Self-organisation of neural topologies by evolutionary reinforcement learning
In this article we present EANT2, “Evolutionary Acquisition of Neural Topologies, Version 2”, a method that creates neural networks (NNs) by evolutionary reinforcement learning. The structure of NNs is developed using mutation operators, starting from a minimal structure.  Their parameters are optimised using CMA-ES. EANT can create NNs that are very specialised; they achieve a very good performance while being relatively small. This can be seen in experiments where our method competes with a different one, called NEAT, “NeuroEvolution of Augmenting
Topologies”, to create networks that control a robot in a visual servoing scenario.