
Thesis Submitted in Partial Fulfilment of the Requirements for the
Degree of Diplom Informatiker

A Neural Architecture
for Learning Uncertainty

Hauke Tschach

Supervisor: Dr. Christian Perwass

Christian-Albrechts-University of Kiel
Faculty of Engineering

Institute of Computer Science and Applied Mathematics
Chair of Cognitive Systems
Prof. Dr. Gerald Sommer

November 2005

Abstract

This text presents a novel architecture for binary classification. The idea is
the combination of the Gauss-Helmert model with Fisher’s linear discrim-
inant/least squares techniques. The result of this combination is a linear
classifier that is able to use prior knowledge in the form of information
about the uncertainty of the input data points for the learning of the deci-
sion boundary. This uncertainty information is usually given in the form of
a covariance matrix and it is possible to use different covariance matrices
for different points. The use of error propagation enables this system not
only to use uncertainty information for the learning, it also results in uncer-
tainty information for the decision boundary. The uncertainty information
of the decision boundary can be used to calculate a measure of confidence
for the classification result for a new point. Alternatively it can be used by
a statistical test to determine whether a new point can be classified with
sufficient reliability or not. Besides the linear classifier, an extension to non-
linear classification is presented too. This extension is based on the ideas
of radial basis function (RBF) networks. Some initial experiments giving a
proof of concept are reported as well.

Contents

Contents v

1 Introduction 1

2 Classic neural architectures for linear discrimination 3
2.1 Notation . 3
2.2 Why linear classification does make sense 4
2.3 The perceptron . 6
2.4 Least-squares . 7
2.5 Fisher’s linear discriminant 9

2.5.1 The Fisher criterion . 10
2.5.2 Relation to least-squares 11

2.6 The support vector machine 12

3 The Gauss-Helmert method 15
3.1 Properties of the Gauss-Helmert estimation 15
3.2 The Gauss-Helmert estimation to fit straight lines 15

3.2.1 Constraints on the observations and the parameters . 16
3.2.2 Constraint on the parameters alone 17
3.2.3 The minimisation . 17
3.2.4 Numerical calculations 18
3.2.5 Derivation of the covariance matrix Σw,w 19
3.2.6 Visualisation of the variance 20
3.2.7 Examples . 20

4 Adaptation of the Gauss-Helmert model to linear discrimination 25
4.1 The plain approach . 26

4.1.1 Uncertainty of the classification 27
4.1.2 Experiments . 29
4.1.3 Problems . 37

4.2 Variants . 38
4.2.1 Using a fixed value for α 39
4.2.2 Minimising the alteration of α 40

v

vi CONTENTS

5 Classic architectures for non-linear discrimination 41
5.1 RBF networks . 41
5.2 SVMs using non-linear kernels 46

6 The Gauss-Helmert method using RBFs 49
6.1 How it works . 49
6.2 Experiments . 49

7 An idea inspired by statistical testing theory 53
7.1 The computations . 53
7.2 Some experiments with photos of coloured building bricks . 55

7.2.1 Calculating a covariance matrix 55
7.2.2 The experiments . 57

8 Other ways to incorporate uncertainty 63
8.1 Total support vector classification 64
8.2 Classification with gaussian uncertainty 64

9 Conclusions 67

A Error propagation 69

B Calculating the Φ-function in Matlab 71

C Error propagation through a multivariate normal distribution 73

References 77

Notation 81

Acknowledgements 83

Chapter 1

Introduction

As humans we are making many decisions everyday. Many of these are
based on observations. This means that we gain some knowledge from
our environment and make decisions based on this knowledge. This can be
decisions which we recognise as such like the decision of taking an umbrella
with us when the sky is grey or even more serious decisions where it may
take us several days to reach a decision.

Although these are the kind of decisions recognised by us as such, we
are in fact making a far greater number of decisions without thinking of it.
When riding a bicycle, for example, we are constantly turning the handle-
bar in order not to fall over to one side. When reading e.g. numbers, we are
constantly looking at pictures of digits deciding which of the ten digits of
our decimal system is represented by the current picture.

In order to enable machines to do many jobs formerly done by humans,
we must enable the machines to make decisions. Making a decision can be
seen as getting a portion of – possibly noisy – data and deciding to which
of two or more classes the data belongs and subsequently reporting the
decision or taking some more sophisticated action. This process is called
pattern recognition (‘the act of taking in raw data and taking an action based on
the “category” of the pattern’, [8]).

Since computers have been used for pattern classification for several
decades now, there are many different algorithms which have been devel-
oped over the years. These range from relatively simple algorithms – like
a perceptron, Fisher’s linear discriminant, a support vector machine (SVM)
with a linear kernel, etc. – that implement linear decision functions, up
to very sophisticated algorithms – like multi-layer perceptrons, radial ba-
sis function (RBF) networks, SVMs with non-linear kernels, etc. – that can
learn virtually every imaginable decision function as long as the training is
started with the correct parameters and there is enough training data avail-
able.

Since the available training data is often contaminated with noise, most
of these algorithms do not try to learn the training data perfectly. Instead
they try to learn a smooth decision surface where the degree of smoothness

1

2 1 Introduction

usually has to be controlled by the user. The smoothing has the advantage
that the resulting decision surface will not be mislead by a few outliers and
often the amount of training data needed is also reduced. However, al-
though most of these pattern classification algorithms assume some noise
on the input data, most of them do not take into account a possibly known
distribution of this noise.

It appears as if only recently there have evolved some algorithms that
take into account information of different variances for different data points.
These are mainly the algorithms presented in [2] and [1]. They make use of
the training data uncertainty information for learning the decision bound-
ary. However they do not supply the user with information about the con-
fidence of a classification decision. Another algorithm that could be inter-
preted as using information of different uncertainties on the two classes,
but the same uncertainty for all points from one class, is the perceptron
with uneven margins, see [23], although its intended purpose is to cope
with uneven data sets.

The architecture proposed in this text will take into account uncertainty
information of the training data not only for learning the decision boundary
but also for calculating a variance for the parameters of the decision bound-
ary. This can then be used to calculate the probability for a new point to lie
on one side or the other of a decision boundary drawn from the distribu-
tion of the decision boundaries (given by the parameters and its variances).
This probability can be seen as a measure of confidence for the classification
result.

This text is organised as follows: in the second chapter we will briefly
review some important traditional approaches for linear separation of data.
In the following chapter we will introduce the Gauss-Helmert model for
line fitting before we present its adaptation for the task of linear discrimi-
nation in Chapter 4. This is the main part of this text. It follows a review
of some traditional architectures for non-linear discrimination before we
present an adaptation of our approach using RBF nodes. In Chapter 7 we
show a possibility to use a statistical test to determine whether a pattern can
be classified with sufficient reliability or not. It follows a short presentation
of some other recent architectures that make use of known training data
uncertainty before we arrive at the final chapter of this text summarising
the benefits and problems of the presented approach.

— ∗—

Chapter 2

Classic neural architectures for
linear discrimination

The task of a pattern recognition system is to assign a previously unknown
pattern x to one of c classes C1, . . . , Cc. If this is done consistently, this cor-
responds to partitioning the input space into c parts R1, . . . , Rc, each region
Rj corresponding to class Cj. A new pattern is now assigned to that class
that the region containing the pattern corresponds to.

Since many multi-class discrimination algorithms are based on binary
discrimination algorithms and for the ease of understanding, in this text we
will only consider binary classification problems with two classes C1 and C2
which we will also call C+ and C−. Therefore we will often use the terms
positive and negative examples to denote the elements of C1 and C2. In
most examples we even go a step further and assume that both classes have
the same prior probability, i.e. P(C1) = P(C2) = 0.5. The prior probability
is the probability for an unobserved sample to belong to a class Ci. This
is approximately equal to the fraction of patterns belonging to class Ci in a
sufficiently large sample of training data.

For the reader interested in multi-class discrimination, the literature
(e.g. [8]) might be an aid to find ways of extending the presented algo-
rithms.

2.1 Notation

In this text we will, if not stated otherwise, use small bold letters (e.g. xi, w)
for column vectors and capital bold letters for matrices. Non-bold char-
acters usually denote scalars. The transpose of a vector or matrix will be
written as w> = (w1, . . . , wd) or A>. Probabilities will be written as P and
for probability densities we will use p. In addition we define the signum
function as

sgn : x 7→
{

1 if x ≥ 0
−1 otherwise.

3

4 2 Classic neural architectures for linear discrimination

We will use X ⊂ Rd to denote the input space and Y to denote the
output domain. If not stated otherwise, we assume that Y = {−1, +1}. The
training of our algorithms will be done using batch learning. For this we
will use a finite training set S = {(x1, y1), . . . , (xN , yN)} ⊂ X×Y with labels
yi to denote the desired output for an example xi, i.e. yi = +1 meaning that
xi should be assigned to class C+. The dimension of the input space is d, the
size of the training set is N, the number of training vectors with the desired
output i is Ni (i.e. N+ = N1 denotes the number of positive examples in the
training set). If d = 1, we will write xi instead of xi. A new example which
is not part of the training set will be written as x or x. If there is no danger
of confusing indices of vectors and indices of vector entries, we will also
use the more common notation xi instead of xi.

2.2 Why linear classification does make sense

A misclassification occurs each time an example belonging to class Ci is
classified as belonging to class Cj, j 6= i. If all examples lying in a region R1
are classified as positive examples and all examples lying in R2 = X \ R1 as
negative examples, we can specify the probability of misclassifying a new
example as

P(error) = P(x ∈ R2, C1) + P(x ∈ R1, C2)

=
∫

R2

p(x|C1)P(C1)dx +
∫

R1

p(x|C2)P(C2)dx,

where P(x ∈ Ri, Cj) describes the probability that a pattern belongs to class
Cj and lies in region Ri.

If our observations are one-dimensional and the regions R1 and R2 are
specified as e.g. R1 = {x|x >= b} and R2 = {x|x < b}, we can rewrite the
probability of misclassification as

P(error) =
∫ b

−∞
p(x|C1)P(C1)dx +

∫ ∞

b
p(x|C2)P(C2)dx. (2.1)

In order to minimise the number of misclassified examples, each ex-
ample x has to be assigned to the class Ci whose joint probability density
p(x, Ci) is maximal for x. The decision boundaries therefore have to lie
where the joint probability densities for both classes are equal. In the one-
dimensional case the decision boundary has to lie where the curves of the
joint probability densities for C− and C+ cross. This is illustrated in Fig-
ure 2.1 for normal distributed data.

Since the joint probability densities can be written as

p(x, Ci) = P(Ci|x)p(x), (2.2)

with the factor p(x) being independent of the class, we get the same clas-
sification if we assign each pattern to the class whose posterior probability
P(Ci|x) is maximal as illustrated in Figure 2.2.

2.2 Why linear classification does make sense 5

����
����
����
����
����
����

����
����
����
����
����

P(C−|x)p(x) P(C+|x)p(x)

xb

Figure 2.1: Given the joint probability density functions for two
classes, the hatched areas show the classification error when the
place indicated by the solid vertical line would be used as the
boundary between the two classes. Using b for this boundary in-
stead, illustrated by the dashed line, would minimise this error.

xb

P(C−|x) P(C+|x)

Figure 2.2: Using the point of equal posterior probabilities leads to
the same boundary as using the point of equal joint probability den-
sity functions as in Figure 2.1.

If both classes are multivariate normal distributed with the same co-
variance matrices, and both have the same prior probability, the optimal
decision boundary will be a hyperplane. Figure 2.3 illustrates this for the
two-dimensional case.

Since the exact distributions of the two classes are often unknown, it
is convenient to assume that they are normal distributions with the same
covariance matrices. As mentioned above, this naturally leads to a linear
separation of the input space. A disadvantage of linear discrimination is
its inability to accurately discriminate between classes that are not linearly
separable. However, for many neural architectures that learn a linear dis-
crimination of the input space, this simplicity can also be an advantage.
This is because it reduces the risk of over-fitting and keeps the number of
tuning parameters, which have to be chosen by the user, to a minimum,
making it even more robust against improper use. This robustness and
simplicity of linear separation together with the fact that it is used in more
complex algorithms like multi layer perceptrons (MLP), radial basis func-

6 2 Classic neural architectures for linear discrimination

x1

x2
C− C+

P(C−|x)p(x) = P(C+|x)p(x)

Figure 2.3: The plot shows the distributions of data belonging to two
classes C+ and C−. The ellipses show lines of same joint probabil-
ity density. The solid line runs through the points where both joint
probability densities are equal and therefore shows the best possible
decision boundary realising the smallest classification error.

tion networks (RBF networks) or support vector machines (SVM) explains
its importance.

To be able to linearly discriminate between two classes one first has to
calculate a separating hyperplane. For this task there exist a variety of al-
gorithms of which we will present some in the remainder of this chapter.

2.3 The perceptron

The perceptron algorithm is one of the simplest algorithms for learning a
separating hyperplane. Due to its simplicity it is easy to understand and to
implement. Its main deficiencies are the facts that the algorithm runs into
an infinite loop if the training data is not linearly separable and that the
final hyperplane depends on the order of the training data and a possibly
random initialisation of the weight vector. However, if the training set is
separable it will always find a solution (for a proof see e.g. the proof of
Theorem 5.1 in [8]).

The idea of the perceptron algorithm is to start with an initial weight
vector w0, go through a finite training set, and update the weight vector
each time a training vector is misclassified. Once the end of the training set
is reached, the process is restarted at the beginning of the set, updating the
weight vector further. This process is continued until all training vectors are
classified correctly, i.e. it will never end if the training data is not linearly
separable.

The update process can be expressed as

wt+1 ←
{

wt + ηyixi if sgn(w>t xi) 6= yi,
wt otherwise,

(2.3)

2.4 Least-squares 7

where η ∈ R>0 is called the learning rate. The learning of two positive
training samples is illustrated in Figure 2.4.

Note that the algorithm as presented above will only learn hyperplanes
going through the origin. To learn arbitrary hyperplanes with a distance to
the origin, it is necessary to learn an additional parameter b specifying the
distance to the origin. This can be done by adding an additional compo-
nent x0 = 1 to each (training) vector. The w0 component of the new weight
vector can now be seen as specifying the distance of the separating hyper-
plane to the origin. The Euclidean distance to the origin can be calculated
as | − w0/‖(w1, . . . , wd)>‖2|.

Variants

Its introduction being about half a century ago, there are many variants of
the perceptron algorithm, which have been developed over the decades.

One variation is the random selection of patterns from the training set.
This would make the resulting classifier independent of the order of the
training set. On the other hand, several training sessions can result in dif-
ferent classifiers. This can be a disadvantage, since the training is not repro-
ducible, or an advantage, since one could train several times and choose the
best of the resulting classifiers.

Another possible variant is the use of a varying learning rate with the
most popular choice being a decreasing learning rate resulting in smaller
updates as the training progresses.

A variation able to deal with not linearly separable training sets would
be to stop the training process when the number of misclassified training
examples has decreased to a non-zero value chosen by the user.

A further possibility is the introduction of margins, i.e. a pattern xi is
counted as misclassified not only if sgn(w>xi) 6= yi, which is equivalent
to yiw>xi < 0, but even if yiw>xi < τ with τ ∈ R being the margin. If
τ < 0, it can become possible to train with a not linearly separable training
set as long as it can be made linearly separable by moving the two classes
by at most 2|τ| apart. If τ > 0, each point will have a Euclidean distance to
the separating hyperplane of at least τ/‖w‖2. If there is more noise on the
points from one class than on the points from the other class or if the train-
ing set is very unbalanced, it is also possible to choose different margins
τ+/τ− for the different classes as proposed in [23].

2.4 Least-squares

Unlike the perceptron, where a possible error function would count the
number of misclassified examples and would therefore be discontinuous,
least-squares techniques rely on a continuously differentiable error func-

8 2 Classic neural architectures for linear discrimination

x0 ∈ Px0 ∈ C+

x0 ∈ C+
x0 ∈ C+

x1 ∈ C+

x1 ∈ C+

x1 ∈ P

x1

x2x2t = 0

t = 2 x2 t = 3

w3 = w2 + x0

w2 = w1 + x1

w0

x1

w1 = w0 + x0

x2

t = 1

Figure 2.4: Perceptron learning starting with a weight vector w0 and
a training set consisting of two positive examples x0 and x1. The
first training vector x0 is mistakenly classified as negative. There-
fore the weight vector is updated to w1 = w0 + x0. Now the sec-
ond vector x1 is misclassified such that the weight vector is updated
to w2 = w1 + x1. Due to the misclassification of x0 using w2, the
weight vector is updated to w3 = w2 + x0. Since the hyperplane
given by w3 classifies all training vectors correctly, no further up-
dates are necessary: the solution found by the perceptron algorithm
is the hyperplane given by the weight vector w3.

2.5 Fisher’s linear discriminant 9

tion. The sum-of-squares error function

E(w) =
1
2

N

∑
n=1

(w>xn − yn)2 (2.4)

is formed as the sum of the squared differences between the product of
the weight vector with a vector xn and its target label yn. Minimisation of
the error function gives the weight vector w which specifies the separating
hyperplane.

Geometrically, the search for a weight vector w using least-squares tech-
niques can be interpreted as finding a hyperplane h given by w such that
the two hyperplanes h+ and h−, parallel to h, each with distance 1/||w||2,
best fit the training data points from class C+ (h+) and C− (h−). This means
that we try to minimise the squared distances of the training data points to
the parallel that corresponds to their class label. Figure 2.5 illustrates this.
To learn an additional parameter b, one can use the approach described in
the previous section.

w

1
‖w‖2

∈ C−
∈ C+

separating hyperplane
parallel

corresponding hyperplane
distance of a point to its

Figure 2.5: Least-squares techniques used for discrimination find a
separating hyperplane by fitting two parallels (dashed) through the
training data points: one through the points from class C+ and one
through the points from class C−. The solid parallel in the centre is
then used as the separating hyperplane. The distance of the dashed
parallels to the separating hyperplane is given by the reciprocal of
the norm of w.

2.5 Fisher’s linear discriminant

In its original form, Fisher’s linear discriminant is not a method for learning
a discriminating hyperplane but a method for dimensionality reduction to
just one dimension. The idea is to project the data onto a line and to separate
the one-dimensional projected data.

For the best possible discrimination one has to find a projection such
that the overlap of the joint probability densities of the projected classes is
as small as possible (see Figure 2.7) since this corresponds to the error that
even the best classifier will make when applied to the projected data (see
Figure 2.1).

10 2 Classic neural architectures for linear discrimination

∈ C−
∈ C+

separating hyperplane
joint probability density
of a projected class

w

Figure 2.6: Projection of the original data onto a line and discrimi-
nation of the one-dimensional projected data.

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

����������
�
�
�
�

�
�
�
�

���� ����

xx

Figure 2.7: Increasing the distance of the projected class means (left)
and decreasing the variance of the projected within-class variances
(right) both reduces the classification error of the best possible clas-
sifier on the one-dimensional projected data.

2.5.1 The Fisher criterion

For finding an appropriate projection, the technique called Fisher’s linear
discriminant analysis makes use of the Fisher criterion. This is a function of
the weight vector w which has to be maximised in order to find the ‘best’
estimate for w. The idea is to maximise the distance of the projected class
means while at the same time keeping the variances of the projected classes
small.

Having a finite training set of labelled data points from two classes with
unknown distributions, we can follow [3] or [8] by defining the means of
the projected classes as

m1 =
1

N1
∑

n∈C1

w>xn and m2 =
1

N2
∑

n∈C2

w>xn, (2.5)

the within-class scatter as

si
2 = ∑

n∈Ci

(w>xn −mi)2 , i ∈ {1, 2}, (2.6)

2.5 Fisher’s linear discriminant 11

and the Fisher criterion as

J(w) =
(m2 −m1)2

s2
1 + s2

2
. (2.7)

The within-class scatter (2.6) is a measure for the within class variance
scaled by the size of the class. This means that, if the numbers of the given
samples from the two classes differ considerably, the within-class scatter
of the larger class has a greater impact to the denominator of the Fisher
criterion (2.7) than the scatter of the other class. If this is not desired, one
could follow [12] and replace the within-class scatters, which depend on
the sizes of the classes, by the within-class variances of the projected data.

Being a method for dimensionality reduction with a function assessing
the quality of a projection, Fisher’s linear discriminant could also be seen
as a projection index for projection pursuit ([11]). In [14] however, the two-
sample projection index searching ‘for the best discriminating hyperplane in
the classical, Fisherian sense’ differs slightly from the definitions above.1

2.5.2 Relation to least-squares

Although looking differently and being the result of different ideas, the so-
lutions found by the least-squares approach (Section 2.4) are often identical
to the solutions found by Fisher’s linear discriminant – provided that the
training set is balanced.

This is due to the fact that the Fisher criterion can be seen as a special
case of the least-squares approach. The trick is the use of special target
values for the least-squares minimisation. If the target values +1 and −1
are replaced by N/N+ and−N/N−, with N+ and N− being the sizes of the
two classes C+ and C−, it can be shown (see e.g. [3] pp 107 – 110) that the
least-squares approach results in the same normal vector for the separating
hyperplane as Fisher’s linear discriminant does. If the number of examples
from both classes are equal, the separating hyperplane will be exactly the
same as the one found by minimising the sum-of-squares error function
(2.4).

This gives an explanation for the identical solutions mentioned above.
Given the fact that there are several – at least two – well established tech-
niques for binary discrimination which effectively rely on fitting parallels
through the data, we will take up this approach again in Chapter 4 and base
our new architecture on this idea.

1The main difference is, that the denominator does not contain the sum of the variances
of the two classes but the standard deviation of the set of all projected samples (from both
classes). The nominator contains the difference of the class averages – not squared as in the
definitions above. The index is therefore given as (m1 −m2)/(sdv{w>xn|xn ∈ C1 ∪ C2}).

12 2 Classic neural architectures for linear discrimination

2.6 The support vector machine

The support vector machine ([4]) is the most recent approach for linear dis-
crimination presented in this chapter. The idea is to find a separating hy-
perplane with maximal margin.

The (geometric) margin of a point xn with label yn ∈ {−1, 1}, with re-
spect to a hyperplane given by a weight vector w and a parameter b, is
given as

γn = yn(w>xn + b)/‖w‖2 (2.8)

and therefore measures the Euclidean distance of xn to the separating hy-
perplane if xn lies on the correct side and the negative of the Euclidean dis-
tance if xn lies on the wrong side. The (geometric) margin γ with respect to
a training set is now defined as the minimum of the (geometric) margins of
all points. Omitting the factor 1/‖w‖2 in equation (2.8) gives the functional
margin.

parallel with distance γ

∈ C−
∈ C+

separating hyperplane

γ

γ

Figure 2.8: The separating hyperplane with maximal (geometric)
margin. Rotation or translation of the hyperplane would result in
a decrease of the (geometric) margin.

The separating hyperplane is now found by maximising the geometric
margin. Since this is equivalent to minimising (the square of) the weight
vector while fixing the functional margin to 1, the optimisation problem
solved for training a support vector machine can be formulated as

minimise ‖w‖2
subject to yi(w>xi + b) ≥ 1,

i = 1, . . . , N.
(2.9)

The main problem of this hard margin support vector machine is the
fact that, like the perceptron, it cannot find a solution if the training set is
not linearly separable, since this would result in negative margins which
cannot satisfy the constraints in the optimisation problem (2.9).

To deal with this problem, there are mainly two approaches: the non-
linear projection of the data into a usually higher-dimensional space us-
ing a non-linear kernel with the hope of linear separability of the projected
data (see Section 5.2), or the introduction of slack variables leading to the

2.6 The support vector machine 13

soft margin SVM (see [6]). The problem of the first approach is the in-
creased danger of over-fitting the training set besides the fact that there is
no guarantee that the projected data will be linearly separable. The second
approach has the drawback that an additional parameter C (see e.g. [7]),
which controls the influence of outliers to the solution, has to be tuned.

Chapter 3

The Gauss-Helmert method

The Gauss-Helmert method (for a more general presentation see [27]) can
be used as a quite universal tool for estimating the parameters of a model
from uncertain observations. For linear problems it gives a best linear un-
biased estimate.

3.1 Properties of the Gauss-Helmert estimation

Compared to most other methods for parameter estimation, like the min-
imisation of an error function in classical least-squares techniques, there are
two main differences:

1. the adaptation process does not only adapt the parameters but the
observations too,

2. the parameters are estimated together with a covariance matrix de-
scribing the uncertainty of the parameters.

A prerequisite for using the Gauss-Helmert model is that the observa-
tions are given together with uncertainty information in the form of covari-
ance matrices. Since the estimation is done by iteratively adapting both the
parameters and the observations, it is also necessary to start with a suitable
initial estimate for the parameter vector. Otherwise it can happen that the
performance is very poor. Figures 3.3 and 3.4 give an example of such a
poor performance.

3.2 The Gauss-Helmert estimation to fit straight lines

To demonstrate how the Gauss-Helmert estimation works, we present the
example of fitting a straight line through a set of points in R2. This does
not demonstrate the full potential of the model but shows all properties we
will use for our new architecture presented in the next section.

15

16 3 The Gauss-Helmert method

The parameters of our model are represented by a three-dimensional

vector w =
(n

b

)
consisting of the normal vector n and the negative dis-

tance b of the line to the origin. When the learning is finished, we will have
also estimated a covariance matrix Σ∆w,∆w describing the uncertainty of the
parameter vector and thus the uncertainty of the line itself.

The observations are given by N two-dimensional vectors xi ∈ R2 to-
gether with N covariance matrices Σxi ,xi ∈ R2×2.

We group all possible constraints into two types:

1. constraints on the observations and the parameters: gi(xi, w) = 0,

2. constraints on the parameters alone: h(w) = 0.

3.2.1 Constraints on the observations and the parameters

The first set of constraints is of the first type and ensures that all points will
finally lie on the line:

gi(xi, w) = n>xi + b = 0. (3.1)

If we write the observations xi as a sum

xi = x̂i + ∆xi

of an estimate x̂i and an error in the estimate ∆xi and similarly for w as

w = ŵ + ∆w,

we can rewrite the constraints of type one as

gi(x̂i + ∆xi, ŵ + ∆w) = 0

and use a Taylor series expansion to approximate them as

gi(x̂i, ŵ) + (∂xigi)(x̂i, ŵ)∆xi + (∂wgi)(x̂i, ŵ)∆w ≈ 0. (3.2)

Defining

cgi := −gi(x̂i, ŵ), A :=




(∂wg1)(x̂1, ŵ)
...

(∂wgN)(x̂N , ŵ)


 ,

B> :=




(∂xi g1)(x̂1, ŵ) 0
. . .

0 (∂wgN)(x̂N , ŵ)


 , and ∆x :=




∆x1
...

∆xN


 ,

we can rewrite the equations from (3.2) as

A ∆w + B> ∆x = cg. (3.3)

3.2 The Gauss-Helmert estimation to fit straight lines 17

3.2.2 Constraint on the parameters alone

The last constraint fixes the norm of the normal vector n to one:

h(w) =
1
2
(n>n− 1) = 0 (3.4)

⇐⇒ h(ŵ) + (∂wh)(ŵ)∆w ≈ 0.

Defining
H>(ŵ) := (∂wh)(ŵ) and ch := −h(ŵ),

this constraint can be rewritten as

H>(ŵ) ∆w = ch. (3.5)

3.2.3 The minimisation

Starting with the given observations xi and an initial parameter vector w,
the new parameter vector is calculated by minimising the adaptations of
the observations, weighted by their inverse covariance matrices, observing
the constraints specified above. After defining the covariance matrix for all
observations as

Σx,x :=




Σx1,x1 0
. . .

0 ΣxN ,xN


 ,

we can write our optimisation problem as

minimise 1
2 ∆x>Σ−1

x,x∆x
subject to A ∆w + B> ∆x = cg,

H>(ŵ) ∆w = ch.
(3.6)

To find a solution for this problem, we use the method of Lagrange mul-
tipliers where the Lagrangian function is given as

L(∆w, ∆x, λλλ, µµµ) = 1
2 ∆x>Σ−1

x,x∆x
−(A ∆w + B> ∆x− cg)>λλλ

+(H>(ŵ) ∆w− ch)>µµµ.
(3.7)

Calculating the partial derivatives with respect to ∆x, ∆w, λλλ and µµµ gives
the following set of equations:

Σ−1
x,x∆x− Bλλλ = 0, (3.8)

−A>λλλ + Hµµµ = 0, (3.9)
A∆w + B>∆x− cg = 0, (3.10)

H>∆w− ch = 0. (3.11)

18 3 The Gauss-Helmert method

Writing equation (3.8) as ∆x = Σx,xBλλλ and substituting this into equation
(3.10), we get

λλλ = (B>Σx,xB)−1(cg −A∆w). (3.12)

Substituting this equation into equation (3.9) gives

A>(B>Σx,xB)−1A∆w + Hµµµ = A>(B>Σx,xB)−1cg. (3.13)

If we define

N := A>(B>Σx,xB)−1A and cn := A>(B>Σx,xB)−1cg, (3.14)

we can combine equations (3.13) and (3.11) into a linear system of equa-
tions: (

N H
H> 0

) (
∆w
µµµ

)
=

(
cn
ch

)
. (3.15)

Substituting equation (3.12) into (3.8) gives a way to calculate ∆x after solv-
ing (3.15) as

∆x = Σx,xB(B>Σx,xB)−1(cg −A∆w).

Now we can update the estimates ŵ for w and x̂ for x by

ŵ′ = ŵ + ∆w and x̂′ = x̂ + ∆x.

Iterating these calculations will finally lead to a solution of the minimisation
problem (3.6).

3.2.4 Numerical calculations

Since we used the matrix based environment Matlab for conducting our
experiments, we have added an extra component to each vector, writing
the new vectors as

xi :=
(

x̃i
1

)

with x̃i being the original observed vector. This enables us to rewrite the
constraints from equation (3.1) as

gi(xi, w) = (n>, b)
(

x̃i
1

)
= w>xi = 0, (3.16)

and the constraints from equation (3.4) as

h(w) =
1
2
(
w>Mhw− 1

)
= 0 (3.17)

with

Mh =




1 0 0

0 1
...

0 · · · 0


 .

3.2 The Gauss-Helmert estimation to fit straight lines 19

The covariance matrices for the new xi become

Σxi ,xi =
(

Σx̃i ,x̃i 0
0> 0

)
,

with 0 = (0, . . . , 0)> ∈ R2.
Observing that Σx,x is a block diagonal matrix and taking into account

the sparse structure of B, it is possible to calculate N and cn without explic-
itly using huge matrices as equation (3.14) might suggest:

Since

(B>Σx,xB)−1 =




E−1
x1,x1

0
. . .

0 E−1
xN ,xN




with
Exi ,xi = (∂xi gi)(x̂i, ŵ)Σxi ,xi [(∂xi gi)(x̂i, ŵ)]>,

we can calculate N and cn as

N =
N

∑
i=1

[(∂wgi)(x̂i, ŵ)]>E−1
xi ,xi

(∂wgi)(x̂i, ŵ)

and

cn = −
N

∑
i=1

[(∂wgi)(x̂i, ŵ)]>E−1
xi ,xi

gi(x̂i, ŵ).

Using the updated definitions (3.16) and (3.17), we get:

N =
N

∑
i=1

x̂i
(
ŵ>Σxi ,xi ŵ

)−1x̂>i ,

cn =
N

∑
i=1

x̂i
(
ŵ>Σxi ,xi ŵ

)−1x̂>i ŵ,

H = Mhŵ, and

ch =
1
2
(
1− ŵ>Mhŵ

)
.

3.2.5 Derivation of the covariance matrix Σw,w

Taking the system of equations (3.15), we can calculate ∆w by inverting the
left matrix: (

∆w
µµµ

)
=

(
N H

H> 0

)−1 (
cn
ch

)
.

Using a derivation from [16], we express the inverse as

20 3 The Gauss-Helmert method

(
N H

H> 0

)−1

=
(

N−1 −N−1H(H>N−1H)−1H>N−1 N−1H(H>N−1H)−1

(H>N−1H)−1H>N−1 −(H>N−1H)−1

)

and can express ∆w as

∆w = N−1 −N−1H(H>N−1H)−1H>N−1cn + N−1H(H>N−1H)−1ch.

Using error propagation and following [27], we compute the covariance
matrix Σ∆w,∆w as

Σ∆w,∆w = N−1(I−H(H>N−1H)−1H>N−1) (3.18)

with I being an identity matrix.

3.2.6 Visualisation of the variance

Having calculated the parameter vector w = (n>, b) together with the ac-
companying covariance matrix Σw,w, we have calculated not only one line
l, but a whole distribution of lines with the line given by w being the mean
of the distribution.

Taking a point x from R2, we can calculate the distance d to the line l as
d = n>x− b. Using error propagation we can calculate the variance for this
distance. For the visualisation of the variance of the hyperplanes we have
taken some points on the line and plotted bars with length proportional to
the variance vertical to the line.

3.2.7 Examples

To illustrate the process of line fitting, we have generated some figures.
Figure (3.1) (together with Figure (3.2)) shows the successful learning of the
parameters.

Figure (3.3) (together with Figure (3.4)) shows that, if the initial esti-
mate is too bad, it can happen that, due to adopting the original observa-
tions towards a bad estimate of the line during early updates, it becomes
impossible to learn the optimal line in the later updates. However, it is im-
portant to note that in this example the initial estimate is perpendicular to
the line used to generate the points. This means that it is approximately
the worst possible estimate. But, although this is the worst possible initial
estimate, rerunning the experiment with this bad estimate, we found that
in the majority of cases the results were satisfactory. This shows that, when
a bad initial estimate is used, a failure as depicted in Figures (3.3) and (3.4)
can happen, but this very much depends on the actual points used. With a
sufficiently good initial estimate, however, we only got good results in our
experiments.

3.2 The Gauss-Helmert estimation to fit straight lines 21

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

−6 −4 −2 0 2 4 6

−5

−4

−3

−2

−1

0

1

2

3

4

Figure 3.1: The pictures above together with the picture from Figure
3.2 show the use of the Gauss-Helmert model for line-fitting with
a sufficiently good initial guess for the parameter vector leading to
good performance. The first picture (at the top of this page) depicts
the observed data and the initial estimate for the line. The second
drawing (centre of this page) shows the result of the learning after
the third and final update. The last picture in Figure 3.2 shows the
learned line together with the original points to illustrate the quality
of the final estimate. The data for this example consists of 30 points
uniformly distributed on a line segment and deviated perpendicular
to the line with normal distributed noise.

22 3 The Gauss-Helmert method

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

Figure 3.2: Continuation of Figure 3.1: the final estimate for the line
together with the original points. For a selection of points lying on
the line, we have visualised the variance of their distance to the line
by drawing vertical bars with length proportional to the variance.

3.2 The Gauss-Helmert estimation to fit straight lines 23

−6 −4 −2 0 2 4 6

−5

−4

−3

−2

−1

0

1

2

3

4

−4 −2 0 2 4

−4

−3

−2

−1

0

1

2

3

Figure 3.3: Using the Gauss-Helmert model for line-fitting with an
inappropriate initial estimate for the parameter vector can lead to
very poor performance. The first picture (at the top of this page) de-
picts the observed data and the initial (bad) estimate for the line.
The following three drawings (first drawing: this figure, remain-
ing drawings: Figure 3.4) show the iterative learning process which
stops when the updates become smaller than a previously chosen
threshold. The last picture shows the learned line together with
some vertical bars visualising its variance. It also shows the original
points to illustrate the discrepancy between the data and the learned
line. The data for this example consists of 30 points uniformly dis-
tributed on a line segment and deviated perpendicular to the line
with normal distributed noise. (The remaining drawings are shown
in Figure 3.4.)

24 3 The Gauss-Helmert method

−4 −2 0 2 4 6

−4

−3

−2

−1

0

1

2

3

4

−4 −2 0 2 4 6

−4

−3

−2

−1

0

1

2

3

4

−6 −4 −2 0 2 4 6

−5

−4

−3

−2

−1

0

1

2

3

4

Figure 3.4: Continuation of Figure 3.3.

Chapter 4

Adaptation of the
Gauss-Helmert model to linear
discrimination

Given our considerations in Sections 2.4 and 2.5, we will now present a
method to adapt the Gauss-Helmert model for discrimination tasks. While
in this section we will just show an adaptation for linear discrimination, we
will extend this approach to non-linear discrimination in Chapter 6.

In most cases, the data available for the training of a pattern classifica-
tion machine is noisy. As a result, a classifier obtaining perfect classification
on the training set will usually not perform as good on new data. For this
reason, most learning algorithms do not try to learn the training set per-
fectly but try to learn a smooth decision surface. For many learning algo-
rithms however, the control of the smoothness of the decision surface is the
only point where they might – indirectly – get a benefit from a known dis-
tribution or at least magnitude of the noise. A possible strategy might be to
increase the smoothness for very noisy data and to decrease the smoothness
if less noise is present.

Most training algorithms, however, are not able to make direct use of
this additional information, especially when it is known that the distribu-
tion of noise varies for different observations (e.g. smaller distortions for
points in the centre of a picture and larger distortions near the borders).
There exist only few algorithms, like the ones presented in Chapter 8, that
are able to make use of this information for learning directly.

The approach presented in this section will not only do this but will
even go a step further by using the uncertainty information not only for
learning the decision boundary but also for calculating a variance for the
parameters of the decision boundary. This will then be used to calculate
the probability for a new point to lie on one side or the other of a decision
boundary drawn from the distribution of the decision boundaries (given by

25

26 4 Adaptation of the Gauss-Helmert model to linear discrimination

the parameters and the covariances). This probability will be interpreted
as a measure of confidence for the classification result.

4.1 The plain approach

The idea for the adaptation of the Gauss-Helmert model is to fit two par-
allel hyperplanes through the training data, one through each of the two
classes C+ and C−, and to use the parallel hyperplane in the middle as the
separating hyperplane. This is motivated by the fact that, at least as long as
the training set is well balanced, Fisher’s linear discriminant is effectively
doing the same as the least-squares approach: fitting parallels through the
two classes (see Subsection 2.5.2). If the set is unbalanced, i.e. the num-
bers of positive and negative examples differ considerably, Fisher’s linear
discriminant will move the separating hyperplane towards the larger class.
Since we think that this can become a problem for extremely unbalanced
data and for simplicity, we will always take the parallel hyperplane in the
middle of the outer parallels as the decision boundary.

∈ C−
∈ C+

separating hyperplane
parallel

corresponding hyperplane

distance ∆xi of the
estimate x̂i of a point to the

n

|α|
|b|

|α|

Figure 4.1: Our idea for the adaptation of the Gauss-Helmert model
to linear separation: find a separating hyperplane by fitting two par-
allel hyperplanes through the points of the two classes and take the
parallel hyperplane in the middle as the separating hyperplane.

With d-dimensional data, the parameters needed for our model there-
fore are the normal vector n ∈ Rd for the orientation of the parallel hyper-
planes and two additional parameters b ∈ R and α ∈ R for the distance of
the central hyperplane to the origin and for the (negative) distance of the
outer parallels to the central parallel.

By extending the approach from the previous chapter (see Subsection
3.2.4), we use a parameter vector

w =




n
b
α




and extend our original, d-dimensional observation vectors x̃i to (d + 2)-

4.1 The plain approach 27

dimensional vectors

xi =




x̃i
1
yi


 .

The type-one constraints now become

gi(xi, w) = (n>, b, α)




x̃i
1
yi


 = w>xi = 0 (4.1)

and ensure that all points will finally lie on the correct hyperplane. The
type-two constraint becomes

h(w) =
1
2
(n>n− 1) =

1
2
(
w>Mhw− 1

)
= 0 (4.2)

with

Mh =




1 0
. . .

1
0

0 0



∈ R(d+2).

The covariance matrices for the new xi become

Σxi ,xi =




Σx̃i ,x̃i 0
0

0 0


 ∈ R(d+2).

Using these modifications, we can use the same procedure as in Chapter
3 and calculate a parameter vector w = (n>, b, α)> together with a covari-
ance matrix Σw,w.

4.1.1 Uncertainty of the classification

In Section 2.2 we have motivated the approach of linear classification of the
data. Using an approach based on the idea of Fisher’s linear discriminant,
we will find a separating hyperplane which gives optimal separation in the
Fisherian sense (at least as long as our data set is well balanced). But, using
noisy input, our estimate of the separating hyperplane will be noisy too.

The distance to the separating hyperplane cannot be used to measure the
confidence

At first sight, it seems obvious that for two points lying on a line perpen-
dicular to the separating hyperplane, the confidence on the classification of
the point with greater distance to the hyperplane is greater. But for two

28 4 Adaptation of the Gauss-Helmert model to linear discrimination

arbitrary points this does not hold. We will illustrate this with a simple
example:

If we are thinking of a distribution of lines through the origin of a two-
dimensional coordinate system, it becomes clear that for a point lying near
the origin, we can predict with high confidence on which side of a line
drawn from the distribution, this point will lie. If however, we take a point
with the same distance to the mean line but further away from the origin of
the coordinate system, our confidence decreases as illustrated in Figure 4.2.

x2

x1

Figure 4.2: This figure shows some lines through the origin drawn
from a distribution. The mean of this distribution is drawn with a
thick solid line. The two points both have the same distance to the
mean of the lines. However, the point closer to the origin lies above
all lines shown in this drawing, while the other point lies only above
7 of the 9 lines.

Therefore we have adopted a more sophisticated way to give a measure
of confidence for our classification results.

A more sophisticated way to measure the confidence

Using the Gauss-Helmert model, we get the (mean of the) parameters of a
separating hyperplane together with a covariance matrix. This allows us
for an arbitrary point x the definition of a function

dx :
(

n
b

)
7→ (n>, b)

(
x
1

)

that calculates the distance of the point x to the hyperplane given by the
parameters n and b since the type-two constraint (4.2) ensures that ‖n‖2 =
1. Using error propagation (see Appendix A) we calculate the expectations
of the Taylor series expansions of degree two for dx and d2

x and get

E [dx
(
(n>, b)>

)
] = (n>, b)

(
x
1

)
=: µ (4.3)

4.1 The plain approach 29

and

E [d2
x
(
(n>, b)>

)
] ≈ (

(n>, b)
(

x
1

))2 + (x>, 1, 0)>Σ∆w,∆w




x
1
0


 . (4.4)

Combining (4.3) and (4.4) we get

Var[dx
(
(n>, b)>

)
] = E [d2

x
(
(n>, b)>

)
]− E2[dx

(
(n>, b)>

)
]

≈ (x>, 1, 0)>Σ∆w,∆w




x
1
0


 =: σ2. (4.5)

Therefore, given (4.3) and (4.5), we have an estimate for the mean and vari-
ance for the distance of a point to the hyperplane. If the mean is less than 0
we assign the point to the class C−, otherwise to class C+. The probability
for x being assigned to class C+ becomes

PC+(x) =
∫

R≥0

1
σ
√

2π
e−

(t−µ)2

2σ2 dt,

for x being assigned to class C−

PC−(x) =
∫

R≤0

1
σ
√

2π
e−

(t−µ)2

2σ2 dt.

If µ < 0, i.e. x is assigned to class C−, we can reformulate the second case
as ∫

R≥0

1
σ
√

2π
e−

(t−|µ|)2

2σ2 dt. (4.6)

Since this is equal to the first case if we assign x to class C+, we can use
(4.6) as the probability of assigning x to the class with greatest probability.
Therefore we use (4.6) as a measure of confidence for our classification.

4.1.2 Experiments

For our first experiments we created some balanced data sets with points
drawn from multivariate normal distributions. The covariance matrices for
all points are taken to be equal multiples of the unity matrix. In order to be
able to create intuitive visualisations of the results, we restricted ourselves
mainly to two-dimensional data sets.

As the initial value for n we used the normalised difference of the class
means (m+−m−)/‖m+ −m−‖2. For b we have taken b = −(m−+ (m+−
m−)/2)>n and for α we used α = −‖m+ −m−‖2/2. We stopped iterating
when the norm of the difference between the new and the previous estimate
for p dropped below 10−4.

30 4 Adaptation of the Gauss-Helmert model to linear discrimination

��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������

�
�
�
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

���
���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

p

x1 µ

PC+(x)x
µ

n

−b

0

x2

dx((n>, b)>)

Figure 4.3: Visualisation of the calculation of the confidence for a
point x lying on the positive side of the separating hyperplane spec-
ified by n and b. The left drawing shows the distance µ from x to the
mean of the distribution of the separating hyperplanes. Different
hyperplanes drawn from the distribution of separating hyperplanes
lead to different distance from x to the hyperplane. The plot on the
right shows the probability density for the varying distance from x
to the hyperplanes. The hedged area represents the probability of x
being classified as positive.

The first data set

The first data set consists of 40 points, 20 points belonging to each of the
two classes C+ and C−. Points from class C+ are drawn from the bivariate
normal distribution with mean (1, 1)> and covariance matrix 0.25 I with I
being the two-dimensional identity matrix. Mean and covariance matrix
for class C− are (−1,−1)> and 0.25 I. To add some noise we have added
0.5 I as covariance matrix to all points, i.e. we assume an equal distribution
of the noise on all points.

We stopped after three iterations. Figure 4.4 shows the resulting hyper-
plane together with the original points and the parallels, and gives some
information on the confidence too.

To illustrate that our method will still work when our data is not centred
around the origin, we have rotated and moved all points from our first data
set. The results for this modified data set is shown in Figure 4.5.

The second data set

The distributions used to draw the points from this data set have the same
covariance matrices for both classes. The covariance matrices have eigen-
vectors (1,−1)> and (1, 1)> with eigenvalues 2 and 1/4. The class means
are (1, 1)> and (−1,−1)>, the covariance matrix for the points is 0.5 I for
all points. The dataset consists of 20 points per class. The long clouds of
the two classes fit our model well, since it assumes the points to lie on two
parallels. Therefore the fit is very good and the variance on the parameters
of the separating line very low. This can be seen in Figure 4.6.

4.1 The plain approach 31

−2 −1 0 1 2

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Figure 4.4: The first data set. The points are drawn from two bivari-
ate normal distributions as described in the text. Points belonging to
class C+ are drawn as +, points from class C− as ×. The separating
hyperplane is the thick solid line, the parallels with distance −α to
the separating plane are dashed. The confidence is visualised by the
shading of the background. Dark: high uncertainty, light: high con-
fidence. The dotted lines connect points of equal confidence. There
are lines for confidence values of 0.55, 0.60, 0.65, . . . , 0.95.

The third data set

This dataset is not linearly separable since the classes overlap. Class means
are (1, 1)> and (0, 0)>, covariance matrices for both classes are 2 I and the
covariance matrices for all points are 0.5 I. There are 20 points drawn from
each of the two distributions. Results after 4 iterations, when the norm
of the alteration of p dropped below 10−4 for the first time, are shown in
Figure 4.7.

The fourth data set

This data set consists of 40 points drawn from two distributions with differ-
ent covariance matrices. The covariance matrix for C+ has eigenvalues 1/16
and 1/2 and eigenvectors (1,−1)> and (1, 1). The matrix for class C− has
eigenvectors (0, 1)> and (1, 0)> also with eigenvalues 1/16 and 1/2. The
class means are (1, 1)> and (1.5,−0.4)>. There are 20 points drawn from

32 4 Adaptation of the Gauss-Helmert model to linear discrimination

−1 0 1 2 3

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

Figure 4.5: The first data set moved and rotated. Results after 3
iterations.

−5 0 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

Figure 4.6: The second data set. Results after 3 iterations.

4.1 The plain approach 33

−1 −0.5 0 0.5 1 1.5 2 2.5

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 4.7: The third data set. Results after 4 iterations.

each of the two distributions. The covariance matrices for all points are
0.5 I. For the computed separating hyperplane and confidence see Figure
4.8.

The fifth data set

The fifth data set consists of points from a square of size 8× 8 with its lower
left corner at (−2,−2)>. The square is divided by its main diagonal: the
points in the lower right triangle belong to class C+, the ones in the upper
left triangle to class C−. The density of the distribution that the points have
been drawn from increases towards the lower left corner. This is due to the
fact that the x1 and x2 coordinates of the points have not been generated
independently from each other. For the right triangle we first generated the
x1 coordinates from the uniform distribution on the interval [−2, 6]. After
that we generated the x2 coordinates uniformly from [−2, x1]. For the upper
left triangle we did the same with the only difference that we flipped the x1
and the x2 coordinates. The covariance matrix used for all points is I.

There are 20 points drawn from each of the two distributions. For the
sample used, we get a perfect separation of the training set. Since our sepa-
rating line is not identical with the diagonal of the 8× 8 square, the perfor-
mance on a new set of points drawn from the same distributions will not be
perfect but, keeping in mind the small size of the training set, quite good.

34 4 Adaptation of the Gauss-Helmert model to linear discrimination

0 0.5 1 1.5 2 2.5 3

−1

−0.5

0

0.5

1

1.5

2

Figure 4.8: The fourth data set. Results after 3 iterations.

Note that, since we are doing effectively the same as Fisher’s linear dis-
criminant, we get nearly the same parameters. This can be seen in Table 4.1
that compares the first three components of the parameter vector obtained
with our Gauss-Helmert approach with that from Fisher’s linear discrim-
inant, from a hard margin support vector machine, and with the ‘perfect’
solution.

The sixth data set

The sixth data set is a balanced data set with 40 points. The 20 points be-
longing to class C+ are drawn from the bivariate normal distribution with
the mean (1, 1)> and the covariance matrix with eigenvectors (1,−1)> and
(1, 1)> with corresponding eigenvalues 1/16 and 1/2. The distribution for
class C− has the mean (−1,−1)> and the same covariance matrix. The co-
variance matrix for the points is 0.5 I for all points. Figure 4.10 shows the
results of running our Gauss-Helmert based method on this data set.

Table 4.2 compares the parameter vectors obtained by using our Gauss-
Helmert approach, Fisher’s linear discriminant and an SVM with the pa-
rameters of the ‘best possible’ separating hyperplane.

It can be seen that for this data set the solution found by Fisher’s linear
discriminant deviates from the one found by the Gauss-Helmert method
significantly. This can be explained by the fact that our approach is biased

4.1 The plain approach 35

−2 0 2 4 6

−3

−2

−1

0

1

2

3

4

5

6

7

Figure 4.9: The fifth data set. Results after 3 iterations. The dot-
ted lines connect points of equal confidence, lines are drawn for the
same confidence values as in Figure 4.4.

Gauss- Fisher’s lin. optimal value if under-
Helmert discriminant SVM lying distribution known

n1 0.7809 0.7809 0.7537 0.7071
n2 -0.6247 -0.6247 -0.6572 -0.7071
b -0.2858 -0.2857 -0.1235 0

Table 4.1: The parameters for the fifth data set using our Gauss
Helmert based approach, Fisher’s linear discriminant and a vanilla
support vector machine with a linear kernel. The right column
shows the best possible solution regarding the distributions used to
generate the sample. Since the sample is small, it is far from being
able to represent the underlying distributions perfectly. Therefore,
taking just the 40 points given, it is probably impossible to find a
hyperplane that will perform perfectly on any dataset drawn from
the distributions described.

36 4 Adaptation of the Gauss-Helmert model to linear discrimination

−2 −1.5 −1 −0.5 0 0.5 1 1.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

Figure 4.10: The sixth data set. Results after 5 iterations. The
confidence is visualised by the shading of the background. Dark:
high uncertainty, light: high confidence. The dotted lines connect
points of equal confidence. There are lines for confidence values of
0.55, 0.60, 0.65, . . . , 0.95.

Gauss- Fisher’s lin. optimal value if under-
Helmert discriminant SVM lying distribution known

n1 0.9729 0.9993 0.7649 0.7071
n2 0.2310 0.0386 0.6441 0.7071
b 0.0454 0.0383 0.1750 0
α -1.1077 -1.4142

Table 4.2: Entries of the parameter vectors for the sixth data set us-
ing our Gauss Helmert based approach, Fisher’s linear discriminant
and a vanilla support vector machine with a linear kernel. The right
column shows the best possible solution regarding the distributions
used to generate the sample.

4.1 The plain approach 37

by the initial parameter vector. In the experiments presented so far, we have
always used the procedure described in the beginning of this subsection
(see page 29) for calculating an initial estimate for the parameter vector. In
this experiment (sixth data set), this actually turns out to be the optimal
choice of parameters when considering the underlying distributions used
for creating the data set.

Although our Gauss-Helmert based approach performs slightly better
than Fisher’s linear discriminant, the SVM outperforms both.

4.1.3 Problems

Looking at the results for the sixth data set (Figure 4.10 and Table 4.2), we
do not only observe that the parameters learned by the Gauss-Helmert ap-
proach are much worse than the ‘optimal’ solution and also worse than the
SVM solution. We also notice that the complete training data lies in regions
of considerable uncertainty i.e. of low confidence. This is dangerous in so
far as the clusters of points from the two classes do not overlap. Conse-
quently the areas where the points are observed should lie within the areas
of highest confidence. Therefore the information on the (un)certainty must
be used with care.

While the problems described above can be seen as minor problems in
the performance, this data set reveals a far greater problem of our approach:
even though we start with an initial vector of ‘optimal’ parameters, we fi-
nally get a parameter vector that is much worse. The similar performance
of Fisher’s linear discriminant shows that this is not just a problem of our
specific approach but a general problem for a whole class of architectures.

The problem lies in our model. While the original intention of Fisher’s
linear discriminant was to find a projection that maximises the distance of
the projected class means while at the same time keeping the within-class
variances small, it has been shown that this is equivalent to a least squares
approach (see Subsection 2.5.2). But a least squares approach can be seen as
fitting parallels through the data: one through each class such that the sum
of the squared distances of the points to their corresponding hyperplane is
minimised. A parallel hyperplane between these parallels (in our approach
the one in the middle) is then used as the separating hyperplane.

This is the key point: we assume that the data is lying on two parallels
that are parallel to a good separating hyper plane. This, however, is not the
case for the sixth data set: here the best fitting parallels are close to perpen-
dicular to the best separating hyperplane. This leads to the effect that when
starting with the best fitting hyperplanes, i.e. using a normal vector n that
is the ‘optimal’ n rotated by 90◦, the orientation of the hyperplanes will not
change much. We will therefore get very good fitting, very narrow hyper-
planes and an unacceptable ‘separating’ hyperplane. Figure 4.11 shows the
result of using the optimal n rotated by 90◦ as the initial n.

38 4 Adaptation of the Gauss-Helmert model to linear discrimination

−2 −1.5 −1 −0.5 0 0.5 1 1.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

Figure 4.11: The sixth data set. Results after 2 iterations starting with
optimal parameters but n rotated by 90◦.

Taking these observations into account, it seems sensible to investigate
means of making our approach more robust against such failures.

4.2 Variants

In the last section we have shown how the Gauss-Helmert model can be
used for linear discrimination in general. While testing our implementation
with a variety of different datasets, it has turned out that there are some
linearly separable datasets for which the obtained separating hyperplane is
far from optimal.

As pointed out in the previous subsection, this is due to a deficiency of
our model. To compensate for this deficiency, we have investigated a vari-
ety of ways to improve the performance of our approach on these ‘difficult’
datasets.

The probably simplest idea is to use a ‘good’ initial estimate for the pa-
rameter vector. Although this approach looks neat, it has one big disadvan-
tage: it does not work. The reason for this is, that during the optimisation
the parameter vector might be altered such that the resulting parameters
can become much worse than the initial parameters. Since we effectively

4.2 Variants 39

used this approach for the first experiment on our sixth dataset, we have
already given an example for the failure of this approach.

This observation led to the next idea for improving the performance:
start with a ‘good’ initial estimate for the parameter vector and restrict the
adaptation of the parameter vector during the training such that the result-
ing parameters are close to the ‘good’ initial estimate and therefore also
‘good’. The disadvantage of this approach is that it becomes necessary to
calculate a proper estimate for the parameter vector before the optimisa-
tion, which originally was intended to ‘search’ for the parameter vector,
because the initial estimate will more or less become the resulting parame-
ter vector. This means that Gauss-Helmert is no longer used for obtaining
a parameter vector that describes a separating hyperplane. Instead we use
Gauss-Helmert for finding a covariance for the parameter vector. The cal-
culation of the (initial) parameter vector has to be done by another method.
When it was not obvious by the shape of the data how the best estimate for
the parameter vector would look like, we decided to use a support vector
machine (SVM) to calculate the parameters for the best separating hyper-
plane.

4.2.1 Using a fixed value for α

The most successful way for restricting the adaptation of the parameter vec-
tor was the fixing of the value for α.

The idea works as follows: first we calculate the normal vector n for
the separating hyperplane with a more robust method like an SVM. Then
we fit two parallels that are orthogonal to the previously calculated normal
vector through the data. Taking the hyperplane in the middle between these
parallels enables us to calculate the remaining parameters b and α. Finally
we start a slightly modified version of our Gauss-Helmert based approach.

The modification is that we use α as a constant instead of as a parameter.
Therefore our parameter vector has dimension d + 1 = 3 and becomes

w =
(

n
b

)

and the extended observation vectors become

xi =
(

x̃i
1

)
.

The type-one constraints become

gi(xi, w) = (n>, b)
(

x̃i
1

)
+ yiα = w>xi + yiα = 0

and the matrices Σxi ,xi and Mh are reduced to matrices of size (d + 1)× (d +
1) by omitting one of their all-zero columns and rows.

40 4 Adaptation of the Gauss-Helmert model to linear discrimination

Figure 4.12 shows the resulting hyperplane, parallels and confidence
map for the sixth data set when starting with optimal values and using a
fixed α.

−2 −1.5 −1 −0.5 0 0.5 1 1.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

Figure 4.12: The sixth data set. Results after 7 iterations starting with
optimal parameters and a fixed optimal value for α.

4.2.2 Minimising the alteration of α

Another less rigorous approach that we tried was the minimisation of the
alteration of α. Instead of fixing α completely as in subsection 4.2.1 we start
with a good initial estimate for α as well, but instead of fixing α completely,
we just tried to keep the alteration of α small in order to stay close to the
initial ‘good’ estimate. This means that this approach can be seen as lying
somewhere between the plain approach and the approach using a fixed
value for α. However, it turned out that there was no significant difference
between the results of our plain approach and of this modified approach.

Chapter 5

Classic architectures for
non-linear discrimination

Although linear discrimination has many nice properties, there are some
tasks where non-linear classification is necessary.

There have evolved a variety of architectures that are able to perform
a non-linear separation of the input space. Many of these architectures are
based on linear architectures like the ones presented in Chapter 2.

One of these architectures is the multi-layer perceptron. It consists of
several layers of linear perceptrons that are connected via non-linear sig-
moid functions. Because of its high non-linear complexity, it does not seem
feasible to combine the architecture of a multi-layer perceptron with our
architecture for linear classification presented in the previous chapter.

Therefore we will describe other architectures for non-linear classifica-
tion in this chapter and discuss an extension of our approach from Chapter
4 using ideas from the these architectures in the following chapter.

5.1 RBF networks

The way a radial basis function network classifies new patterns can be seen
as a two stage process: first the patterns are non-linearly projected from
the input space into a feature space. There, in the feature space, a linear
classification takes place.

Classification

While a linear classifier uses a function

hlin : x 7→ sgn(w>x) = sgn(
d

∑
n=1

wnxn) ∈ {−1, 1}

41

42 5 Classic architectures for non-linear discrimination

to decide whether a pattern x belongs to class C− (h(x) = −1) or class C+
(h(x) = +1), a radial basis function network usually uses a function

hrbf : x 7→ sgn
(M

∑
m=1

wmφm(‖x− xm‖2)
)
.

The M functions
x 7→ φm(‖x− xm‖2) (5.1)

are called basis functions1 with centres xm. The functions φm : R≥0 → R are
usually chosen to be monotonically decreasing. The most popular choice
for the φm is the Gaussian

φm : x 7→ exp
(
− x2

2σ2
m

)
. (5.2)

Although not being a radially symmetric basis function, we can also use

x 7→ exp
(
− 1

2
(x− xm)>Σ−1

m (x− xm)
)

(5.3)

as a basis function, possibly scaled by a factor 1/
(
(2π)d/2|Σm|1/2). The

matrix Σ−1
m is a symmetric positive semidefinite matrix. Since (5.3) is equiv-

alent to using a Gaussian with parameter σm when Σm = σ2
m I, we can see

(5.3) as a generalisation of using (5.2).

Learning

Training a linear classifier can be seen as the learning of a weight vector
w ∈ Rd (or ∈ R(d+1) if we do not seek a hyperplane through the origin).

An RBF network usually uses a greater number of parameters. While
the weight vector w ∈ RM (or ∈ R(M+1)) is similar to the weight vector
of a linear classifier, there are some additional parameters. These are the
number of basis functions M, and the basis functions themselves. Since the
type of the basis functions is usually chosen before the training starts, only
the parameters of these functions (the centres xm and e.g. σm when using
Gaussians for the φm or Σm when using basis functions of the form (5.3))
have to be chosen.

To achieve the best possible classification results, one has to learn all pa-
rameters – the number of basis functions M, the centres xm and the remain-
ing parameters for the M basis functions – simultaneously. The drawback
of such an approach is its high computational costs.

Because of these high computational costs, it is more common to use a
two-stage training process where in the first stage unsupervised techniques

1In the literature the term basis function is used differently: sometimes it is used for the
functions (5.1), sometimes for φm and sometimes (see e.g. [22]) it is used to denote a function
with two parameters: x and xm.

5.1 RBF networks 43

are used to determine the basis functions and in the second stage the out-
puts of the M basis functions are used as the input for the training of a
linear classifier.

In this text we will only use the two-stage training. We choose the num-
ber M of basis functions first and then use a k-means clustering algorithm
to find the centres of the basis functions. Our basis functions have the form
of (5.3) where we use a (possibly scaled) estimate of the covariance matrix
for the distribution of the points from the mth cluster for Σm.

An example

To illustrate the process of training an RBF network, we have generated
some images. We begin with the data set shown in Figure 5.1.

−2 0 2 4 6

−2

0

2

4

6

Figure 5.1: The data set. Points drawn as + belong to class C+,
points drawn as × belong to class C−.

Our training starts with the unsupervised clustering of the data set. We
have decided to use M = 3, i.e. we will get 3 clusters. We use a k-means
clustering algorithm. Taking the points from one cluster we also calculate
an estimate for the covariance matrix for the distribution of the points from
this cluster. In Figure 5.2 we visualise the covariance matrices with ellipses
and the clustering by using different symbols for the points from each clus-
ter.

Using the means of the clusters together with the covariance matrices
allows us to approximate the distributions of the points from the clusters
using bivariate normal distributions. These distributions are shown in Fig-

44 5 Classic architectures for non-linear discrimination

−2 0 2 4 6

−2

0

2

4

6

Figure 5.2: The 3 clusters together with their covariances visualised
by using ellipses.

ure 5.3. For our RBF network we just use these distributions as basis func-
tions (with the covariance matrices scaled by a factor slightly greater than
one). This means that the ith component of the input used for the linear
classifier is the probability density of this point for the distribution of the
ith cluster.

−2 0 2 4 6
−2
0

2
4

6

−0.2

−0.1

0

0.1

0.2

0.3

−2 0 2 4 6
−2
0

2
4

6

−0.2

−0.1

0

0.1

0.2

0.3

−2 0 2 4 6
−2
0

2
4

6

−0.2

−0.1

0

0.1

0.2

0.3

Figure 5.3: The distributions of the clusters – the basis functions.

Training the linear classifier with the projected training data gives a
weight vector w ∈ RM. In the space of the projected data the weight vector
defines a separating hyperplane. Figure 5.4 shows this hyperplane together
with the projected sample.

Forming the weighted sum of the M probability distributions weighted
by the corresponding entry of w gives a new function that is shown in Fig-
ure 5.5.

A linear classifier classifies a pattern as belonging to class C+ if the prod-

5.1 RBF networks 45

0
0.02

0.04
0.06

0.08
00.020.040.060.080.1

0

0.02

0.04

0.06

0.08

0.1

0.12

Figure 5.4: The hyperplane defined by the weight vector w in the
projected space.

−2 0 2 4 6

−2

0

2

4

6

−0.2

−0.1

0

0.1

0.2

0.3

Figure 5.5: The weighted sum of the basis functions.

46 5 Classic architectures for non-linear discrimination

uct of the pattern with the weight vector is greater or equal to zero and as
belonging to class C− if the output is less than zero. Therefore all points
lying on or above the plane formed by the first two coordinate axes are
classified as belonging to class C+, all points lying below this plane are clas-
sified as belonging to class C−. Hence the contour line corresponding to the
zero level can be seen as the decision boundary of this classifier. In Figure
5.5 this is the contour line which is drawn as a thick solid line. Figure 5.6
shows this decision boundary in the two-dimensional input space together
with the original data points. It can be seen that this RBF network obtains
perfect classification on the training set that is not linearly separable.

−2 0 2 4 6

−2

0

2

4

6

Figure 5.6: The projection surface in the input space.

5.2 SVMs using non-linear kernels

Another method to obtain a non-linear classification boundary is the use
of non-linear kernels. The basic idea is the same as with RBF networks:
project the data from the input space into a feature space and do a linear
separation in the feature space. The hope is that by using non-linear projec-
tions and feature spaces of possibly much higher dimension than the input
space, it becomes possible to achieve a good linear separation in the rich
feature space. This usually corresponds to a non-linear separation in the
input space.

The key ingredient of this approach is the kernel. Let Φ be the mapping
from the input space X into the feature space F. A kernel K is defined as

5.2 SVMs using non-linear kernels 47

a function that takes two examples from the input space and calculates the
inner product in the feature space:

K : X× X → R

(x, z) 7→ 〈Φ(x), Φ(x)〉.

If we can reformulate our linear classifier in a way that the only places
where examples appear are in inner products, we can replace all inner prod-
ucts by our kernel function. This is equivalent to first projecting the data
into the feature space and then running the linear classifier in the feature
space.

But, compared to the explicit use of the projected data, the method of
replacing the inner products by the kernel has some advantages. Since the
projected examples are never calculated explicitely, their size and the com-
putational costs for the generation can be neglected as long as there exists
an efficient way of computing the kernel.

Therefore, when using kernels, it is even possible to use feature spaces
of potentially infinite dimension. One example of such a kernel is the string
kernel2 presented by Viswanathan and Smola ([36]), where the size (or at
least the number of non-zero entries) of a feature vector grows with the
length of the string.

Another kernel is the so called Gaussian kernel. It is defined as

K(x, z) = exp
(
− ‖x− z‖2

2
2σ2

)
.

When using a ‘linear’ classifier where the implicit weight vector Φ(w) is
given as Φ(w) = ∑N

i=1 αiΦ(xi), the classification of a new example x is done
as

sgn
(
Φ(w)>Φ(x)

)
= sgn

(N

∑
i=1

αiK(xi, x)
)

= sgn
(N

∑
i=1

αi exp
(
− ‖x

i − x‖2
2

2σ2

))
. (5.4)

Looking at (5.1) and (5.2), we see that (5.4) is equivalent to an RBF network
with weight vector (α1, . . . , αN)> and basis functions with Gaussians using
the training vectors as centres and σm = σ for all m.3

2A string kernel is a kernel that computes the inner product of strings mapped to a real
valued vector space.

3Note that, when using a Gaussian kernel in a ‘linear’ classifier, the effective dimension-
ality is only bounded by the number of training vectors. When using an SVM however,
the dimensionality will also be bounded by the number of support vectors. This is usually
much smaller than the number of training vectors.

Chapter 6

The Gauss-Helmert method
using RBFs

In the previous chapter we have shown how an RBF network can be set up
and that the use of a Gaussian kernel in a ‘linear’ classifier can be equivalent
to the use of an RBF network. Therefore we will use the RBF approach to
extend our Gauss-Helmert based method to non-linear classification.

6.1 How it works

The idea can be seen as a direct descendent of the RBF network presented
in the previous chapter.

First we choose a number M of basis functions and cluster the data into
M clusters. For each cluster we calculate an estimate for the covariance
matrix.

After this we project the data into RM using the distributions of the
points from the clusters as basis functions as described in the previous
chapter.

Taking the variance of the points in the original space, we use error
propagation (see Appendix A) to calculate an estimate for the variance in
the projected space (see Appendix C).

Using the projected data together with the estimates of the variance, we
can use the techniques presented in Chapter 4 to calculate the remaining
parameters of a decision boundary together with a covariance matrix.

6.2 Experiments

A circle

This dataset (see Figure 6.1) consists of 200 points uniformly distributed in
the 8 × 8 square centred around (2, 2)>. All 120 points lying within the

49

50 6 The Gauss-Helmert method using RBFs

circle with radius 8/
√

2π and centre (2, 2)> belong to class C+, all 80 points
outside this circle belong to class C−.

We used a k-means clustering algorithm with M = 16 clusters. In or-
der to get a smooth decision surface, we scaled the covariance matrices ob-
tained for the clusters with the factor 15. The estimation of the parameters
in the projected space has been done following the approach described in
subsection 4.2.1. The circle shows the border between the two classes used
for generating the points. When classifying the training set, only 2 errors
(both false positives) occur.

−2 0 2 4 6

−2

−1

0

1

2

3

4

5

6

Figure 6.1: Points uniformly distributed within a square. Points
within the circle belong to C+, points outside the circle to C−. The
dotted lines connect points of equal confidence as e.g. in Figure 4.4.

Chessboards

Further experiments have been conducted using chessboard-like training
sets. Figure 6.2 and Figure 6.3 show the results of learning two chessboards
of different sizes.

The circles show the centres of the clusters learned by the k-means clus-
tering algorithm. The number M of clusters used are M = 20 for the 2× 2
chessboard and M = 64 for the large board. Both data sets are balanced

6.2 Experiments 51

with 400 points for the small chessboard and 1600 points for the larger
chessboard. There occur 8 errors when classifying the training set for the
2× 2 chessboard.

−2 −1 0 1 2 3 4 5 6

−2

−1

0

1

2

3

4

5

6

Figure 6.2: Chessboard of size 2× 2.

52 6 The Gauss-Helmert method using RBFs

−2 0 2 4 6 8 10 12 14

−2

0

2

4

6

8

10

12

14

Figure 6.3: Chessboard of size 4× 4.

Chapter 7

An idea inspired by statistical
testing theory

While in subsection 4.1.1 we have shown a way to compute the probability
of a decision, we will take a different route in this chapter. The approach
is inspired from statistical testing theory where one states a hypothesis, ob-
serves some data, and then decides to reject the hypothesis or to not reject
it.

For each classification we want to know whether it is made with con-
fidence or if it is vague. The idea is that a point x lying on the separating
hyperplane cannot be classified with confidence. Therefore we form the
hypothesis that the point x is lying on the hyperplane. If we accept this hy-
pothesis we judge the classification of this point as unreliable; if we reject
the hypothesis we accept the classification as reliable.

7.1 The computations

To perform the test whether a point x is lying on the separating hyperplane
or not, we follow the approach proposed by Heuel in [13] in Section 4.5. We
calculate the distance of the point to the hyperplane as

d̄ = (n>, b)
(

x
1

)
.

Since we assume that we do not have any uncertainty information for the
point x, we use the zero matrix as covariance matrix Σx,x for x. Using this
matrix, the variance for the distance d̄ becomes

Σd̄,d̄ = (n>, b)Σx,x(n>, b)> + (x>, 1, 0)Σ∆w,∆w(x>, 1, 0)>

= (x>, 1, 0)Σ∆w,∆w




x
1
0


 .

53

54 7 An idea inspired by statistical testing theory

Testing whether x is lying on the separating hyperplane, we form the
hypothesis H0 : d̄ = 0. The optimal test statistic for this hypothesis is given
by

T = d̄ Σ−1
d̄,d̄ d̄ ∼ χ2

1,

where χ2
1 denotes the χ2-distribution with one degree of freedom.

To decide whether we reject the hypothesis or not, we first have to
choose a significance level α̂ that specifies the probability of rejecting a true
hypothesis (type I error).

Using the (1− α̂)-quantile of the χ2
1 distribution, which we will write as

χ2
1,(1−α̂), the probability P(T > χ2

1,(1−α̂)|H0) will be α̂. Therefore, since we
want to reject the hypothesis H0 with a significance level of α̂, we have to
reject the hypothesis H0 when

T = d̄ Σ−1
d̄,d̄ d̄ > χ2

1,(1−α̂).

Figure 7.1 shows the results of a first experiment using this approach.
The two curved solid lines show the borders between the regions of ac-
ceptance (between the two lines) and rejection (outside the two lines) of the
hypothesis for which we will define a classification as unreliable or reliable.

−1 0 1 2 3

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

Figure 7.1: A dataset with two classes. Shown are the confidence
(shading and dotted lines as in Figure 4.4) and the borders between
‘reliable’ and ‘not so reliable’ classification (curved solid lines). We
used α̂ = 0.05.

7.2 Some experiments with photos of coloured building bricks 55

7.2 Some experiments with photos of coloured build-
ing bricks

To test our approach with some more realistic data, we have taken photos
from coloured building bricks under different lighting conditions. These
photos are shown in Figure 7.3. From these photos we have taken the RGB-
values from single pixels (from the bricks, not from the background) as
training points after adding a covariance matrix as a measure for our as-
sumed uncertainty.

7.2.1 Calculating a covariance matrix

We assumed that the brightness varies a lot on the rough surface of the
bricks. Therefore we assumed that in the direction of a point, when taken
as a vector in RGB-space, the variance is twice as high as in the directions
perpendicular to it.

We further assumed that a point with high saturation has a more re-
liable colour information than a point with low saturation, and that the
colour information for a point with extremely high or low lightness is more
unreliable than for a point with a medium lightness. Using a conversion
from RGB (red green blue) to HLS (hue lightness saturation) as described
in [9], we used

(
1− saturation ∗ (1− 2 ∗ |lightness− 0.5|))/8 (7.1)

as variance in the direction of the greatest variance and the half of (7.1)
for the directions perpendicular to it. Figure 7.2 visualises the covariance
matrices for some points in a projection of the RGB-space to its first two
coordinates.

G

0

1

0 1
R

Figure 7.2: Visualisation of the covariances for points in the RGB-
space (here only the R and G coordinates are shown). The dotted
lines show the directions of the eigenvectors of the covariance ma-
trices.

56 7 An idea inspired by statistical testing theory

Figure 7.3: Pictures of coloured building bricks taken using a SONY
CCD-IRIS/RGB colour video camera (model DXC-151AP). Pictures
in the same line are taken with the same illumination. The order of
the six different lighting conditions is the same as in Figure 7.4.

7.2 Some experiments with photos of coloured building bricks 57

7.2.2 The experiments

In order to allow for a two-dimensional visualisation we have only taken
the first two components of the RGB representation. Figure 7.4 shows the
data taken from photos of red and green building bricks, and Figure 7.5
shows the data together with the variances calculated as described above.
For each colour and illumination we have taken 122 points. To increase the
readability of Figure 7.4 and Figure 7.5 we have only depicted every fourth
point in these figures.

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7 daylight no direct sun
daylight no direct sun
neon with direct spots
neon with direct spots
pure neon light
pure neon light
daylight direct sun
daylight direct sun
neon with indirect spots
neon with indirect spots
evening light plus neon
evening light plus neon

Figure 7.4: Red and green values (from an RGB representation) of
points from images taken from red and green building bricks under
different lighting conditions.

Training a linear Gauss-Helmert-classifier with the data from red and
green bricks illuminated with pure neon light gives the separating hyper-
plane shown in Figure 7.6. The figure also shows the boundary between the
regions of ‘reliable’ and ‘unreliable’ classification when using a parameter
α̂ = 0.05.

From Figure 7.7 it can be seen that the separating hyperplane learned
from the red and green bricks illuminated with pure neon light is able to
achieve perfect classification for all data from red and green bricks. For all
red and most of the green bricks the classification will also be judged as
‘reliable’.

58 7 An idea inspired by statistical testing theory

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 7.5: The points from Figure 7.4 together with their covari-
ances visualised by ellipses.

When taking data from yellow building bricks, it can be seen that all
of this data lies in the region of ‘unreliable’ classification. Since no data
from yellow bricks has been used for training the classifier, data taken from
yellow bricks should be entirely new to the classifier. Judging any classifica-
tion results on this data as unreliable is therefore the best thing the classifier
can do.

Changing the parameter α̂ results in a change of the boundary between
the regions of ‘reliable’ and ‘unreliable’ classification. Figure 7.8 shows the
different boundaries for different choices of α̂.

To show that the distributions of the noise on the points affects the re-
sult of the test as well, we have changed the covariance matrices by scaling
the largest eigenvalue by 2 and the smallest by 1/2 such that the largest
eigenvalue is 8 times as big as the smallest (instead of 2 times as big as in
the previous experiments). The results of training with the data from red
and green bricks illuminated with pure neon light but with the changed
covariance matrices is shown in Figure 7.9. While the resulting separating
hyperplane is virtually identical to the one learned with the original covari-
ance matrices, the boundaries between ‘reliable’ and ‘not so reliable’ are

7.2 Some experiments with photos of coloured building bricks 59

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 7.6: The results of training with data from photos of red and
green bricks illuminated with pure neon light (α̂ = 0.05).

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 7.7: The results of training with data from photos of red and
green bricks illuminated with pure neon light together with data
from other photos of coloured bricks (red, green and yellow).

60 7 An idea inspired by statistical testing theory

better for the modified covariance matrices in so far as the amount of data
from green bricks lying in the region of ‘unreliable’ classification is reduced
(compared to Figure 7.7). All of the data from yellow bricks is still lying in
the region of ‘unreliable’ classification.

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 7.8: The results of training with data from photos of red and
green bricks as in Figure 7.7 but with different values for α̂. Red
lines: boundaries for α̂ = 0.1, blue lines: α̂ = 0.05 and green lines:
α̂ = 0.01.

7.2 Some experiments with photos of coloured building bricks 61

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 7.9: The results of training as in Figure 7.7 with α̂ = 0.05 but
with different covariance matrices for the points.

Chapter 8

Other ways to incorporate
uncertainty

When looking for other classification algorithms that make use of uncer-
tainty information on the training data for obtaining some measure of con-
fidence on the decision boundary, we could not find any such algorithms.
What we have found, however, are two algorithms that do not give a mea-
sure of confidence for the decision boundary but that are able to use un-
certainty information on the training data in their learning process. These
two algorithms have both been presented only recently in the proceedings
of the 2004 annual conference on Neural Information Processing Systems
([31]).

Since they do not provide any measure of confidence for the classifica-
tion or at least for the decision boundary, they are not directly comparable
with our approach.

One problem with our experiments was that we could not find any ‘real
world’ multi-dimensional data set to test our algorithms. The fact that there
have evolved other algorithms that rely on data with similar properties
made us hope to find some appropriate data sets.

Since the conference papers [2] and [1] reported experiments on artificial
data sets only, we contacted the first authors by email. Although both au-
thors replied to our request, the answers were not very encouraging: Jinbo
Bi wrote that he did have some data from a medical application with un-
certainty for each feature. However, this was confidential Siemens data.
Chiranjib Bhattacharyya wrote: ‘Actually we are also in the look out for real
world data to test the proposed algorithms. [...] I would also request you to let me
know if you come across such real life datasets. ’

Ralph Herbrich, who is working as a Researcher at Microsoft Research
Cambridge, suggested to use data from a reviewing system (of e.g. con-
ferences) where reviewers give a score together with their confidence on
that score. The problem with this idea is that it would give only one-
dimensional data (or at least only a confidence measure for one dimension).

63

64 8 Other ways to incorporate uncertainty

8.1 Total support vector classification

In the proceedings of the 2004 conference on Neural Information Process-
ing Systems Jinbo Bi and Thong Zhang ([2]) presented a way to perform
support vector classification with the ability to consider uncertainty infor-
mation on the training data. Their algorithm can be seen as an extension to
the standard SVM learning algorithm.

Instead of assuming a Gaussian distribution of the noise on the training
data, they use a simple bounded distribution of the uncertainty. If xi is an
observed pattern (with noise) and x′i the original pattern (without noise),
then the noise is given by ∆xi = x′i − xi. The assumed bounded distribu-
tion is now given by ‖∆xi‖ ≤ δi. The SVM optimisation problem (2.9) is
reformulated as

minimise ‖w‖2
subject to yi(w>(xi + ∆xi) + b) ≥ 1,

‖∆xi‖ ≤ δi,
i = 1, . . . , N.

(8.1)

This can be interpreted as allowing the xi to be moved up to δi in any direc-
tion.

If the original data set is linearly separable and all δi have the same value
δ, we will get exactly the same hyperplane as without this modification.
The only difference is that, due to the possible ‘movement’ of the xi, the
geometrical margin will grow by δ.

If linear separation is not possible but there exists a hyperplane such
that for each misclassified xi the absolute value of the geometric margin γi
is not greater than δi, then the vanilla total support vector machine (8.1) will
find a solution.

The hope is that outliers will have a large δi such that the vanilla total
SVM will still find a solution. The soft margin total SVM (also presented in
[2]) will probably take advantage from this too. They also present a way to
kernelise their total SVM.

8.2 Classification with gaussian uncertainty

Also in the proceedings of the 2004 conference on Neural Information Pro-
cessing Systems Chiranjib Bhattacharyya, Pannagadatta K. Shivaswamy and
Alex Smola ([1]) presented another approach for the training of a linear clas-
sifier considering uncertainty on the training data. Here the motivation is
the use of incomplete data. While there might exist methods to estimate
values for missing variables, the uncertainty on these ‘guessed’ values is
assumed to be much greater than on the observed values. The authors of
this paper assume the noise to be normal distributed.

8.2 Classification with gaussian uncertainty 65

−0.5 0 0.5 1 1.5 2 2.5

−1

−0.5

0

0.5

1

Figure 8.1: An example for total support vector classification. The
third data set classified with a total SVM. The circles illustrate the
possible variation of the three support vectors. It can be seen that the
dashed parallels that show the margins are tangents to the circles of
largest variation on the support vectors.

The idea is to reformulate the optimisation problem of the soft margin
SVM

minimise 1
2‖w‖2 + C ∑N

i=1 ξi
subject to yi(w>xi + b) ≥ 1− ξi,

ξi ≥ 0,
i = 1, . . . , N

as

minimise ∑N
i=1 ξi

subject to yi(w>xi + b) ≥ 1− ξi,
ξi ≥ 0,
‖w‖ ≤ W,
i = 1, . . . , N

(8.2)

with a user defined constant W.

Assuming that the xi are not given exactly but just as the mean of a
known distribution, the constraints of the reformulated problem are now

66 8 Other ways to incorporate uncertainty

replaced by

subject to P
(
yi(w>xi + b) ≥ 1− ξi

) ≥ κi,
ξi ≥ 0,
‖w‖ ≤ W,
i = 1, . . . , N.

This gives rise to a set of new parameters κi. Choosing κi = 1/2 for i =
1, . . . , N should be equal to using (8.2) directly.

Using values greater than 1/2 for the κi can be interpreted as using a
classifier that tries to find a hyperplane with functional margin greater than
1. For points with great variance, the functional margin will tend to become
greater than for points with small variance.

Using values smaller than 1/2 for the κi will have the opposite effect:
functional margins less than 1 become ‘sufficient’ and points with great
variance will tend to get a smaller functional margin than points with small
variance.

Note that although the authors allow values from (0, 1] for the κis, the
use of a value of 1 for a κi does not make sense when the xi are normal
distributed. The reason for this is that we would need an infinite distance
of the hyperplane to xi or an infinite value for ξi to fulfil the constraints.
Both would make the optimisation impossible.

Chapter 9

Conclusions

In this text we have presented a novel architecture for linear and non-linear
discrimination. Compared to most other such algorithms, it has the ad-
vantage that it does not only classify new examples as belonging to one of
two classes. It is also able to deliver a measure of confidence for such de-
cisions. This enables the user to detect unreliable classificated patterns and
to forward them to a more sophisticated classifier or a human expert. The
second advantage is its ability to make use of prior knowledge in the form
of uncertainty information on the training data during the training process.

We have constructed this architecture by combining the ideas from Fish-
er’s linear discriminant (and least squares) and the Gauss-Helmert model.
The pure classification performance is therefore usually comparable with if
not better than Fisher’s linear discriminant. Other more modern architec-
tures like the support vector machine sometimes outperform our approach,
especially when the data set does not fit to our model. To deal with these
cases, we have presented a method to overcome this difficulty in section
4.2.1. It works by using a superior classifier or some prior knowledge to
get an initial estimate for the parameters and then uses a slightly modified
version of our architecture that will finish with a parameter vector that is
close to the initial estimate.

Besides this linear version we have also presented an extension able to
perform non-linear classification in Chapter 6. This extension is based on
the concepts of RBF networks described in Chapter 5.

The confidence values obtained when using our architecture give the
user a hint to accept or not to accept a classification result. In Chapter 7
we have used ideas from statistical testing theory to make the decision of
accepting or rejecting a classification result based on a parameter α̂, which
gives the probability that the true hypothesis is not accepted. This frees the
user from having to deal with purely heuristic confidence values.

As far as we know, this is the first architecture that is able to use un-
certainty information on the training data and delivers a confidence value
for its classification results. Therefore we have not been able to compare
the performance of our architectures with similar architectures. The exper-

67

68 9 Conclusions

iments reported in this text are therefore mainly intended to proof that the
concept works in principle. To conduct more sophisticated experiments we
would have needed appropriate data from real applications which seems to
be extremely rare and not available so far (see introduction of the previous
chapter).

Appendix A

Error propagation

If the arguments of a function g : X → R are uncertain, the result will be
uncertain too. Error propagation is a means for estimating the noise of the
function output when the distribution of the noise on the input data and
the first derivatives of the function are known.

In this text we assume that the noise on the input is normal distributed
and that the mean x̄ and the (co)variance ΣX,X of the probability density
function fX,X of the noisy input are known.

Using a second-order Taylor series expansion around the mean, we get

g(x) ≈ g(x̄) + ∑
i
(xi − x̄i)∂ig(x̄) +

1
2 ∑

i,j
(xi − x̄i)(xj − x̄j)∂i∂jg(x̄).

The expectation E [g(X)] now evaluates to

E [g(X)] =
∫

X
g(x) fX(x)dx

≈ g(x̄) + ∑
i

∂ig(x̄)
∫

Xi

(xi − x̄i) fXi(xi)dxi

+
1
2 ∑

i,j
∂i∂jg(x̄)

∫

Xi

∫

Xj

(xi − x̄i)(xj − x̄j) fXi ,Xj(xi, xj)dxidxj

= g(x̄) +
1
2 ∑

i,j
∂i∂jg(x̄)ΣXi ,Xj

since
∫

Xi
(xi − x̄i) fXi(xi)dxi = 0.

Doing the same for g2 and calculating the expectation E [g2(X)] for the
approximation, we can calculate the variance as

C[g(X)] = E [g2(X)]− E2[g(X)].

69

Appendix B

Calculating the Φ-function in
Matlab

From the Matlab documentation ([24]) and from mathworld ([37]):
The Matlab error function is given as

erf(x) =
2√
π

∫ x

0
exp(−t2)dt,

that is we can express the cumulative distribution function for the normal
distribution

D(x) =
1

σ
√

2π

∫ x

−∞
e−(x−µ)2/(2σ2)dx

as

D(x) =
1
2

(
1 + erf

(
x− µ√

2σ2

))
.

In our case we want the probability that the distance of a point to the
hyperplane is greater than 0. I.e. we have µ = distance, σ2 = ‘covariance’
and we have to evaluate the integral from 0 to ∞ which is the same as from
−∞ to 2 ∗ µ. Therefore we have to calculate

D(2µ) =
1
2
(1 + erf(µ/

√
σ2 ∗ 2)).

71

Appendix C

Error propagation through a
multivariate normal
distribution

First we use a Taylor expansion to calculate an approximation of the Gaus-
sian g and its expectation E [g(X)]:

g(x) =
1

(2π)d/2|Σ|1/2 exp
(
−1

2
(x− µ)>Σ−1(x− µ)

)

≈ g(x̄) + ∑
i
(xi − x̄i)∂ig(x̄) +

1
2 ∑

i,j
(xi − x̄i)(xj − x̄j)∂i∂jg(x̄)

= g(x̄) + ∑
i
(xi − x̄i)g(x̄)(−1

2
) ∑

l
2Σ−1

i,l (x̄l − µl)

+
1
2 ∑

i,j
(xi − x̄i)(xj − x̄j)

(
g(x̄)(−1

2
) ∑

l
2Σ−1

j,l (x̄l − µl)(−1
2
) ∑

l
2Σ−1

i,l (x̄l − µl)

+ g(x̄)(−Σ−1
i,j)

)

= g(x̄)−∑
i
(xi − x̄i)g(x̄) ∑

l
Σ−1

i,l (x̄l − µl)
︸ ︷︷ ︸

e>i Σ−1(x̄−µ)

+
1
2 ∑

i,j
(xi − x̄i)(xj − x̄j)g(x̄)

(
∑

l
Σ−1

j,l (x̄l − µl) ∑
l

Σ−1
i,l (x̄l − µl)

︸ ︷︷ ︸
(x̄−µ)>Σ−1eje>i Σ−1(x̄−µ)

−Σ−1
i,j

)

73

74 C Error propagation through a multivariate normal distribution

= g(x̄)−∑
i
(xi − x̄i)g(x̄)e>i Σ−1(x̄− µ)

+
1
2 ∑

i,j
(xi − x̄i)(xj − x̄j)g(x̄)

(
(x̄− µ)>Σ−1eje>i Σ−1(x̄− µ)− Σ−1

i,j

)
,

E [g(X)] ≈ g(x̄) + ∑
i

∂ig(x̄)
∫

DXi

(xi − x̄i) fXi(xi) dxi

︸ ︷︷ ︸
0

+
1
2 ∑

i,j
∂i∂jg(x̄)

∫

DXi

∫

DXj

(xi − x̄i)(xj − x̄j) fXi ,Xj(xi, xj)) dxi dxj

= g(x̄) +
1
2 ∑

i,j
g(x̄)

(
(x̄− µ)>Σ−1eje>i Σ−1(x̄− µ)− Σ−1

i,j

)
(ΣX,X)i,j.

Then we do the same for g2(x) and E [g2(X)]:

g2(x) =
1

(2π)d|Σ| exp
(
−(x− µ)>Σ−1(x− µ)

)

≈ g2(x̄) + ∑
i
(xi − x̄i)2g2(x̄)(−1

2
) ∑

l
2Σ−1

i,l (x̄l − µl)

+
1
2 ∑

i,j
(xi − x̄i)(xj − x̄j)

(
4g2(x̄)(−1

2
) ∑

l
2Σ−1

j,l (x̄l − µl)(−1
2
) ∑

l
2Σ−1

i,l (x̄l − µl)

+ 2g2(x̄)(−Σ−1
i,j)

)

= g2(x̄)−∑
i
(xi − x̄i)2g2(x̄) ∑

l
Σ−1

i,l (x̄l − µl)

+ ∑
i,j

(xi − x̄i)(xj − x̄j)g2(x̄)

(
2 ∑

l
Σ−1

j,l (x̄l − µl) ∑
l

Σ−1
i,l (x̄l − µl)− Σ−1

i,j

)

= g2(x̄)−∑
i
(xi − x̄i)2g2(x̄)e>i Σ−1(x̄− µ)

+ ∑
i,j

(xi − x̄i)(xj − x̄j)g2(x̄)

(
2(x̄− µ)>Σ−1eje>i Σ−1(x̄− µ)− Σ−1

i,j

)
,

E [g2(X)] ≈ g2(x̄)− 0

+ ∑
i,j

g2(x̄)
(

2(x̄− µ)>Σ−1eje>i Σ−1(x̄− µ)− Σ−1
i,j

)
(ΣX,X)i,j.

75

And finally we use these approximations to calculate an estimate for the
variance C[g(X)]:

C[g(X)] = E [g2(X)]− E2[g(X)]
≈ g2(x̄)− 0

+ ∑
i,j

g2(x̄)
(

2(x̄− µ)>Σ−1ejeiΣ−1(x̄− µ)− Σ−1
i,j

)
(ΣX,X)i,j

−
(

g(x̄) +
1
2 ∑

i,j
g(x̄)

(
(x̄− µ)>Σ−1eje>i Σ−1(x̄− µ)− Σ−1

i,j

)
(ΣX,X)i,j

)2

= 0 + ∑
i,j

g2(x̄)
(
(x̄− µ)>Σ−1ejeiΣ−1(x̄− µ)− Σ−1

i,j

)
(ΣX,X)i,j

− 1
4

(
∑
i,j

g(x̄)
(
(x̄− µ)>Σ−1eje>i Σ−1(x̄− µ)− Σ−1

i,j

)
(ΣX,X)i,j

)2

= −1
4

(
g(x̄)

(
(x̄− µ)>Σ−1ΣX,XΣ−1(x̄− µ)− 〈Σ−1, ΣX,X〉FRO

))2
,

where 〈 · , · 〉FRO denotes the Frobenius product1 .

1The Frobenius product of two matrices A, B ∈ Rm×n is defined as

〈A, B〉FRO =
m

∑
i=1

n

∑
j=1

ai,jbi,j.

References

[1] Chiranjib Bhattacharyya, Pannagadatta K. Shivaswamy, and Alex
Smola. A second order cone programming formulation for classify-
ing missing data. In Saul et al. [31], pages 153–160.

[2] Jinbo Bi and Tong Zhang. Support vector classification with input data
uncertainty. In Saul et al. [31], pages 161–168.

[3] Chistopher M. Bishop. Neural Networks for Pattern Recognition. Oxford
University Press, 1995. Reprinted 2000.

[4] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A
training algorithm for optimal margin classifiers. In Proceedings of the
fifth annual workshop on Computational learning theory, pages 144–152.
ACM Press, 1992.

[5] Ilja N. Bronštein, Konstantin A. Semendjajev, Gerhard Musiol, and
Heiner Mühlig. Taschenbuch der Mathematik. Verlag Harri Deutsch,
4th edition, 1999.

[6] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Ma-
chine Learning, 20:273–297, 1995.

[7] Nello Cristianini and John Shawe-Taylor. An Introduction to Support
Vector Machines. Cambridge University Press, 2000.

[8] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classifica-
tion. Wiley-Interscience, New York, 2nd edition, 2001.

[9] James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Huges.
Computer Graphics: principles and practice. Addison-Wesley Systems
Programming Series. Addison-Wesley, 2nd edition, July 1996. Edition
in C.

[10] Wolfgang Förstner. Uncertainty and projective geometry. In Ed-
uardo Bayro Corrochano, editor, Handbook of Geometric Computing –
Applications in Pattern Recognition, Computer Vision, Neuralcomputing,
and Robotics, pages 493–534. Springer-Verlag, Heidelberg, 2005.

77

78 REFERENCES

[11] Jerome H. Friedman and John W. Tukey. A projection pursuit algo-
rithm for exploratory data analysis. IEEE Transactions on Computers,
C-23(9):881–890, Semptember 1974.

[12] Keinosuke Fukunaga. Introduction to statistical Pattern Recognition.
Computer Science and Scientific Computing. Academic Press, San
Diego, 2nd edition, 1990.

[13] Stephan Heuel. Statistical Reasoning in Uncertain Projective Geometry
for Polyhedral Object Reconstruction. PhD thesis, Rheinische Friedrich-
Wilhelms-Universität zu Bonn, October 2002.

[14] Peter J. Huber. Projection pursuit. The Annals of Statistics, 13(2):435–
475, 1985.

[15] Gerhard Hübner. Stochastik – Eine anwendungsorientierte Einführung
für Informatiker, Ingenieure und Mathematiker. Vieweg, Braun-
schweig/Wiesbaden, 1996.

[16] Karl-Rudolf Koch. Parameter Estimation and Hypothesis Testing in Linear
Models. Springer-Verlag, Berlin Heidelberg, 2nd edition, 1999. Trans-
lation of the 3rd German Edition „Parameterschätzung und Hypothe-
sentests in linearen Modellen“, Ferd. Dümmlers Verlag, 1997.

[17] Wolfgang König, Heinrich Rommelfanger, Dietich Ohse, Markus Hof-
mann, Klaus Schäfer, Helmut Kuhnle, and Andreas Pfeifer, editors.
Taschenbuch der Wirtschaftsinformatik und Wirtschaftsmathematik. Verlag
Harri Deutsch, Frankfurt am Main, Thun, 1st edition, 1999.

[18] Peter Kosmol. Methoden zur numerischen Behandlung nichtlinearer Glei-
chungen und Optimierungsaufgaben. Teubner Studienbücher. Teubner,
Stuttgart, 2nd edition, 1989.

[19] Peter Kosmol. Optimierung und Approximation. De-Gruyter-Lehrbuch.
Walter de Gruyter & Co., Berlin, 1991.

[20] Ulrich Krengel. Einführung in die Wahrscheinlichkeitstheorie und Statistik.
Vieweg Studium: Aufbaukurs Mathematik. Vieweg, Wiesbaden, 7th
edition, 2003.

[21] Erwin Kreyszig. Statistische Methoden und ihre Anwendungen. Vanden-
hoeck & Ruprecht, Göttingen, 7th edition, 1979. 5th reprint 1998.

[22] Sun Yuan Kung. Digital Neural Networks. Prentice-Hall information
and system sciences series. PTR Prentice-Hall, Inc., Anglewood Cliffs,
New Jersey, 1993.

[23] Yaoyong Li, Hugo Zaragoza, Ralf Herbrich, John Shawe-Taylor, and
Jaz Kandola. The perceptron algorithm with uneven margins. In Sam-
mut and Hoffmann [30], pages 379–386.

REFERENCES 79

[24] The MathWorks, Inc. MATLAB online documentation, 2005.

[25] Edward M. Mikhail. Observations and least squares. University Press of
America, Lanham, 1976.

[26] Christian Perwass. Error propagation in Clifford algebra. Obtained
directly from the author at CAU Kiel, October 2004.

[27] Christian Perwass and Christian Gebken. The Gauss-Helmert model
applied to elements of conformal GA. Obtained directly from the first
author at CAU Kiel, October 2004.

[28] Camillo Ressl. Geometry, Constraints and Computation of the Trifocal Ten-
sor. PhD thesis, Technische Universität Wien, June 2003.

[29] Horst Rinne. Taschenbuch der Statistik. Wissenschaftlicher Verlag Harri
Deutsch GmbH, Frankfurt am Main, 3rd edition, 2003.

[30] Claude Sammut and Achim Hoffmann, editors. Proceedings of the Nine-
teenth International Conference on Machine Learning, 8–12 July 2002, Uni-
versity of New South Wales, Sydney, Australia, volume 19, San Francisco,
California, 2002. Morgan Kaufmann Publishers.

[31] Lawrence K. Saul, Yair Weiss, and Léon Bottou, editors. Advances in
Neural Information Processing Systems 17, Cambridge, MA, 2005. MIT
Press.

[32] Bernhard Schölkopf and Alex Smola. Learning with Kernels. Adap-
tive Computation and Machine Learning. MIT Press, Cambridge, MA,
2002.

[33] Gerald Sommer. Skript zur Vorlesung Einführung in die Neuroinfor-
matik. Christian-Albrechts-Universität zu Kiel, Sommersemester 2005.

[34] H. L. Vacher. Coputational geology 16 – the Taylor series and error
propagation. Journal of Geoscience Education, 49(3):305–313, May 2001.
(edits, June 2005).

[35] Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Adaptive
and Learning Systems for Signal Processing, Communications, and
Control. Springer, 1995.

[36] S.V.N. Viswanathan and Alexander J. Smola. Fast kernels for string
and tree matching. In S. Becker, S. Thrun, and K. Obermayer, editors,
Advances in Neural Information Processing Systems 15, pages 569–576.
MIT Press, Cambridge, MA, 2003.

[37] Eric W. Weisstein. Erf. http://mathworld.wolfram.com/Erf.html,
2005.

80 REFERENCES

[38] Gabriele Widmann. Künstliche Neuronale Netze und ihre Beziehungen
zur Statistik, volume 2739 of Reihe V: Volks- und Betriebswirschaft. Peter
Lang: Europäischer Verlag der Wissenschaften, Frankfurt am Main,
2001.

Notation

‖ · ‖2 Euclidean norm
〈 · , · 〉FRO Frobenius product
〈a, b〉 = a>b inner product between column vectors a and b
x>, X> transpose of vector, matrix
|α| distance of the outer parallels to the central parallel

that is the discriminating hyperplane
αi expansion coefficient
α̂ probability of making a type I error
b parameter specifying the distance of the

line/hyperplane to the origin
γ margin
c number of classes (if c = 2 then C+ = C1 and C− = C2)
d dimension of the input space
ei ith basis vector, i.e. ith component is 1,

all other components are 0
F feature space
I unity matrix
J(w) Fisher criterion
µ mean of distribution
M number of basis functions
N size of the training set
N1 = N+, N2 = N− number of training vectors with label +1,−1
P(·) probability
p(·) probability density
R real numbers
R>0, R≥0 positive, non-negative real numbers
σ2 variance of distribution
S ⊂ X×Y finite training set
sgn(·) signum function (sgn(x) = 1 if x ≥ 0, −1 otherwise)
τ margin for the perceptron algorithm with margins
w weight vector
ξi slack variable
X input space
xi the ith training vector
Y output space (for binary classification: Y = {−1, +1})
yi target label for the ith training vector

81

Acknowledgements

This thesis was written under the supervision of Dr. Christian Perwass at
the Christian-Albrechts-University of Kiel at the Chair of Cognitive Sys-
tems led by Prof. Dr. Gerald Sommer. Therefore I would like to thank
Christian for all the time he spent with me discussing possible solutions for
shortcomings of our architecture.

I would also like to thank Professor Sommer for providing me with a
comfortable working environment not only consisting of a desk and a com-
puter but of many nice colleagues as well. My special thanks go to Christian
Gebken for sharing his office with me.

For the support from home I would like to thank my parents, and for all
her patience, proofreading and much more I am also indebted to Susanne.

83

Hiermit versichere ich, nur die angegebenen Quellen und Hilfsmittel be-
nutzt zu haben.

85

	Contents
	1 Introduction
	2 Classic neural architectures for linear discrimination
	2.1 Notation
	2.2 Why linear classification does make sense
	2.3 The perceptron
	2.4 Least-squares
	2.5 Fisher's linear discriminant
	2.5.1 The Fisher criterion
	2.5.2 Relation to least-squares

	2.6 The support vector machine

	3 The Gauss-Helmert method
	3.1 Properties of the Gauss-Helmert estimation
	3.2 The Gauss-Helmert estimation to fit straight lines
	3.2.1 Constraints on the observations and the parameters
	3.2.2 Constraint on the parameters alone
	3.2.3 The minimisation
	3.2.4 Numerical calculations
	3.2.5 Derivation of the covariance matrix w, w
	3.2.6 Visualisation of the variance
	3.2.7 Examples

	4 Adaptation of the Gauss-Helmert model to linear discrimination
	4.1 The plain approach
	4.1.1 Uncertainty of the classification
	4.1.2 Experiments
	4.1.3 Problems

	4.2 Variants
	4.2.1 Using a fixed value for
	4.2.2 Minimising the alteration of

	5 Classic architectures for non-linear discrimination
	5.1 RBF networks
	5.2 SVMs using non-linear kernels

	6 The Gauss-Helmert method using RBFs
	6.1 How it works
	6.2 Experiments

	7 An idea inspired by statistical testing theory
	7.1 The computations
	7.2 Some experiments with photos of coloured building bricks
	7.2.1 Calculating a covariance matrix
	7.2.2 The experiments

	8 Other ways to incorporate uncertainty
	8.1 Total support vector classification
	8.2 Classification with gaussian uncertainty

	9 Conclusions
	A Error propagation
	B Calculating the -function in Matlab
	C Error propagation through a multivariate normal distribution
	References
	Notation
	Acknowledgements

