph, we will consider preconditioning of the (linear) systems
arising from (7.3). This preconditioning has the goal to reduce the condition
number of the associated matrix T̃ in order to achieve fast convergence rates for
the inversion algorithms. In the second part, we will present the different pos-
sibilities to discretize the associated operators with respect to time evolution,
while the third subsection deals with the efficient implementation via dimen-
sional reduction of the original problem. We point out that we will sometimes
switch between continuous and discrete notation without further justification
for keeping the presentation simpler. The reader, who is more interested in
technical details is referred to the quoted literature to be calmed about these
simplifications.

Usually, the numerical implementation of ill-posed problems is realized via
time discretization schemes, that is, one introduces an evolutionary parameter
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D � ¶�Z �u�w 7½\?� T Z$¶ \RZ �u�w 7�\Õé ��Z �u(\ (7.4)

instead of the problem (7.1); this corresponds to a gradient descent method.
Discretization of the evolutionary derivative D � ¶½Z �u)w 7�\ now gives¶�Z �u�w 7ÿÀ � \Õé ¶�Z �u�w 7½\ � � Â T Z$¶¤\RZ �u�wTÂ8\²é � ÂM��Z �u�\ (7.5)

The time discretization of the right hand side expression T Z$¶ \RZ �u�wTÂ8\ is somewhat
more versatile and shall be briefly categorized in the following. If the operator
T Z$¶¤\ is linear, the straightforward choice for the discretization would be to
decompose T Z$¶ \ into

T Z$¶ \RZ �u�wTÂ8\ � T � Z$¶ \RZ �u�w 7½\*À T YDZ$¶ \RZ �u�w 7LÀ � \�w
which typically leads to classical matrix inversion algorithms like the î���% � X*!
or the �Ó��=�#¤#�7 � �Ö!$����� iteration method (depending on the choices of T � Z$¶ \ and
T Y
Z$¶¤\ ).2 This issue will be discussed in the upcoming paragraph.

7.2.1. Multiscale Preconditioning
of Linear Systems

For the solution of ill-posed problems,
��� X � ����> spaces are the common

choice as a model space, since these are well-suited to give a measure of reg-
ularity for approximate solutions on one hand but are also capable to yield
descriptions for different types of noise (in the measurements). Moreover, as
we shall see now, the wavelet characterization of solutions in

��� X � ���Ö> spaces
will automatically lead to diagonal preconditioners for the associated linear
equation systems.

Given a MRA for the function space L Y
Z1h i \ with regularity < and assuming
there exists some coarsest scale, say

Æ � � Î , any function ¶�Z �u�\ÿ� L Y
Z1h�i�\ may
be written as a linear combination

¶�Z �u�\?� ü¬º [l] ±
° � ¬º Â á � { ¬º Z �u�\ÕÀ ¼ ÿ¤¼ = �ü� M � ü n ÷ � ü¬º [�] ± B n { �¬º Â ä � n { ¬º Z �u�\Ö`

2Of course, the decomposition is not arbitrary. Since the iteration shall converge to a solution of the original
problem (7.1), the splitting of T must fulfill the contraction conditionøø X Id = Ü V T ® Z Q ® V X Id = Ü V T ° Z øøÎë � «
Obviously, the convergence gets faster as this norm decreases.
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Following the characterizing relation (5.17), we directly find

�R¶½Z �u)\�� YW ì° � ¾ ° � { � ¾ Y À ü n ÷ � ¾ det Q ¾ = Y V���V n Â ¼ ÿ&¼ = �ü� M � ü¬º [l] ± ¾ ÿ ¶½Z �u)\�w ä � n { ¬º Z �u�\B�T¾ Y ` (7.6)

for ¾ � ¾ % < . Since the squared inner products between the function ¶½Z �u�\ and
the wavelets correspond to the l Y -norm of the wavelet coefficients, we have the
norm equivalence �R¶�Z �u)\�� YW ì° �¡¾ ° � { � ¾ Y À ��i � Â �B n { ¬º � Yl ° w (7.7)

where
�B n { ¬º denotes the vector of expansion coefficients and i � is a diagonal

matrix with entries ¾ det Q ¾ = �lV n . This fact can be understood in the sense that
the rescaled functions ¾ det Q ¾ �lV n Â ä � n { ¬º Z �u)\ constitute a wavelet frame for the��� X � ����> space W

�Y Z1h�iÕ\ as long as ¾ � ¾ % < .
Recalling now our original problem (7.3), we have to find the solution to a

linear system
T̃ Â �¶ n { ¬º � �� n { ¬º w (7.8)

or its time-discretized variant (7.5), where
�¶ n { ¬º and

�� n { ¬º are the wavelet expansion
coefficient vectors of the unknown ¶�Z �u)\ and the measurement ��Z �u(\ and T̃ is
the matrix representation of the involved operator T. Since the matrix T̃ is
assumed to be rather huge, iterative methods like �Ó��=�#¤#�7 � �Ö!$����� iterations or
(over-)relaxation iteration depending on the discretization chosen in (7.5) and
on the splitting of T̃ are required. Now, it is a well-known fact from numerical
analysis, that the convergence rate of such techniques is highly depending on
the condition number =ÖZ T̃ \ which is given by the absolute value of the quotient
between the largest and the smallest eigenvalue of T̃, or equivalently by=ÖZ T̃ \ � � T̃ �LÂ¨� T̃ = � ��`
Unfortunately, the condition number =ÖZ T̃ \ can be shown to behave (usually)
like =ÖZ T̃ \»í ¾ det Q ¾ = Y V » V��lV n
for a
Æ
-scale matrix representation of T, where the (positive) constant

°
depends

on the kind of operator [56]. This means, that for all

° � Î , the convergence rate
of the iteration decreases exponentially the finer the scale

Æ
is cosen.3 However,

3The reader should take care that this problem is not overcome by taking a scale equal or close to zero since
this gives rather non-sparse matrix representations of the inverse operators. High sparsity for the matrices
requires a finer scale resolution.
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if the operator T behaves as an isometry between the spaces W
�Y and its dual

W = �Y , that is �R¶½Z �u�\�� YW ì° í � T ¶½Z �u�\�� YW Q ì° (7.9)

for all ¶�Z �u�\L� W
�Y , then the matrix i = �� Â T̃ Â®i = �� representing the operator T on

the space W
�Y is uniformly bounded since it acts as an isometry. In other words,=ÖZ�i¿= �� Â T̃ Â8i¿= �� \Cíî�IZ Ì \�w (7.10)

which gives rise to a uniform convergence rate indepently of the chosen scaleÆ
for the preconditioned systemi = �� Â T̃ Â�i = �� Â �� n { ¬º �ïi = �� Â �� n { ¬º w (7.11)

which solves the problem (7.8) in the
��� X � �D��> space of smoothness � .4

Hereby,
�� n { ¬º denotes the

��� X � ����> space representation of
�¶ n { ¬º , which is given

by �� n { ¬º �ïi � Â �¶ n { ¬º `
It remains the task to find the right

��� X � ����> exponent � such that the isometry
condition (7.9) is indeed satisfied. This can be done under application of (B.11)
to the wavelet representation (5.5). Inserting Ô � � �¿} and the (in practice
finite scale) representations of ¶½Z �u�\ and T Z$¶ \RZ �u)\ into (B.11), one directly gets

�R¶½Z �u)\�� YW ì° � ü n [�] ¾ det Q ¾ Y V n V�� Â ü ¬º ¼ ÿ¤¼ = �ü� M � ¾ B n { �¬º ¾ Y
and using the theory of the previous chapter one also obtains

� T Z$¶¤\RZ �u)\�� YW Q ì° � ü n [�] ¾ det Q ¾ = Y V n V�� Â ü � [l] ü ¬º ü ¬ J
¼ ÿ&¼ = �ü� M �
¼ ÿ¤¼ = �ü � M � ¾ B n { �¬º ¾ Y Â8¾ 7 �� Z Æ w �³ w �tw �RT\è¾ Y w

where 7 �� Z£Âvw � Â1wTÂvw � Â1\ denotes the connection coefficients associated to the consid-
ered operator T. Equating these expressions yields

¾ det Q ¾ � V n V�� � ü
˜� [l] ü ¬­

¼ ÿ¤¼ = �ü � M � ¾ 7 �� Z Î w �Î w �̃tw �ª \è¾ Y # Ô �^¡ Ì w�`t`t`½w�¾ ��¾�é Ì ¢�w
(7.12)

4One automatically obtains I�X ¬Y ZG[ W ì° X 7 ± Z and � X ¬Y Z�[ W Q ì° X 7 ± Z . For positive � , this especially means
that we assured that the solution I�X ¬Y Z possesses some regularity, while on the other hand, the measurements� X ¬Y Z are allowed to have negative regularity. Therefore, this setting is even capable to model noise within
the measurements.
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which gives the correct value for � by simple calculations. One should note
here, that due to the symmetry properties of connection coefficients, equation
(7.12) can be solved for all Ô simultaneously. To give an example, it is well-
known that } ª -th order elliptic boundary value problems require � � ª [56].

We conclude that preconditioning is a valuable tool to reduce the computa-
tional amount for calculating the �
������� ’s function for problems of the kind
(7.1); regarding computer vision applications, this is of special interest for lin-
ear and non-linear diffusion processes occuring in scale space representations
(see next chapter). However, the huge operator matrix sizes (for example, an
image of size }�^ ¿ Sú}�^ ¿ requires operator matrices of size ¿ ^�^+© ¿ S ¿ ^�^+© ¿ in
the standard form and of a Ô ©Ma Î S?a Ô ©Ma Î in the non-standard form) might be
prohibitive in certain hardware surroundings and make these methods not the
optimal choice, especially for more intricate problems as they are posed in e.g.
optical flow estimations.

7.2.2. Time Discretization
of (Possibly) Nonlinear Operators

The preconditioning method has lead to convergent iterative inversion algo-
rithms relying on uniformly bounded condition numbers. But we also had to
put up with huge storage requirements and with the fact that this only works
with linear(ized) equation systems. Consequently, we will develop alternatives
to circumvent these drawbacks.

In all of the following considerations, we will assume that the operator
T Z$¶¤\RZ �u)wTÂ8\ is not necessarily linear but has at least a linear factor, that is, we
may rewrite T Z$¶ \RZ �u�wTÂ8\ as

T Z$¶ \RZ �u�wTÂ8\ � N Z$¶ \RZ �u)wTÂ8\�Â L Z$¶ \RZ �u�wTÂ8\�w (7.13)

where L Z$¶¤\RZ �u�wTÂ8\ is a linear operator.5 Time-discretization of the right-hand-
side of the system (7.5) can now be done in explicit, semi-implicit and fully
implicit manner. Since the latter case would lead to a (usually very expensive)
inversion of a nonlinear operator if T Z$¶¤\RZ �u)wTÂ8\ is nonlinear, it is not considered
here. Moreover, it will turn out that even semi-implicit schemes fulfill all the
stability and convergence requirements that are necessary for our applications.
Explicit discretization in (7.5) would lead to an iteration scheme¶�Z �u)w 7LÀ � \ú� O Id À � Â T P Z$¶ \RZ �u)w 7�\²é � Â���Z �u�\�w (7.14)

5We point out that this decomposition must not necessarily be done by such a multiplicative splitting. The
important thing is just the possibility to split off a linear part in order to arrive at a linear system of equations
that describe a time-discretized version of the original process.
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which does not require matrix inversions and might look attractive at a first
glance. But one easily sees, that if � becomes larger, the matrix norm of the op-
erator Z Id À � Â T \RZ$¶¤\ may exceed the radius of convergence given by the critical
value Ì , which leads to unstability in the numerical process. This fact forces
very small iteration steps � , in general leading to rather slow convergence; we
will illustrate this phenomenon in more detail in the next chapter. Anyway, for
the applications we have in mind, we use explicit discretizations only in very
few special situations, our method of choice will be primarily semi-implicit
discretization.

Discretizations of this type rely on the operator decomposition (7.13) by
associating the evaluated step at time 7 to the nonlinear part N Z$¶ \RZ �u)w 7½\ and
the predicition at time 7+À � to the linear part L Z$¶ \RZ �u�w 7�À � \ . Semi-implicit
discretization schemes are (usually) much less sensitive against the size of the
evolution step � , which makes them attractive from the computational point of
view; they are given by

¶�Z �u�w 7ÿÀ � \ú� O Id é � Â N Z$¶ \RZ �u)w 7�\�Â L P = � O ¶�Z �u�w 7�\²é � Â���Z �u�\ P ` (7.15)

The major work to be done is to invert the operator Id é � Â N Z$¶¤\RZ �u�w 7½\�Â L in each
time step. This may seem even more expensive than doing many small explicit
steps, but fortunately, the special sparse structure the operators have in wavelet
coordinates gives rise to very efficient inversion algorithms. One such example
is the preconditioning method demonstrated in the previous subsection, another
even more attractive method will be presented now.

7.2.3. Additive Operator Splitting
Suppose, we are given a scheme as in (7.15). Especially in higher dimen-

sions, the associated operator matrices Id é � Â N Z$¶¤\RZ �u�w 7�\�Â L become pro-
hibitively large in this situation (as mentioned before); moreover, due to the
coercive reordering of a multidimensional data set into a vector, there occur far
off-diagonal elements in the operator matrices, which prevent efficient direct
inversions. For this reason, it would be nice to replace the multidimensional
operator by a sum of (intrinsically) onedimensional operators that describe the
same diffusion process. In other words, a decomposition

O N Z$¶¤\RZ �u)w 7�\�Â L P Z$¶ \RZ �u�wTÂ8\ � ­ü n M � N nèZ$¶Rnè\RZ �u)wTÂ8\ (7.16)
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is desired. Hereby, ¶�nèZ �u�\L�«hIð Ó [ J \ denotes a set of subvectors of the discretized
image data ¶�Z �u�\+�Nh ð ®�V ð °!V�V�V ð ± .6 If an additive operator splitting as in (7.16)
is known, then one may consider the diffusion process

¶½Z �u)w 7�À � \ � Ìª Â ­ü n M � O Id é ª Â � Â N n�Z$¶ynÔ\RZ �u�w 7�\�Â L P = � O ¶ynèZ �u)w 7�\+é � Â¤�DnèZ �u�\ P
(7.17)

instead of (7.15). It can be shown under usage of a
v ��ü�� � � series, that the

schemes (7.15) and (7.17) have the same approximation order in the spatial
and the evolutionary variable [236] [237] [176]. This means that both schemes
are well-suited approximations of the original problem (7.1). But while (7.15)
requires the inversion of a matrix of size Z�� � Â��GYÿÂtÂtÂ�� i \;S]Z�� � Â��GYLÂtÂtÂ�� i \
containing far off-diagonal elements in each step, the additive operator split-
ting scheme only requires the inversion of ª narrowbanded matrices of the size� n X ­ Z S?� n X ­ Z , this can be done very efficiently, even in linear time. (Usually,
the value � n X ­ Z is equal to �
n , but for onedimensional discretizations along
certain diagonals, the data vector is shortened due to the rectangular strucuture
of the discretion grid giving � n X ­ Z % �Ón , see also the example below.)

Ey()� ��P �D��c�� For a better understanding, we will illustrate the additive split-
ting in a 2D example with a © S © operator mask now. Assume therefore, that
the discretized operator stencil at the grid point ¨ �tw Æ © shall be given by

N � { n � TUUUUV
k � = � { n = � k � { n = � k � Û � { n = �k � = � { n k � { n k � Û � { nk � = � { n�Û � k � { n�Û � k � Û � { n�Û �

WYXXXXZ
and zeros elsewhere. This representation may be split into the sum

N � { n � ñ e h nKgkj ½�nKg ò òò e h j ½ó òò ò e h fKg j ½�fKg�ô Àõñ ò ò e h fKgkj ½�nKgò e h j ½ó òe h nKgkj ½�f«g ò ò ôÀ ñ ò e h j ½�nKgïòò e h j ½ó òò e h j ½�fKgïò ô À ñ ò ò òe h nKgkj ½ e h j ½ó e h fKgkj ½ò ò ò ô
6In multigrid algorithms, multiplicative splittings of operators also play an important role. However, since
the associated matrices do not commute in general, these are not invariant under affine transformations
and are thus less suited in image processing. Consequently, we will restrict ourselves to additive operator
splittings in this work.
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which are intrinsically onedimensional operators acting on the horizontal, ver-
tical and diagonal parts of the data structure. These are represented by a sum of
tridiagonal matrices multiplied by subvectors ¶-n of the data matrix ¶ in terms of
(7.17) and give rise to the announced simplified inversion. In order to gain even
more computational efficiency, the single operators may be inverted in parallel
supposed a corresponding hardware is available. Similar operator splittings
are also possible for larger stencils in a straightforward manner giving nar-
rowbanded onedimensional operators; some care has to be taken on diagonals
of degree Ó ^� ³ Âc� í ~ with

³ �§Ç , since these give shorter stencils and shorter
data subvectors ¶Tn .

One directly notes that additive operator splitting is only suited for single-
scale represented operators, since it relies on nearly diagonal operators. For
a multiscale representation, one obtains far off-diagonal elements correspond-
ing to scale interactions (standard form) or to lowpass-highpass and highpass-
highpass interactions (both forms). This makes additive operator splitting as it
is defined above unsuited on wavelet representations. Consequently, our next
goal is to combine the computational power of additive operator schemes with
that of the wavelet framework. To do this, we will substitute the linear prediction
part L Z$¶ \RZ �u�w 7�\ in (7.17) by a prediction and an updating part yielding

L Z$¶ \RZ �u�wTÂ8\ � L � Z$¶ \RZ �u�w 7½\²À L Y
Z$¶ \RZ �u�w 7OÀ � \Ö` (7.18)

Application of additive operator splitting then gives the iterative scheme

¶½Z �u)w 7ÿÀ � \ú� Ìª Â ­ü n M � O Id é ª Â � Â N nèZ$¶ynÁ\RZ �u)w 7�\�Â L Y P = � Â, O Id é � Â N Z$¶¤\RZ �u�w 7�\�Â L � P Z$¶RnÁ\RZ �u�w 7½\Õé � Â���n�Z �u�\ . ` (7.19)

Recalling the standard and non-standard representations (6.21) and (6.22), we
may use (7.18) to split the wavelet form of the operator L Z$¶ \ into a near-diagonal
and a far off-diagonal part. For the standard form, one chooses

L � Z$¶¤\Ë� nü � M � nüº M � { º pM �
¼ ÿ¤¼ = �ü­ÌM �
¼ ÿ&¼ = �ü� M � U� º LU

­� Z$¶ \ and

L YDZ$¶¤\Ë� P n LP n�Z$¶ \²À nü � M �
¼ ÿ&¼ = �ü­ÌM �
¼ ÿ¤¼ = �ü� M � U� � LU

­� Z$¶¤\Ö`
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For the non-standard form, the choices

L � Z$¶ \ � nü � M �
¼ ÿ¤¼ = �ü� M � , U� � LP � Z$¶ \²À P � LU� � Z$¶¤\ . and

L YDZ$¶ \ � P n LP nÁZ$¶ \²À nü � M �
¼ ÿ¤¼ = �ü­ÌM �
¼ ÿ&¼ = �ü� M � U� � LU

­� Z$¶ \
are appropiate. Hereby, we used the notation of Chapter 6. With this decompo-
sitions, the extended additive operator splitting iteration scheme (7.19) can be
applied directly in wavelet coordinates in both representation forms. Anyway,
under usage of regularized nonlinear scale space embeddings, an even more
efficient wavelet based approximative variant of the additive operator splitting
method can be found. This extension will be developed in the following chapter.

7.3. Related Work
The idea of using wavelets to solve operator equations goes back to the funda-

mental paper [20], much work in this direction has also been done by
2 !$�����*�Oþø �����
# and :�' � = (see e.g. [188]). Preconditioning of the corresponding

equation systems in the wavelet domain originates in the work of C4��' � �*� andHI=)� � J�' [130] [57], similar ideas to these are shared by multigrid methods,
another efficient tool for inversion of large (sparse) matrices [103].

The additive operator splitting is a result of optimizing the performance of
nonlinear diffusion processes in image processing, it is mainly due to

ø �Ö!,%(<)7����J [237] [236]. The contribution of this work consists in taking a more unified
view by combining the advantages of wavelet representations of operators with
the idea of operator splitting to solve ill-posed problems.

Chapter Summary
This short chapter gave an introduction to the solution of inverse problems

with wavelet methods. The basic idea was to consider the given original problem
not globally but only on the local wavelet spaces by the so-called �
��������<�!1�
projection. This method turned out to have a close connection with the operator
representations introduced earlier in this thesis and has led us to the problem
of efficient inversions. Afterwards, we have shown the possibility of precondi-
tioning the given linear(ized) systems leading to smaller condition numbers and
thus to faster iterative algorithms. Another possibility we have investigated was
the additive operator splitting method that made use of a dimensional decom-
position of the originally multidimensional operator into a sum of intrinsically
onedimensional operators. By changing the order of summing and inverting
(which is only approximately true), the whole procedure became a linear time
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inversion algorithm. At the end of this chapter, we have sketched a possibil-
ity to combine the advantages of additive operator splitting with the wavelet
framework.



III

MULTIDIMENSIONAL WAVELETS
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Chapter ö
LINEAR AND NONLINEAR SCALE SPACES

It is sometimes said that the great discovery of the nineteenth century was that the equations
of nature are linear, and the great discovery of the twentieth century is that they are not.

— t�à��������Lm0��÷Îø�DÑ�ÒMÐ&Ñ [125]

It is an inherent property of any real-world object that it is a meaningful entity
only over a finite range of resolution levels. This physical fact does directly
carry over to objects in images, it builds the fundamental idea of the scale space
concept: The pysical observation of an image requires the usage of a measuring
device (typically a camera) with a certain (usually adjustable) aperture. In this
situation, one is confronted with the tradeoff problem that if one is interested
in focussing on small details, the aperture must be chosen accordingly narrow
which means that less of the whole image will be registered. On the other
hand, the usage of a larger aperture receives bigger parts of the whole image
but comes along with the drawback of coarsening the details. Generally, the
observer has no a priori knowledge about the right choice of scale to make a
desired observation. Consequently, one should embed the original image into a
one-parameter family of images representing the original one on various scales.
Under certain axiomatic conditions which will be discussed in the following,
such a one-parameter family is called a scale space representation of an image.

This chapter is organized as follows. In the first section, we will introduce
the axiomatic setting leading to linear scale space representations. We will
introduce the heat conduction equation as a basic model for scale space theories.
Afterwards, some of the axioms are slightly weakened leading to linear wavelet
scale spaces, which have a specially simple structure. The second part of this
chapter is dedicated to nonlinear scale spaces. In particular, we will discuss
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the �²�*� � ����7R.0����!1< approach and a more differential geometric point of view
leading to anisotropic diffusion processes. Again, a particular simple definition
of nonlinear scale spaces can be found by wavelet thresholding the image data
with respect to ���*# � > norms.

8.1. Linear Scale Spaces
As stated in the introduction of this chapter, the scale space representation

shall be an embedding of the original image into a whole family of images
containing rescaled versions of the input. Hereby, the increasing of scale has to
be interpreted as a simplification of the original image by removing disturbing
or unnecessary details. But on the other hand, one should also assure that this
process does not create new structures, which obviously contradicts the pysical
aspect of the model and would additionally not be desirable in any kind of
simplification. We give the following definition.C
��ã
!1��!$J�! � � ��FèyÕzèKL!1�)�Ö���V#¤%������ # P �)%(�úù×y��²��û } Let ¶½Z �u�\ with

�u0�0h i be
a given image and ¡ ò � Z �u)\@'' 7;� Î ¢ a one-parameter family of images such that
ò
� Z �u�\�� ¶�Z �u)\ . Then,

ò � Z �u�\ is called a scale space representation of the image¶½Z �u�\ if the following conditions are satisfied.

i.) The semi-group propertyò � Û � Z£Â8\Ó� ò � Z£Â8\ C ò � Z£Â8\ <�w 74�§h Ñ � `
ii.) The symmetry propertyò � Z �u�\G� ò � Z�� i Z �u�\è\ # 7;� Î w �u«�«h i w

if � i Z �u�\ is any sign or component permutation of
�u .

iii.) The continuity requirement

lim� ë � � ò � Z �u�\*é0¶�Z �u�\��«� Î `
iv.) The nonenhancement properties

D � ò � ¬ Z �u�\ % Î
if

ò � ¬ Z �u�\ is a local maximum and
D � ò � ® Z �u�\ � Î

if

ò � ® Z �u�\ is a local minimum.

This last condition guarantees that indeed no new structures are created as the
scale parameter 7 increases.

Remark. The notion of scale space was originally introduced to the computer
vision community in the fundamental works [244] and [124]. However, there
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exist various differing axiomatics to define linear scale space, see e.g. [236]
for an overview. All definitions lead to the same fundamental solution, namely
a normalized �Ó��=�#&# ian function of standard deviation | }57 which is easily
derived. In other words, the convolutionò � Z �u�\ � 6 7 ± ¶�Z �/ \)Â � � Z �u¯é �/ \ B �/ (8.1)

with � � Z �u�\ � Ì}�Â��úÂH7 Y ÂG� = � -T � °° § ü °
defines the linear scale space representation of ¶�Z �u�\ . This solution motivates the
commonly used term �Ó��=�#¤# ian scale space for a linear scale space. It is evident
that equation (8.1) describes a smoothing process, moreover

ò � Z �u)\O� � º Z1h i \holds true for all 7:� Î .
8.1.1. The Heat Conduction Equation

and Gaussian Scale Space
From a physical point of view, an image smoothing process may be viewed

as diffusion of the energy distribution within a closed system over a period of
time. Such a diffusion process obeys the heat conduction equation

D � ò � Z �u�\ � div ¬Y O ��Z �u�\�Â8ý ¬Y ò � Z �u)\ P w (8.2)

where the function ��Z �u�\ describes the specific heat conductory at a point
�u .

Choosing homogeneous diffusion over the whole image range, that is ��Z �uO\b� Ì ,
equation (8.2) reduces to the homogeneous heat conduction equation

D � ò � Z �u)\ú�Áþ ¬Y ò � Z �u�\Ö` (8.3)

It is a well-known result from the theory of PDEs that the problem (8.3) together
with the boundary condition ò

� Z �u�\ � ¶½Z �u)\
posesses (up to a scaling) the unique fundamental solution given by (8.1), pro-
vided ¶�Z �u�\ satisfies a moderate asymptotic condition. The physical interpreta-
tion of the result is as follows: It is formulated in the first fundamental theorem
of thermodynamics that the energy within a closed system remains constant over
time, which is reflected by the fact that the fundamental solution is normalized.
The second fundamental theorem of thermodynamics postulates non-reduction
of entropy in any heat distributing process. This can be seen in parallel to the
nonenhancement-of-structure property in the definition of linear scale space.
Finally, the third fundamental theorem of thermodynamics, the ûÓ������#-J the-
orem, says that any heat diffusion process runs into a constant steady state.
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Indeed, one easily verifies the identity lim � ë º
ò � Z �u)\ú� const.�Ó��=�#&# ian smoothing is applied in many situations in image processing. For

example, the commutativity with derivative operators

D ¬­ ¬Y Z � � C ¶ \RZ �u�\?� O D ¬­ ¬Y Z � � \RZ �u�\ P C ¶�Z �u�\ w �ª �§´ i � w
makes the (usually) ill-posed differentiation of images well-posed in the scale
space embedding, since the convolution function

� � Z �u)\ is a � º -function. This
means that substituting derivatives by these �Ó��=�#&# ian derivatives causes strong
regularization. We will see in the next section, how this property will be utilized
to turn ill-posed nonlinear scale space characterizations into well-posed ones.
Other applications of �Ó��=�#&# ian smoothing in image processing are e.g. edge
detection via KL� P ����% ians of �Ó��=�#¤# ians (also known as the .0�����(7�WG!$�������*J('
operator [152]), multiscale segmentation or the problem of finding the relevant
scales by entropy analysis [211]. These issues shall not be discussed here in
further detail.

We close this paragraph by some remarks concerning the numerical imple-
mentation of �Ó��=�#&# ian smoothing. There are two main possibilities. Follow-
ing [138] one uses a discretized version of the convolution in (8.1). Hereby, the
(principally infinite) �Ó��=�#¤# ian filter has to be approximated in a well-suited
way; several suggestions how this can be done are found in the monograph
[138]. Since the calculation of a discrete convolution requires �IZ8kQ\ critical op-
erations, this method gives a linear time approximation of �
��=�#¤# ian smoothing.
The second possibility consists in a time-discretization of the operator equa-
tion (8.3). This can be implemented efficiently using e.g. finite differences
or wavelet representations of operators and optimized under usage of additive
operator splittings also leading to a linear time algorithm [237]. Consequently,
the kind of implementation is merely a question of taste.

8.1.2. Linear Wavelet Scale Space
We have seen that the scale space axiomatic given by Definition 8.1 leads to

the �
��=�#&# ian as the unique solution. Since the convolution of a signal (image)
with a �
��=�#&# ian corresponds to a lowpass filtering, one may ask whether a
larger class of lowpass convolution filters is accessible if certain requirements
of Definition 8.1 are relaxed without destroying the physical interpretation given
above in terms of homogeneous heat distribution. Clearly, the symmetry prop-
erty and the nonenhancement requirement are necessary to stay consistent with
the physical model and shall be kept. But since digital images are discrete
entities, it is not a model violation to reduce the semi-group property to dis-
crete multiscale parameters. In other words, the semi-group requirement i.) in
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Definition 8.1 may be replaced by a discrete multiscale propertyò � Z£Â8\ � ¶�Z£Â8\ C á Z Q �tÂ8\�w <¯� ´ �
with a scaling matrix Q, a discrete scaling parameter < and a suited smoothing
function

á Z£Â8\ (see Lemma 8.2 below).
In this situation, the continuity requirement iii.) can obviously be completely

dropped. Under this relaxation, it is easy to show the following result.KL� ��� ��c!��F w Suppose ¨ � ¬º © ¬º [l] ± is a symmetric, nonnegative and unimodal
lowpass scaling filter with an associated scaling matrix Q and a scaling functioná Z �u�\ . Assume further that the considered image ¶½Z �uL\ lies in some approximation
space of the related MRA, say ¶G��Ù � (without loss of generality).1 Recalling
the definition of the projection operator P nÁZ$¶ \ in Chapter 5, the assignmentò n�Z �u�\ � P � O P nèZ$¶¤\ P Z �u�\Lw Æ �«´ � w (8.4)

induces a discrete linear wavelet scale space in the relaxed sense.2

Remark. A certain special case of this definition is the scale space derived
from B-splines as developed in [230]. Due to the discrete character of the scaling
parameter

Æ
, we can not give a direct formulation of linear wavelet scale space in

terms of a PDE. However, since it stems from a symmetric, nonnegative filter,
a linear wavelet scale space may be interpreted as a discrete approximation of av !1<�' � � � > regularization process [220] if a reaction term like O ò � Z �u)\Té ¶½Z �u)\ Pwould be added. The class of

v !1<�' � � � > regularization processes is physically
described by elliptic even PDEs of the type

D � ò � Z �u�\?� O ò � Z �u�\�é0¶�Z �u�\ P À ü¬º [Uy ± Ó ¬º Â�O D ¬º ¬Y
ò � Z �u)\ P Y w Ó ¬º � Î `

Proof of Lemma 8.2. The requirements for symmetry, nonnegativity and
unimodality are well-known to be coercive for all scale space representations
[236], they are necessary to guarantee nonenhancement of structures and sta-
bility. Together with the fact that the wavelet transform perserves the energy
norm of a signal, this gives sufficiency to assure nonenhancement and stability.
The new multiscale property i’.) is satisfied by construction which concludes

1From the continuous point of view, this is a restrictive condition. However, since one usually deals with
discrete images, the embedding I [ ì ¬ is quite natural, see also the approximation results in Chpater 5.
2The backprojection P ¬ into the space

ì ¬ guarantees that all ÿ Ó X ¬Y Z are of the same size in the case of discrete
data. If this backprojection would not be done, one ends up with a lowpass pyramid representation as it
was proposed by

E  ��c
 in [28]. This multiscale embedding has the drawback of reducing the information
content with increasing scale n .
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the proof. ¦ .

It is clear that if
á Z �u�\È�«� � holds, the same is true for all

ò nèZ �u�\ with
Æ � Î .

Consequently, linear wavelet scale space representations may also be utilized
to regularize differentiation supposed the smoothness index < is large enough.
Although the definitions of �Ó��=�#&# ian and linear wavelet scale space seem to
be quite different at a first glance, their results look rather similar in practice,
see Figure 8.1.

Of course, �Ó��=�#&# ian scale space possesses the advantage to be accessible
for every desired scale parameter 7��«h Û , while the linear wavelet scale space
is limited to integer dilations. Nevertheless, its close connection with standard
wavelet representations including efficient implementations of operators and
operator equations makes it an attractive choice anyway.

We shall finally mention that there exist further different approaches to linear
scale spaces by replacing the semi-group property by another scale-oriented re-
quirement. For example, it was recently shown that a linear scale space can be
derived from an inverse wave propagation process via the KO� P �M�)%(� equation
[84]. Due to its inverse character, this construction is difficult to handle numer-
ically, but on the other hand it exhibits some nice parallels to the mathematical
theory of

2 !1��#�ã transforms and
� ��������� 4� ��7T:�ü�; � =)��� operators.

8.2. Nonlinear Scale Space Extensions
Beings low in the scale of nature are more variable than those which are higher.

— å�à��DÑ��yÐ¤�ÿÝ���Ñ�k"ÚÜÒ [59]

The example of Figure 8.1 demonstrated that a linear scale space embedding
smoothens out details with high frequencies from images (as desired). Unfor-
tunately, it also blurred details on larger scales, since the process can not differ
between high frequencies occuring from small scale features and high frequen-
cies belonging to e.g. step edges of larger scale features. Another phenomen
that happens to appear is the dislocation of structures under blurring as it was
demonstrated in [244]. Consequently, an adaption of the smoothing process is
strongly indicated.

8.2.1. The Perona-Malik Approach
The first to overcome the problem of uniform smoothing were �²�*� � ���

and .0���M!$< [180]. They originally proposed to consider the diffusion as an
inhomogeneous heat distribution process by replacing the constant specific heat
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Figure 8.1. Comparison between linear scale spaces. Left. Îÿ���M�Á� ian scale space with scaling
parameter � F álÉ)³GÉÛÄ�É�æ . Right. Linear wavelet scale space with

È F álÉkà�É�³GÉ�Þ . Scaling function
given by cubic box spline with smoothness exponent Ò F ³ . Note how the strong regularization
property compensates the graininess of the photo paper already after one step.

conductory ��Z �u�\ in (8.2) by

��Z �u�\ú�¡��ZÔ¾ ý6¶½Z �u�\è¾ \?� ÌÌ ÀÃ¾ ý6¶½Z �u)\è¾ Y í 6 Y w 6£� Î ` (8.5)
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Since this specific heat conductory is rapidly decreasing with increasing
magnitude of the image gradient, the smoothing effect is reduced the larger
the gradient of the signal becomes (edge preservation). The additional variable6 is introduced to adjust the sensitivity of the diffusion against ¾ ý6¶�Z �u�\è¾ , it is
usually called contrast parameter. The behaviour of nonlinear diffusion under
the conductivity (8.5) has been thoroughly studied, e.g. in [181]. Investigating
the monotony behaviour of the flux functionª ZÔ¾ ý6¶½Z �u)\è¾ \?�¡¾ ý6¶�Z �u)\è¾�Â���ZÔ¾ ý6¶�Z �u�\è¾ \
and introducing gauge coordinates, the heat inhomogeneous conduction equa-
tion (8.2) may be rewritten as

D � ò � Z �u�\ � ª � ZÔ¾ ý ò � Z �u�\è¾ \�Â D Y � ® ò � Z �u�\²À ��ZÔ¾ ý ò � Z �u�\è¾ \�Â�O iü n M Y D Y � Ó
ò � Z �u�\ P w

(8.6)
where the first coordinate � � is determined by the flowlines of

ò � Z �u�\ . It is given
in normalized form by � � � ÿ ý ò � Z �u�\�w �uy�¾ ý ò � Z �u�\è¾ `
The choice of the normal hyperplane, i.e. the span of the generalized isophotes��YDw�`t`t`¤w"� i is determined by the orthogonal complement of the image gradient.3

Considering the course of the �²��� � ����7R.0���M!$< flux in Figure 8.2, it becomes
evident that the �Q��� � ����7R.0����!1< process gives forward diffusion in the normal
hyperplane and for ¾ ýI¶½Z �u)\è¾ % 6 also along the flowlines of maximum variation.
Backward diffusion along flowlines occurs for ¾ ý6¶�Z �u)\è¾­� 6 . Although it is
a nice property in the context of image enhancement, this forward-backward
flow raises theoretical problems, since inverse heat diffusion processes are well-
known to be unconditionally instable [120]. Till today, it is not known, whether
the �²��� � �)��7R.0���M!$< diffusion generally possesses a solution even in a weak
sense and additionally, it can be shown that a solution (assumed one exists)
must not be unique. In the following, we will quote some possibilities how to
regularize nonlinear heat diffusion.

One possibility to regularize nonlinear diffusion is to make another choice for
the conductivity function ��Z£Â8\ such that

ª Z£Â8\ becomes monotonously increasing.
One such example is the regularizer stemming from a convex variational for-
mulation as studied by

� %(')���� ��� [201]. In terms of a specific heat conductory,

3This generalizes the twodimensional representation of the /ï�"��	�����.��Ñ���d��� diffusion as given in [3] to
higher dimensions. Note that this generalization leaves i = Y degrees of freedom in dimensions i larger
than two. These can be reduced by assigning some differential geometric interpretation (curvature, torsion
etc.) to the spanning vectors of the normal hyperplane.
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Figure 8.2. ��Ð¤Ñ¤�DÒ���s ¥��D�yÚY� specific diffusivity ��Æ ¸ Ë , flux �­Æ ¸ Ë and first flux derivative ���3Æ ¸ Ë .
it is defined by

��ZÔ¾ ýI¶½Z �u)\è¾ \?� ê��ë ��ì Ì w ¾ ý6¶�Z �u)\è¾ % 666ÂDZ Ì é ° \*À ° Â�¾ ý6¶�Z �u�\è¾¾ ý6¶½Z �u�\è¾ w ¾ ý6¶�Z �u)\è¾g�_6 (8.7)

with a constant Ì � ° � Î and the contrast parameter 6 � Î . Due to the
convexity of the considered functional, it immediately follows that nonlinear
diffusion with the conductivity (8.7) always possesses a unique global solution.
Its drawbacks are on one hand that the diffusion is not contiuous due to the jump
in the flux derivation

ª � Z£Â8\ as shown in Figure 8.3 and on the other hand, the
positivity of

ª � Z£Â8\ leads to forward diffusion for all image gradients, i.e. over
a long period of time, all edges are removed and one ends up with a constant
steady state.

Another idea might be to stop the diffusion process completely for gradients
beyond the contrast sensitivity. This can be accomplished by cutting off the�²��� � �)��7R.0���M!$< diffusivity, which automatically yields well-posedness re-
sults by standard assertions about maximal monotone operators; similar ideas
were also applied in [91]. However, all these possibilities are not qualified to
enhance edge-like structures in images. This was first achieved by

� ��J�J 4�)þKO! � ��#�þ+. � ����� and
��� ��� in the fundamental paper [39]. The basic idea is

simply to pre-smooth the diffusivity ��Z£Â8\ by a �Ó��=�#¤# ian or any other smooth-
ing kernel in order to obtain solutions in the viscosity sense. This results in the
modified �²�*� � ����7R.0����!1< diffusion

D � ò � Z �u)\ú� div ¬Y O ��ZÔ¾ q Z �u�\ C ý ¬Y ò � Z �u)¾ \�Â8ý ¬Y ò � Z �u�\ P ` (8.8)
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Figure 8.3. Ç½ß½àMÒTø��Ñ�Ñ s diffusivity function ��Æ ¸ Ë , flux �CÆ ¸ Ë and first flux derivative ��� Æ ¸ Ë .
As long as the smoothing function

q Z �u�\ yields a minimum degree of regularity,
existence and uniqueness of a solution for the problem (8.8) were derived in [39].
The enhancement capabilities of this pre-smoothed nonlinear diffusion yield
visually impressive regularization results, especially under usage of optimized
wavelet filters, see Figure 8.4.

8.2.2. Anisotropic Diffusion
Nonlinear diffusion as presented in the previous paragraph yields an inho-

mogeneous diffusion over the image range. But the local diffusion in each
image point is only depending on the magnitude of the edge gradient and not on
the direction of the largest variation (or any other significant quantity like e.g.
the local coherence). Such a process can be realized by anisotropic diffusion.
By viewing the considered image as an embedded manifold, one may define
a
2 !$� � ���)� ian metric on this manifold4 to obtain a matrix-valued diffusivity

function taking the local orientation of the image into account, as desired; such a
proceeding has been proposed by several authors, see e.g. [80] [234] [123] [53].

The mathematical description of anisotropic diffusion looks very similar to
that of inhomogeneous diffusion, it is formulated as

D � ò � Z �u�\ � div ¬Y O G ZÔ¾ ý ¬Y ò � Z �u�¾ \è\)Â8ý ¬Y ò � Z �u�\ P ` (8.9)

4One widely used metric applied in this situation is the well-known structure tensor

J M
	 -T ÿ ü V�	 -T ÿ Öü «
Other choices which are more adapted to color image processing and/or higherdimensional feature spaces
are investigated in the work of ��	¤ô"����� and �§�e(¨(���� [121] [122].
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Figure 8.4. Comparison of linear and nonlinear diffusion methods. Upper left. Original image.
Upper right. Linear scale space at scale � F ³ . Lower left. Regularized ��Ð¤Ñ¤�DÒ���s ¥G���yÚY�
diffusion using finite differences. Lower right. Regularized ��Ð¤Ñ¤�DÒ���s ¥��D�yÚY� diffusion using
optimized nonseparable wavelets. Parameters for the two examples in the lower row are the
same, namely � F à and � F àká�á�ámá . Implementation characteristics are discussed in Section
8.3.

The main difference to the isotropic nonlinear situation is that a matrix-valued
diffusivity G ZÔ¾ ý ¬Y ò � Z �u�¾ \è\ stemming from the induced

2 !1� � ���)� ian metric is
utilized. To give a physical interpretation, this gives a heat diffusion over the
surface of the considered manifold; this allows to steer the image diffusion
process with respect to local image structures as it was realized by

ø �Ö!$%(<�����J
yielding edge-enhancing and coherence-enhancing anisotropic diffusion [236].
By adapting the techniques of [39],

ø �Ö!$%(<�����J could show that anisotropic
diffusion processes like these can be formulated in a well-posed manner if a
pre-smoothing as in (8.8) is applied to (8.9).
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While anisotropic diffusion is a theoretical step ahead, its practical value
depends on the application one has in mind. Regarding e.g. the problem of
edge-enhancing (or edge-recovering), anisotropic diffusion leads to a better
noise reduction along edges due to its directed diffusion, but on the other hand,
more complicated image structures like corners also get diffused (and thus
rounded) by this process. Such structures are better recovered by inhomoge-
neous nonlinear diffusion since only the absolute value of the image gradient is
taken into account. But the improved structure recovering capabilities of undi-
rected diffusion have to be paid by lower noise reduction performance. Some
results that demonstrate these facts can be seen for example in [236], p. 117,
Figure 5.2 and p. 121, Figure 5.4.

8.2.3. Nonlinear Wavelet Estimation
The PDE based methods for nonlinear scale space embeddings presented

in the previous sections are one possibility for realizing information reduction
in images. In the following, we will describe a more functional analytic al-
ternative depending on the embedding of given images into ���*# � > spaces.���*# � > spaces are especially well-suited to this approach since they have an
information-theoretic interpretation that fits well to the aspect of reduction of
information [14] and are moreover known to exhibit a simple description in
the wavelet framework. This technique has been successfully applied in image
denoising and optimal lossy compression of image data [77] [78] [41]. Given
an image �TZ �u�\�w �u?� [ , the problem is to find a new image

ò Z �u�\ such that the
functional<*Z ò \N� �
�TZ �u)\�é ò Z �u)\�� L ° X Ý Z À 6
Â¨� ò Z �u)\�� S X ÝÌZ w 6Ý� Î (8.10)

attains a global minimum for all possible

ò Z �u�\ contained in the considered
function space S Z1[]\ ´ L YDZ1[]\ . While the first term preserves the closeness to
the original image, the second expression forces the result to belong to the (in
some sense) more regular function space S Z1[]\ . The factor 6 fixes the weight
between both requirements. Suppose now that S Z1[]\ is taken to be some ���*# � >
space, that is

S Z1[]\�� B �� { ÿ Z1[]\Ö`
Choosing wavelet expansions as in (5.13) for �TZ �u�\ (expansion coefficients are
denoted by

° n { �¬º ) and

ò Z �u�\ (coefficients B n { �¬º ), the problem of minimizing (8.10)
comes essentially down to

min
Ä s ün { ¬º { � ¾ ° n { �¬º é B n { �¬º ¾ Y À-6�Â 2 ü n , ü ¬º { � ¾ det Q ¾ n V X � = Y Z Û*n V � V � Â ¾ B n { �¬º ¾ � . ÿ æ � 3 � æ ÿ t w

(8.11)
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where we used the ���*# � > space characterization (B.11) for functions given
by means of a wavelet expansion. For the choice Ô � � (i.e. the generalized��� X � ����> spaces), the scales in (8.11) are completely decoupled leading to the
simple single problems

min
Ä , ¾ ° n { �¬º é B n { �¬º ¾ Y À 6
ÂM¾ det Q ¾ n V X � = Y Z Û*n V � V � ÂM¾ B n { �¬º ¾ � . (8.12)

for each
�³ w Æ w x . This latter expression can always be minimized up to arbi-

trary numerical precision by simple calculus giving the desired approximation
of the original image. Moreover, this minimization is especially simple, since
it only requires the direct comparison of the coefficients

° n { �¬º and B n { �¬º — no
complicated calculations have to be carried out. However, even for a coupled
scale representation, that is for Ô ^�Ú� in (8.11), the minimization problem can
always be solved approximately by algorithms like the classical KL��>��*�)X��*�(;)7.0���(ý�=�������J approach [151].

The question for the best choice of the ���*# � > space parameters naturally
arises in this situation. In [41], it was shown how nonlinear wavelet parameter
estimations like (8.11) can be used to achieve optimal denoising results by
choosing the smoothness parameter < according to the ���*# � > regularity of the
original image [75] and taking Ô �Ú� with Ìtí � � < í }(À Ìtí } . On the other hand,@6#-'���� and

2 =)��!1� have demonstrated the importance of the space BV Z1[]\ of
bounded maximum variation in the context of image restoration [197]. This
space has the nice property to allow jumps to be contained in the image data
— an important feature for recovering edges and textures. Unfortunately, the
space BV Z1[]\ has no simple description in the wavelet domain, which makes
simple estimations like (8.11) unaccessible. But by validity of Lemma B.5, we
may at least approximate BV Z1[]\ by means of ���*# � > spaces:

B �� { � Z1[]\­Ú BV Z1[]\LÚ B �� { º Z1[]\Ö`
While B �� { � Z1[]\ is contained in BV Z1[]\ , it contains only continuous functions,
or in other words, estimation with respect to B �� { � Z1[]\ can never recover edges
or edge-like structures. Anyway, in [93] it is shown that not even the space
BV Z1[]\ is unconditionally suited to represent natural images. Consequently,
we may still apply ���*# � > space approximation and reduce the smoothness
parameter < in order to be able to recover edge-like structures. In Figure 8.5,
some results for wavelet estimation in ���*# � > spaces are compared.

These examples show that nonlinear wavelet estimations give indeed regu-
larized versions of the original images over a range of smoothness scales. If
the smoothness parameter is chosen too small (or even negative) this method is
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Figure 8.5. Results of nonlinear wavelet estimation. Upper left. Original Barbara test image.
Upper right. Wavelet estimated version in the space B

®® K ® Æ � Ë with weighting factor � F ³Há .Lower left. Same in the space B ¬ ® K ® Æ � Ë . Lower right. Estimation in the space B
° ® K ® Æ � Ë — the

decoupled smoothing effect on different scales corresponding to the formulation (8.12) becomes
evident.

no longer capable of removing noise from images,5 but for well chosen < , also
the denoising results are quite satisfying, see Figure 8.6.

We conclude that this nonlinear wavelet scale space is a good candidate for a
simplifying preprocessing step, since it obeys a (steerable) regularizing property
and stays close to the original image simultaneously. But since the underlying
function space characterization can not process special local geometric struc-
ture in contrast to the differential geometrically motivated nonlinear diffusion
methods presented in the previous paragraphs, these latter ones are superior
when it comes to more vision oriented tasks that require the correct recovery
of boundaries or local image structures. Consequently, in the upcoming optical

5Seen from a functional analytical point of view, noise is nothing else but a distribution with negative
regularity index. Consequently, it cannot be eliminated if the smoothness index � is of the same low order.
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Figure 8.6. Results of nonlinear wavelet denoising. Left. Original image. Middle. Noisy
version. Right. Result of nonlinear wavelet estimation. Upper row. Denoising in B

®® K ® Æ ��Ë ,� F ÞHá , PSNR F Þ�³vä ³mÄ . Lower row. Denoising in B ¬ ® K ® Æ � Ë , � F Þ�á , PSNR F ³ ã ä Þ�æ . Note
the remaining of noise in the case where Ò is chosen too small.

flow calculations, we will apply nonlinear wavelet estimation as a preprocessing
and postprocessing step and use nonlinear diffusion methods to regularize the
results during the flow calculations itself. To close this section, we just mention
a different wavelet-based technique for nonlinear regularization, namely the
multiscale edge reconstruction proposed in [149]. The key idea is to keep only
those edges which persist over a fixed number of scales in the wavelet domain
and to remove all other ones; similarly to the methods presented above, cartoon-
like versions of the images are obtained as a result of such a process. But this
methos requires a bigger computational amount than nonlinear estimation in���*# � > spaces and is thus not used in our implementations.

8.3. Implementation of Nonlinear Diffusion
It was shown above that nonlinear diffusion processes can be realized in a

very efficient manner under application of the additive operator splitting method.
Typically, this is implemented using finite difference (or finite element) meth-
ods leading to the problem of solving

³ Â¤k � Â kLY tridiagonal systems of size



146 Chapter 8. Linear and Nonlinear Scale Spacesk � SÕk � or of size kÿY�S�kLY respectively instead of one huge Z8k � Â kLY�\KS
Z8k � Â kLYD\ -
system having far off-diagonal entries [237]. The purpose of this section is to
explain how the wavelet framework together with the linear wavelet scale space
can be employed to decrease the computational amount required for nonlinear
diffusion further.

Recalling (8.8), nonlinear diffusion was regularized by a pre-smoothing of
the image gradient in order to obtain a sufficiently smooth diffusivity that keeps
the process stable. Now, our idea is the following: by a semi-implicit dis-
cretization scheme, we may decompose the whole process into the predict part
which shall be given by the smoothend gradient diffusivity and the update part
given by the original image gradient, cf. (7.15). Since the linear wavelet scale
space embedding introduces regularization of the original data, it is well-suited
for the required pre-smoothing of the diffusivity. This embedding can also be
viewed as a projection of the original diffusivity onto some scale

Æ
followed by

backprojection to the scale
Î
. If we could at least approximately commute the

order of backprojection and application of the diffusivity function ��Z£Â8\ , it would
be possible to calculate the inverse operator for the predict part according to
(7.19) on the

Æ
-th scale instead of on scale

Î
. Since the data on the

Æ
-th scale is by

a factor of ¾ det Q ¾ n smaller than the original data, this would lead to inversions
of correspondingly smaller equation systems and improve the processing speed
by another order of magnitude. The working way of this idea is visualized in
Figure 8.7

Now, we will show that there is indeed a suited approximation to do the work
on a scale

Æ
instead of the scale

Î
. To demonstrate this, the wavelet coefficients

with respect to the space Ù � for a given function ¶ may be denoted by ¶ � ¬º . Then,
by (4.2) and (5.14), the expansion coefficients on some coarser scale

Æ
satisfy

the estimation ¶ � ¬º } ¾ det Q ¾ = n æÁY Â-¶ n
Q Q,Ó V ¬º `

Hereby, the approximation quality may be measured in terms of the local regu-
larity of the image data, since the coefficients on the higher scales are obtained
via averaging those on the lower scales and the variation of neighbouring wavelet
coefficients is indeed a regularity measure for functions [75]. Moreover, a num-
ber of vanishing moments also guarantees approximation of polynomial order.
Anyway, the estimate above motivates us to use the approximation

P � Ø P n�Z£��Z$¶�Z �u�\è\è\~} ¾ det Q ¾ n æÁY Â P � Z£��ZÔ¾ det Q ¾ = n æÁY Â P n�Z$¶¤\RZ �u)\è\è\ (8.13)

instead of the correct smoothed diffusivity in nonlinear diffusion and conse-
quently, the inversion to obtain the predict part is done on scale

Æ
.
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Figure 8.7. Schematic illustration of wavelet-based additive operator splitting and its reduced
complexity. The expression Æ Id H N Æ�°�Ë�� L Ë Q ® ¸ ° (see 7.15) is sketched for various formula-
tions. The formulation in the first two rows is equivalent for orthogonal or tight frame wavelet
transforms.6 The third row describes the regularized approximation within the linear wavelet
scale space by means of (8.8) and (8.13). The inversion in the third row is obviously simpler
than in the first two.

The reader should be warned that the choice of scale on which one approxi-
mates is of cruical significance — a too large chosen scale may totally distort
the original image, while a too small chosen scale would keep undesired arte-
facts like noise. On the other hand, the same may also happen if one applies the
classical linear scale space using a �Ó��=�#¤# ian of unsuited standard deviation.
In [242], the dependence between the scale parameter and the evolution time
for the regularized �Q��� � ����7R.0����!1< diffusion process have been investigated,
leading to the conclusion that the scale parameter should decrease with increas-

5This can be seen as follows:

P ¬ X A Q ® V I Z M U V A Q ® V I V U ÖM U V A Q ® V U Ö V U V I V U ÖM U Q Ö V A Q ® V U Q ® V U V I V U ÖM � U V A V U Ö
� Q ® V U V I V U ÖM � P ¬ X A Z � Q ® V P ¬ XÈI Z
where U is the orthogonal transformation matrix of the wavelet transform, A is the matrix representation of
the inner operator on the chosen decomposition scale and I denotes the (image) data.
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ing evolution time. This decreasing of scale reflects the increasing reliability
of the processed image during the temporal evolution. Following the results of
[242], we typically calculate the first few evolution steps on the scale

Æ �s© orÆ �V~ (depending on the size of the original image) and decrease
Æ

subsequently.
So the reduction of computational costs gets smaller with proceeding time, but
the method remains still faster than standard additive operator splitting by all
means.

Chapter Summary
In Chapter 8, we have recalled the classical axiomatics of linear scale spaces

leading to a unique solution, namely the convolution with a �
��=�#&# ian. Then,
we have shown how a slight relaxation of one of the axioms made different
linear scale spaces available. In particular, we have introduced a linear wavelet
scale space that can be derived from any symmetric, unimodal and nonnegative
scaling filter. The similarities and the differences between these two types of
scale spaces were demonstrated afterwards. In order to realize image enhancing
properties, a number of nonlinear scale spaces were investigated in the second
part of this chapter. As in the first section, a wavelet-based generalization of the
original nonlinear scale space concept was introduced. Here, this generalization
was done by an embedding of the original data into certain function spaces of���*# � > type. We have chosen ����# � > spaces for this embedding, since they
have already shown to be well-performing in the context of denoising and due
to their special information-theoretical interpretation. The chapter was closed
by the presentation of a new implementation of nonlinear diffusion making use
of additive operator splitting and also maintaining the special sparsity structure
of the image representation in the new linear wavelet scale space.



Chapter �
OPTICAL FLOW

Everything is in flow.
— �ÿÐ&Ñ½�B�D�yÚÈo

The present chapter deals with the computation of the optical flow occuring
within a given sequence of images. After a short introduction into the topic
of consideration, several basic models for the evaluation of optical flow are
presented and discussed. In the following section, the proposed flow model is
studied in a more detailed way. In particular, its mathematical well-posedness
and its efficient numerical implementation are investigated. Afterwards, some
possible further model extensions covering various practical aspects are inves-
tigated and their mathematical formulation within the proposed framework is
sketched. Section 9.5 mainly deals with several examples. Results for differ-
ent test scenarios are evaluated and compared to other approaches. The actual
chapter is closed by a juxtaposition of the presented methods to other methods
found in the literature.

9.1. Introduction
The reliable computation of the optical flow is one of the fundamental prob-

lems in the processing of image sequences, since it is supposed to give an
approximation to the real image motion. Hereby, image motion is meant to
be the projection of the velocities of the considered subset of the fourdimen-
sional space-time onto a threedimensional image-plane-time fixed by the visual
sensor and the time interval taken into account. In many practical situations,
optical flow turns out to be a quite good approximation of image motion, how-
ever, both notions are not equivalent. While optical flow measures the apparent
visual changes in image sequences, image motion gives the real geometric

149
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transformation field caused by motion within the considered scene.1 However,
since we usually have only the projection of the scene, it is generally impossible
(even with a multi-camera system) to detect image motion, while the optical
flow is accessible from the recorded visual information.

The computation of optical flow is one of the key tasks in computer vision
and finds a wide variety of applications. Examples range from object tracking,
robot navigation and autonomous driving systems to efficient algorithms for
video coding or stereo matching. Since the data to be processed is at least
threedimensional — thus quite huge in general — and most of the abovemen-
tioned (as well as other) applications are usually very time-critical, the need for
fast and reliable algorithms is still the most challenging task for optical flow
calculations. The wavelet framework has proven to be very efficient for many
other image processing tasks (see e.g. the previous chapter) and consequently,
we will develop a suited wavelet-based optical flow framework in this chapter.

9.2. Models for Optical Flow
There are a set of different methods to calculate the optical flow. Before

starting with our considerations, we shall briefly categorize these techniques
with respect to the underlying mathematical concepts to better understand the
technical mechanisms behind.

Maybe the most popular approach to optical flow are differential techniques.
These mainly rely on the computation of the flow field from spatiotemporal
derivatives of the image intensity function (or preprocessed versions of it, see
below) and a geometric model setting the image derivatives and the sought flow
field into some mathematical relation, as it will be done below in (9.2). It is
directly evident that the considered image sequences must be at least differ-
entiable for any differential technique to make sense at all. This is (mostly)
achieved by spatiotemporal presmoothing of the original data. In the most dif-
ferential approaches, additional constraints like regularizing terms and/or local
averaging are applied in order to improve the reliability of the estimations. Due
to the local character of differential methods, a multiscale strategy is useful to
detect fast motions. Influencing works in the area of differential optical flow
are e.g. [114] [165] [24] [233] [86] and [5], some of these will be discussed in

1The most striking example to demonstrate the difference between optical flow and image motion is that of
a rotating, ideally homogeneous sphere. In this situation, there is no optical flow, since the homogeneity of
the sphere does not cause any changes in the visual patterns, but there is indeed motion, namely the assumed
rotation. Contrarily, we may also consider the same sphere now standing still and start to point a light source
onto the sphere. If this light source is moved, there occurs optical flow, since the visual pattern changes. But
this time, we don’t have any real image motion, because the sphere was assumed to stand still. However,
artifical situations like the depicted ones appear rather exceptional in practice.
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Section 9.6 in the context of comparing the results achieved in this work with
those of other researchers.

The second large class of approaches is that of matching algorithms. Hereby,
a similarity measure as e.g. the minimum distance or cross-correlation is ap-
plied to temporal neighbouring image frames in order to find the best fit between
the considered frames. Matching techniques do not suffer from differentiability
issues and are capable to handle fast motions since they are not depending on
the local structure of the images. On the other hand, they are computationally
much more expensive, because the non-locality leads to large (full) equation
systems. Fortunately, application of coarse-to-fine strategies can help to reduce
the computational cost considerably. Matching techniques are not considered
in this work, the interested reader will find more material on the topic in [7]
[209] or [247] and the references therein.

Other techniques to recover the optical flow are energy-based or phase-
based methods. These stem from reformulations of the original problem in the� � =)��!1��� domain involving very different features. Since these approaches
also require very special techniques, a classification would be too lengthy to be
done here. More about such approaches can be found in the survey article [15]
and the literature cited there.

9.2.1. A Differential Flow Model
To start with the derivation of suited models to compute the optical flow,

it is sensible to begin with the simplest possible framework. As an initial
assumption, it is very common to restrict the model by the brightness constancy
constraint. This means to assume that the measured intensity of an image point
remains invariant over time along his motion trajectory in the image sequence
domain. It is formulated by means of��Z �u)Z)7�\�w 7½\N� const ` (9.1)

where �TZ � ÂvwTÂ8\�� L Y
Z1[�S � \ shall denote the image intensity function and the
sets [ Úåh Y , � ÚÍh are the image plane and the considered time interval
respectively. Expanding expression (9.1) into a simple

v ��ü�� � � series directly
yields � ý ¬Y �TZ �u)Z)7�\�w 7�\�w �?]Z �u�w 7�\��IÀ D � Z��R\RZ �u�Z)7½\�w 7�\Ó} Î (9.2)

where the higher order expansion terms are neglected for simplicity and�? Z �u)w 7�\ �   � Z �u�w 7½\�wG>�Z �u)w 7�\ ¥ ¦ �   D � Zvu � \RZ)7�\�w D � ZvuDY
\RZ)7½\ ¥ ¦
is the sought optical flow vector field. Equation (9.2) is the starting point for
many differential approaches to the problem. Unfortunately, there are several



152 Chapter 9. Optical Flow

problems coming along with this optical flow model, which turns out to describe
an ill-posed problem. First, the constraint equation (9.2) is obviously underde-
termined and therefore, it is not possible to compute the whole flow information
out of this equation. To circumvent this, the simplest approach is to apply a
local weighting of the information in order to get more constraints. This usually
leads to an overdetermined system that has to be optimized by least squares or
total least squares methods [233]. However, if the local structure of the con-
sidered image frames is intrinsically onedimensional, even a local weighting
of the visual information remains insufficient to solve (9.2). In this situation,
only the normal part of the flow field is extractable2 — this phenomenon is
well-known as the aperture problem, its occurrence is sketched in Figure 9.1.
The aperture problem cannot be completely overcome, since the motion of a
homogeneous contour is ambiguous [166] [167], but the addition of non-local
constraints is usually very helpful since homogeneous contours in real-world
images do generally not cover the whole image plane but only local parts of it.

� �� �� �? ���t

Figure 9.1. The aperture problem — only the normal part of the velocity vector �� is uniquely
determined.

There are more inadequacies with the model (9.2) than the aperture problem.
The local averaging of the patterns of visual information helped to solve the
aperture problem at least for small local regiuons, but this proceeding comes
along with a blurring effect at motion boundaries caused by the spatial over-
lapping of information. This undesired effect gets even more intensified by
presmoothing the image frames in order to guarantee their differentiability and

2Obviously, the normal share ¬� ± of the flow field targets at the same direction as the image gradient	 -T A X ¬Y�X � Z { � Z and consequently, ¬� ± may be written as¬� ±ØM = øø 	 -T A X ¬YGX � Z { � Z øø Q °L l V D ü"X A3Z X ¬YgX � Z { � Z V�	 -T A X ¬Y�X � Z { � Z
by (9.2) and a simple geometric argument.
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make them just fit into the chosen framework. Furthermore, by assuming (9.1),
we implicitly took the reflectance of the considered scene as well as its illumi-
nation to be constant over the whole time interval

� Údh taken into account.
These are very restrictive assumptions which are by no means maintainable for
typical real world situations and should be weakened by suited modifications
of the optical flow model. This is the point of consideration in the upcoming
paragraphs of this section.

9.2.2. Illumination Changes
In order to form our flow model in such a way that it is capable to deal with

realistic lightning conditions (moving shadows, appearing and disappearing
of light sources, dimming or diffusion of light by clouds, . . . ), the brightness
constancy assumption has to be exchanged by a somewhat more suited a priori
specification. Consequently, one should consider not only geometric informa-
tion as in (9.1), but also radiometric information as sources to compute the
optical flow. The proximate way to model such dynamic illumination is to
decompose the image sequence into the factors of a reflectance part  and a
luminance part 6 as well as an additional offset

°
yielding��Z �u)Z)7�\�w 7½\?�! OZ �u)Z)7�\�w 7½\�Â�6�Z �u)Z)7�\�w 7½\�À ° Z �u�Z)7�\�w 7½\Ö`

Assuming that the reflectance of an image point does not change significantly
along his motion path,  OZ �u�Z)7½\�w 7�\ must satisfy (9.2). Furthermore, it is natural
to postulate that the luminance and the offset vary slowly in space, since light
is in general distributed locally homogeneous. This requirement is formulated
mathematically by ý ¬Y 6 � �Î and ý ¬Y ° � �Î , yielding the modified optical flow
equation <*Z �? wtRTw ° \ � � ý ¬Y ��w �? � À D � Z��y\²é"�)Â
R�é ° } Î w (9.3)

where R abbreviates the logarithmic time derivative R²�ÍZ D � 6�\ í 6 keeping the
notation as simple as possible. This type of reformulation was first proposed
in [174]. From a mathematical point of view, it would be sufficient to use ei-
ther luminance or offset in the model instead of both entities [173], but from
a radiometric point of view, the combined usage of both parameters is more
natural, since they model different aspects of illumination. Multiplicative lu-
minance is usually found in source illumination or at reflecting surfaces, while
additive light occurs in the case of moving shadows or spots. Therefore, usage
of both parameters often leads to better flow estimations and additionally, it
turned out to be numerically stabilizing in our experiments. Anyway, in [19],
an algorithm relying solely on luminance changes was presented and noticably
improved optical flow results for image sequences with brighness changes were
reported there.
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Although the model (9.3) gives a complete mathematical description of all
possible types of illumination changes, it might be generalized further. Such
generalizations are usually targeting at special applications that do not only re-
quire the flow estimations itself but also the calculation of additional parameters
in order to extract certain processes from the observed scene. An example of
such a process is physical oceanography as considered in [108]. There, physi-
cal brightness change models are applied in order to evaluate threedimensional
hydrodynamic undersea transport processes. Anyway, since we are only look-
ing for fast and reliable computation methods for the optical flow and not for
the additional recovery of physical processes, we do not require such general-
ized illumination models and limit ourselves to the mathematically sufficient
relation (9.3).

9.2.3. Nonlinear Regularization
Spatiotemporal presmoothing of the image data and local averaging of the

visual information are important ingredients to obtain sensible solutions for the
optical flow problem. However, as was argued before, these cause a spatial
overlapping of the patterns of information which leads to blurring effects. Such
effects are harmless in regions of relative homogeneity, but in textured areas
and especially at motion boundaries, the smoothing effect is undesired and may
destroy at least parts of important flow information. Namely, for many applica-
tions, it is just the exact recovery of these motion boundaries which is of high
importance.

Recalling the regularization results presented in the previous chapter, the
framework of nonlinear diffusion offers a way to regularize the optical flow
problem in such a way, that (motion) boundaries may be recovered or even
enhanced. This edge-enhancement property compensates the presmoothing of
the data which is necessary to make the differential formulation sensible. In
analogy to the relations (8.2) and (8.5), nonlinear diffusion of the optical flow
field may be achieved by the evolution process

D Ü �� Z �u�w 7�\RZ � \ � div ¬Y O ��ZÔ¾ ý ¬Y �� Z �u)w 7½\RZ � \è¾ Y À3¾ ý ¬Y �>�Z �u�w 7½\RZ � \è¾ Y \�Â8ý ¬Y �� Z �u)w 7½\RZ � \ P
D Ü �>�Z �u�w 7�\RZ � \ � div ¬Y O���ZÔ¾ ý ¬Y �� Z �u)w 7½\RZ � \è¾ Y À3¾ ý ¬Y �>�Z �u�w 7½\RZ � \è¾ Y \�Â8ý ¬Y �>�Z �u�w 7�\RZ � \ P `(9.4)

From a physical point of view, it might be a good idea to apply similar nonlinear
diffusion processes also to the luminance and the illumination offset as well
yielding

D Ü �R�Z �u�w 7�\RZ � \N� div ¬Y O ��ZÔ¾ ý ¬Y � R�Z �u�w 7�\RZ � \è¾ Y \�ÂDý ¬Y � RtZ �u�w 7�\RZ � \ P
D Ü �° Z �u�w 7�\RZ � \N� div ¬Y O ��ZÔ¾ ý ¬Y �° Z �u�w 7�\RZ � \è¾ Y \�ÂUý ¬Y �° Z �u)w 7½\RZ � \ P ` (9.5)
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In addition to these evolutions, one has to assure that the optical flow constraint
(9.3) still holds or reaches at least a minimum value in order to receive credible
flow estimations. This is realized by the simultaneously minimization of the
optical flow energy functional6 Ý <*Z � w3>)wtRTw ° \ Y B �u � min!

where <*Z � w3>)wtRyw ° \ is as defined in (9.3). From calculus we know that a necessary
condition for this functional to attain a minimum value is the fulfillment of the
relations (vanishing of the first variations)

D l�<G� Î D#
<Ó� Î D J <G� Î and D » <G� Î `
Linking these requirements with the evolution processes (9.4) and (9.5) leads
to the coupled diffusion-reaction system� Ü �ÕÓ«Â div O ��ZÔ¾ ý ¬Y � ¾ Y À3¾ ý ¬Y >�¾ Y \�ÂDý ¬Y � Pé$� Y ® Â O � Y ® Â � À%� Y ° Âc>¯À%� � é$��Â
R�é ° P> Ü �ÕÓ«Â div O ��ZÔ¾ ý ¬Y � ¾ Y À3¾ ý ¬Y >�¾ Y \�ÂDý ¬Y > Pé$� Y ° Â O � Y ® Â � À%� Y ° Âc>�À%� � é%�)Â1R�é ° PR Ü � _«Â div O ��ZÔ¾ ý ¬Y RR¾ Y \�Â8ý ¬Y R PÀ"�)Â O � Y ® Â � À%� Y ° Âc>�À%� � é%�)Â1R�é ° P° Ü ���ùÂ div O ��ZÔ¾ ý ¬Y ° ¾ Y \)Â8ý ¬Y ° PÀ"� Y ® Â � À$� Y ° Âc>¯À$� � é&��Â1R�é ° w

(9.6)

where Ó , _ and � are free weighting parameters that allow to steer whether the
process is more flow recovering or more flow (and illumination) regularizing.
These parameters may also be interpreted as KL��;�������;�� multipliers of the
equivalent variational formulation of this problem. Anyway, the best choice of
this parameters is an experimental matter and depends strongly on the type of
image data.

Relations (9.6) are the basic optical flow model we propose for fast and
reliable calculations. Due to the incorporation of multiplicative and additive il-
lumination changes and nonlinear diffusion processes, it gives very good results
for some of the standard test sequences (see also Section 9.5). Nevertheless,
this model is by no means complete in the sense of feasibility of any possible
visual occurence. Consequently, some more involved extensions to (9.6) will
be discussed in an upcoming section. At this stage, we only point out that there
would be two obvious possibilities to extend (9.6) in a straightforward way we
won’t make use of. For the first, this would be the incorporation of anisotropic
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diffusion as defined in Section 8.8.2. We will not use anisotropic diffusion due
to its poorer capabilities to recover corner-like structures in comparison to inho-
mogeneous diffusion. The improved noise-reduction of anisotropic diffusion is
of minor interest for us since we will apply a nonlinear wavelet-based prepro-
cessing in our implementations and thus assume our data to be (more or less)
denoised. The second extension one might directly think of is a full spatiotem-
poral processing of the model (9.6) as it was proposed in [238]. Spatiotemporal
regularization has proven to smoothen out noise and to preserve motion bound-
aries better than pure spatial regularization. However, such a proceeding is not
realistic for typical applications, because the situation that the whole movie is
available at once is a rather exceptional case in practice. Usually, one has only
a few frames disposable at each time step and in this situation, spatiotemporal
processing is not feasible. Therefore, we renounce on this extension possibility
in our investigations.

9.3. Analytical and Numerical
Investigation of the Problem

This section is devoted to the deeper mathematical study of the model (9.6)
from the well-posedness and from the implementational point of view. Exis-
tence and uniqueness results for the optical flow problem under certain regularity
prerequisites are proven in the first paragraph. A thorough discussion of the
efficient wavelet-based implementation of the process (9.6) will be given in the
second paragraph.

9.3.1. Consistency of the Model
This paragraph is dedicated to demonstrate the consistency of the proposed

optical flow model. In particular, we will show existence and uniqueness of the
solution under some regularity assumptions. For the sake of simple notations,
we will denote partial derivatives by the short form

D ¬Y S Z$¶¤\RZ �u)\G� ¶ ¬Y S
and abbreviate the multidimensional

��� X � �D��> spaces by

W
ÿ {eX ­ Z� Z¸g4\Ó� W

ÿ� Z¸g4\rS W
ÿ� Z¸g4\�S ÂtÂtÂ�S W

ÿ� Z¸g4\E FHG I­ times

with gºÚ h�i . Furthermore, let�ÒOt¨ : w ? ©(' W ÿ {eX ­ Z� Z¸g4\ P w ¨ : w ? ©ÃÚ hbe the space of continuous functions in the interval ¨ : w ? © having their range in
W
ÿ {eX ­ Z� Z¸g4\ . With this prerequisites, we can state and prove the main result of

this section.
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� Ú h be a

given image sequence and denote by�< � Z �u�w 7�\G� O � � w3> � wtR � w ° � P ¦ Z �u)w 7�\]� W
Y {eX � ZY Z1[ S � \

any sufficiently smooth initial state. Furthermore, the partial derivatives of
the image sequence with respect to space and time are labelled by � Y S and � �
respectively. Then, the optical flow model given by the system (9.6) possesses
a unique solution�<DZ �u�w 7�\RZ � \
� O � w3>)wtRTw ° P ¦ Z �u)w 7½\RZ � \]� � O ¨ Î wc�µ\�' W

Y {eX � ZY Z1[ S � \ P `
As before, Z � w3>�\ denotes the optical flow field, R is the measured luminance and
°

is the illumination offset of the image sequence.

Remark. One might also prove the existence of weak solutions for (9.6)
under relaxed regularity constraints on �TZ �u)w 7½\�w �< � Z �u�\ if a pre-smoothing of the
diffusivity similar to the nonlinear diffusion approach in [39] is applied. The
interested reader is referred to this article.

Proof. First, we decompose the system (9.6) into a linear part L Z �<�\ and a
nonlinear part N Z �<�\ by means of

L Z �<�\?� é TUUUUUUV
) °T g ) T g ¸ ) T l H ) T g ¸ ) H ) T g) T g ¸ ) T l ) °T l H ) T l ¸ ) H ) T lH ) T g ¸ ) H ) T l ¸ ) ) ° )H ) T g H ) T l ) à

WYXXXXXXZ Â TUUUUUV
* + �,
WYXXXXXZ (9.7)

and

N Z �<�\ � TUUUUUUV
J ¸ div �-��Æ � . -T * � ° K � . -T + � ° Ë ¸ . -T * � H ) T g ¸ ) üJ ¸ div �-�GÆ � . -T * � ° K � . -T + � ° Ë ¸ . -T + �^H ) T l ¸ ) üM ¸ div � �GÆ � . -T � � ° Ë ¸ . -T � � K ) ¸ ) üÚ ¸ div � ��Æ � . -T , � ° Ë ¸ . -T , � K ) ü

WYXXXXXXZ ` (9.8)

Following the C
=)'�� � ��� principle [248], any classical solution to the system
(9.6) is given by O �< P Z � \ � � Ü V L �< � À 6 Ü� � X Ü = � Z V LN O �< P Z � \ B � (9.9)

where � Ü V L denotes the semigroup associated to the infinitesimal generator L.
Since �"� W �Y , L is obviously a negative semi-definite, bounded linear operator
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and the semigroup is analytical in the domain of L, which yields the quasi-
contraction norm estimate )) � Ü V L Z �<M\ )) % � � V � Â¨� Z �<�\��
by a classical result from operator theory, namely the W�!$���D��7Á5 � #t!$��� theorem
[179]. Hereby, the exponent x corresponds to the eigenvalue of L with the
largest real part. For L, this is given by x � Î leading to)) � Ü V L Z �<M\ )) % � Z �<�\���` (9.10)

Additionally, we require a KO! P #&%('�!$J�ã -type estimate for the nonlinear oper-
ator part N Z �<�\ . Taking

��/� W
Y {eX � ZY Z1[ S � \ to be given by��+Z �u)w 7�\G� OØ� X l Z wÔ� X # Z wÔ� X J Z wÔ� X » Z P Z �u�w 7�\�w

considering only the first component of N Z �<�\ and inserting the ����� � ���)7�.0���M!1<
diffusivity function (8.5), we obtain'' N � Z �<M\*é N � Z �<ÿÀ ��"\ ''� Ó«Â ''''' div

2 ÌÌ À_ZÔ¾ ý ¬Y � ¾ Y À3¾ ý ¬Y >�¾ Y \ í 6 Y Â8ý ¬Y � 3 é
div

2 ÌÌ À_ZÔ¾ ý ¬Y Z � À/� X l Z \è¾ Y À3¾ ý ¬Y Z@>GÀù� X # Z \è¾ Y \ í 6 Y ÂUý ¬Y Z � À]� X l Z \ 3 '''''� Ó«Â ''''' div
2 ;�Z�ý ¬Y � w@ý ¬Y >)w@ý ¬Y � X l Z w@ý ¬Y � X # Z \�Â8ý ¬Y Z � À/� X l Z \ 3 é

div
2 ÌÌ À_ZÔ¾ ý ¬Y � ¾ Y À3¾ ý ¬Y >�¾ Y \ í 6 Y Â8ý ¬Y � X l Z 3 '''''

where ;�Z�ý ¬Y � w@ý ¬Y >)w@ý ¬Y � X l Z÷w@ý ¬Y � X # Z \ is the abbreviated form of the difference
function;�Z�ý ¬Y � w@ý ¬Y >)w@ý ¬Y � X l Z w@ý ¬Y � X # Z \� ��O�¾ ý ¬Y � ¾ Y ÀÃ¾ ý ¬Y >�¾ Y P éÃ��O�¾ ý ¬Y Z � À/� X l Z \è¾ Y ÀÃ¾ ý ¬Y Z@>�À/� X # Z \è¾ Y P� 6 Y Â�Oè¾ ý ¬Y Z � Àù� X l Z \è¾ Y À ¾ ý ¬Y Z@>¯À/� X # Z \è¾ Y éÃ¾ ý ¬Y � ¾ Y é3¾ ý ¬Y >�¾ Y POø6 Y À3¾ ý ¬Y � ¾ Y À3¾ ý ¬Y >�¾ Y P ÂDOø6 Y À3¾ ý ¬Y Z � À/� X l Z \è¾ Y ÀÃ¾ ý ¬Y Z@>�À/� X # Z \è¾ Y P `
By simple calculus and some case distinctions, it is now possible to verify the
estimates '' ;�Z�ý ¬Y � w@ý ¬Y >)w@ý ¬Y � X l Z w@ý ¬Y � X # Z \ '' % Ì and'' ;�Z�ý ¬Y � w@ý ¬Y >)w@ý ¬Y � X l Z w@ý ¬Y � X # Z \ '' % ¾ ý ¬Y � X l Z÷¾¾ ý ¬Y � ¾
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for 6Ý� Î , which yields'' N � Z �<M\�é N � Z �<ÈÀ ��È\ '' % Ó«Â ''' div O ˜� Â8ý ¬Y � X l Z P ''' `
Regarding the fact that we have

�< � W YY Z1[>S � \ and that similar estimations
also hold for the second, third and fourth component of N Z �<�\ , we finally end up
with )) N Z �<�\�é N ZèZ �<LÀ ��È\ )) % �NÂ�� ��+� (9.11)

for some suited constant � . This is exactly the announced KL! P #¤%�')!1J§ã -type
estimate for N Z �<�\ .

In the next step, we will show that the solution representing function accord-
ing to (9.9) which is given byä Z �<�\RZ � \ � � Ü V L �< � À 6 Ü� � X Ü = � Z V LN O �< P Z � \ B � (9.12)

has a fixed point and thus a solution by �������)%(' s fixed point theorem. In order
to establish existence, we define the norm� Z �<M\�� S X�/ Z � supÜ Ñ � � Z �<M\��ÿÂ���= / V Ü
which induces a new �������)%(' space S Z@=
\ . Considering the norm of differences
of
ä

in S Z@=
\ yields)) ä Z �<�\�é ä Z �<ÈÀ ��ÿ\ )) S X0/ Z X � « � Y Z� supÜ Ñ � )))) 6 Ü� � X Ü = � Z V L O N Z �<�\�é N Z �<ÈÀ ��ÿ\ P B � )))) Â�� = / V Ü% supÜ Ñ � 6 Ü� ))) � X Ü = � Z V L O N Z �<�\�é N Z �<ÈÀ ��ÿ\ P ))) B � Â�� = / V ÜX � « � � Z% supÜ Ñ � 6 Ü� ))) N Z �<M\�é N Z �<ÈÀ ��È\ ))) B � ÂG��= / V ÜX � « ��� Z% �NÂ supÜ Ñ � 6 Ü� )) �� )) B � ÂG� = / V Ü% �NÂ supÜ Ñ � )) �� )) S X�/ Z Â 6 Ü� ��= / V�� B � ÂG��= / V Ü� � = Â supÜ Ñ � )) �� )) � S X�/ Z ÂDZ Ì é�� = / V Ü \% � = Â supÜ Ñ � )) �� )) � S X�/ Z `
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Choosing =�� � , the functional
ä Z �<M\ becomes a proper contraction on the

space S Z@=
\ . The existence of a fixed point Z �<�\ of
ä Z �<�\ follows directly from�������)%(' s fixed point theorem. Furthermore, the uniqueness of this solution

for given evolutionary boundary conditionsO �< P Z �u)w 7�\RZ Î \�� O �< � P Z �u)w 7½\
is an immediate consequence of �
� � � 9 ���D� s inequality [183] which concludes
the proof. ¦ .

The restriction for the flow field and the illumination parameters to belong
to the spaces W YY Z1[&S � \ might be perceived as a restrictive condition. But
the reader should keep in mind that the solutions to the regularized �Q��� � ���)7.0���M!$< diffusion are also of the same smoothness order as the applied smooth-
ing kernels

q Z �u�\ in (8.8) are. The smoothness restriction on the optical flow
in Theorem 9.1 is exactly of the same quality. Recalling the very satisfying
results of the regularized �²��� � ����7R.0���M!$< process, these restrictions should
not hinder successful flow estimations under usage of the model (9.6).

Several well-posedness results for the computation of the optical flow can
be found in the literature. In particular, the result of Theorem 9.1 looks rather
similar to the existence statements made in [4]. But while the authors of [4]
investigated a regularization constraint depending on the local image gradient
and being linear in the flow variables, we chose a flow-depending nonlinear
regularization term. This makes some estimations more sensitive and finds ex-
pression in the fact that more rigorous regularity requirements are necessary.
Other well-posedness results on a model similar to (9.6) (but not taking illumi-
nation issues in account) are obtained in [238] [202] under usage of a convex
diffusivity function ��Z£Â8\ , which directly guarantees existence and uniquness
of global minimizers. A more technical investigation yielding well-posedness
results in the space BV Z1[]\ of bounded variation was carried out in [9] [10].
While the space of bounded variation is a good candidate for realistic flow
fields, the framework given there is also restricted to convex regularizers and
therefore, no enhancement of motion boundaries can be expected in that case.

9.3.2. Implementation and Numerics
We shall study the characteristics of the model (9.6) under the aspect of its

implementation and numerical behaviour now. At the beginning we are only
given a raw sequence of images �TZ �uLw 7�\�Ú L Y�Z1[úS � \ . Having this, the following
steps are carried out.

1 Pre-processing. First, we have to make sure that we indeed meet the require-
ments of Theorem 9.1. To guarantee this, a nonlinear wavelet estimation
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as described in Paragraph 8.8.2.3 is applied to the image sequence �TZ �u�w 7�\ .
Hereby, we choose the ���*# � > space w��� { � Z1[ S � \ as embedding space.
Since the original data was also in L Y
Z1[ S � \ , we have in fact�TZ �u)w 7�\�Ú W �Y Z1[ S � \
for the pre-processed image sequence, as it is required in Theorem 9.1.

2 Initial guess. Before the evolution iteration can be started, a sufficiently
good initial state

�< � � Z � � w3> � wtR � w ° � \ ¦ has to be calculated. In order to
obtain it, we use the non-regularized model equation (9.3) and apply a local
averaging with least squares optimization to circumvent the apterture prob-
lem. Hereby, the local averaging is maintained by a wavelet- �
��������<�!1�
projection method as described in (7.1)–(7.3).

3 Regularity. By the
��� X � ���Ö> embedding given in Proposition B.1, we

obtain the inclusions

W YY Z1[ S � \§Ú W Y"Û *Y Z1[ S � \§ÚV� � æÁY Z1[ S � \�w , � Î w
since Z1[ S � \§Ú�h � . That is, choosing a finite wavelet approximation as in
(5.13) with a representing wavelet frame of W �� �D����� smoothness < � Ìtí }
(cf. Theorem 4.6 and Proposition 4.15), one is assured that�< � Z �u)w 7½\G� O � � w3> � wtR � w ° � P ¦ Z �u�w 7�\ù� W

Y {eX � ZY Z1[ S � \
holds true for the initial guess, as desired.

4 Partial derivatives. Under usage of optimized connection coefficients for
differentiation (e.g. as in Example 7 of Chapter 6), the partial derivatives� Y ® , � Y ° and � � are computed.

5 Discretization. In the next step, we have to discretize the system (9.6) in
a suited way. Following the ideas developed in Chapter 7, a semi-implicit
discretization is a good choice. This accelerates the numerical execution by
allowing the feasible evolution steps to take a higher order of magnitude, see
below. Using finite differences, the semi-implicit single-scale discretized
version of (9.6) reads� X º Û � Z� { n � � X º Z� { n é � Â 2 Ó«Â�� � { n {eX � Z Â , � X º Û � Z� Û � { n é � X º Û � Z� = � { n À � X º Û � Z� { n�Û � é � X º Û � Z� { n = � .é1� � { n {eX Y ® Z Â , � � { n {eX Y ® Z Â � X º Û � Z� { n À%� � { n {eX�Y ° Z Âc> X º Z� { n À%� � { n {eX � Z é%� � { n(Â1R X º Z� { n é ° X º Z� { n . 3

(9.13)



162 Chapter 9. Optical Flow> X º Û � Z� { n � > X º Z� { n é � Â 2 Ó«Â�� � { n {eX � Z Â , > X º Û � Z� Û � { n é�> X º Û � Z� = � { n À�> X º Û � Z� { n�Û � é�> X º Û � Z� { n = � .é1� � { n {eX�Y ° Z Â , � � { n {eX�Y ® Z Â � X º Z� { n À%� � { n {eX Y ° Z Âc> X º Û � Z� { n À%� � { n {eX � Z é%� � { n(Â
R X º Z� { n é ° X º Z� { n . 3
(9.14)R X º Û � Z� { n � R X º Z� { n é � Â 2 _zÂM� � { n {eX J Z Â , R X º Û � Z� Û � { n é R X º Û � Z� = � { n À_R X º Û � Z� { n�Û � é R X º Û � Z� { n = � .À1� � { n*Â , � � { n {eX Y ® Z Â � X º Z� { n À$� � { n {eX Y ° Z Â�> X º Z� { n À%� � { n {eX � Z é%� � { n(Â1R X º Z� { n é ° X º Z� { n . 3
(9.15)° X º Û � Z� { n � ° X º Z� { n é � Â 2 � Â�� � { n {eX » Z Â , ° X º Û � Z� Û � { n é ° X º Û � Z� = � { n À ° X º Û � Z� { n�Û � é ° X º Û � Z� { n = � .À2� � { n {eX Y ® Z Â � X º Z� { n À%� � { n {eX�Y ° Z Âc> X º Z� { n À$� � { n {eX � Z é%� � { n(Â1R X º Z� { n é ° X º Z� { n 3
(9.16)

where � � { n {eX V Z denotes the discretized diffusivity function ��ZÔ¾ ýµÂ-¾ Y \ , all other
notations should be self-explaining. The reader should note that we took
advantage of a semi-implicit discretization of � and > also in the reaction
part to gain more stability. Due to the different sign, this is prevented for R
and

°
. We also point out at this stage, that it of course would be also possible

and is in fact sensible to give a multiscale wavelet-based discretization of
(9.6) under usage of the connection coefficients framework, since this would
gain improved computational efficiency, see below.3

6 Evolutionary stability. In order to assure that an evolutionary nonlinear
diffusion process remains stable, there are a set of criteria to be satisfied

3The multiscale scheme is more complicated in notation, but not in its computational execution; for the
interested reader, we give it here in non-standard form for the parameter l , the expressions for the other
three evolution equations follow in an equivalent manner.l [ ô 8 ®]\S K Ó43 ì 3 Ô M l [ ô \S K Ó43 ì 3 Ô = Ü V65 � ���óz � ® óñ K J � © a V � S K Ó43 ì K [87 \V�9 ¾ 8 ®;:=<?>® :=@A> KCB ¬ K ®(DFE X � { J { ­ { � { � { n { � Z Û 8 ®;:8<G>® :C@A> KCB ® K ¬ DFE X � { J { ­ { � { � { n { � Z À V l [ ô 8 ®]\S K ÓF3 ì 3 Ô�H= A S K Ó43 ì K [ T g \ V 8 ® :=<?>® :=@A> KIB ¬ K ¬ D E X � { J { ­ { � { � { n { � ZV ¾ A S K Ó3K [ T g \ V l [ ô 8 ®k\S K Ó43 ì 3 Ô Û A S K Ó3K [ T l \ V # [ ô \S K ÓF3 ì 3 Ô Û A S K Ó3K [ ü \ = A S K Ó43 ì 3 Ô V J [ ô \S K Ó = » [ ô \S K Ó43 ì 3 Ô À?J
Hereby, � , n are the spatial coordinates, � denotes the scale of consideration and � is an index pointing
to the scaling function or wavelet ç [ Ô \ . The notation for the connection coefficients is according to the
conventions made in Chapter 6.



9.4. Segmentation Methods 163

[235]. However, it is demonstrated in [237] that regularized nonlinear dif-
fusion processes of �²��� � �)��7R.0���M!$< -type are unconditionally stable if a
semi-discrete numerical scheme is applied. Unforunately, the additional
linear reaction term cancels this nice property for the proposed optical flow
model and we have to choose � in an appropriate way to guarantee the
numerical stability of the system (9.13)–(9.16). A heuristic analysis of a
linearized approximation to (9.6) justifies the choice � � Ìtí } . Additionally,
we shall remind the reader that the choice of the optimal stopping time � �for the evolution is a purely experimental matter of a similar character as
the determination of the weighting parameters Ó , _ and � . We choose a
threshold , and repeat the evolution until the norm of the systems residue
understeps , .

7 Operator Splitting. We will make use of the additive operator splitting as
presented in Chapter 7 and extended in Section 8.8.3 to gain more computa-
tional efficiency for the implementation. First, we will rewrite the discrete
diffusion-reaction equations (9.13)–(9.16) into the form�� X º Û � Z � O Id À � Â A l P = � Â�O �� X º Z é � Â �? l P�> X º Û � Z � O Id À � Â A# P = � Â O �> X º Z é � Â �? # P�R X º Û � Z � O Id À � Â A J P = � Â�O �R X º Z é � Â �? J P�° X º Û � Z � O Id À � Â A » P = � Â O �° X º Z é � Â �? » P w (9.17)

where the entries of A X V Z and
�? X V Z are directly evident from (9.13)–(9.16).

Now, the additive operator splitting can be directly applied to each of the
equations in (9.17) in order to execute the necessary inversions. If we have
chosen a multiscale discretization of (9.13)–(9.16) as proposed before, the
application of the wavelet-extended additive operator splitting as described
in Section 8.8.3 is also applicable in this situation leading to faster inversions
for the predict part.

In order to obtain reliable flow estimations even for flow fields of large dis-
placements, the whole method is embedded into a coarse-to-fine multiscale
strategy. This means the following: before the flow estimation itself starts, the
image sequence gets decomposed by a discrete wavelet transformation with a
certain number of scales, depending on the image size. Then, the optical flow
is computed — pursuant to the abovementioned processing steps — only on the
lowpass part of the coarstest scale. The obtained result is backpropagated to
the next finer scale by an inverse wavelet transform and rescaled accordingly.
This new version is taken to be the initial guess for the flow field on the actual
scale and the whole procedure starts from the beginning leading to successively
improved estimations on stepwise refined scales. The process stops when the
finest scale, i.e. the pixel level, is reached.
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9.4. Extended Optical Flow via Segmentation Methods
We have already remarked that the proposed flow model (9.6) is by far not

complete in the sense that it is capable to deal with all possible kinds of visual
occurences in image sequences. For some of these incidents of singular nature,
we will sketch possible extensions to our original model in the actual section.
These extensions are mainly based on the idea of segmentation which has a
long tradition in image processing problems of various types by itself.

An inevitable property of moving objects observed by a camera is that they
occlude and de-occlude other objects which are positioned behind them with
respect to the visual ray of the camera during their motion. Furthermore, it
is clear that it is impossible to make any precise statements about motion in
occluded regions due to the lack of visual information. But on the other hand,
one is interested to have an accurate mathematical model for this situation in
order to determine motion boundaries and to separate different motions that
appear to happen on the same local area of the image plane. To do this, let
us denote the occluded regions of the image plane [ by K Ú�[ . Following
the ideas of .V= � ã � ��� and

� '���' [162], we consider the minimization of a
variational functional of the typeÙ Z �<t\ � 6 ÝMLON <*Z � w3>)wtRTw ° \ Y À Ó§ÂDZÔ¾ ý � ¾ Y À3¾ ý�>�¾ Y \ B �uÀ 6 Ý _zÂ-�+ZÔ¾ ýþRy¾ Y \²ÀÚ�]Ât�+ZÔ¾ ý ° ¾ Y \ B �u]À ¾ KO¾²� min! w (9.18)

with � � � � and < is defined by (9.3). The functional Ù«Z �<�\ may be interpreted in
the following sense. The first integral is the optical flow constraint on the regular
part [{±PK of the image plane with an additional linear regularization term. Since
the implicit modelling of motion boundaries by the introduction of the set K , it is
not necessary to apply a nonlinear regularization method to the flow field. The
second integral is the nonlinear regularization of the illumination conditions, it
is the same as in the model (9.6). The last term penalizes irregular boundary
structures of the occlusion set as well as its spatial expansion. Unfortunately,
there are several theoretical difficulties coming along with the usage of (9.18).
A very fundamental problem is that one (usually) has no a priori knowledge
about the set K at ones disposal, that is, one does not even know, how Ù Z �<t\ does
exactly look like. Mathematically, the functional is non-convex, which may
cause the minimization procedure to get trapped in irrelevant local minima and
moreover, theoretical as well as experimental investigations indicated additional
problems of more practical nature, such as restrictive geometric constraints on
junction and corner recovery or likely over-segmentation of the data [163] [185].
The basic idea to overcome these problems is the introduction of an additional
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function �Ó·½h Y ¸*¹ ¨ Î w Ì © that plays the role of an indicator for the set K , that
is �(Z �u)\Ó}�Á N or in other words,�(Z �u�\~} Ê Ì if

�u«�QKÎ
otherwise.

By the mathematical framework of Å -convergence for functionals [71] [6], one
is able to show that the new functional

˜Ù
Z �<�w"�*\?� 6 Ý Z Ì é��*\ Y Â , <*Z � w3>)wtRyw ° \ Y À Ó«ÂDZÔ¾ ý � ¾ Y À3¾ ý;>�¾ Y \ .À _zÂ&�+ZÔ¾ ýþRy¾ Y \QÀ �ùÂt�+ZÔ¾ ý ° ¾ Y \ÕÀ dÿ¾ ý²�*¾ Y À Z8~8dÿ\ = � ÂG� Y B �u (9.19)

with the new parameter d is an approximation in the Å -sense converging to Ù«Z �<t\
as d?¹ Î . The meaning of the first terms is almost self-explaining, they model
the optical flow on the � -approximation of the set K and the global illumination.
The last two terms force � and ¾ ý²�*¾ to be small as long as the flow field gradient
is also small and this is in fact almost the behaviour, an indicator function
should obey. In order to obtain feasible solutions, any minimizer of (9.19) must
necessarily fulfill the evolution system of the corresponding E²=������ differential
equations given by the reaction-diffusion system� Ü � Z Ì é�� Y \�Â , Ó«Â�þ ¬Y � é%� Y ® Â�OO� Y ® Â � À%� Y ° Â�>¯À%� � é%�)Â1R�é ° P .> Ü � Z Ì é�� Y \�Â , Ó«Â�þ ¬Y >¯é%� Y ° Â O � Y ® Â � À%� Y ° Âc>GÀ&� � é%�)Â1R(é ° P .R Ü � _zÂ div

, ��ZÔ¾ ý ¬Y Ry¾ Y \�Â8ý ¬Y R . À"�)Â O � Y ® Â � À$� Y ° Â">¯À$� � é%�)Â1R�é ° P° Ü �¯�]Â div
, ��ZÔ¾ ý ¬Y ° ¾ Y \�ÂUý ¬Y ° . ÀR� Y ® Â � À%� Y ° Â�>¯À%� � é%�)Â1R�é °� Ü �³d§Â�þ ¬Y �?é Z8~8dÿ\ = � ÂG�?À Ó«ÂDZ Ì é��*\�Â�OR¾ ý ¬Y � ¾ Y À3¾ ý ¬Y >�¾ Y P ` (9.20)

Since ˜Ù
Z �<M\ is convex in � and we already know that (9.6) leads to a well-posed
process under certain regularity assumptions, (cf. Theorem 9.1), we can expect
the same to be true for the system (9.20). Recalling our considerations of the
previous paragraph, the numerical implementation of (9.20) is straightforward
and not carried out here for the sake of shortness.

The idea of approximating indicator functions and to couple them with the
evolutionary process itself is also feasible to build extended optical flow models
to deal with multiple motions — we shall comment on this in the following.
Suppose there appear two motions,

�? � and
�? Y , in the same local area of the

image plane. In order to separate these, one should assign two different indicator
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functions � � , ��Y to these motions. The according optical flow model can be
written as

˜ÙÓZ �< � w �<TY
w"�*\?� 6 Ý Z Ì é�� � \ Y Â , <*Z � � w3> � wtRyw ° \ Y À Ó«Â
ZÔ¾ ý � � ¾ Y À3¾ ý;> � ¾ Y \ .À Z Ì é���Y�\ Y Â , <*Z � Y
w3>
Y
wtRTw ° \ Y À Ó«ÂDZÔ¾ ý � YD¾ Y À3¾ ý;>
Y�¾ Y \ .Àõ_zÂ-��ZÔ¾ ý RR¾ Y \²ÀÚ�]Ât��ZÔ¾ ý ° ¾ Y \ÕÀ dúÂ�O�¾ ý²� � ¾ Y À3¾ ý²��Y�¾ Y PÀ Z8~8dÿ\ = � Â O � Y � À�� YY P B �u4w (9.21)

in a Å -convergent variational formulation, which is an evident extension of
(9.19). Since the evolutionary EQ=)����� differential equations and the discretized
numerical schemes are obtainable in a straightforward way, these are also not
carried out here. But the reader should be warned that a good approxima-
tion to the original .V= � ã � ����7 � '���' formulation generally causes numerical
problems since very small choices for the approximation parameter d require
likewise small evolution steps � to keep the stability of the whole process guar-
anteed. This fact makes such methods inferior compared to classical nonlinear
formulations like the model (9.6) in many practical situations, because a very
large number of iteration steps is usually needed to obtain good results.

We close the discussion about segmentational flow models by pointing out
another image occurence which can not be detected by this method (and also
not by the methods presented before). Namely, this model is not capable to
deal with multiple motions of translucent objects, a very active area of research
in the last few years. Such transparent motions are very hard to access in
the spatial domain since there exists no proper way to separate the image into
its two simultaneously visible planes and consequently, one cannot estimate
the according partial derivatives which would be necessary for reliable flow
calculations. Therefore, all approaches to transparent motions done so far
were executed in the frequency domain where the image separation problem is
decidable [16]. However, since this work only addresses spatial approaches via
wavelet methods, translucency problems must remain unconsidered here.

9.5. Experimental Results
The actual section will demonstrate the suitability of the optical flow meth-

ods presented in the running of this chapter by applying it to some typical test
image sequences and by testing the chosen modelling under artifical laboratory
conditions. The evaluation of the results we will obtain in this section will be
done under usage of two standard error measures which will be introduced now.
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Average angular error. The result of an optical flow estimation is a vector
field that shall describe the motion of objects in the considered image scene.
Typically, one is interested to measure the error of the motion direction, that
is the angular deviation from the correct motion field. Since velocity must
be viewed as orientation in space and time, it was suggested in [15] to mea-
sure errors as the angular variations from the correct orientation in space-time.
Embedding our original notation from the previous sections into the threedi-
mensional space-time, let �? �   � w3>)w Ì ¥
be the extended representation of the estimated optical flow field and similarly,
let
�? » denote the correct values. Then the angular error between the correct

and the estimated flow vectors is given by; err � arccos
, è �?� �? � w �? »� �? » � é . ` (9.22)

Accordingly, the average angular error is given by the mean value of all angular
errors over the whole image plane [ .

Average magnitude error. The other entity of interest in optical flow esti-
mation is of course the magnitude, i.e. the length of the correct velocity vector.
In contrast to the direction, the flow magnitude does not depend on space-time
orientation and is thus considered only in the twodimensional image plane. For
an estimation

�?å�   � w3> ¥ and a ground truth
�? » , the magnitude error between

the estimated and the real flow field is given byª
err � ''' )) �? )) é )) �? » )) ''' w (9.23)

where ��ÂC� shall denote the E²=�%(�M!$� ean length in 2D. Again, the average
magnitude error is obtained by taking the mean value over the whole image
plane.

9.5.1. Testing illumination changes
In this paragraph, we shall investigate, how the proposed optical flow model

behaves in practice when it comes to estimate over image sequences containing
(temporal discontinuous) variations of the illumination conditions. To do this,
we will create sets of random dot patterns with constant motion and check the
capabilities of the model when certain illumination patterns are introduced.

Experiment 1. We create a set of random dot pattern frames of size }M^ ¿ Sÿ}�^ ¿
such that the motion between two successive frames is given by a constant hor-
izontal velocity of } pixel/frame. A typical example is given in Figure 9.2. In
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Figure 9.2. Input data for experiment 1. A random dot pattern of size ³�ÅHßZÛ ³mÅ�ß with constant
horizontal motion of ³ pixels/frame.

this first experiment, we do not introduce any illumination changes and just ap-
ply the model (9.6) and a reduced version not considering illumination changes
to the given data. The results for the sequence shown above are visualized in
Figure 9.3. To evaluate the results and to gain some idea about the asymptotic

Figure 9.3. Results of experiment 1. Left. Flow estimation with the model (9.6) proposed in
the previous section. Right. Flow estimation with the same model but without consideration of
illumination changes.

quality of the applied methods, we repeated this experiment with 100 different
sets of random dot sequences of size }�^ ¿ SI}�^ ¿ . The averaged results in terms
of the introduced error measures are collected in Table 9.1. One directly sees
that both methods perform well and reach nearly the same estimation quality
with respect to the average angular and magnitude errors. While they are visu-
ally more or less equivalent, regarding the numerical evaluation, the model not
considering illumination changes performs even slightly better than the model
proposed in (9.6). This may be explained by the fact that the least squares
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Av. ang. error Av. mag. error
Flow model (9.6) ³	ä å ã å ¬ á
ä ³	àkÞ pixel

Model (9.6) without illumination ³	ä Þ�ÄÀæ ¬ á
äµàkæ Ä pixel

Table 9.1. Average performance results for experiment 1. Hereby, 100 random dot pattern
sequences as in Figure 9.2 were used.

approximation in the prior case has a lower dimensionality, since there are two
parameters less to be estimated (namely the illumination parameters R and

°
).

Anyway, as we shall see in the following, the situation changes dramatically,
as soon as new illumination conditions are introduced.

Experiment 2. The situation is very similar to that of the first experiment, but
now, during the running of the sequence a constant additive illumination pattern
is introduced in the right image half plane, see the illustration in Figure 9.4. The

Figure 9.4. Input data for experiment 2. A random dot pattern of size ³�ÅHßZÛ ³mÅ�ß with constant
horizontal motion of ³ pixels/frame where an addititve illumination pattern occurs in the right
half plane at a certain point of time.

estimation results are shown in Figure 9.5 and it is evident that the plain model
is no longer capable to deal with this situation while the model (9.6) recovers the
optical flow field almost correct. This is also confirmed by the evaluation results
collected in Table 9.2. As in the first experiment, the results of 100 different
random dot series were averaged to assure the reliability of the obtained values.
Additionally, we show the estimated additive illumination field

°
in Figure 9.6.4

4Of course, applying the model (9.6) to the given data, the illumination would be measured in terms of both
variables J and » . But to demonstrate how additive illumination changes are handeled, we combined both
parameters in such a way that only the additive part » is nontrivial.
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Figure 9.5. Results of experiment 2. Left. Flow estimation with the model (9.6) proposed in
the previous section. Right. Flow estimation with the same model but without consideration of
illumination changes.

Obviously, the introduced additive light source occuring in the right half plane
is detected well, apart from some noise artefacts. However, these noise artefacts
in the illumination pattern estimation do not distort the optical flow results.

Av. ang. error Av. mag. error
Flow model (9.6) Þ
ä Å ã�ã ¬ á
ä ³mÅÀå pixel

Model (9.6) without illumination ³�Ä5ä á
àkæ ¬ á
ä å ã�ã pixel

Table 9.2. Average performance results for experiment 2. Again, 100 random dot patterns of
the kind as in Figure 9.4 were taken.

Figure 9.6. Comparison of illumination profiles for experiment 2. Left. Original profile. Right.
Estimated additive illumination profile.



9.5. Experimental Results 171

Experiment 3. Once again, we start with a sequence of random dot patterns
with constant horizontal motion of } pixel/frame. This time, we introduce a

Figure 9.7. Input data for experiment 3. A random dot pattern of size ³�ÅHßZÛ ³mÅ�ß with constant
horizontal motion of ³ pixels/frame where an multiplicatve illumination pattern of Îÿ���M�Á� ian
shape (plus a constant) occurs at a certain point of time.

multiplicative illumination pattern of (up to an additive constant) �Ó��=�#¤# ian
shape in order to simulate the switching of new a light source. The resulting
optical flow estimations for both methods are shown in Figure 9.7. As in
the prior experiment, the plain model is not able to recover the optical flow
in those image plane regions, where the illumination has a strong impact. In
contrast to this, the model (9.6) gives satisfying results. This is confirmed by the
evaluation of 100 repeated random experiments, see Table 9.3. To complete

Figure 9.8. Results of experiment 3. Left. Flow estimation with the model (9.6) proposed in
the previous section. Right. Flow estimation with the same model but without consideration of
illumination changes.

this experiment, we give the estimated multiplicative illumination field 6�Z �u�\
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Av. ang. error Av. mag. error
Flow model (9.6) Þ
ä ßmß�æ ¬ á
ä ³�å ³ pixel

Model (9.6) without illumination æ1ä å ³�æ ¬ á
ä Þ�ßHå pixel

Table 9.3. Average performance results for experiment 3. Analogously to the first two experi-
ments, 100 random dot patterns as in Figure 9.7 were applied.

in Figure 9.9.5 We notice that the illumination field R�Z �u)\ is also estimated in
a satisfying manner up to possible boundary and noise artefacts which do not
hinder reliable flow calculations.

Figure 9.9. Comparison of illumination profiles for experiment 3. Left. Original profile. Right.
Estimated multiplicative illumination profile.

Concluding these three experiments, modelling of possibly changing illumi-
nation conditions during the running of an image sequence can improve the flow
estimations in the concerned image regions considerably. The obtained optical
flow results are only slightly worse than those for image sequences having no
illumination changes.

5In this experiment, we combined the illumination values J and » in such a way that only J is nontrivial, since
we want to see the multiplicative illumination pattern. Since we have taken the shortcoming J M X D üTS Z æ S
in (9.3), we have to re-estimate S from J . This is done via the approximationJ M D üTSS k YÜ V S X � Û Ü Z = S X � ZS X � Û Ü Z Û S X � Z
and assuming that S X � Z M � since the light source is just activated during the time step from � to � Û Ü .
The resulting relation may be easily solved for S X � Û Ü Z yielding the desired approximation of the original
illumination profile S .
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9.5.2. Recovery of motion boundaries
The following paragraph is dedicated to demonstrate the capabilities of the

optical flow model (9.6) in the context of motion boundary recovery. As in the
previous paragraph, the model is tested with a set of artificially created random
patterns with known ground truth data.

The scenario is as follows: The dot pattern in the upper half of the considered
image plane moves with constant speed of 1 pixel/frame from left to right and
the pattern in the lower half moves contrarily. In Figure 9.10, the real and the
estimated optical flow are shown. The estimation quality is of the same order
of magnitude as in the first experiment. Since we want to test the ability of our
implementation to recover flow boundaries in a proper way, we focus a little
portion of the image plane and compare the results to that achieved by the plain
model (9.3), this is visualized in Figure 9.11. The reduction of the smoothing
effect introduced by the presmoothing and linear filtering is directly evident
— the visual quality of the estimation from the nonlinear flow model (9.6)
is significantly better than for the simple linear model (9.3), even though the
boundary recovery is not perfect (but this can not be expected for such strongly
discontinuous data like a random dot pattern).

Figure 9.10. Results of experiment 4. Left. Real flow. Right. Flow estimation with the flow
model (9.6).

9.5.3. Standard test images
To complete the experimental part of our optical flow investigations, we shall

test the proposed model under some more realistic conditions by applying it
to some standard test image sequences. For some of the test sequences, a set
of ground truth data is available making explicit comparisons of the achieved
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Figure 9.11. Focus of motion boundary. Left. Flow estimation with the model (9.6) proposed
in the previous section. Right. Flow estimation with the simple model (9.3) and least squares
approximation.

results possible.

The Office sequence. The first image sequence to be considered is the Office
sequence created by �Ó���y>�!$� and co-workers [90], it is taken from the research
website [250]. It shows a desk with a PC, a lamp, a picture and a window in
the background and a chair in the foreground (see Figure 9.12). The occuring

Figure 9.12. First and last frame of the Office test sequence.

motion is a camera zoom-in where the focal point lies in the center of the image.
The optical flow estimated with the model (9.6) is depicted in Figure 9.13, the
average angular deviation from the real optical flow is evaluated to be ¿ ` } Î � by
means of (9.22). In comparison to the achieved results, the real optical flow
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Figure 9.13. Estimated optical flow for the Office test sequence.

Figure 9.14. Real optical flow for the Office test sequence.
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field for the Office scene is shown in Figure 9.14. Except to a very few numbers
of significant misestimations in the lower middle of the image plane, the real
and the estimated flow fields are visually nearly equivalent, which confirms the
very low average angular error. Additionally, the average magnitude error is
below

Î ` Ì Î a pixel, which is also a very good value.

The Street sequence. This example shows an artificially created road scene
with a person sitting on a bank in the foreground and some houses plus a
cloudy sky in the background. While a sport car is driving from the left to the
right through the scene, the camera moves in the vice versa direction, this is
shown in Figure 9.15. As mentioned above, this scene is created artificially

Figure 9.15. First and last frame of the Street test sequence.

and the graphic designer has also created a set of ground truth motion data
that is (as the scene itself) available via [250]. The optical flow estimation
achieved by our method (9.6) is shown in Figure 9.16, while the real flow data
is visualized in Figure 9.17. One sees that the camera motion is recovered very
well, but there are some estimation mistakes occuring below the front area of
the moving car. Anyway, the overall performance is quite well, this can be seen
in the comparison carried out in Table 9.4. We also point out that the average
magnitude error is about

Î ` Ì a Ô pixel. One final remark to the spatio-temporal
approach of

ø �Ö!,%(<�����J and
� %(')���� ��� : This idea is surely a theoretical step

ahead and leads indeed to even better flow estimation results as is evident from
Table 9.4, but on the other hand it is not a sensible presumption that the whole
sequence is available at once, since this only allows flow estimation in the past.

The
2 =)X*!,% s cube scene. This is a very classical test sequence taken from

the web resource [251]. It shows a
2 =)X*!,% s magic cube on a rotating plate and
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Figure 9.16. Estimated optical flow for the Street test sequence.

Figure 9.17. Real optical flow for the Street test sequence.
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Author(s) Av. ang. err. Densityj��Mß ���MUA÷È��Ò���ÛDÐ VÇÅ ¬ Þm³ %��Ñ ��Ð¤�Á����ÒM� et. al. V å ¬ à]ámá %m?Ð¤Úáßv��Ð¤Ñ�oWUvÇ�ß à�Ò ø��Ñ�Ñ ß
ä ß�³ ¬ à]ámá %m?Ð¤Úáßv�DÐ&Ñ�oXUvÇ½ß½àMÒTø��Ñ�Ñ (spatio-temporal) Ävä æ Å ¬ à]ámá %÷Q� YÕ� ß
ä ³�ß ¬ à]ámá %
Table 9.4. Various flow results for the Street sequence.

two still objects in the background. Two frames of this sequence are shown in
Figure 9.18. Since this is a natural scene recorded by a camera, there exists
no exact ground truth flow data and consequently, no exact assessment of the

Figure 9.18. First and last frame of the ���MÞ¤ÚÜß s cube sequence.

flow results achieved by our algorithm (shown in Figure 9.19) is available. But
the visual impression of the rotating plate and cube is reproduced well by the
estimated optical flow vector field.

The Yosemite scene. Probably the most famous test sequence for optical
flow algorithms is the Yosemite sequence that shows a computer graphically
reproduced model of the Yosemite Valley and a virtual flight into the scene.
Additionally, the clouds in the background move from left to right and the light
intensity of the sky increases in some areas simulating sunlight effects. The
starting and the ending frame of this sequence can be seen in Figure 9.20. As
the previous example, this sequence is also taken from [251], which is also
the source for the real optical flow data. The flow field estimated via (9.6)
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Figure 9.19. Optical flow estimated for the ���MÞ¤ÚÜß s cube sequence.

Figure 9.20. First and last frame of the Yosemite sequence.

is shown in Figure 9.21, while the correct flow field can be found in Figure
9.22. Both vector fields are visually very close to each other, except that the
magnitude of the vectors of the correct flow field is usually slightly bigger
than for those of the estimated flow field. This fact can be traced back to the
nonlinear diffusion process, which has the property to equalize differences over
a longer iteration period (see also the remarks in Chapter 8). But apart from this
difference, the results for the estimation are once again very good in comparison
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Figure 9.21. Estimated optical flow for the Yosemite test sequence.

Figure 9.22. Real optical flow for the Yosemite test sequence.
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Figure 9.23. Estimated illumination profile for the Yosemite sequence.

to results achieved by other methods, see Table 9.5. To get an impression of
the illumination change happening during the sequence, we have also depicted
the estimated illumination profile (converted into a purely additive pattern) in
Figure 9.23.

Author(s) Av. ang. err. Density MethodÍ(�TÐ&Ð�oZU&[-ÐUÐ&�Á��Ò Ä5ä ÞHß ¬ Þ�Äväµà % phase-basedmNÐ&Þ Ð&ÑXU ¥G���TÚ � Ä5ä Þ	à ¬ ß Ävä ³ % local/differentialÇ½ÚÜÒMÙDà à ³vä ã á ¬ ã åÀä æ % region-based\ Ñ½��� à]á
ä ÄmÄ ¬ à]ámá % local/differentialýL�ø�t��Ñ�Ð1�ÕÐ�o���� � Åvä ÅHÞ ¬ à]ámá % global/differentialYO��Ù
Ð&� à�à�ä åÀà ¬ à]ámá % global/differential÷�� YÕ� ß
ä ³mÄ ¬ à]ámá % local/differential

Table 9.5. Various flow results for the Yosemite sequence.

In a last little experiment we have evaluated the impact of the proposed
extensions from the simple flow model (9.3) to the extended model (9.6) as
well as the influence of nonlinear wavelet estimation as suggested in Chapter
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8. During the experiment, all steering parameters were left unchanged in order
to assure equal conditions. The obtained qualities of the estimated optical flow
fields are compared in Table 9.6 — they lead to the conclusion that the proposed
extensions are in fact sensible, since they lead to distinct improvements.

Yosemite sequence Av. ang. error
Model (9.3) without nonlinear wavelet postprocessing å1ä Å ã ¬
Model (9.6) without nonlinear wavelet postprocessing ß
ä å�ß ¬

Model (9.3) with nonlinear wavelet postprocessing ß
ä Å�Þ ¬
Model (9.6) with nonlinear wavelet postprocessing ß
ä ³�Ä ¬

Table 9.6. Impact of proposed model extensions. Note how the nonlinear diffusion as well as
the nonlinear wavelet estimation both improve the flow calculation.

9.6. Discussion and Related Work
To close the chapter about optical flow, we shall point out some research

work that is related to our investigations. Of course, the differential approach
to optical flow estimations under usage of the assumption that the image bright-
ness does not change significantly over time leading to a formulation as in
(9.2) is classical and fundamental for many solutions to the problem. It goes
back to the pioneering work of W � ��� and

� %(')=)��%(< [114]. Just as old is the
idea of regularizing this model in order to circumvent the underdetermination
and the ill-posedness this formulation incorporates. While [114] suggested to
use a linear regularization term, the idea of nonlinear flow regularization was
first introduced in [165] and successively improved e.g. in [24], [238] and [4].
These latter two approaches are similar in spirit to the ideas developed in this
work, since they also have their fundamentals in the idea of �²��� � �)��7R.0���M!$<
regularization.

The illumination models proposed in Section 9.2 mainly go back to ideas
of ûG��;)��'�������! P*� =)� [173] [174] and his co-workers, some of these ideas
were also proposed in the thesis [19]. But all these approaches only consid-
ered the improved modelling of illumination changes but did not regard the
simultaneously available possibilities of nonlinear regularization or vice versa.
By combining the capabilities of both illumination modelling and nonlinear
regularization strategies, we could obtain improved estimation results for op-
tical flow fields. This is especially the case if illumination changes as well as
distinct motion boundaries occur in the considered image sequences, see our
experiments with sets of random dot patterns. If we apply our method to the
standard test image sequences, which only have slight illumination changes and
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moderate boundary structures, the performance is about the same as for other
well-performing standard methods. This should be no too big surprise, since
these latter ones are modelled in a similar way than ours, see above. Anyway,
even in this situation, our approach has the advantage to incorporate the us-
age of wavelet-optimized operator representations (Chapter 6) and to be highly
efficient thanks to the reduced computational amount, if the wavelet additive
operator splitting is applied.

Chapter Summary
This chapter was dedicated to the problem of computing the optical flow

occuring in a sequence of images. After reviewing the fundamental problems
and the main paradigms how to solve this problem, we have inbtroduced our
point of view, namely the differential geometic approach. Since the plain model
turned out to be inadequate in many typical situations, the model was extended
such that it also took illumination changes into account. Additionally, we have
introduced a nonlinear regularization process in order to guarantee the sharp
recovery of motion boundaries and to compensate for the spatial overlapping
coming along with the (by all means necessary) linear prefiltering. In the next
section, we have proven that the proposed model is indeed consistent and leads
to a well-posed process. We have also pointed out its concrete implementa-
tion by describing the method stepwise and demonstrating that the required
prerequesites are indeed met. Furthermore, we have sketched some more pos-
sible model extensions basing on the idea of segmentation. In this context, the
meaning of the .V= � ã � ���)7 � '���' functional for image processing purposes
was enlightened. The chapter was closed by a large experimental part that
showed the various capabilities of the proposed method. It performed similarly
well to the best optical flow methods known so far.
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CONCLUSION

And if I can’t do this, it will be done by those who come after me
— j�Ð¤�(Ð&�D�yÛ ÷ÈÑ ��ÒMÐ¤ßv��Ð&Ñ

The research presented during the running of this thesis was mainly con-
cerned with the development of construction methods for nonseparable wavelets
in higher dimensions, with the provision of the according mathematical ana-
lytical methods and with the concrete implementation of these results in the
practical context of computer vision applications. This closing chapter shall
provide a brief review over the achieved results and also provide a vague outlook
into possible future directions.

10.1. Summary
In this section, the main results presented in this thesis shall be summarized.

Hereby, particular emphasis is put on the original contributions of the author
and several possible consequences of the achieved results are commented.

In Chapter 1, we gave some motivation for the present research work by
reviewing the development of wavelet theory from its roots in the beginning of
the 20th century till today. To enable the reader to comprehend the motivation
to apply wavelet theory to computer vision problems, we also gave an intro-
duction to the fundamental concepts and paradigms of computer vision. The
chapter was closed by an overview, how the thesis is organized.

The second chapter was dedicated to introduce the basic mathematical con-
cepts of time-frequency decompositions and onedimensional wavelet theory to
equip the reader with the basic terminology. In regard to problems that occur in

185
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multidimensional wavelet filter design, we introduced a new filter construction
method that does not depend on factorization theorems like the �+��S����(7 2 !1�*#�ã
Theorem. This new method was based on the concept of (linear independent)
basic filters, the main results are found in Lemma 2.13 and Proposition 2.15.
The working way of this concept was demonstrated by a short example.

Chapter 3 was dedicated to the investigation of dilation matrices in multiple
dimensions. Here, we investigated the induced properties like the geometric
shape of the incorporated sampling lattice and we proposed a quality mea-
sure to assess, how close a multidimensional sampling scheme can be to ideal
(i.e. radial symmetric) sampling. Furthermore, we established a general design
principle for dilation matrices and gave a classification for the special class of
dyadic regular sampling (Proposition 3.7). This chapter was closed by a survey
about the asymptotic behaviour for several classes of dilation matrices under
increasing dimensionality. The according results are collected in Theorem 3.8
and the following corollaries.

The first part of the thesis was closed by Chapter 4. Here, the main point of
interest was the difficult problem of wavelet (or scaling) filter design in higher di-
mensions. Since factorization approaches were no longer feasible, we focussed
ourselves to direct design methods and to dimensional reduction methods. This
dimensional reduction, established in Lemma 4.2 and Lemma 4.3, provided us
with some knowledge about how subfilters of (yet unknown) multidimensional
filters must look like. This technique turned out to reduce the complexity of
the filter design leading to some new higher order orthogonal wavelet filters
(see also the examples in Appendix A). After a discussion of some general de-
sign principles and some excursions to concrete feature implementations, some
generalizations of orthogonal wavelets were presented. While biorthogonal
wavelets were only briefly reviewed, the (for the applications we have in mind)
very attractive concept of tight wavelet frames was presented in much more
detail leading to a new and very simple construction method (Theorem 4.13
and Lemma 4.14) for such function families. The investigations about tight
wavelet frames were closed by a statement about the asymptotic regularity of
wavelets built via this method (Proposition 4.15).

In Chapter 5, the fundamentals of multidimensional wavelet analysis were
collected. After reviewing some classical results about the projection operators
associated to a wavelet basis and the multidimensional variant of the .0����7�M��J algorithm, some approximation results are given. Some of them had to be
slightly weakened to fit into the multidimensional framework (this was the case
for Proposition 5.3 and for a following corollary).
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The main chapter of the second part was Chapter 6. In this chapter, the effi-
cient representation of various operators in bases of nonseparable, multidimen-
sional wavelets was developed. Here, we generalized the concept of connection
coefficients to the multidimensional case and derived a way to calculate these
coefficients via simple linear equation systems (main result is Theorem 6.7).
The working way of this framework was demonstrated at hand of a standard
differential operator; an example and a method to optimize operators to fit to
certain requirements were also given here. In the following, the efficient rep-
resentation of affine transforms in wavelet coordinated was carried out, since
these play a prominent role in several vision models. The chapter was closed
by a review of different ways to put these operator representation into matrix
form. This is a reproduction of results obtained by ����ü���<�!1� et. al. [20], but
again generalized to the multidimensional formulation.

Chapter 7 recalls various ways to put operator equations of differential type
into a form that is suited for numerical processing. Hereby, �Ó���D����<�!1� approx-
imations, multiscale preconditioning and various types of operator decomposi-
tions are presented. All these reformulations are stated in the multidimensional
wavelet formalism.

The application oriented part of this thesis started with Chapter 8. Linear
and nonlinear scale spaces were considered here. We introduced a new linear
wavelet scale space by slightly modifying the corresponding axiomatics. This
linear wavelet scale space helped us to reduce the computational amount for
nonlinear regularization via additive operator splitting by shrinking the size of
the operator matrix that has to be inverted. Additionally, we have presented a
new type of nonlinear wavelet scale space that is based on the approximation
in ���*# � > spaces, which is a direct consequence of the results from [41].

The final Chapter 9 dealt with the computation of optical flow. After motivat-
ing the approach, several model additions to handle illumination changes and
motion boundaries were introduced. A detailed investigation of the numerical
behaviour was carried out (Theorem 9.1) and several hints for the concrete im-
plementation were also detailed. In an extensive experimental part, the model
is tested in regard of the proposed properties. It turned out that the proposed
optical flow model behaves well for the considered test image sequences, while
it should be even faster than most of the other methods in an optimized wavelet
based implementation that takes advantage of wavelet additive operator split-
ting as given at the end of Chapter 8.

To close this summary, we should also point out some remarks to the aspect
of nonseparability, which was one of the original motivations for this research.
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The achieved improvements in comparison to separable methods turned out to
be of lower significance in the most numerical experiments. For this reason, we
have not put an according juxtaposition into the experimental part. Anyway,
there were slight improvements noticeable in most experiments and the reader is
also reminded of the optimization of discrete differentiation schemes in Chapter
6, where the nonseparability also yielded improvements. And despite from the
aspect of numerical and/or computational improvements, one should always
keep in mind that the nonseparable framework is the much more general and
flexible mathematical concept that already contains the separable case as a
subset. Even for this reason only, the usage of this more universal techniques
seems to be sensible.

10.2. Outlook
This thesis shall be closed by a vague look into the future. Many possible

future directions were already sketched during the running of the text at the
according places. Now, we should point explicitly on some of the more urgent
and especially desirable extensions to be realized.

There hasn’t been much research done in the area of nonseparable, multidi-
mensional wavelet theory so far. And the results achieved are only a first little
step in that direction, many questions still remain open. For example, it is still
unknown, whether there exist orthogonal wavelet families of increasing order
in higher dimensions as a generalization of the C¯��=)X���%�')!1�*# wavelets. The
answer to this questions would rely on the solution of certain polynomial factor-
ization results — as soon as these are accessible (which might happen tomorrow
or never), the existence problem would be solved. Another theoretical aspect
of interst is the paraunitary matrix completion in order to find associated finite
highpass filters for a non-dyadic lowpass scaling filter. Some special results
in this direction were achieved by KO� 9 J � � and co-workers, but the general
case is still unclear. Problems of this kind do no longer occur for tight wavelet
frames; the results by

24� � and
� ')�*� and those developed in this thesis make

wavelet frames of arbitrary order accessible.

From a more practical point of view, betterments in the numerical application
as well as in the implementation are a challenging future task. For example, the
introduction of novel discretization schemes, that could make use of sparsity
patterns in the wavelet-represented data sets, might lead to efficiency and/or
stability improvements. In the same context, we should also mention the lack
of software implementations of nonseparable wavelet algorithms — the clas-
sical tool packages like the MatLab B wavelet toolbox or the free WaveLab do
not provide code for nonseparable wavelet transformations. The development
of appropriate tools is strongly desired in order to improve nonseparable algo-
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rithms and to stimulate a greater number of researchers to work with these.

The implementation of nearly all up-to-date optical flow algorithms does not
fit through the bottleneck of being employed in real-time applications. One
might wait another five or six years till the available computers will be fast
enough to be capable of this. More interesting would be the parallel imple-
mentation of current algorithms, since most of them — especially the wavelet
based ones as the model proposed in this thesis — have an excellent potential
to be realized on parallel machines. Furthermore, general improvements of the
existing flow models are also desirable, e.g. it might be of interest to combine
the advantages of spatial and spectral models to solve problems like translu-
cency in a more satisfying way. Another critical point with existing models is
the choice of the free steering parameters. Some general rules for the (more
or less) automatic determination of optimal parameter choices are also desir-
able with regard to the application of optical flow algorithms in autonomous
machines.

So eine Arbeit wird eigentlich nie fertig,
man muß sie für fertig erklären,
wenn man nach Zeit und Umständen
das Möglichste getan hat.

— [&��à���Ò�Ò�m ���_^yÙD��ÒMÙ �M�DÒ Îÿ�DÐ�o�àMÐ





Appendix A
A Little Dictionary Of Wavelet Filters

Research is what I’m doing when I don’t know what I’m doing.
— m?Ð¤Ñ�ÒMàMÐ&Ñ ���DÒ5u�Ñ½���MÒ

In this appendix, we present a collection of some wavelet filters obtained under usage of the
methods developed in the first part of this thesis. In the upcoming part of this appendix, we
will give a number of orthogonal dyadic scaling filters, first for the onedimensional case, then
for the twodimensional quincunx case. Orthogonal filters play only a minor role with respect to
the applications this thesis addresses, but they are important for theirselves as a mathematical
prototype for the set of all wavelet filters. This shall be understood in the way that the design
problem for any tight wavelet frame filter is essentially the same as for orthogonal ones, only
the degree of allowed filters and unknown coefficients differs. The reader may compare the fun-
damental relations (4.1) and (4.19) to see this. Consequently, all the fundamental mathematical
problems occuring in the design of discrete wavelet filters may be studied and understood in
the orthogonal case. The second part of this appendix gives two examples of twodimensional
wavelet frames obtained by the generalized filter design methods for tight wavelet frames. These
frames are mainly used implicitly in the computer vision applications presented in the third part
of this work.

Orthogonal Filters
1D filters. Ý����MÞ Ð&ß½àMÚÜÐ&� orthogonal scaling filters derived from the basic filter concept

developed in Section 2.2. Notation of the basic filters corresponds to (2.20) and Ý indicates the
degree of the wavelet.Ý F à ( �O����Ñ scaling filter) E F à³ ¸ � ¬ K ®Ý F ³ (Classical Ý����MÞ Ð&ß½àMÚÜÐ&� , tap-4)E F àæ ¸ � ¬ K � K Ã Þæ ¸ � ® K °

191



192 Appendix A. A Little Dictionary Of Wavelet FiltersÝ F Þ ( Ý����MÞ Ð&ß½àMÚÜÐ&� , tap-6)E F àÞ�³ ¸ � ¬ K � Ka` ÅZK�³ Ã àkáÞ�³ ¸ � ® K � K Ã àkáÞm³ ¸ � ° K �Ý F Ä ( Ý����MÞ Ð&ß½àMÚÜÐ&� , tap-8)E F àà ³Hæ ¸ � ¬ K ~ K �à ³Hæ ¸ � ® K � K � ° H å³�ÅHß ¸ � ° K � K Ã ÞmÅà ³Hæ ¸ � ��K �
with� F àÃ Þcbd ¡û� �ce H ¡ ° ® ¡ ° K ³Ã å ¡ ® ¡�� K àÃ å ¡ ° ® ¡û� K ³ Ã ³vàÃ Å H Ã ÞÃ ÞmÅ ¡ ° ® ¡û� H Ä Ã ÞÃ ÞmÅ ¡ ® ¡û� H ¡ ® KÇà�Ä
fg
and the abbreviations ¡ ® F ±h à Å�ÄIK Ä�³ Ã à�Å¡ ° F àmàOH!ÞÀÃ à�ÅàcÄ¡û�WF h ¡ ® Kõå:K ¡ ° ® ¡ ° äÝ F Å ( Ý����MÞ Ð&ß½àMÚÜÐ&� , tap-10)E F àÅ	à ³ ¸ � ¬ K � K �Å	à ³ ¸ � ® K } K � ° H ãàká�³�Ä ¸ � ° K ~ K � � HÇà]æ � ° H ß�ÞZK�³�Ä
Ã àcÄÄÀá ã ß � ¸ � ��K � K Ã à ³HßÅ	à ³ ¸ � �!K �
with� F � ã K�³ ¡ ° � ³ ª ¡ ° ® ¡ °à]ámá K�³mÄSK à�³ Ã àcÄYH ¡ ® K àkß ¡ °Å K Ã à�Ä ¡ ® ¡ °³�á H ¡ ° ® ¡ °Þ�á�á K å · Ã à Å ¡ ° ® ¡ °ÞHámá Kà�³1Ã àcÄ ¡ °Å H Þ ¡ ® ¡ °Å H · Ã ³vàká ¡ ° ® ¡ °Þ�á�á H Þ · Ã ³vàká ¡ ® ¡ °àká�á K ¡ ° ®àkß K å · Ã à Å ¡ ° ®³�ÄÀá K å · Ã à�Å ¡ ® ¡ °å Å ¯ gl � gl
and the abbreviations¡ ® F ±h H@³�³�ÅZKÇàká�Å · Ã à Å¡ ° F e ß Ã àcÄYKÇà�³ZH å · Ã à Å³�ÄÀá ¡ ° ® H àà]ß ¡ ° ® K ¡ ® ä

Such closed form descriptions were conjectured to be inaccessible for Ý µþÞ by several au-
thors (e.g. [184]), but under application of the basic filter framework, at least the cases Ý F Ä�É�Å
are still feasible as seen above. Similar closed form descriptions can also be found for onedi-
mensional coiflet filters up till filter length 12.

2D quincunx filters. These can be viewed as the twodimensional analogues to the Ý����MÞ¤Ð¤ß½àMÚáÐ¤�
filters; they were obtained using Lemma 4.2. Again, Ý denotes the degree of the filters.Ý F à (2D- �O����Ñ scaling filter, same as in 1D)E Fji ®° ®°
k



Appendix A. A Little Dictionary Of Wavelet Filters 193Ý F ³ ( ÷L�	�t�mlß½ÐÀ�DÚ_nßlsø¶LÐ�ogo�Ð&Ñ��TÚ scaling filter [127])E F!opq � 8 � Æ �® � � 8 Æ �® �Q ® Q Æ �® � � 8 Æ �® � ��Q Æ �® � Q ® 8 Æ �® ���Q Æ �® � �cQB� Æ �® � r stÝ F Þ (New higher order scaling filter consisting of 20 taps — unaccessible before. Filter
is given componentwise to fit on page)E ��K �WF Þ	àOH�Å ¡vu HZw ¡;x K�Å ¡ � K¼Ä ¡vu�¡yx H ¡vu�¡ � Kõå ¡;x¸¡ � H�³ ¡vu�¡yx¸¡ �³�ÅHßE �!K �WF HîÅmKÇàmà ¡ u H�³Àå ¡ x KÇà�Å ¡û� KÇà ³ ¡ u ¡ x H!Þ ¡ u ¡û� H�Å ¡ x ¡û� K�³ ¡ u ¡ x ¡û�³�Å�ßE � K �WF Hî³mÅ�ÅZK æHå ¡ u K à�³�Å ¡ x H Ä�Å ¡û� H!ÞHæ ¡ u ¡ x KÇà�Å ¡ u ¡û� Hõå Å ¡ x ¡û� K�³mÄ ¡ u ¡ x ¡û�³�Å�ßE �"K � F æ�ÅZH�³zw ¡ u KÇà�Ä�Þ ¡ x H�ÅmÅ ¡û� H�³HÞ ¡ u ¡ x KÇàtå ¡ u ¡û� K¼³mÅ ¡ x ¡û� H æ ¡ u ¡ x ¡û�³�ÅHßE x K �\F HîÅ�å£K ³mÄ ¡vu K�ÅÀå ¡yx H�³	à ¡ � HÇà Å ¡vu<¡yx K!ß ¡vu<¡ � HÇà]å ¡yx®¡ � K�Å ¡vu�¡yx ¡ �ÞHætÄE ��K �\F àkÞ�ÅSHÇàkæ ¡ u KZw_w ¡ x H!Þ�Å ¡û� H�³Àå ¡ u ¡ x K æ ¡ u ¡û� K�³Àå ¡ x ¡û� HZw ¡ u ¡ x ¡��ÞHætÄE �!K �\F ³�á ³�ÅSH!ß�³	à ¡ u H àkÞ{w Å ¡ x K�Å�Å�Å ¡û� K¼Ä�Å�á ¡ u ¡ x HÇà]å�å ¡ u ¡�� K ÅmÄ5à ¡ x ¡�� HÇàtå ³ ¡ u ¡ x ¡û�åmß�æE � K � F Hrà�³Àå ÅZK!Þ_w_w ¡ u HÇà�ÄzwHå ¡ x K�Å�æ Å ¡û� K¼Ä1å]Ä ¡ u ¡ x HÇà]æ�Þ ¡ u ¡û� H!Þ{w1à ¡ x ¡û� KÇà ³�Ä ¡ u ¡ x ¡û�åmßmæE �"K �\F Hrà ÞmÅZK�³Àå ¡|u K Ä�Å ¡yx H�³�Å ¡ � HÇàkæ ¡vu�¡yx Kõå ¡vue¡ � H!Þ_w ¡yx¸¡ � KÇà�³ ¡vu<¡yx ¡ �å�ß�æE ~ K �\F ÄHÅZHZw ¡ u K ß�Þ ¡ x H�³Àå ¡�� HÇàkæ ¡ u ¡ x KZw ¡ u ¡�� KÇà Þ ¡ x ¡û� H Ä ¡ u ¡ x ¡û�åmß�æE u K x F ÄHÅZHZw ¡ u H ß�Þ ¡ x K�³Àå ¡�� KÇàkæ ¡ u ¡ x HZw ¡ u ¡�� KÇà Þ ¡ x ¡û� H Ä ¡ u ¡ x ¡û�åmß�æE x K x\F Hrà ÞmÅZK�³Àå ¡ u H Ä�Å ¡ x K�³�Å ¡�� KÇàkæ ¡ u ¡ x Hõå ¡ u ¡�� H!Þ_w ¡ x ¡û� KÇà�³ ¡ u ¡ x ¡û�å�ß�æE ��K x F Hrà�³Àå ÅZK!Þ_w_w ¡vu KÇà�ÄzwHå ¡;x H�Å�æ Å ¡ � H¼Ä1å]Ä ¡vu<¡yx KÇà]æ�Þ ¡vu<¡ � H!Þ{w1à ¡yx®¡ � KÇà ³�Ä ¡vu<¡yx¸¡ �åmßmæE �!K x F ³�á ³�ÅSH!ß�³	à ¡ u K àkÞ{w Å ¡ x H�Å�Å�Å ¡û� H¼Ä�Å�á ¡ u ¡ x KÇà]å�å ¡ u ¡�� K ÅmÄ5à ¡ x ¡�� HÇàtå ³ ¡ u ¡ x ¡û�åmß�æE � K x F àkÞ�ÅSHÇàkæ ¡ u KZw_w ¡ x K!Þ�Å ¡û� K�³Àå ¡ u ¡ x H æ ¡ u ¡û� K�³Àå ¡ x ¡û� HZw ¡ u ¡ x ¡��ÞHætÄE �"K x\F HîÅ�å£K ³mÄ ¡ u H�ÅÀå ¡ x K�³	à ¡û� KÇà Å ¡ u ¡ x H!ß ¡ u ¡û� HÇà]å ¡ x ¡û� K�Å ¡ u ¡ x ¡��ÞHætÄE x K u F æ�ÅZH�³zw ¡vu HÇà�Ä�Þ ¡yx K�ÅmÅ ¡ � K�³HÞ ¡|ue¡yx HÇàtå ¡vu<¡ � K¼³mÅ ¡yx®¡ � H æ ¡vue¡;x ¡ �³�ÅHßE ��K u F Hî³mÅ�ÅZK æHå ¡ u H à�³�Å ¡ x K Ä�Å ¡û� K!ÞHæ ¡ u ¡ x HÇà�Å ¡ u ¡û� Hõå Å ¡ x ¡û� K�³mÄ ¡ u ¡ x ¡û�³�Å�ßE �!K u F HîÅmKÇàmà ¡ u K�³Àå ¡ x HÇà�Å ¡û� HÇà ³ ¡ u ¡ x K!Þ ¡ u ¡û� H�Å ¡ x ¡û� K�³ ¡ u ¡ x ¡û�³�Å�ßE � K uïF Þ	àOH�Å ¡ u KZw ¡ x H�Å ¡û� H¼Ä ¡ u ¡ x K ¡ u ¡û� Kõå ¡ x ¡�� H�³ ¡ u ¡ x ¡û�³�ÅHß
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with the shortcomings ¡ u F Ã àká¡ x F h ÅmK�³ Ã àká¡��\F h àtå:K æ Ã à]áîä
Hereby, the filter coefficients are arranged as followsE F oppq E ��K � E �!K � E � K � E �"K �E x K � E ��K � E �!K � E � K � E �"K � E ~ K �E u K x E x K x E ��K x E �!K x E � K x E �"K xE x K u E ��K u E �!K u E � K u r sst ä

This latter example is the first algebraically given third order quincunx scaling filter published
so far (at least to the authors best knowledge). Such filters are usually very hard to obtain due
to the high computational complexity of the design procedure. The complexity reduction could
be achieved under application of Lemma 4.2 and the conjunction of various design principles.
Again, it is possible to derive coiflet filters of similar order, see e.g. Example 4 in Chapter 4.

Filters For Tight Wavelet Frames
In this section, we will present two filter sets leading to tight wavelet frames with frame boundà . These examples shall illustrate the capabilities of the mechanisms developed in the section

about multidimensional filter design possibilities for tight wavelet frames.

2D tight frame for regular sampling matrix. Constructed via the subfilter method of
Lemma 4.3. All wavelets have three vanishing moments and are in ` x . This frame is implicitly
used in all the experiments executed in the third part of this work.

E F àß Ä oppq à Þ Þ àÞ}w}w ÞÞ}w}w Þà Þ Þ à
r sst

� u F àà ³Hæ oppq àkÞmH!Þ Ã Å Þ£K!Þ Ã Å H Þ£H!Þ Ã Å H�àkÞmK!Þ Ã ÅÞmK!Þ Ã Å H Þ£H!Þ Ã Å Þ£K!Þ Ã Å HîÞmH!Þ Ã ÅÞmK!ÞÀÃ Å H Þ£H!Þ�Ã Å Þ£K!ÞÀÃ Å HîÞmH!ÞÀÃ ÅàkÞmH!Þ Ã Å Þ£K!Þ Ã Å H Þ£H!Þ Ã Å H�àkÞmK!Þ Ã Å r
sst

� x F àà ³Hæ oppq HràkÞmK!Þ Ã Å HîÞ£H!Þ Ã Å H Þ£H!Þ Ã Å HràkÞmK!Þ Ã ÅH ÞmH!ÞÀÃ Å Þ£K!ÞÀÃ Å H Þ£H!Þ�Ã Å ÞmK�ÞÀÃ ÅH ÞmH!Þ Ã Å Þ£K!Þ Ã Å H Þ£H!Þ Ã Å ÞmK�Þ Ã ÅàkÞmH!Þ Ã Å Þ£K!Þ Ã Å H Þ£H!Þ Ã Å HràkÞmK!Þ Ã Å r
sst

� � F àà ³Hæ oppq á á Þ�Ã ß£HþÃ ÞHá H Þ�Ã ß£KõÃ Þ�áá á àkÞ Ã ß:K Ã ÞHá Þ Ã ß£H Ã ÞHáH ÞÀÃ ßmKþÃ ÞHá HràkÞ�Ã ß£HþÃ ÞHá á áÞ Ã ß:H Ã Þ�á H Þ Ã ß£K Ã ÞHá á á
r sst
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� � F àà ³Hæ oppq H Þ Ã ß:K Ã ÞHá Þ Ã ß:H Ã ÞHá á áÞÀÃ ß£HõÃ ÞHá àkÞ�Ã ßmK Ã ÞHá á áá á Hrà Þ Ã ß£H Ã Þ�á HîÞ Ã ß:K Ã Þ�áá á H Þ Ã ß:K Ã ÞHá Þ Ã ß:H Ã ÞHá r sst
� � F àß Ä oppq Ä Ã Þ£H Ã à Å Ã à�Å Ã à�Å Ä Ã ÞmH Ã à ÅÃ à�Å H@Ä Ã ÞmH Ã à Å H@Ä Ã Þ£H Ã à�Å Ã à�ÅÃ à�Å H@Ä1Ã ÞmHþÃ à Å H@Ä1Ã Þ£HþÃ à�Å Ã à�ÅÄ Ã Þ£H Ã à Å Ã à�Å Ã à�Å Ä Ã ÞmH Ã à Å r

sst
� � F àà ³Hæ oppq H Þ Ã Þ£K Ã à Å Þ Ã Þ£H Ã à Å HîÞ Ã Þ£K Ã à�Å Þ Ã ÞmH Ã à�ÅÞÀÃ ÞmHõÃ à Å àkÞ�Ã ÞmKõÃ à Å H�àkÞÀÃ Þ£HþÃ à Å H ÞÀÃ ÞZKþÃ à ÅH Þ Ã Þ£K Ã à Å Hrà Þ Ã Þ£H Ã à�Å à Þ Ã Þ£K Ã à�Å Þ Ã ÞmH Ã à�ÅÞ Ã ÞmH Ã à Å H Þ Ã Þ£K Ã à Å Þ Ã Þ£H Ã à�Å H Þ Ã ÞZK Ã à Å r

sst
� ~ F àà ³Hæ oppq àkÞmH�Þ�Ã Å ÞmK!ÞÀÃ Å HîÞZH!Þ�Ã Å Hrà ÞZK!Þ�Ã ÅÞ£K!Þ Ã Å H ÞmH�Þ Ã Å ÞmK!Þ Ã Å H Þ£H!Þ Ã ÅH Þ£H!Þ Ã Å ÞmK!Þ Ã Å HîÞZH!Þ Ã Å Þ£K!Þ Ã ÅHràkÞ£K!Þ�Ã Å H ÞmH�ÞÀÃ Å ÞmK!Þ�Ã Å àkÞmH!Þ�Ã Å r sst
The attentive reader may have registered that the lowpass filter of this frame is spatially sepa-

rable. But this does not contradict the philosophy of this thesis, since the corresponding highpass
filters (which eventually describe structures in the considered data) are all nonseparable and built
in such a way that they guarantee a possibly close-to-isotropic processing. In this example, we
chose a separable lowpass filter, because this gave the best regularity and isotropy properties for
the corresponding scaling function.

Figure A.1. Frame functions
E

, � u , � � and � � from the previous example.
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Second example. To demonstrate the working way of Theorem 4.13 and Lemma 4.14,
consider the (quincunx) dyadic orthogonal filter setE F ¿ á � ��t} ~x �H �x � u ��t} á Â� F ¿ á u ��]} �x �~x � H � ��t} á Â ä
The filter coefficients were chosen in such a way that the transfer function of the scaling filter is
as symmetric as possible. In order to get a (partially) symmetric tight wavelet frame from this
orthogonal family, we can apply Lemma 4.14 yielding the new filters

˜E F oq á á � x ��]� ��� á H x_u} � uá u ¬�¬} � u ux u ¬�¬} � u áH x_u} � u á � x ��]� ��� á á rt
˜� u F oq á á H u-x~x ��k� ��� Ã ³ á � �} � u Ã ³á u ¬ �} � u Ã ³ á u ¬ �} � u Ã ³ áH �} � u Ã ³ á x~x ��]� ��� á á rt
˜� x F oq á á H � x ��]�t��� á x_u} � uá H u ¬�¬} � u ux H u ¬d¬} � u áx�u} � u á H � x ��]�t��� á á rt ä

As stated in Lemma 4.14, the scaling filter is obviously interpolating and this one as well as one
of the highpass filters are indeed symmetric. Moreover, it can be shown that while the starting
filter gave wavelets which are not even continuous, this new frame reaches a smoothness order
of Ò|V�á
ä å�åtÅ{ä]ätä in terms of the critical � ø�������?� exponent.
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Function Spaces

Although our last, not least!
— m�� �_� �C�6� Ç����K� �?� Ð � � ��� [206]

In this appendix, the definitions and some basic facts about the function spaces used through-
out this thesis are collected. We focus ourselves to those properties that are necessary to supple-
ment the investigations within this thesis. For a complete presentation of function spaces theory,
the reader may consider [221] [222].

The j �?���?�A�P��� spaces L z ÆF��Ë . Let ���Õà be any real number and � ± Ù�� . For all
functions °��������ñÙZ�¡  �£¢¥¤ , we introduce the pseudo-norm¦ ° ¦O§z F ªG¨ ½ e � °"Æ �Ç~Ë � z ° �Ç ¯ u õ zª© Ùv«¬�M  ¢­¤ ä (B.1)

It is an easy task to verify that all locally integrable functions ° with
¦ ° ¦ §z¯® ¢ form a vector

space which will be denoted by ° §z . Then, the setá F²± ° © ° §z ¬¬ ¦ ° ¦ §z F ám³
consisting of all functions of zero measure, is a vector subspace of ° §z . Now, we define the
quotient

L z ÆF� Ë F ° §z�´ á¤ä (B.2)

The pseudo-norm
¦ ° ¦ §z induces a norm on the space L z�µ �W¶ which will be denoted

¦ ° ¦ L < .
Equipped with this norm, L z�µ �¬¶ becomes a ·¸�6¹���º�� space. For the special case � F ³ , we
define a scalar product » ° u_¼ ° x¾½ F ¨@© ° u µ �¿ ¶ ¸ ° x µ �¿ ¶ ° �¿ ¼
which makes L x µ �W¶ a �À� �����?�{Á space with

¦ ° ¦ xL l F » ° ¼ ° ½ . It is exactly this ��� �_�G�G�{Á space
property involving several further features (e.g. the Â6� ���A� �z� � relation) which makes the space
L x the best suited fundamental space to do harmonic analysis and signal processing.

197
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The �»ø�6�_�6�?� spaces `yÃ µ �W¶ . For Ä ©1Å ¼ `�Æ µ �¬¶ shall denote the well-known class
of bounded, continuous functions ° on � ± Ù � having Ä continuous derivatives Ç -È -É ° with� �È �X  Ä . This definition may be generalized to non-integer smoothness exponents J F Ä[KËÊ
with á ® Ê   à in the following manner. LetÌ µ ° ¼ E ¶ F sup ±�� ° µ �¿ u ¶�H!° µ �¿ x ¶ � � � �¿ u H �¿ x ��  E ³ (B.3)

denote the modulus of continuity. The � ø�6�_�6�G� spaces ` Ã µ �¬¶ are then defined by` Ã µ �¬¶ F ± °v�O�&�ñÙ&� Ì µ Ç -È -ÉH° ¼ E ¶   ö ¸ E¾ÍyÎ � �È �]  Ä ³ ä (B.4)

Endowed with the norm¦ ° ¦�Ï 
�f�Ð F �Ñ � � -È � � Æ ¦ Ç -È -É�° ¦�Ò K supÆ�Ó � -È � Ô Æ µ Ì µ Ç -È -É�° ¼ E ¶ ¸ E;Í ¼ (B.5)` Ã µ �¬¶ becomes a ·m��¹���º�� space. For Ê F á , this definition is inadequate and we must replace
the classical continuity classes by the ÕB� � � � ¹ � classes which are defined as above but use the
following varied modulus of continuity

˜Ì µ ° ¼ E ¶ F sup ± � ° µ �¿ u K �¿ x ¶�K ° µ �¿ u H �¿ x ¶DH¼³ ¸ ° µ �¿ u ¶ � � � �¿ u H �¿ x ��  E ³ ä
In this thesis, �»ø�������?� spaces are only implicitly used to measure the smoothness of several
wavelets designed by the developed methods. But there is in fact much more to do with them, for
example it is possible to measure the � ø�������?� smoothness of any function only by considering
its wavelet coefficients [157] or to embed them into (for us more interesting) Ö �6���6�_� � spaces,
see below.

The generalized Ö �6���6�_� � spaces W Æz µ �¬¶ . In order to combine the capacities of × �G�G�G�~�P���
spaces and smoothness spaces, we define the generalized Ö ���G����� � spaces

W Æz µ �¬¶ F²± °Ø��Ç -È -É ° © L z µ �W¶ Î á  ¦� �È ��  ÄÀ³;ä (B.6)

Sometimes, these are also called Ö �6���6�_� ��Ù-Ö �_�6���6��� ºv�6�ÛÚ spaces in the mathematical literature.
They can be supplied with the norm¦ ° ¦ W 
< F bd ¨@© �Ñ � � -È � � Æ � Ç -È -É�° µ ¿ ¶ � z ° ¿ fg uTÜ zä (B.7)

An equivalent norm is given by¦ ° ¦ W Ð< F ¥¥¥ µ à�K � �Ì � x ¶ Í Ü~x ¸ � º° µ �Ì ¶ � ¥¥¥ L < ¼ (B.8)

which makes the generalization to non-integer smoothness exponents as well as the extension to
negative smoothness exponents straightforward; both issues are not detailed any further here.Â �G� Ð �6� � Á � � ¹¥·ÞÝ É The following inclusions are valid:

1 W
Í «�üz µ �W¶ê± W

Íz µ �¬¶ for all Êß� á and �à� á .
2 W

Íz µ �W¶ê±&`�Æ µ �W¶ for ÊZµ Ý¾á �LKXÄ and Ä ©âÅ Ñ .

3 W
Í « u «yãÒ µ �¬¶�± W

Íu µ �W¶ê±&` Í µ �W¶ for ä µ á .
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4 ° © ` Í µ �¬¶�ä ° © W
ÍÒ µ �W¶ if ° is compactly supported.

The following lemma is very useful for solutions of partial differential equations or regularization
of ill-posed problems.× � �|�|�X·åÝ Ñ The spaces W

Íx µ �¬¶ and W æ Íx µ �W¶ are dual spaces associated to the standard L x
inner product for all Ê © Ù .

The · �?�A� � spaces B
Íz Ó � µ �W¶ . For ç ©ËÅ and �È © Ù � we define the ç -th difference of a

function ° as ° Ô -È ° µ �¿ ¶ F Ô�Æ Ô Ñ � çÄ � ¸ µ Hrà�¶ Æ ¸ ° µ �¿ KXÄU�È ¶ ¼
which is defined on the set � µ ç ¼ � È ¶ F ± �¿ © �a� �¿ K ç ¸ �È © � ³ ä
Generalizing (B.3), we set the ç -th L z µ �W¶ modulus of smoothness for á ® �   ¢ toÌ µ ° ¼ E ¼ ç ¼ ��¶ F sup� -È � � Æ ¦ ° Ô-È ° µ �¿ ¶ ¦ L < [ © [ Ô Ó -È \)\ ä (B.9)

Given ÊRµ á and à   � ¼ Ì   ¢ , choose ç ©XÅ such that ç H�à   Ê ® ç . Then, the · �?�A� �
space B

Íz Ó � µ �¬¶ can be defined by the norm¦ ° ¦ B Ð< j=ç F ¦ ° ¦ L < Kéè ¨ ÒÑ µ E æ Íyê Ì µ4ë ¼ E ¼ ç ¼ ��¶-¶ � ° EEcì uTÜ � ä (B.10)

This technical definition can be understood in the following way: B
Íz Ó � µ �¬¶ is the space of L z

functions having Ê derivatives such that the finite differences of ë for each scale may be controlled
by l
�

sequences. As before, the definition can be extended such that the smoothness exponent Ê
can also attain negative values. · �G�A��í spaces can be related to Ö �6���6�_�zí and �Îø�������?� spaces
in the following way.× � �|�|�X·åÝ8î Let à   � ® ¢ . Then W

Íz µ �¬¶ F B
Íz Ó z µ �¬¶ and ` Í µ �¬¶ F B

ÍÒ Ó Ò µ �¬¶ hold
true.Â �G� Ð �6� � Á � � ¹¥·ÞÝ ï¥ð�ñ ï�òôóöõ Given a tight wavelet frame ÷ for L x µ �¬¶ built from a dilation
matrix Q, having at least � µøÊ vanishing moments such that ù © B üz Ó � µ �¬¶ for all ù © ÷ and�Nµ�Ê , we have the following norm equivalence measured in terms of the wavelet coefficients, È Ó ú-Æ FQû © ù È Ó -Æ ê ë¦ ë ¦ B Ð<�ü ç2ý � � , Ñ Ó=þ � � Ü z K � È ª � -Æ Ó ú � det Q � È §Cÿ z æ x�� « È § Í § z ê � , È Ó ú-Æ � z ¯ � Ü z � uTÜ � � (B.11)

It is an easy task to show that B
Íz Ó z µ �W¶ is embedded in L x µ �W¶ for Ê ê ��K¬��H�� ��� . Obvi-

ously, the characterization (B.11) becomes especially simple for the spaces with � F Ì , since
this decouples the norm estimates within the scales. Another case of special interest in prac-
tice is � F Ê F�� ; the reason will be given in Lemma B.5. · �?�A��í spaces can be further
generalized to the wavelet oscillation spaces O

Í
	 Ó Í��z introduced by [
��
�
�� ��� for detailed sin-
gularity investigations within the wavelet domain [115]; these spaces will not be considered here.
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All the spaces we have presented so far have one thing in common: they may be completely
characterized by wavelet coefficients as in (B.11) and this property makes these spaces especially
comfortable to work with them in the wavelet domain. But on the other hand, for applications
in computer vision, other function spaces, which do not share this pleasant property, also play
an important role. A particular space of this kind will be defined now.

The space BV µ �W¶ . Given any function ë © L u µ �W¶ , its variation is defined by

� © µ4ë ¶ F ¨ © � . ë�µ �¿ ¶ � ° �¿ ¼ (B.12)

where the gradient operator is understood in a distributional sense. The space of bounded
variation BV µ �¬¶ is thus the space of all L u µ �W¶ -functions such that

� © µ4ë ¶ ® ¢ . Since (B.12)
only induces a semi-norm, BV µ �W¶ becomes a ·¸�6¹���º�� space endowed with the norm¦ ë ¦ BV ÿ © � F ¦ ë ¦ L 	 ÿ © � K � © µ4ë ¶ � (B.13)

An issue of practical interest in image processing is, whether a function space contains non-
continuous functions to e.g. recover edges in images and simultaneously smoothen in areas of
lower variation. While the nice · �G�~��í spaces of type B uu Ó � µ �¬¶ do not have this property, such
functions are admissible in BV µ �¬¶ . However, BV µ �W¶ is at least close to · �?�A��í spaces in the
following sense.× � �|�|�X·åÝ�� B uu Ó u µ �W¶ê± BV µ �¬¶ê± B uu Ó Ò µ �W¶ .
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Birkhäuser, Basel. �+�!A� .

[222] ; � � �G�G�G�,� �£�6¹ � Theory of Function Spaces II. Monographs in Mathematics, 84.
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