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Abstract

This diploma thesis is an extension of the matching model proposed in
Dense Image Point Matching through Propagation of Local Constraints (see
[1]), where C. Perwass and G. Sommer develop an iterative algorithm, which
computes the most probable correspondence for each pixel between two sim-
ilar images. Initialized with pixel (e.g. color) similarity, the algorithm accu-
mulates global information by iterated application of a local constraint, that
demands similar displacements of neighboring pixels.

The probability model is now refined further, so that it takes occlusions
into account and integrates their influence on match probability into the
assumed distributions. Additionally, the explicit detection of half-occluded
pixels evolves from this model by exploiting bidirectional correspondence in-
formation. Since half-occluded pixels usually occur at depth discontinuities,
which are often smoothed by matching algorithms, the new derivation uses
occlusion probability to sharpen flow fields at depth discontinuities.

The general model is then adapted to two main applications for matching,
which are computation of stereo disparity and optic flow, where advantage
is taken of the expected structure of the image data. For these scenarios,
an algorithm is developed, which does no longer depend on accurate a priori
information about where correspondences should be searched and how large
the search area for a particular image pair should be.
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Chapter 1

Introduction

1.1 Matching in Computer Vision

By taking advantage of the two slightly different perspectives of his eyes
or by moving (even with only one eye open), a human is able to obtain
a three-dimensional impression of the environment, to recognize particular
structures as belonging together or to track objects moving through space.
The three-dimensional perception and the estimation of depth becomes possi-
ble, because the appearance of objects close to the spectator is very sensitive
to movement or small perspective differences (as of the eyes), while size and
position of objects far away look nearly unchanged.

Realizing that, in particular computer vision research fields one tries to
obtain spatial information by taking advantage of the displacement of certain
objects regarding some corresponding images. However, in order to compute
or measure these changes between similar images of the same scene, corre-
sponding points have to be searched in the images, which are 2d-projections
of the same entity in 3d-space. Classifying points of different images as
referring to each other in this way is called the Correspondence Problem.
Most matching algorithms try to find these correspondences by using the raw
or somehow preprocessed image signal, but usually without deep semantic
knowledge about the scene. Having gathered information about many cor-
respondences in the images, high level applications can obtain spatial data
about the scene and make their respective conclusions, e.g. about positions
or movements of objects or cameras. This information can then be used for
navigation, grasping and tracking purposes or for other problems depending
on visually supervised interaction with the environment.

Matching algorithms can roughly be divided into two groups regarding
their strategy: There are feature matching methods on the one hand (as
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e.g. [7] or [8]), which search correspondences only for some characteristic
points, e.g. at contour lines or corners. The properties of these characteristic
points are assumed to be invariant in some way and therefore these points
(as the projections of so called “features”) are expected to be matchable very
robustly. Hence, these algorithms usually need a preprocessing step, which
extracts these features in both images. For areas between these characteristic
points, correspondence information is either not used or interpolated.

On the other hand there are dense pixel match algorithms which try to
get the most probable correspondence for every pixel in the image, e.g. by
making use of statistical correlations (like in [13]) or evaluation of analytic
models of the image data (as in [10]), even for regions where there is only
sparse structural information. Using the statistical correlation approach,
authors usually assume some defined region around the pixel to be matched
(a so called window) to be similar in the other image. That is, the window
is compared to all windows in the target region using correlation functions
from signal theory. Then the window with the highest similarity is assumed
to be the correct match. The main problem here is to find an appropriate
window size, where the compared area is large enough to be significant but
small enough to be invariant. Usually additional assumptions (e.g. on the
scale of the image) are imposed to constrain the matching even further. Some
authors propose that the correspondence problem can be compared in that
case to some minimization processes in nature, e.g. to the problem of finding
the minimum energy for some crystal structure or molecule (see [25]).

A slightly different approach is chosen in bayesian information diffusion
algorithms (as in [20]), where the global solution is not searched explicitly as
a whole. Instead, one expects to approximate a good solution by propagating
information in parallel from single pixels to neighborhoods and finally to the
whole image. Here, a large group of authors has been influenced by the work
of Marr and Poggio (see [11]), who have related results from neurophysiology
of the human visual system to the nature of the stereo correspondence prob-
lem in computer vision. This has resulted in an iterative and highly parallel
algorithm for stereo matching, based only on some local constraints, which
propagate through interaction between neighboring pixels at iteration steps.
These constraints are uniqueness and continuity. The first states - roughly
speaking - that each pixel is a projection of some physical object and thus
can only have one displacement into the other image, while the matching
pixel must be assigned an inverse displacement, since it is a projection of the
same physical object. The second assumption is based on the observation
that surfaces of objects usually change only smoothly and thus demands a
continuous displacement field almost everywhere, that is, neighboring pixels
are expected to have similar displacements.



Regardless of the strategy a matching algorithm uses, there are some main
problems in matching which will briefly be explained now.

e Invariance: The crucial question in matching is: Which properties are
invariant under which circumstances? An objective general criterion
is hard to find and seems to be application specific. Shape changes
with perspective, surfaces look different from another angle, color and
intensity change with illumination, similar problems occur for most
properties or features.

e Noise and Errors: Due to environmental influence in the scene, camera
inaccuracy and other measurement errors, the image data can be dis-
turbed. There may be no exact color equality for corresponding points
and correspondences may lie at subpixel positions. Algorithms should
be robust enough to handle this noise on the images in order to prevent
ambiguous or wrong matching results.

e Aperture Problem: Many matching algorithms use local operators or
local invariance assumptions to match small areas or pixels between
the images. Due to the algorithms’ “local view”, different match can-
didates may be equally likely. As an example, some image regions may
locally have an intrinsically one-dimensional structure (or no at all), as
for instance an edge with no corner nearby. Local knowledge may be
insufficient to match these areas, because there is no information in the
direction of the edge. Thus many matches can become equally likely.
The true one can only be found by enlarging the area under inspection
and therefore using more and more global knowledge. Apart from of-
ten dramatically increasing computational complexity for large region
matching, most models assume only small structures to be invariant
(local invariance), which conflicts with a matching of larger regions.
Additionally, large regions are more likely to contain depth discontinu-
ities, where similarity between the images cannot be assumed.

e Depth Discontinuities: Most regions in natural images are continuous.
That means, depth changes only smoothly in those regions. Therefore it
may be a good assumption that neighboring pixels should have similar
displacements, which is quite essential for most matching algorithms.
Only at the region borders (e.g. boundaries of objects) there are cuts in
the depth maps. Since there is no semantic understanding of the image,
the positions of object boundaries are not known and thus the depth
discontinuities violate the smoothness assumption locally. Additionally,
at depth discontinuities objects in the foreground often occlude objects
in the background, which can disturb similarity even more.



Figure 1.1: Problems in Matching: Occlusion and Depth Discontinuities
(Rear Wheel), Noise and Invariance (Door Handle), Aperture Problem
(Lower Window Edge)

e Occlusion and Borders: In presence of depth discontinuities there are
often pixels in one image which do not have a correspondence in the
other image. Usually these pixels belong to an object in the back-
ground, which is (partly) hidden by an object in the foreground. Such
pixels are called half-occluded or simply occluded, since pixels that can-
not be seen in any image are disregarded anyway. A problem very sim-
ilar to occlusion occurs at the image borders, where correspondences
sometimes lie outside the image and therefore pixels cannot be matched.
There is simply no information available beyond the borders.

Some of the problems can be seen in figure (1.1), which shows a small sec-
tion of a slightly altered artificial scene from the street sequence'. The left
image shows the scene, the middle image is an enlarged part of it with depth
discontinuities and the right image shows the same section (referring to pixel
coordinates) of a subsequent image. Some noise has been added, which is
usually unavoidable in natural images. Occluded areas are the rear wheel
of the car and parts of the background. Due to the noise, RGB colors are
not absolutely invariant over the images and due to the low resolution the
door handle appears quite noticably different. The aperture problem can be
seen at the lower part of the car door, where local information is very sparse
due to low contrast, making several matches equally likely. At the lower
edge of the window, there is certainty about the vertical position of possi-
ble matches, but it is nothing known about the correct horizontal position,
unless one takes into account larger neighborhoods, which include horizontal
structure.

!The street sequence is an artificial image sequence with ground truth from the Uni-
versity of Otago, New Zealand. For more information, please refer to [6].
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1.2 Optic Flow and Stereo Disparity

Using knowledge about how the images have been created can reduce com-
plexity and make the matching process more robust and accurate. Most
algorithms are designed for special geometries, where two main groups can
be distinguished, though there are some other applications and some general
algorithms that try not to use additional constraints about image creation.
Algorithms taking advantage of different perspectives of cameras, which si-
multaneously take images of a scene, are called stereo algorithms, while those
using a time series of images of the same camera are often called optic flow
algorithms.

The expression optic flow is an idea borrowed from hydrodynamics, where
flow models based on the movement of very small fluid volumes have been
applied succesfully for a long time in current analyzation. Analogously, in
image processing pixels can be treated as smallest picture elements which
flow (or move) across the image plane, as is pointed out in the well-known
paper of Horn and Schunck [10]. The displacement field of corresponding
pixels between images of a time series is then called the optic flow. Taking
advantage of the knowledge that the images to be matched are subsequent
frames of such a series, additional constraints on the data can be imposed,
simplifying and stabilizing the general matching algorithm. A common as-
sumption is that the camera grabs images very frequently, while changes in
the scene take place only slowly. Consequently, movements (and optic flow)
between two subsequent images are minor and velocity can be assumed to
be constant over some images.

In stereo matching one tries to relate pixels from an image of camera A
with pixels of an image of some other camera B to get three-dimensional
information of the scene, which both cameras show. A common geometry
is that the optical axes of the cameras used are (nearly) parallel, the image
planes lie in the same plane in 3d-space, and the image lines are parallel to
the baseline of both cameras, such that the displacements of pixels between
left and right image are only horizontal. In stereo matching applications this
displacement is called disparity. If there are objects in the scene quite near
to the cameras (compared to the distance of the cameras), large disparity
variations between these objects and the background or other objects may
occur. A good stereo algorithm has to cope with these variations, which may
be easier to handle, if one matches over a scale pyramid, starting with images
of a heavily reduced size, e.g. as Barnard shows in [25].

Many approaches to the stereo matching problem simplify the environ-
ment and use fixed reference points, which can then be found easily in all
images, remove the background, use objects with different colors and so on.



The exact knowledge of camera geometry reduces the search space to one
dimension, since a point in image A has to lie on a line in image B and the
only remaining degree of freedom is the depth of the point in space. Using
more information about the scene under inspection can lead to more stable
and exact results. However, integrating additional knowledge deeply into an
algorithm means that it can only be applied succesfully to such scenes, which
means a loss of generality. Hence, the model of this thesis is always based
on unknown camera parameters, though an adaptation for rectified stereo
images is quite simple, as has already been shown in [1].

1.3 Previous Matching Model

The model derived by Perwass et al. (see [1]) uses a statistical approach to
match every pixel of image A to a pixel (or subpixel position) of image B,
it is therefore a dense point matching strategy. The correspondences are
not calculated explicitly but by application of an iterative algorithm to some
region of candidate pixels, in which each pixel is assigned a match probability.
Using multiple iteration steps, the algorithm finally converges to the best
matching position. The images to be matched are assumed to fulfill certain
properties, which are stated informally here and will be discussed more in
detail in section (2.1):

1. A and B have to be similar, i.e. only small movements in the scene and
small perspective differences are allowed.

2. There must be a (continuous) measure of similarity between pixels,
and corresponding pixels should be somewhat invariant regarding that
measure.

3. Pixels of A and B have to implement an ordering constraint, that is,
the left neighbor of a pixel x4 in A should have a correspondence which
is also located left of x 4’s correspondence in B. In other words, neigh-
boring pixels should have similar displacements.

Equations and transformation rules used for matching are based on prob-
ability distributions, which reflect these assumptions: For each pixel there
is a test patch in the other image, which contains all match candidates. To
compute the best candidates (the most probable matches), probability distri-
butions are calculated across these test patches. They are initialized with the
pixel similarity of the candidate under inspection and updated with match
probability information from neighboring pixels at each iteration.



Property one states that the aim of the algorithm is to calculate a corre-
spondence for each pixel without semantic information about the image. It
is not intended to reconstruct a scene with information from a completely
different point of view. Property two is necessary, since similarities are used
as correspondence probabilities which are weighted and averaged. These val-
ues propagate throughout the image in this way, which is not possible with
pure binary data. Note that property three is similar to the idea leading to
the smoothness constraint of the Horn and Schunck (see [10]) theory and the
continuity constraint of Marr and Poggio (see [11]). Since it is responsible for
the diffusion of information through the image, it is very substantial for the
algorithm. It has to be stated that for regions belonging to the same object
it is quite a good assumption and that it is inevitable for the convergence to
a single match position. However, since it punishes large variations of neigh-
boring displacements, it is quite counter-productive at object boundaries,
where depth discontinuities - and thus discontinuities of the true displace-
ment field - are very likely. Unfortunately, there is no information, if there
are such boundaries or where they are, and so the algorithm tends to smooth
depth discontinuities under some conditions.

Furthermore, the model expects every pixel to have a match and calcu-
lates the most probable correspondence for each pixel relying on this assump-
tion. But the presence of occluded pixels might influence basic probability
distributions used in the model. Additionally, during information diffusion
a pixel depends on the patch distributions of neighboring pixels, regardless
of the confidence of their match values, introducing errors at uncertain or
occluded pixels.

1.4 Thesis Contents and Structure

The main goal of this thesis is to extend the model with respect to occlusion,
i.e. consequences on the probability distributions used are inspected, if the
assumption that every pixel has a match is dropped. Additionally, a way to
explicitly find these occluded pixels is developed and using this information
the handling of depth discontinuities should be improved. Finally, two main
applications for matching, optic flow and stereo disparity computation are
integrated into the model and the new algorithms are tested on artificial and
natural images.

For some test images Perwass et al. showed in [1] that the algorithm
can handle occluded pixels and that the introduced errors are locally con-
strained. However, the model implicitly forbids occluded pixels by assuming
some particular probability distributions, as will be shown in chapter two.
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Furthermore, ‘faulty’ match information of occluded pixels (having no corre-
spondence in the other image) is treated the same way as the true information
of pixels having a match. It is therefore desirable to detect occluded pixels ex-
plicitly, to reduce their influence on ‘good’ pixels and to integrate the results
into the probability model. This should reduce the introduced errors fur-
ther, leading to a better matching result and providing additional occlusion
information, which is gained by exploiting bidirectional match probabilities.
Chapter two shows the derivation of the new model in detail after a brief
repetition of the base model as it is proposed in [1].

The third chapter explains some application specific refinements and how
they can be integrated into the algorithm. The first application is stereo
matching, where varying displacements between the images are expected.
To handle these and to catch all occluded pixels and depth discontinuities,
Gauss pyramids are constructed for each image, i.e. the image width and
height are repeatedly reduced by a factor of two. The matching process is
then started by executing the general algorithm at the smallest pyramid layer,
where the images are expected to look more similar and therefore to be more
easily matchable. Occlusion and match information is then used to initialize
the next greater layer, until the actual images are matched at the original
size. For optic flow, objects are assumed to have a constant velocity for a
short time period and thus pixels are expected to have a constant velocity
concerning some images. This constraint is integrated into the similarity
function, where not only the pixels of the current two frames are compared,
but also their extrapolated positions in older and more recent images.

Chapter four proposes a hardware implementation as a recurrent neural
network, since the algorithm is fundamentally parallel. However, for qualita-
tive analysis it is implemented in software first and implementation details,
parameters and error measures are shown in this chapter, too, as well as a
complexity analysis of the algorithm. Chapter five is dedicated to evaluating
the matching quality and occlusion detection of the general algorithm with
respect to artificial and natural images. The developed integrations for optic
flow and stereo geometries regarding the patch positioning and improvement
of the matching results are also tested here using some image sequences and
stereo scenes. Finally, the last chapter presents a conclusion of this work and
shows some future extension possibilities of the model.



Chapter 2

Matching Two Images

2.1 The Previous Model

2.1.1 An Overview

How does the original algorithm from [1] work in principle? At first, match
probabilities from A to B are computed by comparing pixel values for a
pixel x4 in image A and each pixel of a so called test patch 7 (see figure
(2.1)) in image B. In this example, the RGB values of a pixel and its true
correspondence in the other image are assumed to be similar.

The above mentioned test patch is the target area, where the match of
the relevant pixel in A is expected to be located. Every pixel x4 has its own
test patch, which is centered on position 4 + d in B, where d is the average
expected displacement for all pixels. The similarities are then normalized
to sum to unity and regarded as correspondence probabilities for pixel x 4.

Figure 2.1: Matching from image A (left) to image B (right): Test patches



Each pixel g in that test patch now has a probability of being the correct
match for z4. This can be seen in figure (2.2), where white means high and
black low probability. Now this is done also for all the other pixels of A and

Figure 2.2: Probability distributions in patches

their test patches. Finally, there is a probability distribution (the values of
the test patch) for each pixel in image A. Computing the expectation value
across the patch would yield the most probable match position by now, but
the information used will generally not be sufficient yet, because there may
be several pixels having the same or similar colors.

A neighborhood constraint (also called ordering constraint) states that
neighboring matches have similar displacements. Hence, for neighboring pix-
els patch probabilities are compared and those having no appropriate support
in the neighboring patches are reduced, while those displacement candidates,
which are also likely for the neighbors, are raised regarding their probability.
This is applied to all eight neighbors of a pixel simultaneously, which keeps
the displacement map smooth.

For instance, the origins of the blue and the black patch of figure (2.2)
are (diagonal) neighbors and the test patches have the same relative dis-
placement. Thus the relevant match is expected to be at nearly the same
position in the patches (the true match is in both patches one pixel down
and one right from the center). The neighborhood constraint will now reduce
all probable (bright) pixels in the black patch, if there is a low probability
(indicated by a darker square) at and around the same position in the blue
patch and vice versa. Again, this is applied to all pixels in A, respective to
their test patches. The probability of the test patches now contains color
information of the pixel and structural information of the direct neighbors of
the pixel.

The same procedure is then done from image B to image A and the
resulting direction dependent probabilities are averaged with those of the first
direction. The neighborhood constraint and the bidirectional averaging are
now applied repeatedly, collecting more and more global information, which
is called the diffusion of local constraints. At each iteration the neighborhood
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Figure 2.3: Ideal patch distribution after multiple iterations

and the structural information that influences the patch under inspection is
expanded, because the neighborhood constraint always uses the updated data
of the neighbors, which has been influenced by the neighbors’ neighbors at
the previous iteration and so on. In this way local information is distributed
over the whole image, if enough iterations are executed.

The subsequent bidirectional merging stabilizes the matching, since both
directions should yield similar probabilities, if the assumptions hold. The
probability distribution in the test patches sharpens, since more and more
match candidates are suppressed by more or less neighboring pixels. Finally,
the expectation value (within the test patch) yields the match position for
each pixel.

Perwass et al. have shown in [1] that the algorithm is expected to converge
to a single match position and have used some test images to validate the
algorithm. The aperture problem is overcome due to information diffusion
from neighboring pixels and therefore local information is transformed into
global information over time. No strict window of relevant information has
to be pre-set or adapted to the data, thus the algorithm works on all scales.
This is a real improvement compared to other, say window-based approaches,
because their window is often too small or too large. Due to the selection of
similarity and neighborhood probability distributions, the algorithm is pretty
noise resistant and shows good matching results on artificial and real images,
as has also been shown in [1].

2.1.2 Main Assumptions, Distributions and Equations

Given two images A and B, the most likely set of correspondences between
the pixels of these images is searched. Of course, in real images there are not
always sharp pixel correspondences and the true match of a pixel x4 in image
A may lie between some pixels in image B and vice versa. Additionally, the
data may be noisy and distorted due to illumation and perspective changes,
so the idea is to assign a probability to correspondence pairs between images
A and B.
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This is implemented through random variable pairs (X 4, Xp), where X4
can take on all pixel positions in A and X can take on all pixel positions
in B. The event (X4 = z4,Xp = zp) means that position z,4 in image
A corresponds to xp in image B. If a true match is located between pixel
positions (at a subpizel position), its probability is expected to be distributed
among the neighboring pixels. This should be a good assumption if brightness
(or the used pixel value) does not change too quickly from one pixel to
another. Hence, calculating match probabilities for candidate pixels zg in
the region of correspondence for some pixel x4, these probabilitites should
always sum to unity, even if the true correspondence is a subpixel position.

Before setting up the model, some symbols have to be defined: The images
under inspection may be multi-modal (e.g. color images), so that their pixels
are M-dimensional vectors and M := {1..M} is the set of modes. For an
RGB image M is three and for a gray image M is one. The v** mode of a
pixel p (its projection onto the v* axis of the color space) is accessed by
p”. The set of pixel positions in an image of size (Img, x Img,) is called Z,
where

T:={(z,y) :xz € {1..Img,},y € {1..Img,}}

The subset of the power set (indicated by a P), which does contain only sets
with one element, will be needed for the definition of the probability space
later on and is defined as Zp.

Ip:={seP):|s| =1}

The set of values S a pixel can take on is an even partitioning of the interval
[0; 1], that is, the pixel value range (for an 8 bit channel typically 0..255) has
to be scaled to fit into this interval:

S:={r/(S-1):re{0,.,S—1},S € Noy}

Sp:={se€P(S):|s| =1}

Now the images have to be modelled: AY and B! (where i € Z, v € M,)
are defined to be random variables in the probability space (S, Sp, P), where
the probability space and random variable definitions are used according to
[27]. Informally speaking, there is a random variable for each pixel position
and each mode, which can take on only one value at a given time. The images
will always be given in this model and no further assumptions about which
images are likely and which not are needed at this point.

The correspondence problem is formalized in a similar way. X4 and Xp
are defined to be random variables in probability space (Z,Zp, P), i.e. they
can each take on all possible pixel positions, but only one at a given time.
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Additionally, a constraint is imposed, that demands only outcomes x4 of
X4 and zp of Xp to be inspected, where (z4,2p) is a correspondence. For
(x4,zp) to be a correspondence, it is necessary that some point of the three-
dimensional scene (of an object’s surface) is projected at position x4 into
image A and at zp into image B.

Perwass et al. assume, that every pixel in A (B respectively) has such a
correspondence in B (A). The set of the eight nearest neighbors (also called
the 8-neighborhood) of the origin (0, 0) is called N, where

N = {(u,v) s u,v € {-1,0,1}, (u,v) # (0,0)}
A test patch (a region where the match is searched) is defined as
T={(z,y)€2°: -T, <z <T,,-T,<y<T,} T,T,€N,

where Tyy = 2T, +1and Ty = 2T, + 1 are width and height of the test
patch. Thus, for symmetry reasons test patch dimensions are always odd.

The expected mean displacement from image A to B is called d = (ds, d,).
Perwass et al. center a test patch for a pixel z4 in A at (x4 + d) in B (and
consequently at (zp — d) in A for a pixel zp in B). Hence, a test patch for
some particular pixel 4 = (z,y) is positioned in the other image in the
following way:

Tow ={(z+utdy,y+vtd)€eZ’: -T, <u<T, -T,<v<T,}

The distinction +d is necessary due to direction dependence of d, the upper
signs represent the case A to B, while the lower concatenations are used if
images are matched from B to A.

The Gauss function is called g(), here it is defined up to a scalar factor
which will be defined by the context, in which it is used:

9(z,y,0) = p exp (—M> (2.1)

202

The s-function provides a measure of similarity between two pixels, based on
their multi-modal values:

s(a,b) := H g(a”,v", \/50") (2.2)

VEM

This is an implementation of the maximum likelihood principle. Measured
pixel values are assumed to be noisy (normally distributed) samples of a true
value. The s-function returns the maximum probability that both samples
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stem from the same value. The standard deviation ¢ in the Gauss function
defines the shape of the Gauss and thus the critical pixel value difference,
from which on the pixels’ likelihood strongly decreases. This similarity is
applied to each mode and the results are multiplied to obtain the overall
similarity of the two pixels.

In the same way the h-function defined in equation (2.3) describes the
similarity between two displacements. It is maximized if two pixels x4 and
y4 have similar displacements, i.e. (x4 — z5) = (y4 — ys), and yields lower
values the more these displacements differ.

h(za,z8,Y4,Y8) := 9(Ys — Tp,Ya — Ta, Oh) (2.3)

Now it will be explained how these functions are used to calculate the
desired probabilities and where they are applied: As pointed out before, for
each pixel 24 = (z,y) in the image, a test patch 7, is positioned in the other
image. All pixels zp € T, from this patch are match candidates, and a prob-
ability distribution function (pdf) for the correct match position is computed
across the patch. Without information about neighbors or about the images,
all match candidates within such a patch are equally likely. Formally, given
some position x4 in A, the probability of g to be the correspondence of x 4
is:

P(Xp =zp | Xa=1z4) =Ur,, (7B),

where the uniform distribution ¢ is defined on a set 7 in the following way:

wo={257:

All random variables are always printed in capital letters, while their out-
comes are printed in small letters. Some particular outcome of one of these
variables is usually named the same way as the variable, except for the capital
letter. Consequently, P(Xp = xp | X4 = x4) can be abbreviated and may
also be written as P(Xp | X4). However, to avoid confusion, the outcomes
will be stated explicitly whenever possible.

Given the images, the probability of some pair (x4, zp) of pixels being a
match depends on their similarity. On the other hand, given that two pixels
represent a correspondence, the probability of their pixel values is given by
the similarity function s of equation (2.2). If they stem from the same point
in 3d-space, strongly differing values are improbable. Note that A|;, is the
(multi-modal) pixel value at position z 4 in image A:

P(A|SUA: CL,B|$B:[) | XA :J;A;XB :xB) ZS(CL,Z)) (24)
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Since the probabilities must sum to unity, the above similarity is only
defined up to a scalar factor here. After initialization the patch is normalized
and now contains a basic distribution of match probability, based only on
pixel value similarity.

The second substantial assumption is that neighboring pixels will have
similar displacements, that is, if (z4,2z5) is a true match and y, is a left
neighbor of x4, yp is expected to be the left neighbor of xg, while other
positions of yg have smaller probabilities. Proceeding formally in the model,
neighboring match probability is defined for (z4 — y4) € N, without notion
of the images:

P(YB = YB | XA - anXB = IB, YA = yA) = h(xAJxB:yAayB) (25)

Merging the similarity and the neighborhood constraint, Perwass et al. derive
a pixel-match pdf, where ~ again means equality up to a scalar factor:

A

P(XBZJTB‘A,B,XA:.’L'A)Z (26)

1
S(A |$A’B |$B)m Z max (S(A|yA> B |yB)h(anxB’yA’yB))

yBETy,
yai(ya—za)EN

Given some particular x4, for each candidate pixel z g its similarity is evalu-
ated. The values (regarding s- and h-functions) of the eight nearest neighbors
y4 of x4 are averaged, where for each neighbor exactly that correspondence
yp is evaluated that best satisfies the aforementioned constraints. This way
a new patch distribution evolves, which is then again normalized to unity.
For each pixel in image A the relevant patch is evaluated in this way.

Until now matches have always been calculated from image A to image
B. Of course, there is no preference on the match direction when having
two images. Hence, the same procedure is applied to the opposite direction,
which yields redundant (and maybe conflicting) information, since for every
correspondence candidate xg in a patch of pixel x4 there is a probability for
the opposite direction, too. The only difference is, that now x4 is a match
candidate in the patch of zp. If x4 and zp are a true correspondence, the
probabilities should be similar, motivating a direction independent probabil-
ity:

P(X4,Xp| A B)~+/P(Xg|X4,A B)P(X,| Xp, A, B) (2.7)

By this geometric averaging false candidates are suppressed, which have no
support by the inverse direction, while true matches are nearly untouched.
After normalizing, there is a new probability distribution for each patch.
The new probability can then be viewed as a new measure of similarity be-
tween the pixels, taking into account more information than just the different
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modes as the s-function does. Consequently, more and more global and sta-
ble information is gained using equation (2.7) instead of the s-functions in
equation (2.6). In order to form an iterative algorithm from these equations,
first a function f() is defined, which contains the correspondence probabilities
of some round. It is initialized with pixel similarity:

fo(anxB) = S(A|-7UA’ B |ZB)’
where the set of relevant values of f! is called F:
Fri={fz,y):2€I,(y—xv—d) €T}

The resulting pdf now depends on the iteration step t and uses information of
the last iterations. It can thus be interpreted as an inhomogeneous Markov
Chain as pointed out in [1]:

P(Xp=1xp | F',Xa=124) ~ (2.8)

1
ft(iEA,xB)W Z max (ft(yA’yB)h(anxBayAayB))
V] ya:(ya—za)eN vB€Tua

For ¢t = 0 it is equal to the first definition of the pdf in equation (2.6). The
iteration rule is completed by application of the bidirectional merging:

N (@a, wp) = (2.9)

VP(Xp=1p | Xa=24,F)P(Xs =124 | Xp =25, F")

Note that this is only a brief summary of the model and some of the
equations are slightly different to [1] to avoid unneccessary complexity, e.g.
some factors have been left away, which vanish in normalization anyway. For
the exact model and its derivation, please refer to [1].

2.2 Improving the Assumptions

To derive the pdf of P(Xp | A, B, X4) in equation (2.6) and the following
iterative algorithm, some assumptions have been stated explicitly or by using
some probability distributions for the random variables, among which the
distribution of P(X 4 | A, B) evolves to be the most important for this thesis.
The implications of defining a match pair as a pair of random variables on
the outcome of one of these variables alone is examined in this section, as well
as the effect of wrong patch positioning on P(X4 | A, B, X). Additionally,
new assumptions are derived for the case that there are occluded pixels.
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2.2.1 Modelling Occlusion

First the assumption has to be formalized, that there may be occluded pixels:
Which probability distributions are influenced and which are not? Basically,
the assumption states that there may be some pixel z4 in image A which
has no match in image B, because something else occludes it. The first thing
one has to notice is that in this case P(Xp | A, B, X4 = z4) is undefined,
because conditional probability is only defined for events that have a proba-
bility greater than zero. To clarify the reader’s intuition on the probabilities
and events used in this model, analogous probabilities in a simpler dice ex-
periment are inspected.

Suppose there is a red die R and a blue die B, both with six surfaces
(identified by natural numbers 1..6). On each surface s a natural number is
printed on, where the function R(s) (B(s) respectively) returns the number
printed on surface s of the red (blue) die. Let X (Xp respectively) be the
random variable for casting die R (B), where possible events are the surfaces
and an outcome of a dice experiment is as usual the surface pointing up.
Since both dice are fair, the probability of getting a particular surface xg
with die R (and B respectively) is P(Xg = 25 | R) = .

Now both dice are cast and it can be seen that they show the same
number, i.e. R(xg) = B(zp). What is the probability that R scored zg
given that B scored xg? Clearly,

P(XR =TR | R,B,XB = .’L‘B) = 5$R,$B
where § represents the Kronecker-delta. Different surfaces are impossible,
since the dice cannot show the same value in that case. Note that the left
hand side of the above equation is undefined if the event (Xp = ) is impos-
sible (e.g. z5=8) and thus the probability P(Xg = z5) is zero. Conditional
probability is only defined for events with strictly positive probability.

From now on, only dice results are inspected, where both dice scored
the same number, other outcomes are disregarded. Furthermore, suppose
that die B is manipulated. Instead of the one, there is another six printed
on surface 1, i.e. B(1)=6 and B(6)=6. Clearly, casting this die, the value
one cannot be achieved. Without knowing what die B scored in particular,
we want to know how probable some surface zg of R is. Counting over all
possible results yields

.’lIR:l 0

PXgp=zp|R,B)={ 1<azp<6 :
_ 2

CUR—6 6
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Since the assumption “both dice scored the same” stated R(zgr) = B(zp),
there is no correspondence for surface one on R, where a one is printed on,
while there are two possible valid B-surfaces for zz = 6. Hence, without
knowing what die B scored, the outcomes of R are not equally distributed,
i.e. they are not statistically independent of the dice’s nature.

Changing the point of view (and knowledge), the reverse direction is
inspected now: After executing a very large number of experiments with
the dice R and B (having many more than six surfaces), where again only
outcomes are counted where both dice scored the same, some surface z; on
R can be observed more often than some other surface x5 on R. Again, the
exact result for B is unknown.

P(XR:-rl|RaB)>P(XR:$2|RaB)

What does this mean for these surfaces x; and x,?7 There must be more
surfaces on die B with number R(z;) than with R(z,) !

Returning to the matching model, there are neither such exact observa-
tions nor are there sharp probabilities, but the intuition is comparable: How
likely is it that a pixel x4 at some position has a correspondence? How likely
is it, that some random variable X, takes the value x4, if not every pixel
actually has a match?

This strongly depends on the images A and B, since the probability for
X 4 to take on a value x 4 is only greater than zero if there is a corresponding
xp, which can be taken on by X, so that (z4,25) is a correspondence pair.
Remember that a correspondence pair is a pair of pixels (z4, zp), where z4
is in image A and zp is in image B, so that there is a point z in 3d-space
(belonging to some object), which is projected into image A at position za
and into image B at position zpg.

If such a pair does not exist for some z 4, e.g. because the correspondence
is beyond a border or occluded, the probability is zero, i.e. under the cor-
respondence pair assumption, the random variable will never take on that
value. Hence, the event (X4 = x4) is no more independent of the chosen
images A and B and thus P(X4 = x4, A, B) is no more separable into two
independent probabilities P(X4 = z4)P(A, B). Furthermore, P(X4|A, B)
is not equal for all x 4.

Quite the reverse, the value P(X4 = x4 | A, B) can give us a hint about
the probability that = 4 is half-occluded as we have seen in the dice example.
If for some reason, e.g. by a sophisticated computation, it is known that
P(Xa = x4 | A, B) is zero or extraordinarily small for some x4, it is very
likely that x4 has no correspondence in B. Of course, all considerations also
apply to the B to A matching direction.
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2.2.2 Wrong Patch Positioning

By now, the probabilities for a test patch are normalized such that their
sum yields unity. This is based on the assumption that the match is in the
test patch and not anywhere else in the image. This is not necessarily true,
since it is possible that the patch is not well-positioned. If the assumption
of correct patch positioning is formalized explicitly, the probabilities of the
patches are a posteriori probabilities, given that the true match (z44e) of a
pixel z 4 is actually in the patch:

Z P(XB:xB ‘ A7B7XA:xA:$true EEA) =1

Z‘BE%A

This may be re-converted into an a priori probability (regarding the po-
sitioning). Using the definition of conditional probability yields:

Z P(XB =B ‘ AaBaXA :mA) = P(xtrue € 7:6A ‘ A:BaXA = xA)
TB€Tey
(2.10)
If there is information about how well the patch has been positioned, it is
a good idea to initialize the patch normalization with an appropriate value.
However, almost all patches are usually well-positioned and no robust way
of estimating this probability has been found yet, so that patches are always
assumed to contain the correct match if there is one in the other image.

2.2.3 Integrating the Borders

Image borders are an intricate problem in image processing, especially in
matching. Most algorithms are designed to work on infinitely large images
and do not take into account, that the image size is limited. Mostly this
problem is put aside as ’border effects’ or even left to the implementation as
a parameter optimization (or guessing) problem.

Clearly, there is less information at the borders and therefore small images
with large border areas (with respect to the whole image area) are problem-
atic. To some degree operations cannot be executed at the borders, but it is
desirable that borders are not treated explicitly but as part of the model, at
least as far as possible. The given model provides an acceptable solution of
this problem.

From a physical point of view borders can be regarded as infinitely ex-
panded (e.g. black) bars very close to the camera (e.g. an aperture) which
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hide the rest of the scene. If a pixel gets out of sight from one to another im-
age, it is actually occluded by the black bars in front of the camera. Hence,
if the algorithm is occlusion tolerant, no separate handling of the borders
is necessary. The image can be regarded as arbitrarily (or even infinitely)
large, but we do only calculate the region of interest, which is the image in
the original sense.

2.2.4 Other invariant Properties for Similarity

At this point it is possible to unite the world of feature and dense pixel based
matching algorithms. The standard pixel similarity is based on RGB values.
As pointed out before, the model is also applicable to gray level images or
any other images with some invariant pixel properties, for which a continuous
similarity measure can be defined.

Promising features may be corners, edges or those provided by the struc-
ture multivector defined in [21]. Standing alone, accurate feature information
(e.g. corners) is usually very sparse, but using information diffusion based on
dense RGB information should give a robust base for invariant and character-
istic features. Usually feature extraction algorithms mark some pixels, where
the feature has been detected, while the other pixels are defined to lack this
feature. Thus, in such a feature image only the probabilities one (present)
and zero (absent) occur. To achieve subpixel accuracy in matching and to
weight the RGB information more heavily, it is a good idea to smooth the
feature image, which corresponds to the idea of a continuous similarity mea-
sure for the feature. However, the selection and adaptation of appropriate
features is beyond the scope of this thesis and will not be discussed here.

2.3 Adapting the Model

For the original derivation of the match probability distribution, two assump-
tions have been made in [1], that turn out to be no more correct, if occluded
pixels are allowed in the images. Before re-deriving the pdf under the new
assumptions, the two main differences are briefly explained:

The original information propagation throughout the image (using the
pixel-match pdf of equation (2.8) respective (2.6)) relies on the assumption
that the neighboring patch probabilities are equally reliable and therefore the
expectation value can be calculated by non-weighted averaging the neighbor-
ing patches. It is assumed that every neighbor has a match.

Instead, in the new model, half-occluded pixels may occur, which must
not be used for expectation value calculation from a probability theoretic
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point of view. Neighboring pdfs should only be used if the neighbor actually
has a match in the other image. Hence, in the derivation of the pixel-match
pdf neighbors are not assumed to have a correspondence and the pixel-match
pdf has to be calculated in a different way.

Furthermore, the distributions P(X4 | A, B) and P(Xp | A, B) have
been assumed to be constant in [1]. As pointed out in section (2.2.1), these
distributions depend heavily on the images A and B and are usually not
even constant for some fixed pair of images A and B. These distributions are
unknown and contain information about which pixels are occluded. Hence,
they must not be left to some neglectable scalar factor but have to be used
adequately.

2.3.1 Re-Deriving the Pixel Match PDF

Unless stated explicitly and with exception of the previous section, all prob-
ability distributions and symbols stay the same as in the former model. Of
course, allowing occlusion still means that most of the pixels must have a
match to compute some meaningful displacement field. The derivation of
the pixel-match pdf is done over large parts in analogy to the derivation
done in [1].

Again, let (X4, Xg) and (Y4, Yp) be the random variables of two neigh-
boring pixel correspondences, i.e. for some X4 = x4 only outcomes y, of
Y, are inspected, where (x4 — ya) € N. This constraint is not stated in
every probability of this section as an a priori assumption, though it would
be correct to do so. However, for the sake of readability it is not explicitly
printed and left to the reader to keep in mind.

Now starting to derive a new pixel-match pdf, Bayes’ formula (see [27])
states that

P(AaB ‘ XA:YAaXBaYB)P(XAayAaXB,YB)
P(A, B)

The goal of this derivation is to find a probability distribution for match
candidates zp (as outcomes of Xp), given some pixel x4 (as outcomes of
X4). The pdf should only assume X4 and the images A and B to be given
and no other neighboring correspondences.

Remember that small letters stand for the outcomes of the corresponding
capital random variables (in particular z4, zg, ya and yg). To keep these
equations readable, the outcomes are not printed explicitly in this derivation.
Thus solving for P(Xp = z5,Yp = yp,Ya = ya | A, B, X4 = x,) after
utilizing the definition of conditional probability (according to [27]) yields:

P(XBaYBaYA | AaBaXA) =

P(XA,YA,XB,YB | AaB) =
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P(X4,YA)P(A, B)
P(Aa B)P(A: Ba XA)
Removing all constant factors and constraining the images to the relevant
pixels, the pdf can be expressed as:

P(A7B | XB,YBaXA:YA)P(XBayB | XA7YA)

P(Xg,Yg,Ya| A B, X ) ~
P(A|wA’B|$B | XB’XA)P(A|Z/A’B|3/B | YA’YB)P(XB’YB | XA’YA)
P(XA | AaB)

This is - except for the denominator - identical to the former model’s deriva-
tion. Substituting the s- and h-functions as before (see equation 2.6) yields:

P(XB:.TB,YB:yB,YA:yA|A,B,XA:£EA)2 (211)

S(A |-’L'A7 B |$B)5(A |yA’ B |yB)h(xBa YB; T A, yA)

P(XA =T ‘ A,B)
Note that in the probability at the left hand side the correspondence Y, is
no more a priori assumed to be given - in contrast to [1], because the fact
that y4 actually has a correspondence is also no longer assumed to be given.
The equation describes a joint probability for candidate xzg regarding the
neighbor y4, which can become zero, if there is no correspondence yp for
y4. In the former definition, the whole pixel-match pdf of equation (2.6) is
mathematically undefined, if a neighbor is occluded, since one of the neigh-
boring probabilities used for expectation value calculation® is undefined in
that case. In the new model, the uncertainty introduced by dropping the
precondition of full correspondence for neighboring pixels will be exploited
later on. However, all four random variables still occur in the new distribu-
tion, though only a statement about the match probability of x4 and xp is
desired.

Analogous to the former derivation, at first this probability distribution
is made independent of some particular match candidate yg of the neigh-
bor. Therefore the best matching yp (regarding equation (2.11)) is assumed
to be the match of y4 and its match information is used to evaluate the
neighborhood and similarity constraint for x 4.

P(Xp,Ya| A B,X4) :=p maxP(Xp,Ys =1, Y | A, B, X4)
Yi

This is the joint probability that x g is the correct match for x4 (given that x4
has a match) and that the neighboring pixel y4 has a similar correspondence
in its test patch.

! Please refer to [1] for the detailed derivation of the former model.
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However, the match probability for g should be stated independently of
a particular neighbor y4 of x 4. Using the law of total probability the previous
joint probability can be summed over all y4 to become independent of 4.
Two conditions must hold for this to be correct: When summing over events
of the random variable Yy, the sample space has to be covered completely
and there must not be an overlap of any of these events. Since y4 and x4 are
neighbors, the sum must run over all eight neighbors of x4 to be complete.
These events are disjoint as can be easily seen.

P(Xp|A,B,Xa):= >  P(XpYa=vyal|A B, X,)

ya: (Ya—za)EN

This is in contrast to the previous definition, where Y, is assumed being given
and the expectation value is calculated over the neighbors. Here, another
way is chosen, where all joint probabilities are summed without such an
assumption.

Now equation (2.11) is used in this pdf, which finally yields a new match
probability distribution, that is quite similar to the previous one:

A

P(Xp=1p|A,B,Xa=14) ~

$(Alz,, Bleg)
P(XA:-rA‘AvB) Z

max (5(Aly,, Blys)h(za,78,Y4,YB))
ya:(ya—za)eN

(2.12)
Note that the division by P(X4 | A, B) is independent of the sum and is
thus only a normalization factor. It will be compensated later, since an
inverse factor is introduced by bidirectional merging. Furthermore, since
this probability is equal for all candidate pixels in the patch, it vanishes
in normalization anyway. Note that there is no such division by a similar
probability for 4.

When comparing the old (equation (2.6)) and the new pdf (equation
(2.12)), they differ only in two factors: (1/|NV|) and (1/P(X4 | A, B)). In
each model one factor seems to be missing, while the other is present. Re-
member that during both derivations, some factors (which are assumed to
be constant) have been left away and that the probabilities have only been
defined up to a scalar factor. Hence, the missing factors are mainly hidden
in the assumptions what is constant.

2.3.2 Direction Merging

Since P(X4 = z4 | A, B) is no more constant, the bidirectional merging
has also to be changed. By definition of conditional probabilty it is known
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that making the patch probabilities direction independent introduces an ad-
ditional factor:

P(X4,Xp | A, B)=P(X4| A, B)P(Xs | A, B, X,) (2.13)

P(X4,Xp | A, B)=P(Xp | A, B)P(X4 | A, B, Xp) (2.14)

Comparing these equations to those from [1] it can be easily seen, that again
the only missing factor is the correspondence probability, which is assumed
to be constant in the former model. Multiplying equations (2.13) and (2.14)
and calculating the square root yields:

P(X4,Xp | A,B) =

VP(X5 | A, B)P(X4 | A B, Xp)P(Xa | A B)P(Xg | A, B, X,) (2.15)

This provides a new stabilized measure of similarity between the two pixels,
that can be used in the next iteration.

However, now one has to distinguish between the direction dependent
match probability, that is located in a patch (see equation (2.12)), and the
overall (direction-independent) probability that two pixels correspond to each
other (left hand sides of equations (2.13) and (2.14)). Apparently, they differ
by a factor of P(X 4 | A, B) respective P(Xp | A, B).

This is quite important and states the main difference of the present model
compared to the former one, where the distinction between P(X4, Xp | A, B)
and P(Xp | A, B, X4) vanishes due to the assumed constancy of the missing
factor.

2.3.3 Occlusion Detection

In the previous sections a new pixel-match pdf and a new rule for bidirectional
merging have been derived. Both depend on the probability distributions
P(X4 | A,B) and P(Xp | A, B), which have been assumed to be constant in
the former model. In section (2.2.1) it has been shown that this assumption
is not valid in presence of occlusion. Consequently, this pdf is no longer given
and must therefore be computed in some way.

Before it is defined formally, the principle used for occlusion detection is
explained: Suppose two images are matched using the former algorithm. If
everything works as expected, the test patches converge to a single position.
Now suppose that there are some occluded pixels, e.g. a pixel zp in A, which
has no correspondence in image B. It is very likely that also the test patch
of o converges to a single match position, say xg in B, which represents the
most likely match for zo. However, if xp has a true match z4 in A, zg’s
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test patch will most likely converge to this position and vice versa. That is,
zo’s position (in the test patch of zg) should have a very low probability.
One might say that zo chose zp as a correspondence partner but does not
get support from the inverse direction.

Now, the observation that occluded pixels do not get support from the
inverse direction is exploited to detect them. Since the left hand sides of
equations (2.13) and (2.14) are identical, the right hand sides have to be
equal, too:

P(X4| A, B)P(Xp | A,B,X,) = P(Xp | A, B)P(X4 | A, B, Xp) (2.16)

This equation can be evaluated for every single match candidate in the test
patch and may be a measure of occlusion probability in some way. But it is
quite probable that there will be noisy results at the borders and information
will diverge over the patch, i.e. some candidates will fulfill the equality, for
some the left hand side will be smaller and for some the right. The problem,
which match candidate is the relevant one for occlusion detection is hardly
decidable, if the patch has not yet converged completely.

Instead of inspecting single correspondences, it is more promising to eval-
uate all possible matches in the other image and thus to get more robust
information. As pointed out before, the above stated equality holds for any
pixel pair (z4,zg). Particularly, given some pixel z 4, it is not wrong for pairs
(x4,xp) where zg can be every match candidate of z4. A set of (Ty - Tx)
equations of the type given in equation (2.16) may be set up. Summing up
the right hand sides and the left hand sides of equations for the whole test
patch of x4 yields:

S P(Xa=24|A B Xp=1p)P(Xp=15|A,B)=

CEBE'E;A

Y P(Xp=zp|A B Xs=24)P(Xs=z4|A B)
€Tz 4

Note that the probability P(X4 | A, B) at the right hand side is inde-
pendent of the sum and can be moved in front of it. Hence, only the patch
probabilities are left inside the sum. Remember that summing the proba-
bilities over the test patch yields the normalization, which is usually unity.
Since the test patch is normalized to a strictly positive value at any rate, the
above equation may be divided by this sum.

ZzBenA P(Xa=za| A B,Xp=1p)P(Xp | A,B)
ZIBE’T@AP(XB:$3|A,B,XA=$A)

P(XA:.TA ‘ A,B) =
(2.17)
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Since there is no preference on matching from A to B or from B to A, the
same can be applied to the B to A direction analogously:

ZernB P(Xp=2zp| A, B,Xs=14)P(Xa| A, B)
ZSUAETZB P(XA =7Ta | A, B,Xp = -TB)

P(XB:$B|AaB):

(2.18)

It can be seen quite easily, that the probability P(X4 | A, B) does indeed
depend on the support of the inverse direction. Unfortunately, it does also
depend on the correspondence probability of that direction. Since both prob-
abilities depend on one another, they cannot be calculated explicitly before
the start of the algorithm. Instead, each correspondence probability has to
be initialized with some value and is updated iteratively utilizing the above
equations, which is referred to as the collection of support in the other image.
A significant correspondence probability for every pixel in the images may
then finally evolve this way. Informally, smaller probabilities mean greater
occlusion likelihood, greater ones mean higher two-to-one match probability,
with too much support from the inverse direction.

Which probability exactly means that the pixel is occluded and which
means that it is certainly not? The answer to that question is image specific
and does also depend on some other values, like the test patch size, the iter-
ation number and so on. However, an approach is made to roughly estimate
the critical size for occluded pixels.

Since P(X4 = x4 | A, B) is a probability (of the event x,4), summing it
over all possible (disjoint) events must yield unity:

Y P(Xy=z4|AB)=1

TAETL

Now, remember that there are |Z| pixels in image A and thus |Z| outcomes for
the random variable X 4. If every pixel has a match (assumption of complete
correspondence (CC)), there is no preference for X4 to take on some value
and thus P(X4 | A, B) may be assumed to be a uniform distribution:

P(XA =TA | A,B,CC) :Z/{I(.’EA)

If a single pixel 2o in A is occluded, the true distribution for X 4 yields slightly
higher values for all pixels having correspondences and zero for (X4 = zo).
The more pixels are occluded, the more the correspondence value for pixels
with correspondences increases. That is, in theory occluded pixels have zero
probability while the others always have a probability of at least 1/|Z|.
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However, there will be noise on the distributions and there will always
be some spurious support for and from occluded pixels, so that these sharp
distinctions cannot be made. Hence, a pixel zo should only be classified as
occluded, if

P(Xy=1z0| A B) <K ‘%

For formal reasons the case P(X4 = z4 | A, B) = 0 has to be inspected,
since the probability occurs at some denominators and the event is used as
an a priori assumption. In case it was known that 4 has no match at all
in B due to occlusion, P(Xp | A, B, X4 = z4) would be undefined, since
P(X4 = z4 | A,B) = 0. But in this model there is no such knowledge,
and probabilities are calculated from similarities. The assumed distributions
will never reduce a probability to zero, since the Gauss function used for
similarity will never yield zero. This is no inaccuracy due to calculation, it
is simply the uncertainty given by the model.

Hence, every pixel in the test patch always has a (possibly very small)
match probability greater than zero. Thus, the correspondence probability
P(X4 = x4 | A, B) is also always strictly positive. However, it should
be clear that if a pixel is detected to be occluded, i.e. it has a very low
correspondence probability, the patch distribution P(Xp =zp | A, B, X4 =
x4) should be treated as undefined.

Note that intrinsically the correspondence probability is some kind of
measure for the support from the inverse direction. Additional to detecting
occluded pixels it also yields a low value in case of low similarity (and great
uncertainty) for true matches. Hence, this probability can also be a hint for
the confidence in a pixel’s match value, indicating how well the pixel and the
neighborhood are found in the other image.

2.3.4 Consequences on the Test Patch Size

Though the algorithm itself does not depend heavily on the test patch size,
the occlusion detection may do. The test patch probabilities are relative
to the other probabilities in the patch due to the normalization. It is very
likely that for large patches the neighborhoods differ somewhat, because
depth discontinuities can touch the patch, maybe only in areas, which are
not relevant for the actual match, but these pixels influence the patch and
thus the support collection. Ideally, support should only be evaluated for
relevant pixels and thus the patch size should be as small as possible.

On the other hand, perspective and illumination changes affect very small
patches more heavily: If the match is not located at the patch center but
at the border, incomplete neighborhoods may be used. Some pixel giving
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true support may lie out of the patch and is therefore not evaluated. Such
problems are better compensated in larger patches, since the probability of
positioning them completely wrong is smaller.

Hence, the occlusion detection may be trapped in a similar dilemma
of trading between small and large patches as the window-correlation ap-
proaches for matching (compare [13]).

2.4 The Algorithm

2.4.1 Propagation of Local Constraints

As it is in the former model, the neighborhood constraint and the pixel-
match pdf refer only to direct neighbors of a pixel. For many images, more
global information is needed for stable matching results, since the aperture
problem is very relevant for these small neighborhoods. This section binds the
derived probability distributions and equations into an iterative algorithm,
where local information propagates throughout the images step by step.
Analogous to the former model, the function f* is defined to contain the
similarities from the ¢ iteration and is initialized with pixel similarity:

fo(anxB) = S(A|wA’B|wB)

Note that in the iteration equations of the old and the new model, the
f°()-function is used for the probability P(X4, Xp | A, B), while originally
P(A,B | X4, XBg) (see equation (2.4)) has been used at that location in the
pixel-match pdfs. The above mentioned probabilities may be used synony-
mously here, since they are equal up to a scalar factor:

P(X4, XB)

P(Xa,Xp | AB) = P(A,B|Xa Xp) 5

= P(A’B | XAaXB)

Proceeding in the algorithm, there are functions c4 (for image A) and cp
(for image B) to represent the correspondence probabilities for the pixels at
each iteration. They are initialized with their expectation value here:

ca(za) = 1/|Z]

cp(rp) = 1/[T]

Again, F* contains the information available at iteration t.
Fo={fiz,y) z,y e T} U{c\(z) : 2 € T} U {cy(x) : 2 € T}
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The resulting pdf can then be written as:
P(XB:$B|.7'-t,XA=£L'A)Z (219)

ft(fUA,l"B) Z

() max (f'(ya, yp)h(z4, 75, Y4, Y5))

€7,
yA:(yA*$A)ENyB A
Apparently, the above equation uses a correspondence probability of the
previous iteration. Compared to the former algorithm, there is an additional

step necessary to compute these probabilities.

. . Yeper, P(Xa= w4 | F', Xp = 2) ()
A (za)=PXa=za| F") = R "
ZJUBETmA P(XB =B | F ,XA = .’EA)
(2.20)
Finally, the iteration rules are completed by application of the bidirectional
merging:

ft+1($A,.TB) = P(XA,XB ‘ ft) ~ (221)

VP(Xa = 24 | F, Xp = 25)cy(2) P(Xs = 25 | Ft, X4 = 24)cly (1)

2.4.2 Comparison to the Former Model

Now that both models are complete, the differences of the old and the new
one regarding the direction dependency of the match probabilities can be
inspected. This shows the key difference between the two approaches. For
clarity reasons, the f()-functions are replaced by their probability-theoretic
meaning, which is P(X 4, Xp | F). Since the bidirectional merging is not
important for these considerations, it can be disregarded here and one may
imagine that the following iteration rule is used in both models instead of
equation (2.21) respective equation (2.9):

P(X4, Xp | F'Y) = P(Xp | F!, X4)P(X4 | FY)

That is, there is no bidirectional stabilization and the values of the last
iteration are directly reused. Clearly, P(X4 | F?) is only a constant factor
in the old model and is thus normalized away. However, for comparison
purposes it is kept here.

In appendix A it is shown that in the old derivation of the pixel-match
pdf, the constant factors (1/P(X4 | A, B)) and (1/P(Ya | A, B)) have been
left away. To make the old model comparable to the new one, suppose for
the moment, that these factors are present in the old pixel-match pdf. Since
they are constant there, they make no difference in a “~" relation.
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Pold(XB | ft—l_l,XA) ~ (222)

P(XAaXB ‘ ft) 1 (P(YAayB ‘ f_t) )
P(Xg,Ys | X4, Y,
P(X4|FY) N yZAygle%rfA P(Ya | FY (XB,Yp | X4,Ya)

= P(Xp | F,XA)LZ max (P(Yg | F',Ya)P(Xp,Yg | Xa,Y4))
|N ‘ vA yBETy,

It is obvious that in this equation, there is no direction independent match
probability of any two pixels. That is, to compute the direction dependent
match probability P(Xp | F,X4) of the next iteration, actually only di-
rection dependent probabilities of that direction are used. This agrees with
the intuition of unidirectional matching, where only those probabilities are
available.

Now, inspecting the new model, there is only a factor (1/P(X4 | A, B)),
which is expressed by (1/c%(z4)) in equation (2.19), but there is no factor
(1/P(Ya | A,B)) in the sum of the pixel-match pdf. Suppose the same
interpretation is used and the direction dependent match probabilities of the
next iteration are calculated using only probabilities of the same direction.
Those referring to x4 may be handled as before, since the factor is present for
x4, but those referring to y4 have to be multiplied by y4’s correspondence
probability in order to compensate for the missing factor.

Prew(Xp | F©*1 X ) ~

P(Xp | F',X4)> P(Ya|F") max (P(Yg | 4, Ya)P(Xp, Y5 | Xa,Ya))
ya B=Tva

Since the factor P(Y, | F*) is independent of the maximization regarding yz,
it may be moved in front of this maximization. Hence, it can be interpreted
as a weighting factor when summing up the neighbors. Note that this is no
implementation detail and no artificial factor, but that the pixel-match pdf
is actually influenced by the correspondence probabilities of the neighbors.
This is a very important feature of the new algorithm, since pixels with
reduced correspondence probability have less influence on their neighbors.
As it has been pointed out before, occluded pixels and such with a noisy cor-
respondence are exactly those with reduced support and therefore reduced
correspondence probability. Conflicting match information from those pixels
does not (or not so heavily) propagate further, which promises an optimiza-
tion of the matching result. Nevertheless, since the correspondence probabil-
ity will never reach zero, these weights are relative. Even if all neighbors have
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a low correspondence probability, each pixel still depends on its neighbors:
Occluded pixels (or those supposed to be occluded) still have to choose the
candidate, that best satisfies the assumed constraints. The same applies to
pixels in noisy areas with weak support.

Furthermore, occluded pixels often form contour lines at depth discon-
tinuities. Depth discontinuities in the scene mean also discontinuities in
the displacement fields, which are often smoothed due to faulty information
propagation across these borders. Since the influence of occluded pixels to
both directions is reduced, it may be possible to sharpen the displacement
maps with this approach because the diffusion across the occlusion lines is
reduced. Pixels to both sides of occlusion lines are only influenced by the
regions they belong to. Hence, a good occlusion detection can also help high
level applications to segment the image.

2.4.3 Schematic Overview

Now all equations and update rules for the algorithm have been set up.
By applying the equations and iterating several times, probabilities will be
updated with respect to neighboring probability patches and therefore infor-
mation will diffuse through the whole image. Note that the equations have
only been stated explicitly for the A to B direction. Of course they have
to be applied to the B to A direction (analogously), too. The following is a
schematic overview of the steps to be executed:

1. Position Test Patches

2. Set up Test Patch Normalization (Probability of Correct Positioning)
3. Estimate Correspondence Probabilities (Inverse Occlusion Measure)
4. Initialize Test Patches with Pixel Similarity

5. Apply Neighborhood Constraint (Pixel-Match-PDF from (2.19))

6. Update Correspondence Probabilities (Support from (2.20))

7. Stabilize Directions (Bidirectional Merging from (2.21))

8. Continue at Step 5

Compared to the previous algorithm, step (3) and step (6) are new. Note
that test patches are normalized to the value set in step (2) after applying
steps (4), (5) and also after step (7) and that correspondence probabilities
also have to be normalized after step (6).
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2.4.4 Embedding in the Old Model

The new algorithm has been derived from the same equations as in the former
model, but uses a slightly different way and also a few other assumptions.
However, one may ask, whether there is an image pair respective some prob-
ability distribution, such that the new algorithm embeds into the old one. It
is obvious, that for this purpose the images have to be chosen in a way, that
the pdfs P(X4 | A,B) and P(Xp | A, B) are uniform distributions, since
these probabilities are assumed to be constant in the old model.

Suppose some particular images A and B are given, such that the above
mentioned pdfs are detected to be uniform distributions at each iteration. As
pointed out before, for some pixel position x, the correspondence probability
has to have the value 1/|Z] in that case:

P(XAZCC‘A,B):P(XB:.’L'|A,B):% Vexel teN
Note that this assumption implies that there is full correspondence between
the images (no occluded pixels allowed).
It will now be shown that the algorithms behave in the same way, i.e.
they differ only by a scalar factor which vanishes during the normalization.
There are two steps to be inspected:

e Neighborhood Evaluation
e Bidirectional Merging

Having a closer look at the first one, it is obvious that both pdfs only dif-
fer by a few factors: The old one (according to equation (2.8)) contains the
constant factor 1/|A|, while the new one (see equation (2.19)) contains the
factor 1/P(X 4 | A, B), which is 1/|Z| by assumption and thus also constant.
Hence, the patches are identical after normalization. The bidirectional merg-
ing also differs only by constant factors 1/P(X4 | A, B) and 1/P(Xp | A, B)
under the square root. That is, before normalization all values are scaled by
1/|Z| in the new model (see equation(2.21)) compared to the old one (as in
equation (2.9)). Again, this is compensated for by normalization, so that the
algorithms actually behave the same.

For this scenario, the convergence proof of the algorithm is absolutely
analogous to the one given in [1], which is cited in appendix B for complete-
ness.
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Chapter 3

Stereo and Optic Flow
Integration

In the previous chapter an algorithm has been derived, which can match
two similar images even in presence of occlusion. However, there are still
some parameters of the test patches, which may be critical for the matching
results: For instance, it is clear that the smaller the patches are, the more
exact the positioning must be, since the true match has to be in the patch and
a completely wrong positioned patch prevents the algorithm from finding the
correct match. On the other hand, when using large patches, many matches
are likely at the first iteration steps and diffusion will take quite a while.
Large patches will additionally give spurious support for occluded pixels, so
that the occlusion detection needs many iterations, before acceptable results
are obtained, which are often very noisy in that case. Furthermore, the larger
the patches are, the more resources will be needed to execute the algorithm.

Unfortunately, in general there is no information about where to position
the test patches in advance and what size they should have. Hence, an
approximation has to be used, where a maximum displacement between the
images is assumed. The test patch size and position is then adapted to this
displacement, i.e. all pixels have test patches of that size and are usually
positioned with respect to some kind of estimated mean displacement. This
will usually be a waste of resources, since patches will (for safety reasons) be
much greater than they needed to be.

Secondly, in areas with intrinsically weak structure multiple match can-
didates may be equally likely at the start of the algorithm. In presence
of depth discontinuities they may be matched incorrectly due to conflicting
information from border regions. Furthermore, some spurious match can-
didates may become more likely than the true ones in presence of noise or
perspective distortions.
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Hence, there are some details that may be optimized if there is more
information about how the images have been created and thus about what
kind of data is expected. This chapter shows how additional assumptions for
image sequences or for stereo images can be imposed and exploited, which
optimize the test patch positioning and make the algorithm more robust
in areas without strong structure or for noisy images. Since the algorithm
structure has to be kept in principle, these constraints have to be integrated
into the probability distributions (e.g. for neighborhood or similarity), into
initialization values or into the patch positioning.

3.1 Stereo Matching

3.1.1 Properties of Stereo Images

In stereo imaging, two images of the same scene are taken simultaneously,
but from slightly different positions, usually by two cameras A and B. In our
scenario, images may not differ too much and therefore cameras should point
into a similar direction and have to be quite close to each other (compared to
their distance to the scene). The distance of the cameras is measured along
the connection line between the two optical centers of the cameras, which is
also called the baseline of the stereo system.

A common geometry of the stereo system is that the optical axes of the
cameras used are parallel, the image planes lie in the same plane in 3d-space,
and the image lines are parallel to the baseline of both cameras, such that
the displacement of pixels between left and right image is only horizontal.
In stereo matching applications this displacement is called disparity. Images
created by a stereo system not fulfilling the above properties, but being
transformed in a way that they could have been taken by such a system are
called rectified. Since these image pairs cannot be distinguished from those
pairs really created by such a stereo system, subsequently all image pairs
fulfilling these properties will be called rectified.

For rectified stereo images, true correspondences differ only in their hori-
zontal position and test patch heights of three or even one pixel are sufficient
for a good match. The minimum test patch width depends on the distance of
the nearest objects to the cameras, since the nearer the object is, the greater
the disparity will be. This can be seen in figure (3.1), where object O, is closer
to the cameras than object O;. Hence, Oy is projected nearly to the same
position in both images, while O;’s position changes remarkably. In large im-
age pairs great disparities may occur occasionally (for foreground objects),
while most pixels may have smaller ones. Disparity can vary strongly over
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Figure 3.1: Disparity of objects with different distances to the cameras

the images and from scene to scene, so that adaptive test patch positioning
and sizing may be promising.

Note that rectified image pairs have only been used to strengthen the
reader’s understanding of the problems in stereo matching. In this model
the assumptions about the stereo system are not that strict. Corresponding
pixels may differ in their vertical position, too, and optical axes do not have
to be parallel. If the strict assumptions hold yet, the test patch height may
be reduced to one, as has been shown in [1], but having such stereo images
is not a precondition for the proposed algorithm.

Another problem of stereo images is that due to different perspectives
occluded pixels do not only occur separately or along some border lines.
Instead, whole areas may be occluded if perspectives differ strongly. There
may also be such occluded areas in the other direction, and it is possible that
these areas give random support to each other. The detection of these areas
is also problematic in the proposed algorithm, since pixels in the interior of
these areas usually get conflicting information from their neighbors. It is not
clear, whether their test patches will quickly converge to a single position or
whether they will be uncertain (nearly equally distributed) for many itera-
tions. The bidirectional stabilization may introduce this uncertainty into the
other direction. Hence, large patches of that direction might still give some
support for these pixels and thus their detection may depend on their color
or some noise. A more robust detection of these areas is desirable.

3.1.2 Applying the Model to Stereo Images

To avoid the drawbacks of very large patches, the patch positioning is altered
now: Until now, patches have always been centered relative to a mean dis-
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placement, which depends on the whole image. This displacement and the
test patch size are a kind of a priori information needed by the algorithm.
Depending on this information is the main problem for the given algorithm,
since it has to be adapted to the image pairs. For a general algorithm it
would be preferable, if it could be applied to a greater class of images using
the same parameters. In the new model the displacement is roughly esti-
mated by the algorithm for every pixel and the patch is positioned according
to this guess, which additionally makes the use of much smaller patches pos-
sible. Furthermore, the correspondence probability is estimated, too, so that
it can be used from the first iteration on, even for pixels, which lie in the
interior of large occluded areas.

How can the positioning be estimated? As pointed out before, large
disparities result from objects close to the camera and disparity variations
within the image result from different distances of objects in the scene to
the camera. If the cameras are moved far away from the scene, all objects
will approximately have the same distance to the cameras. The distances
between the objects become smaller compared to their distances to the cam-
eras. It is assumed that no other objects come into sight and that only the
original scene is inspected. Consequently, this scene is projected to a smaller
region and uses fewer pixels in the new images A’ and B’. If these images are
matched using the standard algorithm, smaller patches can be used than for
the original images. The results of this correspondence search (and occlusion
detection) can then be used to initialize the match algorithm for the original
images. Furthermore, occluded areas melt down to single pixels or lines in
A’ and B’ and can be detected more robustly.

Of course it is not possible in general to move the cameras arbitrarily far
away from the scene. This imagination just helps to understand the idea used
for position estimation. Instead, for the two images A and B Gauss pyramids
are constructed, i.e. the image size is repeatedly reduced, and the resulting
images are used to initialize test patch position and occlusion information
for the correspondence search between A and B.

3.1.3 Gauss Pyramid Construction

When creating a Gauss pyramid for some image, the image width and height
are recursively reduced by a factor of two. For convenience reasons, it is
assumed that dimensions of images A and B to be matched are always powers
of two (though calculation is also possible for odd image sizes) and that these
images are squares of a minimum size:

Img, = Img, = 2", where n € Ny,
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The original images are defined to be pyramid layer zero. Since width and
height are reduced when travelling up one pyramid layer, the image size at
layer 1 is:

Imgi:]mgé:Q”_l, where e N, 0< [ <n-—4

When centering a test patch to some pixel and the patch does not fit into
the image, the pixel is defined to belong to the border area. Note that for
meaningful matching results the border areas of an image should be small
compared to the whole image size. Therefore the number of layers is limited
by the size of the smallest reasonable layer, which is assumed to be sixteen
pixels here. For large images it may be a good idea to set this minimum size
to 32 or an even larger value to avoid uncertainties at the borders.

In order to reduce the image size and match at a smaller scale, care must
be taken of the sampling theorem (see [35]). It states that the sampling rate
must be higher than two times the highest image frequency, otherwise the
image signal cannot be reconstructed correctly from the sample values. The
critical frequency defined by dividing the sampling frequency by two is called
the Nyquist Frequency fy (according to [34]). If the signal contains spectral
components above the Nyquist Frequency, the sampling will introduce errors
into the image, known as aliasing in signal theory or the Moiré effect in image
processing. These artificial structures would disturb the matching and have
to be avoided.

Consequently, before down-sampling the image it has to be low pass fil-
tered, i.e. all frequencies equal to or greater than half of the new sampling
frequency f; have to be suppressed. On the other hand, lower frequencies
must stay untouched to keep as much structure as possible for matching.
Intuitively, high frequencies are responsible for sharp edges or corners, while
spectral components at low frequencies only form smooth transitions. It is
therefore assumed that the most significant structures for accurate matching
are created by higher frequencies, while the others can only be used for an
approximate positioning. Hence, a steep filter is needed that supresses fre-
quencies higher or equal to fs (and thus irregular structures introduced by
Moiré effects) but keeps all others untouched (to save significant structures).

Unfortunately, the uncertainty relation sets up a minimum product of
variances of Fourier pairs in frequency and spatial domain, which is known
as the time-bandwith-product in signal theory. That is, infinitely steep filters
in the frequency domain have an infinite impulse (respective point) response
and therefore filters with finite impulse/point responses (FIR filters) cannot
be ideal low pass filters. Clearly, large filter masks will take longer to compute
or need more resources than shorter ones.
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Figure 3.2: Transfer function of B? (1d), x-axis scaled to Nyquist frequency

A compromise with respect to the accuracy of the low pass filtering has
to be made. The filter has to be as localized as possible in the spatial domain
and also as steep as possible in the frequency domain. The Gauss function
(which also corresponds to a Gauss function in the other domain) is optimal
with respect to the uncertainty relation, since it provides a minimum product
of spatial and frequency variance. In [35] Jidhne states that transfer functions
of binomial filters approximate such Gauss functions and that they can be
implemented efficiently. However, the problem in using Gauss functions as
low pass filters is that they do not have a border, they are infinitely expanded
and smooth absolutely everywhere. Thus there is no critical frequency and
the only characteristic points are the turning points, which are defined by
the standard deviation of the Gauss.
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Two-dimensional second order binomial filter 32

For a second order binomial filter B? this turning point is located exactly
at frequency 0.5fy, which suits our needs quite well. This spectral compo-
nent is reduced to 50%, while components of higher frequencies are reduced
much more, since the transfer function decreases strongly from that point
on. Note that components near the Nyquist frequency are suppressed almost
completely and that the filter has the property that smaller structures (with
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Figure 3.4: Images with recursively reduced size (achieved by low-pass fil-
tering using B? and subsequent down-sampling by a factor of two for both
directions)

higher frequencies) are weakened much more than larger ones as pointed out
in [35]. For a pure low pass filter, this may still be too much of the high
frequencies, but remember that frequencies only a little below 0.5 fx are ex-
pected to be very important for matching. Higher order binomial filters with
filter masks of size 5 or 7 would suppress the disturbing higher frequency
components even more but would also heavily reduce structural information
important for matching. Using B2, there should be almost no noise in the
images (apart from the introduced aliasing), since noise usually affects high
frequencies. Small similarity disturbances due to Moiré effects may therefore
be acceptable. After all, matching over scale is just used to produce an initial
guess of the final matching process, which will be applied to the unchanged
original images. It is assumed that errors at the higher pyramid layers will
not be so bad that the patches are positioned completely wrong and small
errors can be compensated.

After low pass filtering the image using B2, it can be down-sampled to
get the first pyramid layer (1=1). This image can then be treated the same
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Figure 3.5: Gauss pyramids for image A (left) and B (right): First the
smallest layers are matched, while layer zero (containing the original images)
is matched at the last step.

way to generate the next one. As pointed out before, the matching can only
be applied to images of a certain minimum size. Hence, there is no need to
calculate smaller scales.

3.1.4 Scale Matching

After the pyramid is calculated up to a minimum size for each image, the cor-
responding images of the pyramids are matched, beginning with the smallest
layer. The resulting information is used to initialize the matching of the next
larger images and so on. Finally, the images of the original size are matched
using the information calculated by the second largest match.

First the smallest images of both perspectives are matched. The test
patch size may be chosen very small, since a test patch width of n at layer m
corresponds to an exponentially increased width of size n2™ at the original
layer zero. However, it has to be chosen in a way that all possible disparities
are covered. A displacement of zero (d = (0;0)) is used and the occlusion
information is initialized constantly as stated in the previous chapter.

The resulting match information is sparse, since it is only calculated for
the pixels of the smallest images (a fourth of the number of the next larger
image’s pixels). To proceed to the next layer, it has to be interpolated for
the additional pixels in the next larger images. The test patches for the
next match are then centered to the (interpolated) expectation values and
the occlusion information is also initialized using the interpolated data of
the smaller scale. The test patch size used at the smallest layer applies to
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all scales, so that the area where the match may lie is relatively constrained
further and further, when travelling down the pyramid. Now, the matching
is executed for this layer and the results are used to initialize the next one.
This process continues until the original images are matched.

This should not only solve the problem of appropriate test patch size
but can also help in matching regions with weak structure, where the former
algorithm would have needed many iterations for test patch convergence.
Note that occluded areas in the original images will shrink to pixels at small
scales, which are detectable more robustly.

Suppose the match information is always interpolated for all pixels of
the original image. The resulting process regarding this information can
then be viewed as a coarse-to-fine matching approach, starting with rough
information of low spectral components and taking into account more and
more higher frequencies, when travelling down the pyramid. At the original
scale, the match is influenced by the highest spectral components, which
are responsible for the final accuracy but which are also most susceptible to
noise.

3.2 Optic Flow

3.2.1 Image Sequences

Optic flow means displacement of corresponding pixels from images of a
time series taken by a single camera. That is, the camera may change its
position, objects in the scene may move and the environment may change
(e.g. the illumination). However, usually images are taken very frequently
compared to changes in the scene, i.e. there are only small changes between
two subsequent images of a time series.
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Figure 3.6: Constant velocity assumption for image sequences

In contrast to the observations made for stereo images, displacements of
corresponding pixels will usually be very small. The main reason for this
is that the camera is expected to be quite far away from the objects in the
scene compared to the different positions of the camera (or the objects) at
two subsequent frames. Hence, the movements do not cause perspective
distortions between the images as heavily as in stereo imaging. However, to
some degree these distortions will still appear and occlusion is also possible.

Additionally, an assumption about the movements in the scene is im-
posed, which should be valid for most natural scenes with rigid objects. The
velocity of a 3d-object will only change smoothly over time (due to inertia)
and so will its projection into the camera plane. Hence, all points projected
by this object will have smooth velocity over time.

3.2.2 Similarity for Optic Flow

If the projection of objects into the camera plane changes only smoothly over
time and images are taken very frequently compared to changes in the scene,
the movement of a pixel can be assumed to be constant for a few images.
That is, if a point in space is projected to pixel x; in image 1 and z; + v in
image 2, it is assumed to be projected to x; + 2v in image 3 and x; + 3v in
image 4. This does not necessarily mean that velocity is constant for a certain
pixel position, since one position can belong to various objects in different
images. Instead, it is assumed to be adherent to the object (and thus to
the pixel), which will possibly change its position from image to image. For
some specific applications it may be more promising to assume velocity being
adherent to the position (as for static scenes with many rotating objects), or
to make completely different assumptions. However, in this model this is not
assumed and objects are expected to move slowly through space and behave
as pointed out before.

The constant velocity assumption is now implemented into the pixel sim-
ilarity function: For subsequent images I; and I, of a time series, pixels are
expected to have constant velocity. The positions of the corresponding pixels
in previous and future images can then be extrapolated linearly, though this
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Figure 3.7: Constant velocity assumption for pixels

is a very rough approximation, since there is no subpixel accuracy. On the
other hand, this assumption can also be utilized to find the optimal match
candidate.

Let x; be a pixel position in image Iy, which is the second frame of
the image sequence (ly,[1,15,13). If pixel x;’s correspondence in image I is
searched, by now the patch probabilities are initialized with the similarities
of these two pixels only. That is, for match candidate x5 in I, the s-function
is used to evaluate the similarity of pixels z; and x5. Now, additionally the
values of the extrapolated positions in images I, and I3 are used. If x; and
x9 actually are projections of the same point in space, it is assumed that this
point will project to the extrapolated positions 3 and z3 in images [y and
I3. Hence, x3 := x9 + (22 — 1) in I3 is inspected as well as position zq :=
x1 — (2 — 1) in I;. Note that not all possible combinations of similarities
are evaluated but only those of pixels of subsequent frames, that is zy to x1,
x1 to o (as before) and 5 to x3.

Since the constant velocity assumption is very rough and provides no sub-
pixel accuracy, the extrapolated pixel positions are not compared as strictly
as the actual pixels. The correspondence xy in Iy and z; in I; is assumed to be
noisier than the actual correspondence z; in I; and z, in I, thus the Gauss
used for similarity is not that strongly peaked but has a greater variance.
The same applies to the similarity of x5 in Iy and x3 in I3. Nevertheless, for
a good match, it is expected that all four pixels have about the same value.

The similarity function used for flow is defined based on the normal sim-
ilarity function s() and a function (), that is identical to s() except for the
fact that o; := 20,. This demands a high similarity for the two images under
inspection and allows greater differences for the extrapolated pixel positions.

SFlow(I2|xza I3|m3) = §(Il|m17 12|x2)5(12|x27 13|m3)§(13|m37 I4|m4)

Apparently, not only pixel colors of two images are compared but also the ex-
trapolated position of that pixel in the previous image and in the subsequent
image are expected to have a similar color (or some invariant property).
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3.2.3 Positioning of Test Patches

To avoid large patches and to improve occlusion detection, the test patch
positioning in optic flow computation is done using a scale approach, too.
However, since only small displacements are expected, it should be sufficient
to use only the next higher scale of a pyramid to initialize the patch position-
ing. For larger homogeneous areas, it may be better to use the full pyramid,
since these areas shrink to pixel size at some smaller level. Nevertheless,
an explicit homogenity measure (for local scale) in the similarity function
seems to be more promising to solve this problem. It is therefore put aside
and only one higher pyramid layer is used for test patch positioning and
correspondence probability estimation.

3.2.4 Correspondence Probability Initialization

Though the correspondence probability is initialized with 1/|Z| at the upper
most pyramid layers as pointed out before, some other start values may
be reasonable for optic flow applications and also for stereo scenes. A good
initialization is desirable, since the algorithm uses correspondence probability
for matching from the first iteration on and an almost correct value can
improve the matching in early phases of the algorithm.

A first idea is to expect occlusions at edges, since depth discontinuities
are located at object borders which can often be found at edges in the image
data. It has been tested to apply an edge detection operator to the image and
to declare regions containing edges as being more likely for occlusion. Un-
fortunately these regions are also the regions containing structure and thus
those from which the information propagates to the more homogeneous image
parts. If this diffusion is disturbed due to reduced influence on the neigh-
bors, convergence becomes very slow. Results become bad because pixels are
matched due to noise and therefore this initialization is not used. The idea
of exploiting the similarity of the most likely pixel in the patch for correspon-
dence probability estimation does not work properly either. Consequently,
the initialization value 1/|Z| is used as proposed in the model.

Good values are usually available after some iterations, i.e. occluded pixels
can be roughly distinguished from the others. Initializing the correspondence
probability with the constant expectation value and executing some iterations
of the algorithm should yield very exact values. The test patches may then
be reset, while the correspondence probabilities are kept and used as a start
value for the second algorithm execution. This (quite exact) method of ini-
tialization is called correspondence probability pre-computation. However, it
is only used for comparison purposes, since it requires additional iterations.
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Chapter 4

Implementation

4.1 Complexity Analysis

In this section the complexity of the general algorithm is briefly examined.
In computer vision, applications are usually time-critical, for instance if they
have to act in a natural environment and must achieve real-time capabilities.
Of course, memory and other resource requirements of algorithms have to be
satisfied, too, but they can usually be assumed to be available and may be
neglected here at first. Thus, the focus here is set on time complexity.

Traditionally, time complexity of an algorithm is measured by counting
all operations regarding some important variables (e.g. image size, iterations
and so on). If the complexity relation regarding these variables is a polyno-
mial, only the highest order term is used and constant factors are left away.
Using such a rough complexity measure, one speaks of the order O() of some
algorithm. Two implementations are compared now: The software imple-
mentation with standard resource requirements and the specialized hardware
implementation with maximum parallelity.

The software implementation of the algorithm on some standard CPU
has to serialize all computations, such that all operations have to be run
step by step. The algorithm is started with the initialization of the test
patches with pixel similarity. For each pixel, the similarities have to be
calculated for all candidates in the test patches. This takes time of the order
O(Imgy - Imgy - Tw - Ty ), where Ty and Ty are width and height of the test
patches.

The next step is the neighborhood step of equation (2.8), which is re-
sponsible for the diffusion process: For each pixel in each direction at each
iteration, every probability of its test patch has to be calculated. Each prob-
ability again is a weighted sum over all eight neighbors’ values. In order to

45



get such a neighbor’s value, all pixels of its test patch are weighted by the
ordering pdf (using the h-function as described in equation (2.5)) and the
maximum is seached. The weighting depends on the original pixel and thus
cannot be reused for other patches. Note that there may be an optimization,
if, for instance, a constant patch positioning is used, but this is not assumed
here.

Hence, complexity depends quadratically on test patch height and width
and linearly on image height and width: O(Img, - Img, - T3, - T%). The
Gauss functions may be precalculated and accessed via lookup tables, since
they are only applied to some small discrete set of values.

Regarding the whole algorithm, the most expensive (and thus the rel-
evant) operation here is the diffusion process while the initialization may
be neglected. Support collection for occlusion detection and bidirectional
merging can also be ignored, since their complexity is similar to the initial-
ization complexity. Nevertheless, the diffusion complexity is multiplied by
the number of iterations it.

CSoftware ~ O(Zt . Imgz : Imgy : TEV : T}ZI)

However, the diffusion process is so computationally expensive, that a soft-
ware implementation of the algorithm is far away from real-time and can
only be used for qualitative analysis.

Nevertheless, the proposed algorithm is highly suitable for a hardware
implementation where independent operations may be executed in parallel
to optimize execution time. Certainly, this requires very special hardware,
e.g. FPGA (field programmable gate array) chips, where such parallel im-
plementations are possible (see [32]). If sufficient resources are assumed to
be available and the algorithm is implemented ’as parallel as possible’; only
those operations take effect on the time complexity, that depend on some pre-
vious result and thus cannot be executed simultaneously with the previous
operation.

It is clear that no calculations depend on other results in the initialization,
thus it takes only constant time if every candidate in every patch is initialized
in parallel. Constant time means, that the execution time does not depend
on any of the parameters but on a fixed number of operations. At each itera-
tion, the steps neighborhood, correspondence and direction merging have to
be executed sequentially, because they depend on the results of the previous
step. However, within one step, all pixels and their test patches may be com-
puted simultaneously. From the software implementation it is known that by
far most of the operations are used for the neighborhood step, which can be
considered at the heart of the algorithm. Since it is fundamentally parallel,
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all operations can be executed simultaneously in a hardware implementation
which yields a constant time complexity. Note that the constant factor may
be quite high, since for every pixel multiplications and additions have to be
executed.

Formally, a hardware implementation will thus need time in the order of:

CHardware ~ O(lt ) (log(TW ' TH) + log(Imgx ) Imgy))

This is not due to the neighborhood function, but because the normalizations
and the support collection for occlusion detection always sum up across the
test patch and the correspondence probability normalization sums up across
the whole image. Using a common implementation with cascaded adders, the
addition of n» numbers needs log,(n) layers, which are the relevant steps here.
Note that in a very specialized low-level implementation even these additions
may theoretically be done in one step, since the addition of n numbers with
m bit each can be implemented by a very large lookup table (2" entries with
multiple bits each) representing a binary function with mn input values. The
complexity would then depend only on the iterations, but arguing this way,
one may also state that the whole matching could be pre-computed for every
image pair in one large lookup table. Clearly, such hardware and that much
pre-computation time is not and will not be available, and therefore the
complexity is estimated only for reasonable resource assumptions.

Even for the first (more realistic) hardware implemetation suggestion, all
pixels and all patches have to be calculated in parallel. In particular such a
hardware must be capable of accepting images of the given size and provide
test patch resources for all those pixels. These requirements are beyond the
capabilities of FPGA boards of today, but may be available not too far in
the future.

4.2 Hardware Implementation

4.2.1 Recurrent Neural Network Model

The model can also be interpreted as a recurrent neural network, which
inspires a parallel implementation, too. Remember that there is a test patch
for each pixel, which is set to a size of 3x3 in this example. One test patch
is shown by the square at the upper left corner of figure (4.1). Each of the
nine match candidates in the patch is represented by a circle. These circles
are now called neurons, they represent simple computation units with a large
number of interconnection lines. For each neuron, the pixel the patch belongs
to is printed in the small square in the neuron’s right part. Note that neurons
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Figure 4.1: Model interpretation as a recurrent neural network : The blue
square represents a 3x3 test patch.

of the same test patch do therefore always contain the same number at this
position (compare blue square in figure (4.1)).

Each neuron gets its input signals from weighted outputs of other neurons.
The input lines are always shown on top of the neuron with one exception:
The connection to the neuron needed for bidirectional merging is placed
at the right of each neuron to demonstrate its special meaning. The output
signal of each neuron is located at the left side. These outputs are used again
as inputs for some other neurons so that loops are constructed, which leads
to the name recurrent neural network. Which neurons exactly are connected
to which others is displayed in the next figure.

Note that the neurons are only indicated for the A to B direction, but
there is also the same number of patches and match candidates for the inverse
direction. In this model, there is massive interaction between the neurons,
which is indicated by the dense structure of the connections. To understand
how the neurons are connected and how the model fits into the algorithm of
the former chapters, one neuron is shown in figure (4.2) in more detail.

Remember the main parts of the pixel-match pdf (equation (2.12)) of
chapter two. For a pixel x4, the match candidate xp is inspected. This is
indicated by the small 4 in the right part of the neuron and the light gray
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Figure 4.2: Connections and internal neuron structure

xp in the background. First, the similarity of x4 in A and zg in B has to be
evaluated as an initialization step, which is not displayed here. However, it
can be imagined that the square with the T initially contains this similarity
value. Now for all eight neighbors of z 4 it is checked, how well they support
a correspondence (z4,xp), i.e. whether for some neighbor y,4 there is a likely
yp with a similar displacement. Mathematically this is done by multiplying
the similarity (from the T) by a sum of probabilities over all eight neighbors,
which is indicated by the summation sign in the upper part of the neuron.

Now the above mentioned sum is inspected, in particular the single ad-
dends. These are the values of the best matching yg for a given x4,rp5 and
ya. To find this best matching candidate, the similarities of the whole test
patch of y4 are weighted by the h-function and the maximum value is taken.
Note that these weights are fixed when the test patch is positioned. Clearly,
this maximum search is not only applied to one neighbor y4 of 4 but to all.
However, these connections and neurons look the same and are not displayed
here to avoid too much complication.

The resulting product of sum of neighbor values and similarity is the
direction dependent patch probability, as defined in the pixel-match pdf of
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equation (2.19). The next step is the bidirectional merging of equation (2.21).
The probability has to be made direction independant for this and is therefore
weighted by the correspondence probability. Note that this probability has to
be updated dynamically (as defined in equation (2.20), which is not displayed
here. Additionally, the normalizations have been left away, too, for the sake
of readability. The direction independant probability is then multiplied by
the one calculated for the opposite direction. The input signal to the right
is used to symbolize this probability.

Both probabilities are then multiplied and the square root is computed,
as proposed in equation (2.21). Note that instead of geometric averaging
an arithmetic averaging is also possible, since it can be derived the same
way. This would avoid the computation of the square root and replace it by
a weighted sum, which is more suitable for a neural computation, since it
can be done by very simple operations. However, deriving an optimal neural
network with specialized operations is beyond the scope of this thesis.! The
goal here is to show that the interpretation as such a network is possible in
general.

Finally, the averaged value is used for the next iteration. Note that the
idea of iterations requires some kind of clock to distinguish the different time
intervals. To cope with the recurrence, the model is assumed to work in
synchronous mode here. That is, there are time ticks and only at such a
clock tick the T-box checks the input signal, saves the input and updates its
output one moment later. The next clock tick is not given before the system
has stabilized. Hence, within one iteration, the network has no loops.

4.2.2 FPGAs

As pointed out in the complexity analysis, the algorithm should be imple-
mented in hardware to be fast enough and as much computations as possible
have to be executed in parallel. Such an implementation requires a very
special hardware, e.g. FPGA chips.

These FPGAs can be regarded as large programmable hardware chips,
which provide a huge number of basic circuits, which may be connected to
each other and which can compute simple functions (see also [32]). Hence,
they offer a way for a parallel implementation of the algorithm. Ideally, a
suitable FPGA would provide resources for every match candidate in every
test patch. The neural network of the previous section may then be a good
way to implement the algorithm.

!For more information about neural networks and further references please refer to [29].
Relations to the human visual system and neurobiology can be found in [30].
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For the time being, it has to be stated that the algorithm cannot be im-
plemented fully in parallel and thus its capabilities cannot be used efficiently.
Rabsch (see [22]) has implemented the former model using some FPGA chip
and shows how an implementation is possible in principle, though he has to
make some approximations. Missing resources can be traded against time,
but real-time capability can only be achieved, when it is running (almost)
fully parallel. However, since hardware resources and clock speeds are still
increasing very quickly, a completely parallel implementation may become
possible in the future.

4.3 Software Implementation

For qualitative analysis purposes, the algorithm is implemented in software
for a standard CPU (e.g. an x86-compatible or similar sequential processor).
The actual implementation is done using the Perception Action Components
Library? (PACLib), which among other things supplies basic functionality
such as image display and camera access. Since a software implementation
will always be far away from real-time capabilities, no approach has been
made to get a time-optimal solution. Instead, a more adaptable experimental
model has been used. This has to be kept in mind (and the proposed hard-
ware implementation) when execution times are compared to other matching
models.

4.3.1 Parameters

For all experiments generally the same parameters have been used as in [1].
That is, the standard deviations of the h- and s-function are set to:

Op = 1
o, = 0.16

Matching is always executed bidirectionally, test patches have the same
size for all pixels and at each scale. That is, on a high pyramid layer, such a
patch covers a much greater area (with respect to the original image) than
on the lowest layer. Usually 20 iterations have been used and unless stated
otherwise the patches have converged after this number of iterations.

The default test patch size chosen is 7x5, which showed good preliminary
matching results for various scenes. Nevertheless, for rectified stereo images

2For detailed information about this software library and related programs please visit
the PACLib homepage at http://www.ks.informatik.uni-kiel.de.
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the test patch height can be set to unity, in order to make use of the additional
information. In stereo scale matching a width of seven pixels covers all
reasonable horizontal displacements, since it is also applied to the smallest
pyramid images, where small displacements correspond to large ones at the
original size. For optic flow it is also large enough, if the assumptions of
small movements hold. Choosing the width larger than the height expresses
the assumption that the expected maximum horizontal displacement is larger
than the maximum vertical one. Note that for certain specialized geometries
other test patch sizes may be more promising.

4.3.2 Patch Positioning

Unlike in the former model, there is no global expected mean displacement,
which takes effect on the test patch positioning as it is pointed out in the
stereo and optic flow adaptions. Test patches may be placed individually, i.e.
patches for neighboring pixels do not have to overlap at any rate. However,
in general this will still be the case, since there is no a priori information
where to put the patches. If the scale approach is not used and nothing else
is stated, a constant displacement of d = (0;0) is used.

4.4 Error Metrics

The following error metrics are used, which have been chosen in accordance
to [9] and which make it possible to relate the results to the work of others:
The local error vector er(x) at the position z is defined to be the difference
between the ground truth vector and the calculated displacement vector. The
local error er(z) is the length of the local error vector at position z according
to Lyo-Norm. The mean error e, for an image is then defined to be the sum of
all local errors at positions of so called good pixels, divided by their number.

1
em = 7l ZeL(x)

z€G

The set G of good pixels contains only those pixels at least half a test patch
size away from the border who have a correspondence in the other image.
Therefore a low mean error means that all relevant pixels in the image have
been matched well. Since many small errors are more acceptable than a
few big ones, it is desirable to have a metric on the error distribution. The
standard deviation o, can give a hint about that.

o, = \/lé—| > (en )
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The aperture problem is a very crucial problem in matching. To evaluate
how well an algorithm can cope with the aperture problem, a local and
a mean aperture error is defined according to [9]. The first image to be
matched is converted to gray levels by arithmetic averaging of RGB channels,
after that the brightness gradient is calculated at each pixel position: A
perpendicular vector p(x) of length unity is then defined and the local error
vector is projected onto this new vector.

ela += €,(z) - B(z)

The result is called the local aperture error and represents the amount of
error that points into the most homogenous (and uncertain) direction. Again,
averaging the absolute values of local aperture errors across all good pixels
yields the mean aperture error.

If any of the above symbols refers to a whole sequence of images and is
therefore averaged across these images, this is indicated by a bar on top of
the error (e.g. €).
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Chapter 5

Experiments

5.1 Applying the Model

To check how the model works in practice, some artificial stereo images are
evaluated as a first proof of concept. An RGB image of size 32x32 pixels
containing random noise (equally distributed over the pixel range, pixelwise
independant) is used as background (symbolized yellow in figure (5.1)) and
an image of size 16x8 pixels (symbolized blue) also containing such noise is
used as a foreground object. To generate image A, the small image is inserted
into the large one at some position near the center, simulating a rectangular
object, which hides parts of the background. In image B, the foreground
object is moved by two pixels to the right and one up, so that it hides a
slightly different area of the background.

The true displacement can be seen in figure (5.3). The brightness rep-
resents the absolute value of displacement, i.e. black pixels have the same

Figure 5.1: Generation of artificial images: Blue area (foreground object)
starting at (13;10) hiding parts of yellow area (background object) is moved
from image A (left) to B (right) by two pixels left and one pixel up.
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Figure 5.2: Generated stereo images

Figure 5.3: Ground truth images: Displacement for A to B direction (left)
and B to A direction (right). Pure white pixels are (half-)occluded.

position in both images, while gray pixels are displaced. In this artificial ex-
periment all pixels of the foreground object have a constant displacement (of
a whole number of pixels), while those of the background have no displace-
ment. The occlusion information is integrated here into the displacement
images in a way that pure white areas indicate half-occluded pixels, which
have no correspondence in the other image. Since the image generation pro-
cess is known, one may say that they belong to the background and that
their disparity would be zero, if they were not occluded in the other image.
However, having only the two images and no further information, the only
possible statement here is, that they have no correspondence. Thus they are
not evaluated in error analyis. For evaluation purposes the A to B direction
displacement images are shown, but all observations are also valid for the B
to A direction. Using the old model (see figure (5.4)) most pixels are matched
correctly (bidirectional mode, test patch size 5x3, 20 iterations), but there
are some problems at the borders of the foreground object. Background pix-
els left to and below of the foreground object are matched badly, although
they have well-defined correspondences in the other image. As pointed out,
occluded pixels (right of and above the foreground object) have no corre-
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spondences, so their match values are neglected here. The displacement field
has been smoothed at least at the left and lower object boundary: Pixels
of the background have been influenced strongly by foreground object pix-
els and are matched as if they were moving with this object. This occurs
due to the neighborhood constraint, that demands similar displacements for
neighboring pixels. Since there is a very high degree of information and
pixel color differs noticably for wrong match candidates, pixels should be
matchable quite uniquely. Nevertheless, there is always a tradeoff between
similarity and smoothness. Neighboring pixels belonging to a different object
are trusted exactly as much as really neighboring pixels are, whose origin in
3d-space is also neighboring to the origin of the point under inspection. The
absolute value of matching error is high in these border regions, as can be
seen in the error image in figure (5.4).

Now the improvements of the new algorithm are tested. It is run without
stereo or optic flow constraints (also bidirectional mode, test patch size 5x3,
20 iterations) on the same images. At first the occlusion detection capabil-
ities are inspected. The images in figure (5.5) show the probabilities that
some pixel in A has a correspondence in B (left image) and vice versa (right
image). All occluded pixels have been detected, i.e. their match probabilities
are significantly lower than those of pixels not occluded. Some pixels have
slightly less support than others, especially at the borders, but qualitatively
all occlusions are detected and there are no false positives.

The implications on the matching result can be seen in figure (5.6). There
are sharp displacement field discontinuities at the object’s lower and left
borders. The other borders are not relevant since the pixels right and on
top of the foreground object in A are occluded in B. These results apply
to the inverse direction analogously. At first sight it is somewhat surprising
that the matching results have improved for the A to B direction in regions
where there are actually no occluded pixels, whose influence could have been
reduced. This is achieved by bidirectional merging. Occlusions from the
other direction discouple the flow field and optimize the matching accuracy
of this direction, too.

Adding some noise to image A and image B independently does not dis-
turb the matching results and occlusion detection as can be seen in table
(5.1). The number of pixels to match is in the size of 1000 and pixels not
lying at boundaries have been matched absolutely correct. Thus viewing the
mean matching error in thousandths can give approximately the number of
pixels being matched really wrong.

Note that the images used have two artificial properties, which are not
always valid for natural images: First, there is very strong structure present,
which simplifies the matching and the occlusion detection. Usually natural
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Figure 5.4: A to B results for old model: Disparity (left), error (right). Pixels
above and to the right of the foreground object are occluded and therefore
disregarded in the error analysis.

Figure 5.5: Correspondence probability of new model: A to B (left) and B

to A (right)

Figure 5.6: A to B results for new model: Disparity (left), error (right).
Pixels above and to the right of the foreground rectangle are occluded and
therefore disregarded in the error analysis.
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Noise Level | Ol ey / 105 | New en / o
0% 34.1 1.6
3% 34.3 1.7
5 % 34.3 1.7
10 % 36.3 1.6

Table 5.1: Mean matching error in presence of Gaussian noise (in percent of
the dynamic range of the pixel values) added independently to both images

images are smoother and contain regions with low contrast. Secondly, there
are no subpixel correspondences, i.e. no probabilities are distributed across
some neighboring pixels and there is a one-to-one correspondence. However,
in that scenario, occlusion detection works and improves matching results at
image borders, even in presence of noise.

The next example (see figure (5.7)) is more realistic, but still a semi-
artificial scene, i.e. it contains natural and artificial elements. This exper-
iment is made with various test patch sizes to check the dependence of the
occlusion detection on this size and the implications for matching. Image A
shows a small area of a cup with flowers printed on. The smallest flower (left
of the image center) is artificially inserted, i.e. its pixels hide a region of the
cup, which is not regtangular in this experiment. The flower is then moved
to the right to construct image B. Note that this experiment has full ground

Figure 5.7: Artificially altered scene: Small flower from image A (left) moved
to the right to create image B (right)

truth, too. Every pixel is displaced by a whole number of pixels, so that there
are no subpixel correspondences. Again, some pixels of the background are
half-occluded in the images.

The occlusion detection still extracts the occluded pixels, but with differ-
ent accuracy, which depends on the test patch size, as shown in figure (5.8).
The correspondence probability evolves quite slowly if the test patches are
large, because there is more spurious support in large patches. Consequently,
many iterations are needed to detect occluded pixels. Since information also
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Figure 5.8: Correspondence probabilities for test patch size 5x1 (upper im-
ages) and size 7x5 (lower images): A to B direction (left), B to A direction

(right)

Figure 5.9: Error distribution using old model (left image), error enhance-
ment in flower region using new model (right image)

propagates before the occluded pixels are detected properly, matching results
for large patches are the same in the new and in the old model. However,
using d = (1;0) allows a patch size of 3x1, in which occluded pixels can
be detected very well. The mean error (after 20 iterations) shrinks from
26,5 - 1072 in the old model to 22,4 - 1072 in the new model. Again, it is
remarkable that the errors occur only at the border of the small flower, where
a smoothing of the displacement field can be observed in the old model, that
is present all around the flower. These errors are reduced in the new model.
The difference of these errors in the region of the flower’s border between
the old and the new model are displayed in figure (5.9). However, note that
there are still errors present using the new model, since completely correct
matching based only on two images is usually not possible.

To understand this, imagine a fried egg centered on a white plate as some
image A and the same egg moved by some small distance to the right (but
still on the plate) as image B. If the white parts of the egg have the same
color as the plate and one does not know the contour of the egg, matching
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these images is quite difficult. One can only state that the egg yolk has
moved to the right, but since there is no information, which white pixels
belong to the egg and which belong to the plate, it is completely uncertain,
how these pixels have behaved. Maybe for the pixels at the plate border it is
more likely to belong to the plate and thus to have no displacement, while for
those near the center it is more likely to belong to the egg and thus to have
the same displacement as the yellow egg pixels. However, these ambiguities
cannot be resolved without exact knowledge about the egg’s contour and in
no way by using a general dense pixel matching algorithm based on pixel
similarity. The problem can only be solved with semantic information, e.g.
the notion that there is an egg on the plate, how eggs usually look like and
how big they are. Note that in most natural scenes such situations occur and
that this has to be kept in mind when evaluating a matching algorithm.

The next image pair under inspection is an aerial stereo pair (see figure
(5.10)) of the Pentagon provided by CMU/VASC!. The algorithm has been
applied using d=(-6;0), a test patch size of 13x1. The disparity and conr-
respondence probability images have been taken after 12 iterations, where
the algorithm had converged. As pointed out before, white pixels (in the
middle images of figure (5.10)) mean great correspondence probability while
black pixels mean low support and thus indicate occluded pixels or pixels
which violate the neighborhood or similarity constraints. The correspon-
dence probability images are also referred to as confidence images from now
on, since the brightness of these images reflects the over-all likelihood for a
correspondence and in some way also the quality of the matching result.

In the images of figure (5.10) the Pentagon may be regarded as a fore-
ground object, which is nearer to the camera than the areas around it. Note
that in the right image, half-occluded pixels are usually those of the ground,
smaller objects and walls. These pixels can be seen right of the foreground
object in the right image and vice versa in the left image. That is, the right
correspondence probability image is black (low correspondence probability)
for pixels at right borders of foreground objects, while the left image shows
half-occluded pixels at left foreground object borders.

Note that the main occlusion lines are detected, but that these lines are
not absolutely accurate and sharp. Hence, the matching results are also not
sharpened as much as it may have been expected. For completeness reasons
the matching results are displayed in the disparity image of figure (5.10),
although this example is intended to demonstrate the occlusion detection

!The stereo image pair can be obtained from the Vision and Autonomous Sys-
tems Center’s Image Database of Carnegie Mellon University, Pittsburgh, USA at
http:/ /vasc.ri.cmu.edu/idb /html/stereo/pentagon
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Figure 5.10: Aerial images of the Pentagon (upper images), confidence using
new model (middle images) and disparity (lower image)
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in real images. Since there is no real ground truth available for this image
pair, it is not exactly known, where the occlusions are and how they look
like. If a bird flies over the building or some tree is moving in the wind,
occlusion changes. However, the detected occlusions refering to the building
look pretty realistic.

5.2 Stereo Image Pairs

In the previous experiments, no assumptions about how the images have been
created are integrated into the algorithm. A good matching result depends on
a good selection of the test patch size and an appropriate mean displacement
d and thus on a priori knowledge from outside. The experiments described
in this and in the next section now use the stereo and optic flow constraints
and do not need such a d or a special test patch size. However, for rectified
stereo images the test patch height is set to one.

First, a stereo scene with some real objects partly occluding the back-
ground and other objects is used. Although this scene does not contain many
large homogeneous areas, there are some effects that disturb the matching,
e.g. reflection and transparency at the bottle and the phone as well as strong
noise including pixel errors.

Since there is no ground truth available for this scene, the results are eval-
uated only roughly by comparing the matching results qualitatively. First,
the former algorithm is applied to the images with a test patch size of 13x1
and d = (—5;0), which should be optimal parameters for that model. After
15 iterations the results shown in figure (5.12) evolve, which shows also the
results of the new model. The new algorithm uses scale matching with a
constant test patch size of 7x1 and no special d, i.e. d = 0, which are the
default parameters for scale matching on rectified images. The minimum
image width has been set to 40, while the original images are of size 320x240
pixels.

Although there is no ground truth available, it is clear that both algo-
rithms produced some errors and that the object boundaries are not as sharp
as they should be. However, due to the scale matching the surfaces of the
bottle and the background are much smoother using the new model, while
the object borders are not over-smoothed. A drawback of the scale approach
can be seen at the upper phone boundary in the foreground: It is more a
curve than a sharp line, which is an error introduced by problems at higher
pyramid layers. Due to the homogeneous color of the phone, occlusions are
not detected properly and expectation values are falsified, which leads to a
wrong patch positioning.
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Figure 5.11: Stereo scene using real objects

Figure 5.13: Correspondence probabilities
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Figure 5.14: Disparity before and after first iteration (upper images), after
two and five iterations (middle images) and after twelve iterations (lower
image). Disparity before first iteration is interpolated from smaller scale,
where absolute displacements are smaller (and thus darker) than at original
size.
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Apart from that these images again contain strong structure and subjec-
tively, most half-occluded pixels have been found. At least the main occlusion
lines at contours can be seen, although the test patches are smaller than the
maximum disparity. This shows that they have been positioned very well
by the scale approach. The main occlusion lines can be found at the left
respective right foreground object borders. Note that there are also many
false positives, i.e. pixels with matches, that have a low correspondence prob-
ability. The reasons for this are mainly noise, subpixel correspondences and
wrong matching results. However, single false positives do not disturb the
matching process, since the only effect of low correspondence probability is
that the pixel’s matching weight is reduced. They depend on their neighbors
as before, which should still have enough other neighbors themselves, that
provide information.

Another important point is that the matching results get worse at the last
scale, since the images are not smoothed and contain heavy noise. This effect
is documented in figure (5.14). At the second largest scale, the matching
result is quite good, as can be seen in the (interpolated) disparity image
before the first iteration. In the following iterations, the matching process
gets trapped in optima created by noise.

Figure 5.15: Tsukuba stereo pair

The next example is the well-known Tsukuba scene?, which again contains
some depth discontinuities. The images are matched over scale using the
stereo constraints. As pointed out in the previous chapter, a more accurate
method of initializing the correspondence probabilities than using the higher
pyramid layer may be their pre-computation (see section (3.2.4)), which takes
additional iterations and therefore slows down the algorithm. In this example
the occlusion information calculated using the smaller pyramid images is

2The Tsukuba image pair is a real (rectified) stereo image pair. It is provided by Dr.
Y. Ohta and Dr. Y. Nakamura from the University of Tsukuba, Japan
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now compared to the pre-computation of correspondence probability. Both
methods yield similar matching results, but the confidence images differ as
can be seen in figure (5.16). Using the scale approach they contain broader
regions of occlusion (not always absolutely well-placed), which is simply a
result of the interpolation. Comparing the pre-computation results to the
(estimated) ground truth occlusion, almost all occlusion lines are detected
but they are slightly too thin. Consequently, only if extremely fine and
exact occlusion information is desired, the drawback of additional iteration
steps may be acceptable. An optimization of the matching result, however,
is hardly noticable in general, so that the chosen approach (using occlusion
information of the higher scale) is sufficient for matching.

Furthermore, the correspondence probability images show that the algo-
rithm can extract occluded pixels even in real images with (partly) weak
structure beneath object borders. Though these probability images are quite
noisy, the main occlusions can be seen well. Note again, that the left confi-
dence images only show half-occluded pixels at left foreground object borders.
It is also interesting to see that these images are completely black at the left
image border. This is no error or inaccuracy due to border problems. Quite
the reverse, these pixels are also half-occluded, since they have no correspon-
dence in the other image: The true match lies beyond the image border and
therefore it can provide no support for them. Hence, they are detected to be
occluded as if they were hidden behind an aperture.

The disparity image of (5.18) shows a good matching result compared to
the ground truth image. The scale approach has positioned the test patches
well and the depth discontinuities are represented in the disparity image.
However, this image also shows a problem of the algorithm: In the lower left
and upper right corners there are brighter areas, which are matched com-
pletely wrong: Their test patches must have been positioned at a completely
wrong location. This can happen in large homogeneous regions, which have
low contrast even in the smallest images of the pyramid. The expectation
values of the patches do not reflect the true match values. That is, patches
of the larger pyramid images are positioned at wrong positions. Matching
results in these regions have no chance to be correct then. This behaviour
can be observed in the corners of the image but also for some smaller regions
near the center.

5.3 Optic Flow

The evaluation of optic flow is quite complicated, since for natural image
sequences there is usually no ground truth available. On the other hand, for
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Figure 5.16: A to B confidence initialization of Tsukuba pair: Pre-
computation using 8 iterations (left), interpolated values of smaller match

(right)

Figure 5.17: A to B (estimated) ground truth occlusion of Tsukuba pair

Figure 5.18: A to B disparity of Tsukuba stereo pair: Computed results
(left), estimated ground truth (right)
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Figure 5.19: Frames 5 and 6 from the Otago street sequence

synthetically rendered scenes and patterns the question arises, how relevant
they are for real applications. A quite promising approach for evaluation
of optic flow algorithms is used in [6], where a ray-tracer is used to render
semi-artificial scenes that look more realistic than line patterns or random
dot images, but for which full ground truth is provided.

The next experiment uses 20 images of such a scene, which is called the
street sequence?. Figure (5.19) shows some frames (of size 200x200 pixels)
of this sequence. A human is sitting in the foreground while a car passes by
on the street. During the scene the camera pans slowly to the right.

Subsequent frames of this sequence are matched using the constant pixel
velocity assumption for four images. A test patch size of 7x5 pixels is used
and the positioning is done using the scale approach. This test patch size
is the default for images, which are not rectified but which are expected to
contain (slightly) larger horizontal movements than vertical ones.

The absolute value of the computed optic flow is displayed in figure (5.20).
It can be seen in the ground truth image, that only the car is moving in the
two frames under inspection. The computed optic flow reflects this, but there
are several disturbances due to the person in the foreground.

The mean error is calculated taking into account all images of the se-
quence and can be seen in table (5.2). In [9] McCane et al. compare several
optic flow algorithms applied to this scene. The error range from [9] can also
be seen in the table. Evidently, the algorithm performs quite well compared
to other optic flow algorithms used for this sequence regarding the mean er-
ror e,,. An improvement from the old one to the new one can be measured,

3This sequence is an artificial image sequence with full ground truth provided by the
University of Otago, New Zealand. For more information please refer to [6].
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Figure 5.20: Computed (left) and true (right) absolute optic flow

Old Model New Model Value Range from [9]

em 0.27 0.21 0.16 .. 0.45
Oe 0.72 0.47 -
€ma 0.17 0.13 0.11 .. 0.48

Table 5.2: Results for the street scene

too, while the error variance decreases significantly. An interpretation of this
is, that the error distribution is still comparable to the former model but the
local errors are all reduced quite uniformly. Note that this scene fulfills the
constant velocity assumption to a certain extent, though displacements are
not always whole pixels.

The value of e,,, is quite low, which can be understood if the local error
vector is viewed as a sum of two vectors: One in direction of the brightness
gradient and a perpendicular vector. Using simple geometric considerations,
it turns out that e,,, is not significantly greater than the absolute value of er-
ror in direction of the gradient. In [9] McCane et al. state that this value can
give a hint about how well the algorithm can cope with the aperture prob-
lem. Nevertheless, this value refers only to the first order neighborhood of
some pixel and does not depend on the absolute value of the gradient. How-
ever, regarding that measure the algorithm can handle the aperture problem
quite well, since the error vectors do not always point into the (locally) most
uncertain direction.

For the next experiment, the well-known flowergarden sequence* has been

4The flowergarden sequence can be obtained from Brown University at Providence (RI),
USA: http://www.cs.brown.edu/people/black/Sequences
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Figure 5.21: Four subsequent frames of the flowergarden sequence

{

~

iy

Figure 5.22: Matching results for flowergarden sequence using old model
(upper left) and new model (upper right) including computed confidence
using new model (lower images)

used. This is a typical rural scene, which looks quite real. Nevertheless, it
is an artificial image sequence, where the displacements are roughly known.
Unfortunately, no exact ground truth is available here, such that only four
frames of the sequence are displayed here to show the optic flow resuls. Ad-
ditionally, the results of the former algorithm are displayed. Whenever the
old and the new algorithm are compared, one has to keep in mind that test
patch size and positioning are manually optimized (as far as possible) for the
old one, while the new one does not have such parameters, or at least they
are not that important there as has been pointed out before.

The actual match is done between the two middle images, while extrapo-
lated pixel positions of the outer images are additionally compared according
to the constant pixel velocity assumption. The old algorithm is applied with
a test patch size of 9x1 and d = (—1;0), while the new one uses test patches
of size 7x1 at both scales.

Figure (5.22) shows that the tree in the foreground is matched similarly
in both algorithms and the results are quite acceptable. Some disturbances
in the optic flow occur near the left border due to large homogeneous cloud
regions. However, there are less such errors when using the new model, since
the scale initialization can compensate for some of them. Again, the confi-
dence images show the main occlusion lines at the borders of the foreground
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tree. Some of the small trees in the left half of the images are mixed with
their blue background, that is, the sky seems to be moving with the trees.
This is again not an error but occurs due to the lack of semantic knowledge.
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Chapter 6

Conclusion

The model proposed in [1] has been extended with respect to occlusion. The
assumed probability distributions now take into account that not all pixels
must have a match in the other image. It is quite pleasant, that the new
model is still similar to the old one and that the structure is preserved in
principle. All assumptions used are explicit (due to the chosen probability
distributions), the model is strictly based on these equations and is thus
well-founded.

Additionally, a robust way of detecting occluded pixels has been derived
from the model and integrated into the algorithm. For particular images
without occlusion, the new model embeds into the old one, if a correct com-
putation of correspondence probabilities is assumed. The resulting algorithm
is still highly parallel and suitable for a neural network implementaion on spe-
cial hardware chips (e.g. FPGAs). However, here it has been implemented
for qualitative analysis as a software solution, which is quite slow but shows
promising results for a future hardware implementation.

Two main applications for matching, stereo disparity and optic flow com-
putation, have been analyzed with respect to an improved integration into
the model. For optic flow, a constant pixel velocity model has been assumed
and integrated into the initial pixel similarity function to stabilize the match-
ing over several frames. The resulting matching accuracy is quite comparable
to other flow algorithms tested in [9]. The optic flow integration may be en-
hanced even more, if the patch positioning for subsequent frames takes into
account previous matching results.

In stereo disparity computation displacements vary strongly in presence
of depth discontinuities. Thus stereo images are now matched using a Gauss
pyramid, where match and occlusion information of a higher layer is utilized
to initialize base layers and travels down the pyramid this way. Especially
in scale matching, homogeneous regions are matched much better and with
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faster convergence than in the former algorithm. For both integrations, im-
provements can be seen for the matching process compared to the old model.
However, the main difference is that the test patch positioning is handled
by the algorithm and that the test patch size does not depend on the im-
ages, i.e. there are less parameters, which have to be set and upon which the
matching results depend. The pyramid matching still lacks a scale parameter
in the image data (as well as the former algorithm): Homogeneous regions at
the highest level (with smallest image size) may introduce errors in the ex-
pectation value for the match and can push the patches of the higher scales
to completely wrong positions. The same applies to fine structures in the
foreground, which cannot be seen at smaller scales: If the test patches are
positioned wrong, there is no way to match this pixel correctly. Since the al-
gorithm generally has problems in matching images with large homogeneous
regions, the most promising extension may be the development of some in-
variant measure for pixels regarding the homogeneity of their neighborhood.
Using artificial images, it has been shown that the occlusion detection
does work in heavily structured regions and helps to improve the matching
results at depth discontinuities, even if the pixels with low correspondence
probability lie only in the other image. They influence the matching process
of the given direction through bidirectional merging. However, the detection
depends on the test patch size, the iteration count and a good test patch
positioning. Furthermore, the correspondence probability indicating occlu-
sions is often very noisy and also contains false positives in real images, since
support is collected from the whole test patch. Constraining the support
evaluation to the relevant pixels (e.g. due to reduction of the test patch size
or choosing only promising candidates) may be an improvement of the oc-
clusion detection. Nevertheless, some occlusions are not detectable without
semantic knowledge of the images, e.g. if borders of foreground objects look
similar to the background or objects move over a homogeneous region. To
some degree these effects occur at most object borders, making an accurate
detection complicated. Keeping this in mind, the occlusion detection may
be at the limit of what is possible, if no semantic information is available.
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Appendix A

Constant Factors in the Former
Pixel-Match PDF

This section briefly shows, why the original pixel-match pdf may be inter-
preted to contain direction dependent probabilities instead of joint (direction
independent) ones. Note that the pdf is only defined up to a scalar factor
in [1] and that the factors left away are constant in the old model. Hence,
these consideration do not influence the old model in principle. They are
only intended to show the handling of certain factors. The derivation of the
former model starts by application of Bayes’ formula:

P(A’B ‘ XA:YAaXBaYB)P(XAayAaXB,YB)
P(A, B

P(XAaYA:XB:YB | AaB) =

The probability of the left hand side is separated according to definition of
conditional probability:

P(Xp, Y| A, B, X4, YA)P(X4,Ya | A, B) =

P(A,B | X4,Y4, Xp,YB)P(XB,Yg | Xa,Ya)P(X4a,Ya)
P(A,B)
Now Perwass et al. state that X, and Y, are statistically independent of the
images and split the joint probabilities. Though this assumption is still valid
for that model, the probabilities P(X4 | A, B) and P(Y, | A, B) are kept for
comparison reasons. However, given X4 = x4, Y4 may be assumed uniformly
distributed among the |N'| neighbors, so that the following equation evolves:

P(XvaB ‘ AanXAaYA) =

P(A,B| X4,YA, X5, Yg)P(Xp, Y | Xa,Ya)P(Ya | Xa)P(X4)

75



Leaving out some constant factors and constraining the images to the relevant
pixels yields:

P(Xp,Yg | A, B, X4, Yy) =

P(A‘J'A’B'l'B‘ XA?XB)P(A|ZJA7B|Z/B| YA7YB)P(XB:YB | XA,YA)

Comparing this to the equations used by Perwass et al., it can be seen
clearly, that the denominator factors have also been left away due to the
constancy assumption. If they had not, the factors would still appear in the
former pixel-match pdf:

P(Xp=12p | A, B, X =14)~

P(XAaXBlAaB) 1 (P(YA7YB|A7‘B)
max
|N‘ %:yBEEA

P(Xp.Ys | X4 Y
P(X4 | A, B) P(Ys | A, B) (X5, V5 | Xa, A)>

= P(Xp | A, B, X) max (P(Yg | A, B,Y1)P(Xp, Y | Xa,Ya))

1
|N‘ va YBETy 4
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Appendix B

Original Proof of Convergence

This chapter is a copy of the original proof of convergence given by Per-
wass et al. in [1]. Note that equation numbers have been adapted to the
corresponding equations in this thesis:

“In this section we will show that if the image data does indeed satisfy the
assumed ordering constraint, then iterating equation (2.9) does indeed extract the
correct image point matches. In order to give this proof we need to have a model
of the data we expect to encounter.

We expect features that can be matched between two images not to be point
like, i.e. not to be constrained to a single pixel. Instead there will be a peaked
distribution of pixel similarities centered on the correct match. Note that the
correct match position may lie between pixels. Nevertheless, we will make the
approximation that we can identify a single pixel with the correct match position.
This introduces an error of at most half a pixel.

We assume that a test patch can be approximated by a linear combination
of Gaussians, whereby one Gaussian represents the correct match and the rest
represent spurious matches. That is,

Rx
fo(xa y) = Px ZT;Q(Ya Z;, O-;r()a (Bl)
r=0

where px is a normalization factor. As before x € 7 is a pixel position in image
A and y is a position in the corresponding test area in image B (y —x—d € T).
Each candidate match is defined through a triplet (7%, z%, o%), which gives its
peak amplitude, its mean position and its standard deviation. Let r = 0 be the
index of the correct match. That is, (x,22) is a correct pixel match. Then Ry

gives the number of spurious matches in test patch FQ with
Fo={f'xy): y—x-d)eT}h
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Let (x4,y4) be two neighboring pixel in image A, i.e. (ya—x4) € N. Also let
9 , and zg, , denote the correct pixel matches for x4 and ya, respectively. Then
our assumption is that the a priori combined pdf of the correct matches z2 , and

0 . .
zy, 1S given by

Z

P(Yp=12),, Xp=12%, |Ya=yaXa=x4) =

_zyA’ h(XA7Z9(A7yA’zOyA)' (B2)

1
|
For a given correct match (x4,2%,) the pdf of zJ  is therefore given by

P(Yp = zg,A | Ya=ya,Xsa=x4,Xp= ng) = h(xA,ng,yA,zg,A). (B.3)

However, any zk, and z}, alone has a uniform pdf.

1 1
PXp=2z | Xg=x4)=—; P(Yp=2z |Ys= = —.
( B XA | A A) ‘7—| ( B va | A yA) |7—‘
Furthermore, given an incorrect match (x4,xp), the pdf for zg , is a uniform

distribution. Also, given a correct match (x 4,23 ), the pdf for an incorrect match
z¥,, ¢ > 0 is a uniform distribution. That is, if (p,q) # (0,0) then

1

= (B.4)

P(Yp = zg’,A |Ya=y4,X4=%x4,Xp=12%,)

In order to show that the algorithm converges we have to show that the ex-

pectation value of P(Xpg|F?, X4) as given in equation (2.8) is maximized for a
correct match (x4,z%,). Note that we can write equation (2.8) as follows.

P(XB =xp|Ft, X4 =x4)

1 .
=N > maxy, f'(xa,%x8) f{(ya,yB)h(Xa,%XB,y4,¥8),

{ya:lya—xa)eN?
(B.5)

We will now consider the expectation value F; for a single pair of correspondences
(x4,xp) and (ya,yB), where x4, xp and y 4 are fixed.

E; == E[f%x4, x8) f°(ya, ¥yB) (x4, x5, y4, yB)].

First we substitute for the f° functions using equation (B.1).

RxA RyA
ES = F [prPyA (Z TgA g(XB, nga JgA)) (Z T)QIIA g(yBa Znga O-;IIA)>:|
p=0 q=0

~

X h(an XB, YA, }’B)

Now we write the expectation value as the sum over the function values multiplied
with the corresponding probability that this function value occurs.
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Es; = px,pya il(XA, XB, YA, YB) Z

Wy 4

[ T)?A yAg(xBa 9‘A’0-0 )Q(YBaWyAaagA) h(XA, zg)(AayAa WyA)

1 &4

+ |T| ZTXA Tya g(xB,zxA,UgA)g(yB,WyA,O'g,A)

RyA
|7—| Z 7-yAg XB,Z 9(A702A)g(yBawyAao-g'A)
RxA RyA

|7—| Z ZTXA TYAQ xBaZXAaUXA) Q(YB>WYA>U§IA) .
p=1 ¢=1

The Gaussians we use are normalized such that

Y gy, wy,,08,) =1

WyA

Therefore it follows that

Es = px,py, iL(XA, XB, YA, YB)

X [ T}?A T}(,)A (Q(XB,Zg)(A,UgA) Q(YB,WyAaagA)
Wy 4
X h’(anz?;Aay/be'A)) (BG)
Te;rrnl
- Ke)
Term 2

The constant Ky, y, only depends on x4 and y 4. It is a sum over the ampli-
tudes of spurious match candidates. This value is large if there are many spurious
match candidates present. This is usually the case in areas of low contrast of an
image. In areas of high contrast of an image Kx, y, has typically a low value.

It can be seen quite easily that term 1 is maximal whenever h(x4,xB,y4,yB)
is maximal, that is if the pixel pairs (x4,xp) and (y4,yp) satisfy the a priori
distribution for true pixel matches. In this case also the factor h(x4,%Xp,y4,yB)
of equation (B.6) is maximal.
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The expectation value E. of the probability that a pixel pair (x4,xp) is a
correct match (cf. equation (2.8)) is now given by

E.(x4,xB) = E[P(XB:xB|.7:O,XA:xA)]

1 B.7
= W > max Ey(xa,XB,Y4,YB)- (B1)
YA

We have seen in equation (B.6) that Es(x4,Xp,¥4,¥B) is maximal if (x4,xp5)
is a correct match and if yp is chosen such that h(x4,Xp,y4,yB) is maximized.
Therefore E, is maximal if (x4,xp) is a correct match. For all other, incorrect
pairs E, has a lower value which depends on Ky, y, from equation (B.6). That
is, within a homogeneous region of an image, the expectation value for a correct
match is only slightly higher than those for incorrect matches. In an area of high
contrast, on the other hand, the maximum of E, is strongly peaked.

The extreme case of this behavior can be seen in figure [...]'. Within the
(perfectly) homogeneous part of the initial images, the test patches are uniformly
white and applying the algorithm to those areas further away from the image
center, does not change them, since all pixel matches are equally likely. Towards
the center, however, the most likely pixel matches are strongly peaked.

Figure [...]' also demonstrates that a single evaluation of equation (2.8) is not
sufficient to find the correct matches throughout the image. A number of iterations
are necessary to distribute constraints on the pixel matches through the image.

Since F. is peaked for correct matches, an iterative application of equation
(2.8) will amplify these peaks while attenuating spurious matches. Nevertheless,
due to noise in the images, spurious matches may satisfy the a priori distribution
of correct matches better than the correct matches. However, this does not change
the fact that the algorithm will converge to a single match position.”

1See [1] to view these figures.
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