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Abstract

The original aim of the work that led to this dissertation was to extend an

existing, purely functional language with facilities for input/output and modular

programming. The language is based on an untyped �-calculus, i.e., program

execution is de�ned as program transformation according to a �xed set of reduc-

tion rules including �-reduction. Consistently, the implementation comprises an

interactive reduction system which is integrated with a syntax-oriented editor:

any sub-expression or program result can be submitted for (stepwise) reduction.

There is no distinguished main program, no `global' environment and no explicit

static part of the language { in particular, there is no static type system. It is

therefore not clear how to add one of the known solutions for input/output or

modular programming to such a programming environment. Furthermore, sim-

ply adding features to the language would lead to a complex language design
with weakly integrated parts, thus losing much of the appeal of purely functional
languages.

Help with the latter problem comes from the history of general programming
language design: when formal language description techniques were developed
and applied to early high-level programming languages, various inconsistencies

in the designs of those languages were discovered. To avoid such defects, language
design methods based on semantic principles were proposed, such as the princi-

ples of abstraction, correspondence and data type completeness. These semantic
principles are not biased towards technical details, but rather guide the way from
the basic constructs of a language towards a simple and elegant overall language

design.
To isolate the fundamental language constructs needed for our particular de-

sign problem, we review the support for input/output and modular program-
ming in current functional languages. Surprisingly, we �nd that most of these

languages fall short of adhering to the principles of language design in several

respects. We identify some of the problems that result from this fact and argue
that, by consistently following the design principles both for the design of the
extensions and for the integration of the extensions into the complete language,

the weaknesses found to exist in other languages can be avoided. To support this

claim, we present a simple language design: we start with a purely functional

core based on the �-calculus, extend it with input/output-facilities and record-
like data structures called frames, and complete the language with respect to the
design principles.

We go on to show how the resulting design supports a wide range of modular

programming techniques and identify the various special purpose constructs used
in other languages as instances of a general scheme of abstraction (high-level

programming languages also follow this scheme and provide advantages similar



to libraries of pre-de�ned program components). We conclude that modules,

objects and other language constructs for modular programming need only be

provided as built-in features in languages which are restricted in their support

for general abstraction. This leads to a slightly di�erent view of our proposed

language design: �-calculus should not be seen as a part of the functional core

language, but rather as providing the means for abstraction over all available

language primitives which in our case are not only functions, but also frames and

interactions.

Our language design features functions, interactions, and modules as �rst-

class data objects, and the input/output-facilities are not restricted to strings of

characters, but are applicable to any valid language expression. The latter feature

opens a connection between the research areas of purely functional languages and

persistent systems, and we argue that both research communities could pro�t

from closer cooperations, avoiding a lot of duplicated work where interests are

shared and stimulating and complementing each other where interests di�er.
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Chapter 1

Introduction

This thesis focuses on support for input/output and modular programming in

purely functional languages. The original problem speci�cation was to extend
the reduction language KiR (Kiel Reduction Language [Klu94]) with facilities

for input/output and modular programming. The language is derived from an
untyped �-calculus, and program execution is de�ned as program transformation
according to the reduction rules of an extended �-calculus. In this thesis, we

present our work as a language (re-)design process, guided by principles that
are explained below. We brie
y summarize the design decisions that led us to

consider functional languages, and review the existing work and design options
in the �elds of input/output and modular programming in these languages. On
this basis, we develop a simple language design that solves the original problem,

extending a functional core language with facilities for input/output and modular
programming. As far as possible, we abstract from the peculiarities of KiR and
its implementations [GK96], but the �-calculus part of the language turns out to

be essential for our design.

Purely functional languages, and reduction languages in particular, repre-

sent a radical departure from the von Neumann model of programming (cf. the
discussion in [Bac78]). Initially, programming centered upon the problem of con-

trolling the dynamic behavior of some computer equipment. In order to utilize

early programmable computers for the solution of abstract problems, it was not

su�cient to devise an abstract algorithm. Programmers had to map the abstract

algorithm to a machine program and the initial problem conditions to an initial

machine state. After a computation, they had to retranslate the �nal machine

state and the intermediate outputs into their abstract problem domain. Later,

large parts of the two-way mapping between machine states and objects in the

problem domain were delegated to the computer, too. The resulting impera-

tive programming languages allowed to specify computations on a higher level

of abstraction which was hopefully closer to the problem domain and certainly
farther away from the details of the machines. While these languages provide a

more abstract view of machine states, imperative programming still involves a
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user-supplied mapping of abstract algorithms into explicitly speci�ed sequences

of (abstract) state transformations.

In contrast, the very essence of declarative programming is usually described

as specifying what is to be computed instead of how this should be done, eventu-

ally leaving even the mapping of a problem speci�cation to a computation to the

computer. Various forms of declarative languages have been developed, but we

only deal with functional languages here or, more precisely, with reduction lan-

guages (cf. [KS86, Klu92]). The idea is to start with some calculus and its rewrite

(reduction) rules, and to extend it to a general purpose programming language

whose semantics is directly and completely de�ned by the reduction rules of the

extended calculus. For instance, the �-calculus [Chu51] does already correspond

to a basic functional programming language and can be extended consistently

to practical ones (cf. [Lan63, Ber76, BF82], among others). The fundamental

�-conversion rule of the �-calculus can be employed, in its directed form of �-

reduction, to de�ne a reduction semantics for the extended functional languages.

The execution model that results from such a reduction semantics is based on
high-level meaning-preserving program transformations.

Based on program transformations instead of state transformations, these

languages support a declarative style of programming (programs that correspond
to problem descriptions are transformed to programs that correspond to problem
solutions), and the reduction semantics lends itself to implementations that map

program transformations to transformations of machine states. Nevertheless,
programs are running on state transforming machines embedded in a real world,

and it is in this setting that modern functional programming languages, due
to their high level of abstraction, encounter some compatibility problems with
these machines. One of the problems is fairly obvious: the higher the level of

abstraction, the more di�cult the mapping of programs to e�ciently executable
machine programs becomes. E�cient implementations will continue to be a major

research topic though considerable progress has already been made in this respect,

as a consequence of which functional languages are more and more being used for
practical applications. This, in turn, brings up some pragmatic considerations

that are the main topics of this thesis.

We focus on two seemingly unrelated problems, solutions to which are essen-

tial if functional languages are to be used in everyday programming practice. The

�rst one is an immediate consequence of the high level of abstraction of functional

languages: how must interactions between a program and an external environ-

ment (consisting of, e.g., input/output-devices, �le systems, . . . ) be described in

a programming language that abstracts from the existence of an outside world?

This problem a�ects communication with users as well as explicit control over

the state of the computing equipment and the programming environment or any

other state- or communication-based computation. Without an adequate solu-
tion, functional languages could hardly be called general purpose. In imperative

languages, explicit modi�cation of a global system state is the only way of doing
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anything, so they seem to be well suited for this kind of applications. Func-

tional languages, on the other hand, abstract from the underlying machinery,

which seems to be counterproductive in this case, but conforms to the idea of

declarative programming and has proven to be very useful in general.

A more accurate description of the problem is that application domains are not

always far away from the peculiarities of real machines, and sometimes the how of

computation is exactly what needs to be speci�ed. Of course, this does not imply

that declarative programming is the wrong approach, and we certainly do not

want to go back and make every program depend on the details of the machines

it is supposed to be running on. Instead, it is necessary to develop declarative

means to describe (some of) the details of machine states or of state changes and

to �nd ways to let abstract programs interact with real machines and runtime

environments. These interactions should only be used when the problem domain

demands it, but should not permeate the complete programming language, as

an imperative add-on for a declarative language would certainly do. The goal is

to �nd a declarative way to describe inherently state- or communication-based
computations in a certain class of problem domains.

The second problem, one that functional programming languages share with

every other general purpose language, is that programs may grow and that man-
aging the complexity of large programs requires appropriate language support.
The very �rst concept needed to cope with large programs is abstraction. Orga-

nizing a system of objects into layers of abstraction, concentrating only on the
objects relevant to a particular layer at a time, keeps the complexity of each layer

manageable. In contrast to conventional programming languages, functional lan-
guages do already provide an additional layer of abstraction, as they completely
liberate programming from organizing program execution on the underlying ma-

chinery. It is therefore reasonable to assume that the functional paradigm can
cope with problems at least one order of magnitude more complex before the

program sizes become unmanageable. Moreover, it is the very idea of functional

programming to make extensive use of (functional) abstraction and to compose
complex programs systematically from smaller ones, which should render the

transition from programming-in-the-small to programming-in-the-large much less

problematic than in conventional languages. Indeed, there seems to be no rea-

son why the complexity of programs should have any in
uence on the functional

style of programming, or why certain language constructs should be useful only

for large programs. So, if functional languages do really encounter any problems

related to complexity, but not to problem size, there may be some fundamental

features missing in functional languages, and large programs are only one problem

domain where these shortcomings unavoidably manifest themselves.

We argue that this is indeed the case: functional languages treat programs

as data objects and are essentially well suited for modular programming, but
they do not provide su�cient support for the manipulation and organization of

large collections of long-living data objects. Large collections of program mod-
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ules exhibit exactly these characteristics, which is the real reason why functional

languages cannot bring their intrinsic qualities into play for modular program-

ming. Thus, the concept of modular speci�cations needs to be (re-)examined in

the context of functional programming languages. At the very least, it should be

possible to organize large programs into smaller, more comprehensible modules

that can be stored, modi�ed and reused independently of each other.

If we want to overcome these de�ciencies, we have to face the problems of

either designing a new functional language or of making major extensions or

modi�cations to an existing one. In either case, an essential part of our work

is related to language design [Lea93, Was80]. In this thesis, we intend to build

on an existing reduction system and may thus focus on the extensions that are

necessary to support interactions with runtime environments and programming-

in-the-large, but it is still advisable to keep the complete language in mind in

order to avoid inconsistencies in the overall design.

Fortunately, several principles have been established to guide the design of

new languages as well as the evaluation and the redesign of existing ones. We use
here three semantic principles (`principles derived from the denotational approach
to programming language semantics' [Ten77]), collected by Tennent and Morri-

son [Ten77, Mor79]. Morrison points out that `the overall design aim of power

through simplicity, simplicity through generality should be the guiding light'1 and

goes on to state the principles of abstraction, correspondence, and data type
completeness, the origins of which can be traced back to [Lan66, Str67]. We
summarize the descriptions from [Ten77] and [Mor79]:

principle of abstraction Abstractions should be allowed over all semantically

meaningful syntactic categories of a language.

principle of correspondence The rules governing names in a language should

be designed together in order to avoid irregularities in the manner in which

the names may be used. In particular, there should be a one-to-one corre-

spondence between declarative and parametric forms to introduce names.

principle of data type completeness All data types should have the same

`civil rights' and the rules for using data types should be complete without

exceptions.

Although not speci�cally intended to guide the design of functional languages

(they have �rst been used to evaluate the design of Pascal [Ten77] and to design
a variant of Algol [Mor79]), the principles are in perfect conformance with the

properties of these languages2. For instance, the �rst two principles are con-

cerned with the consistent use of names and the predominant role of abstraction

1paraphrasing van Wijngaarden [vW63]
2which is no surprise considering the origins of the principles
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which is also what the �-calculus (the basis of many functional languages) is all

about. The third principle is a nice generalization of one characteristic feature

of functional languages, namely that functions are �rst-class data objects. While

this term may be misleading insofar as it insinuates that functions are treated

as something special, the principle of data type completeness emphasizes that it

is the elimination of (unnecessary) special rules which is important. It simpli�es

the language, makes it more complete and thus more expressive. Similarly, the

language is less complex if there are no distinctions between names introduced by

(local) declarations and names introduced as formal parameters of abstractions.

In addition to these general design principles for programming languages,

some additional design constraints derive directly from our decision to use purely

functional languages. Brie
y, this class of languages has very useful properties

(e.g., referential transparency), and we want our extensions to be conservative

with respect to these properties. Since we start our design process with a core

language that complies with the general design principles, both the principles and

the particular properties of purely functional languages emphasize characteristics
of the language that we should try to conserve. In other words, these properties
de�ne the invariants of the language modi�cation process. While these constraints

are sometimes quite restrictive, they help to avoid solutions which, on �rst glance,
appear to be simple but may cause serious problems in the long run.

Finally, we can generalize from the history of programming languages [Weg76,

Wex81, Wex93] to get an intuition of the situations that occur in language design
processes. General purpose programming languages are not static, but are con-

tinually extended and developed in response to ever evolving user requirements.
In the long term, the language complexity increases with the requirements, but
this process is not continuos in general. Whenever a new problem area must be

dealt with, the design space is �rst explored with a large number of language
extensions and variations. Experience with these experimental language modi�-

cations may lead to a better understanding of the original problem and thus to

simpler solutions and a decrease in language complexity. Otherwise, the language
is growing with every new extension until it becomes so complicated that some-

one decides to make it simpler at any price, cutting out the least useful features,

developing generalizations for groups of features or developing a special purpose

variant. Furthermore, design goals are not always con
ict-free, and every set of

design decisions corresponds to a choice in favor of some of the goals. If more

than one of the possible choices is realized, the original language design splits

up into a family of more or less related languages (domain-speci�c languages are

just a special case of this). These di�erent design decisions need not be made

at the same time, indeed, language designers may become aware of their choices

only after following one particular path for a long time (for instance, imperative

languages dominated the stage before it became feasible to implement declara-
tive languages). Ideally, the di�erent variants can be combined again by some

generalization step which may be discovered after some time of experimentation
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with each of the variants. Several instances of this general picture have been

encountered in the design process described in this thesis.

The main goals of this work are to develop an input/output-system and a

module system for the reduction language KiR [Klu94], derived from an untyped

�-calculus, which seems to involve two major extensions to the existing reduction

system. However, by following the design principles faithfully, it turns out to be

possible to achieve these ends by rather minor extensions of the language, keeping

most of the added complexity on the implementation level. Moreover, since the

simplicity of the extended language stems from generalization, not from restric-

tion, the resulting language, called FFI (for functions, frames, and interactions)

is not only simpler, but also more expressive (in the areas of input/output and

modular programming) than other current functional languages [Hud89]. We

show that conventional approaches to the problem areas of input/output and

modules exhibit major inconsistencies with respect to the principles stated above

and that the approach taken here avoids these inadequacies.

That a seamless integration of input/output into purely functional languages
would be possible at all was only discovered in the late 1970s (with implemen-
tation work starting around 1980), and various solutions, based on streams, con-

tinuations or, more recently, on monads or uniqueness types, have been proposed
and implemented since then (cf. the summary in section 3.6). Most of them,
however, require further language support for features that are not essential to

input/output, e.g., for non-strict data constructors, lazy evaluation or static type
systems. Theoretical frameworks have been developed that allow to compare

these alternatives and to prove their equivalence in expressiveness [Gor94, HS89],
but the relations between the approaches are usually presented from a historical
or from a theoretical perspective, and the situation is still unsatisfactory with re-

spect to language design. The problems of input/output in functional languages
are therefore reviewed with a stronger emphasis on their pragmatic aspects here,

leading to a more uniform and comprehensive presentation of the subject, which

provides the necessary support for the design decisions to be made later.
The other main research area involved, that of module systems for functional

languages, is even more divergent than the area of input/output. Beyond the very

basic idea of modules as program building blocks, there seems to be no agree-

ment on basic terminology, not to speak of problem speci�cations or solutions

(cf. chapter 4). The approaches include the simple adoption of module systems

for conventional languages, the interpretation of modules as types (and types

as values), modules as records, modules as (�rst-class) environments, modules

as data abstractions or even the abandonment of modules in favor of object-

oriented language extensions. The main pragmatic di�erences have to do with

the expressiveness and completeness of the module languages, and whether the

module language and the programming language should be separated or not. An
overview over the basic ideas underlying some of the existing or proposed mod-

ule systems for functional languages is developed, and the pros and cons of the
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various design choices are examined.

Equipped with suitable problem speci�cations and general surveys of the pos-

sible design choices in each area, the next step is to actually build the design

according to the design goals stated above, keeping an eye on the possible inter-

actions between the three areas of the functional core language, the input/output-

system and the module system. The �rst surprising encounter is that almost all

currently used input/output-systems for functional languages violate the principle

of data type completeness because the set of objects that may be communicated

is usually restricted to strings of characters (cf. also [HMST92]). All other ob-

jects, including data structures and functions, are no longer �rst-class citizens

when it comes to input/output. We decide to abandon these restrictions and

to allow all objects of the language to be communicated. While this decision

simpli�es the language, it makes high demands on the implementation. However,

it turns out that we do not have to start from scratch here. Morrison et al.

[ABC+83a] came to a similar design decision when trying to integrate high-level

imperative languages and database systems. They identi�ed `persistence as an

orthogonal property of data, independent of data type and the way in which data

is manipulated' and founded the research area of orthogonally persistent program-

ming languages and systems. Interestingly, Morrison did not address this in his
thesis [Mor79, chapter 3.7], but noted: `the �le system functions do not act on
all data types which breaks the principle of data type completeness. This is a

strong indication that more work is required on this problem.'.
So, as an immediate consequence of making similar design decisions, our ap-

proach to input/output demands a connection between purely functional lan-
guages and the area of persistent programming languages and systems, which is
by now well researched. We brie
y review the reasons why, until recently, persis-

tent and functional languages have been two separate areas of research and argue
that this is a very unfortunate situation. Recent improvements of functional lan-

guages and their implementations, especially in the area of input/output, have

eliminated the main obstacles to a combination, and both �elds could pro�t from
a cooperation. To name one example closely related to this thesis, persistent

languages are particularly promising for the construction of integrated program-

ming environments, thus guiding the way towards further developments of better

programming environments for functional languages.

With respect to the module system, we argue that, in order to facilitate

the reuse of modules in the construction of new programs, the module language

should not be unnecessarily restricted. At least at the level of program construc-

tion, modules form a semantically meaningful category and abstraction should

therefore be allowed over modules. If abstraction and composition are the impor-

tant features required of a module language, it seems natural to use a functional

language for this purpose. We even go one step further and integrate the module
language and the functional programming language. Again, this simpli�es the

language design, but this time, the necessary extensions to the implementation
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are also small. Merely for convenience, we add frames to the language, repre-

sented as record-like data structures associated with a set of primitive operations.

Applying the principles of abstraction and data type completeness again, all syn-

tactically legitimate objects may be placed in frame slots and, as abstractions over

frames are allowed, frames themselves may be passed as arguments to functions

or returned as their results. In combination with the new input/output-system,

frames containing functions may be stored in �les and retrieved from there to

become parts of other programs, giving all the 
exibility needed for a versatile

module system without the complexities that usually come with it.

We have consciously decided to maintain the implicitly and dynamically typed

nature of our reduction language, thus avoiding the restrictions of static type

systems in our design. Current static type systems (usually extensions of [Mil78])

are still unsatisfactory due to the constraints they impose on expressiveness, and

the various lines of research have not yet culminated in a stable and uniform

framework (cf. also the discussion in section 8.2). Indeed, there is evidence that

some of the ideas used here were available more than a decade ago, but were
not widely used because they did not �t in with the then popular type inference
systems. These attempts unveiled a number of inadequacies in early type systems

and initiated further research work there. Using an almost untyped framework
here avoids the duplication of research e�orts and enables a better separation
of concerns, as the results presented here do not depend on the availability of

any particular type system. Still, it is necessary to mention some of the typing
problems and (partial) solutions, both to give a fair and complete description

of related work and to point out where the language design might have been
restricted by the constraints of a static type system.

The thesis is organized into two parts. The �rst one explores the foundations

of this work, trying to separately identify requirements, design options and de-
sign constraints for input/output and module systems in the context of functional

languages. In chapter 2, we present functional languages as a variant of declar-

ative programming languages, also giving a brief review of their formal bases.
Chapter 3 deals with the problem of letting functional languages interact with

their runtime environments, and chapter 4 explores the problem area of module

systems for functional languages. Both chapters 3 and 4 include overviews of

existing work and references.

The second part builds on the design framework established in part one, and

proposes one particular language design which combines ideas from all research

areas discussed in the foundation part. The formal language de�nition is given

in chapter 5, chapter 6 investigates the issues of modular programming in this

language, and some interesting aspects of an implementation of the design are

described in chapter 7. Chapter 8 shows options for further work, relates our

research to that on persistent languages and systems, and discusses some of the
problems of translating our design into a typed framework.

Chapter 9 contains a summary and conclusions.
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Foundations
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Chapter 2

Functional Programming

Languages

Programming may be understood as a discipline which describes the static prop-
erties and the dynamic behavior of existing or imagined systems in order that a
computer may be used to analyze, simulate or control them.

2.1 From rule-based transformation systems to

reduction languages

Given a speci�cation of the parts of a system, its dynamic behavior may simply be

speci�ed by a set of transformation rules, each of which de�nes what the objects
before and after a computation step are. Depending on the universe of discourse,

the objects may be terms, graphs, system states or logical formulas, and the
corresponding variants of transformation are known as term or graph rewriting, as
state transformations or as deduction systems, respectively. For general surveys

of the �eld (as well as further references and proofs), see [Der93, Klo90, DJ90].
Given a set Obj of objects, a set of transformation rules T could be speci�ed

explicitly as a subset of Obj � Obj, writing A 7!T B for (A;B) 2 T , but this

would be tedious. For a more concise speci�cation, it is helpful to factor objects

into contexts CObj and sub-objects, where contexts are objects with holes in which

(sub-)objects can be placed to form complete objects again:

8O 2 Obj; C 2 CObj : C[O] 2 Obj:

It is then possible to abstract over contexts or sub-objects in rules, writing

8C 2 CObj; X 2 Obj : C[CA[X]] 7!T C[CB[X]];

for given contexts CA and CB, as a �nite representation of a possibly in�nite set

of rules, where neither the sub-objects (X) nor the embedding contexts (C) are

15



modi�ed. Since rules that abstract over constant contexts occur frequently, the

abbreviation !T is used for these context-free (or context-independent) substi-

tutions:

8A;B 2 Obj : (A!T B =def 8C 2 CObj : C[A] 7!T C[B]):

Furthermore, quali�cation of objects and contexts may be used for �ner control

over the speci�ed set of rules.

The execution model of object transformations is quite simple: for a given

object A, choose a rule A 7!T B and replace A with B (this may involve instan-

tiations of contexts and sub-objects in rules that abstract over these). If there is

no such rule, A is irreducible and represents a result of the computation

8A;R 2 Obj : (A #T R,def ((A 7!
�
T R) ^ (:9R` 2 Obj : R 7!T R`))):

If A 7!�
T R, R is said to be derivable from A using T . However, this purely

operational view of programming is hardly su�cient, for if the only way to un-

derstand a program is to execute it (mentally or otherwise), writing programs
is a rather clueless activity. The rule abstractions used above do help here, as

they allow programs to be generalized, so that the same transformation system
may be used for di�erent sub-objects and in di�erent contexts. The notions of
reducible and irreducible objects and the use of the transitive re
exive closure of

T are attempts to understand transformation systems in terms of the possible re-
sults they can generate for given objects, abstracting from the computation steps
in between. It is possible to classify transformation systems according to their

possible results. A system is terminating if every computation terminates (every
possible transformation sequence is �nite). A system is con
uent, if any two

computations starting from a given object can be extended to reach a common
object:

8A;B1; B2 2 Obj : (A 7!
�
T B1 ^ A 7!

�
T B2)) 9C 2 Obj : B1 7!

�
T C ^B2 7!

�
T C:

In a con
uent system, every terminating computation on a given object yields a
unique result (the set ffRjA #T RgjA 2 Objg contains only singletons or empty
sets). Note that, even in a con
uent system, for a given object there may be

many di�erent sequences terminating with the same irreducible object and other

sequences not terminating at all.

When reasoning about systems that go through sequences of changes, it is
often helpful to consider invariants, i.e., properties of the system that do not

change. If sensible invariants can be established for a given set of transformation
rules, it follows that an equivalence relation can be de�ned on the set of objects

in such a way that transformation steps never change the equivalence class of

objects (with respect to the invariants, they only replace equals by equals). In the
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simplest case, the equivalence relation is completely de�ned by the transformation

rules:

8A;B 2 Obj : A =T B ,def (A;B) 2 (T [ T�1)�:

If a transformation system supports a sensible equivalence relation, it can be

used to provide a declarative view of the system. The transformation of any

given object will either terminate with an equivalent and irreducible object or

not at all, and thus the only purpose of any computation on an object is to �nd

irreducible representatives of the equivalence class inhabited by the original ob-

ject. If all members of the same equivalence class are considered indistinguishable

(semantically equivalent), the di�erences between the intermediate objects of a

computation, and thus the computation itself, are simply not observable (with

the important exception of non-termination), leading to a complete abstraction

from the operational view. Considering all intermediate objects as distinct leads

to a fully operational view as explained above. The possibility to devise mixtures
between these two extreme views and thus to focus on as much operational detail

as necessary for a speci�c purpose seems to be very attractive. In particular, it
renders the idea of declarative systems practical: the operational view, though

not inherently tied to speci�c machinery, provides enough detail to enable imple-
mentations of a given transformation system, but is not very suited for reasoning
about the system. Declarative views of the same transformation system arise

merely as abstractions from operational details, are more suited for reasoning
but less so as the basis of an implementation. Both views are necessary and can
be based on the same speci�cation.

Let Obj0 be the set of strings built from ftrue; false; obj;_g.

obj !0 true

obj !0 false

obj !0 obj _ obj

Let Obj1 =def fXjobj #0 Xg. 8X 2 Obj1 :

true _X !1 true

false _X !1 X

Figure 2.1: A simple two-level transformation system

This approach does not immediately exclude non-con
uent transformation
systems, although, for transformation systems with non-deterministic results,

viewing the set of rules as a description of an equivalence relation often runs

counter to `natural' interpretations. As an example, consider the simple system
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of �gure 2.1, which describes a logic of disjunctive terms with a sequential disjunc-

tion. The set of terms is itself speci�ed as a transformation system, in the style of

a Backus-Naur form, with the terminal strings being just the irreducible objects

derivable from the start symbol, obj. In this particular case, any equivalence

relation based on the rules of !0 has false and true in the same equivalence

class, but only in that both are derivable from the same non-terminal object,

not in any `logical' sense. Moreover, the system could be reformulated using an

equivalence on sets instead of a partial order (!0) on elements, collecting the

alternatives for the left hand side obj on the right hand side of one rule instead

of giving many rules with the same left hand side

Obj = ftrueg [ ffalseg [ fX _ Y jX; Y 2 Objg:

A similar trick can be employed for all non-deterministic systems by working with

the powerset P(Obj) of objects instead of Obj itself.

Static descriptions of objects will still be given in the style of an extended
Backus-Naur form, but the description of dynamic transformations is simpli�ed

substantially if only con
uent systems are considered. In these, there is no need
to search for all irreducible representatives of an equivalence class, since any class
which has an irreducible representative is uniquely determined by this one object.

Furthermore, there is no inherent exponential overhead due to the use of sets of
objects, and equivalent objects can be transformed into the same representative
(Church-Rosser-property):

8A;B 2 Obj : A =T B ) 9C 2 Obj : A 7!�
T C ^ B 7!

�
T C;

so there is no need to apply transformation rules backward and forward in order
to prove two objects equivalent.

Providing the full range of possibilities o�ered by object transformation sys-

tems for the speci�cation of programs is, in general, not advisable. One problem

with user-speci�ed transformation systems is that they may be non-con
uent and

that it is not even decidable whether or not they are. Furthermore, the equiv-
alence generated by the transformation rules may be inconsistent (requiring all
objects to be in one class), thus o�ering no help at all for reasoning about pro-

grams. Fortunately, restricted classes of transformations can be given that turn

out to be expressive enough for almost all conventional programming tasks and

guarantee that some useful properties cannot be invalidated unintentionally by
programmers.

A simple way to get a functional language with user-speci�ed rules is by

restricting the set of possible rules, e.g., by requiring that each left hand side has

to conform to the pattern f(t1, .., tn), where f is called a function symbol

and the ti are constructor terms, i.e., variables or terms of the form ci(ti1, ..,

timi
), where the ci have no de�ning rules and the tij are constructor terms.
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Further restrictions include that all variables that occur on the right-hand side of

a rule must also occur on the left-hand side of the same rule, and that no variable

may occur twice on the left-hand side of the same rule. By construction, no

left-hand side of one rule can then overlap (share instances) with a proper (non-

variable) subterm of any other rule (except itself). These orthogonal systems

are known to be con
uent irrespective of termination. However, this is a pure

strategy of restriction, achieving useful properties only by discarding problematic

classes of transformation systems.

It is much more helpful to enrich transformation systems with a (mathe-

matical) theory, e.g., equational logic for transformation systems supporting an

equivalence relation or predicate calculus for inference rules. As these calculi can

themselves be de�ned by rewrite rules, another approach to get a functional lan-

guage is to de�ne con
uent rewrite rules for a suitable calculus of functions and

take this as the basis for a programming language. Con
uence and other useful

properties can then be guaranteed by the language designer, who also has to

make sure that the calculus, in spite of the �xed set of rules, provides a su�cient
foundation for an expressive programming language. This approach has some
de�nite advantages, as it o�ers the full range of transformation systems to the

language designer, who provides a programming language based on a calculus as
a high-level interface to the general execution model of object transformations.
Programmers can just use these high-level interfaces, which are de�ned through

the general model, but come equipped with an additional theory that may be
used to reason about programs. This way, programmers gain something for the


exibility they loose.
Note the subtle di�erence here between mapping a given language into a

calculus and developing a language as an extension of a calculus. The former is

the approach of denotational semantics [Sto77], which tries to give mathematical
models for existing languages in order to make their informal semantics exact in

a more or less common framework and to enable comparisons and evaluations

of these languages. The latter describes the approach taken here in this thesis,
which starts with a formal system and develops this core into a suitable language

without sacri�cing any of the characteristic properties. Language design is thus

constrained, and it is often di�cult to invent extensions that satisfy both these

constraints and the pragmatic requirements for a general purpose programming

language. However, we have found that the formal constraints establish a valuable

counterpart to the evolving but usually poorly speci�ed user requirements. They

provide a more balanced environment for language design and help to guide the

design process away from shortsighted, problem-speci�c language extensions and

towards general solutions that keep the language simple and general. Language

designs that are developed without this kind of guidance often get more and more

complex with every new feature they include to please their user community.
Finally, the interactions between the short-term solutions lead to problems in the

long run.

19



There are many calculi that could be used as a starting point for a functional

language, including combinator-calculi and �-calculi, which have been invented

to build foundations of mathematics based on functions [Chu51, CF74, Bar84,

HS86], or the more recent and more implementation-oriented supercombinator-

calculi [Hug82]. The focus is on �-calculi here since even the basic �-calculus

provides elements that correspond to function de�nitions and applications, to

abstraction, static name binding and nested scopes. Despite the simplicity of

the calculus, this is a rich foundation to start from when designing a functional

language. In fact, the semantics of functional languages can be de�ned directly

and completely through the reduction (transformation) rules of such calculi, and

the languages that result from such an approach are called reduction languages.

2.2 �-calculi

8x 2 var; n; k 2 Nat :

term = nn x

j �x:term

j (term term)

BC0
x = [ ]

BCn
x = �y:BCn

x ; if y 6= x

j (BCn
x term)

j (term BCn
x )

BCn+1
x = �x:BCn

x

the occurrence of x in BCn
x [ n

k x ] is

8><
>:

bound if k < n

free if k = n

protected if k > n

Figure 2.2: Syntax and binding structure of a basic �-calculus

The basic �-calculus presented here is a modi�cation of Church's original
�K-calculus [Chu51, chapter V, section 17]. The syntax is given in the upper

part of �gure 2.2 where var is a non-empty set of distinguishable identi�ers
(variables). A �-term is either a variable preceded by a number of protection

keys, a �-abstraction binding a variable in an abstraction body, or an application

consisting of an operator- and an operand-term. The essence of the modi�cation,
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proposed by Berkling in [Ber76], is the use of protection keys as a means to

protect variables against immediately enclosing bindings. Compared with �K, it

is slightly more complicated in formal treatment but better suited as the basis of

practical programming languages since it keeps both the binding structure and

the original variable names of terms intact while performing �-reductions.

The binding structure of the modi�ed calculus can be formalized using binding

contexts as de�ned in the second part of �gure 2.2. A binding context BCx

simply counts the number of �x-abstractions in which its subterm is embedded

(the context is uniquely determined by the term, the subterm and the variable

name). In contrast to �K, a variable occurrence is not necessarily bound to the

next enclosing �-abstraction with the same name. In particular, the occurrence

of x in �x:BCn
x [ n

n x ] is bound to the outermost �x (independent of the exact

structure of BCn
x , the n protection keys cancel out the n enclosing bindings in

BCn
x ).

The fundamental operation in all �-calculi is the substitution of a �-term for

free occurrences of a bound variable. In the original calculus, this requires the
renaming of bound variables to avoid name-clashes that would occur if free occur-
rences of a variable are substituted into the binding scope of a �-abstraction with

the same variable name. In the modi�ed calculus, protection keys are used to
keep the binding structure intact without changing any variable names. Substitu-
tion is de�ned in �gure 2.4 using an auxiliary function � (cf. �gure 2.3) to modify

protection keys. �x is a simple recursion on the structure of �-terms, counting the
number of �x encountered while descending and acting only on free and protected

occurrences of x. �+1
x;0 term is used to protect all free and protected occurrences

of x in term against an additional �x-abstraction, whereas ��1
x;1 term is used to

remove one level of protection from all protected occurrences of x in term when-

ever an intermediate �x-abstraction disappears. Similarly, [nkx N ]M replaces
all k-fold protected occurrences of x in M by N . Free and protected occurrences

of variables in N are protected against inner bindings in M using � while de-

scending into the body of an abstraction. The protection of the variable to be

substituted is also adapted to avoid substitutions of bound variables.

As speci�ed here, both substitution and the auxiliary operation � are de�ned
through terminating and con
uent transformation systems whose irreducible ob-

jects are �-terms but whose initial and intermediate objects are not. Their trans-

formation rules are not part of the �-calculus, but applications of �s and of sub-
stitutions to �-terms are used as meta-notation representing their results. Using

these auxiliary operations, the transformation (reduction) rules of the �-calculus
are given in �gure 2.5. �-conversion allows renamings of bound variables, �-

reduction replaces an application with an abstraction in operator position by the

abstraction body, where all free occurrences of the bound variable are substituted
by the term in operand position. Finally, �-conversion identi�es abstraction as

a kind of inverse term-forming operation to application, as long as no variables

are captured. The complementary equivalence, establishing application as an in-
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8x; y 2 var; M;N; P 2 term; n; k; j 2 Nat; m 2 Int :

�m
x;n n

kx =� nk+mx ; if k � n

�m
x;n n

kx =� nkx ; if k < n

�m
x;n n

ky =� nky ; if y 6= x

�m
x;n (MN) =� (�m

x;n M �m
x;n N)

�m
x;n �x:M =� �x:�m

x;n+1 M

�m
x;n �y:M =� �y:�m

x;n M; if y 6= x

Figure 2.3: Modi�cation of protection keys

[nkx N ] nkx =� N

[nkx N ] njy =� n
jy ; if (j 6= k) _ (y 6= x)

[nkx N ] (MP ) =� ([nkx N ]M [nkx N ]P )

[nkx N ] �x:M =� �x: [nk+1x �+1
x;0 N ]M

[nkx N ] �y:M =� �y: [nkx �+1
y;0 N ]M ; if y 6= x

Figure 2.4: Substitution of �-terms for free variables

�x:M =� �y:��1
x;1 [x y] �+1

y;0 M

(�x:M N) =� ��1
x;1 [x �+1

x;0 N ]M
M =� �x:(�+1

x;0M x)

Figure 2.5: Conversion rules of the �-calculus

verse to abstraction if no variables are captured, is an immediate consequence of
�-equivalence:

(�x:�+1
x;0M x) =� ��1

x;1[x �+1
x;0x]�

+1
x;0M

=� ��1
x;1[x nx]�

+1
x;0M

=� ��1
x;1�

+1
x;0M

=� M

It is important to note that the modi�cations only a�ect the representation of
�-terms and rules whereas, as Berkling formulated it in [Ber76], the conceptual

substance of the �-calculus is not changed. The modi�cations are consistent

with the original calculus and do not change any equivalences between its terms

(which are also terms of the extended calculus). This postulates a rather strong

relationship between �Church and �Berkling which can be formalized as follows.

Theorem 2.1 (Correspondence between �Church and �Berkling)

Let the subscripts C and B denote terms and rules in �Church and �Berkling,

respectively and let varC = varB be an in�nite set of variable names. Then
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1. termC � termB ^ 8MC ; NC 2 termC :MC =C NC ,MC =B NC

2. 8MB; NB 2 fM 2 termB j no variable occurs protected in Mg :
MB =B NB )
9MC ; NC 2 termC : (MC =�B MB) ^ (NC =�B NB) ^MC =C NC

Proof:

1. �Church is just the fragment of �Berkling without protection keys (provided

that var is in�nite). The syntax is then identical, variable occurrences only

come as free or bound and there are no free occurrences of a variable x

inside any binding context BCn
x with n > 0 (cf. �gure 2.2). Consequently,

��1
x;1 has no e�ect and �+1

x;0 does only produce legal �Church-terms if applied

to argument terms without free occurrences of the variable x. This, in turn,

restricts the legal substitutions to those of the �Church-calculus (cf. �gure

2.4). Finally, �-conversion is valid only if there are no free occurrences of
the new variable in the abstraction body, �-reduction is valid only if there
are no free occurrences of variables in the argument that would have to be

substituted into abstractions with the same variable name (the substitution
rules corresponding to these cases have been invalidated by the restriction

to the �Church-fragment), and �-conversion is valid only if the new variable
does not occur free in the term (cf. �gure 2.5). To make up for the restricted
substitution rules, explicit �-conversions to fresh variables may be necessary

before a �-reduction may be performed, which is why an in�nite set of
variables is needed.

This proves the �rst direction of the double implication. The other direction

is a consequence of the second part of the correspondence and of the fact
that 8MC ; NC 2 termC : MC =�C NC , MC =�B NC . Note, however,
that the �C-convertible terms (�x:�y:x y) and (�x:�z:x y) are both �B-

reducible, whereas only the latter is �C-reducible.

2. Any MB 2 termB without variable occurrences that are protected in MB

is �B-convertible to a term MC 2 termC without protection keys (for each
abstraction, just choose a variable-name di�erent from any other name

occurring free or bound inMC). Given such MB; NB 2 termB withMB =B

NB, with a proof of equivalence in �Berkling using �B; �B and �B, choose

MC ; NC 2 termC withMC =�B MB and NC =�B NB, and imitate the proof
using �C ; �C ; �C . The only complication is that additional �C-conversions

may be necessary to establish the preconditions for �C- and �C-conversions

(see above).

So, every sequence of ���-conversions in �Church is also valid in �Berkling.

Furthermore, if �Berkling-terms without protected occurrences of variables are
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���-equivalent (with respect to the extended conversion rules), there exist �-

equivalent �Church-terms, which are so, too (with respect to the restricted rules

and some additional �-conversions). In other words, given the same in�nite set

of variables, both calculi allow the same conversions modulo the extended �-

equivalence, �Berkling only has more representatives in the �-equivalence-classes,

allowing binding structures to be expressed without restrictions on the variable

names.

For terms with protected occurrences of variables, a correspondence is not as

straightforwardly established because protected occurrences seem to impose more

structure on possible contexts which could bind these occurrences. For instance,

the term (nx n2x) requires contexts with at least three �-abstractions in order to

bind both occurrences of x. Moreover, the innermost abstraction will be ignored,

and nx and n2x will be bound to the second and third innermost abstractions

for x, respectively. In contrast, for (ab), both �a:�b:(ab) and �b:�a:(ab) will do,

among in�nitely many others. Using these properties, it it fairly easy to construct

theorems which hold only in one of both calculi. For instance, let

fv(M) =def fv 2 var j v occurs free in Mg;

then

8M 2 term; x 2 var : fv(�x:M) = fv(M)� fxg

holds in �Church, but not in �Berkling (note that simply including protected oc-
currences in fv(M) will not su�ce here: the theorem has to be adapted, either

by restricting term to termC or by taking protected variable occurrences into ac-
count). Based on similar assumptions, equivalences between terms can be proven

in �Church that are not valid in �Berkling:

8M 2 term : fv(M) = fg )
8N;P 2 term; x 2 var : ((�x:�x:M N)P ) = (�x:M N) =M

(in �Berkling, take M = nx). However, most of the theoretical work on �-calculi
identi�es �-equivalent terms (cf. [Bar84, Appendix C]), so that the most impor-
tant results carry over to the extended calculi with no or only trivial modi�cations,

which strengthens the point that the conceptual substance of the calculi is not

a�ected by the extensions. If it really becomes necessary to reason about terms

that cannot be �-converted to �Church-terms, it is usually not di�cult to gener-
alize the original de�nitions and propositions so that they hold for the extended
calculus and reduce to the known de�nitions and propositions if only �Church-

terms are involved. This follows from the fact that the extensions are consistent

with the original calculus.
The modi�ed representation has de�nite advantages if the �-calculus is to be

used as the basis of a practical programming language. Firstly, the variable names
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8n 2 Nat :

termNF = n

j �:termNF

j (termNF termNF )

8M;N; P 2 termNF ; n; k; j 2 Nat; m 2 Int :

�m
n k =� (k +m); if k � n

�m
n k =� k; if k < n

�m
n (MN) =� (�m

n M �m
n N)

�m
n �:M =� �:�m

n+1 M

[k  N ] k =� N

[k  N ] j =� j ; if j 6= k

[k  N ] (MP ) =� ([k  N ]M [k  N ]P )

[k  N ] �:M =� �: [k + 1 �+1
0 N ]M

(�:M N) =� ��1
1 [0 �+1

0 N ]M

M =� �:(�+1
0 M 0)

Figure 2.6: A name-free �-calculus �NF

chosen by programmers are never changed during �-reductions, which is impor-

tant because results modulo �-equivalence are adequate for an abstract theory,
but not for real applications. Secondly, it also has advantages for implementa-

tions of the transformation system, because all rules are applicable independent

of the existence of free or protected variables in the terms to be transformed, in
particular, no �-conversions are required prior to �-reductions in order to avoid
naming con
icts. Moreover, the conversion rules do even work if the set of vari-

ables is �nite: all (bound) variables can be renamed by �-conversion without

changing variable names but only protection keys. The binding structure is then

represented solely by the number of protection keys preceding each variable oc-
currence, and the variable name, carrying no further information, may even be
omitted. This variation, called minimal representation in [Ber76] and summa-

rized in �gure 2.6, is isomorphic to de Bruijn's �-calculus notation with nameless

dummies [dB72]. Human readers may have di�culties using this notation for real
examples, but the advantages for abstract or mechanized transformations are ob-

vious: the system is greatly simpli�ed by providing exactly one representative for
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each class of �-equivalent terms (hence no �-conversion-rule here), and names,

name comparisons and renaming are completely replaced by numbers (de Bruijn

indices) and simple arithmetic. To sum it up, �Berkling embodies both �Church and

�deBruijn as sub-calculi, inheriting both a rich theory and the best prerequisites

for an e�cient implementation. Furthermore, the combination of variable names

with indices allows for a more comfortable user-interface than could be provided

using any of the two sub-calculi.

8FORM : 8n 2 Nat :

cafFORM = nnvar j (cafFORM FORM)

nf = �var:nf j cafnf

hnf = �var:hnf j cafterm

whnf = �var:term j cafterm

c = [ ] j �var:c j (c term) j (term c)

noc = �var:noc j anoc

anoc = [ ] j (anoc term) j (cafnf noc)

aoc = [ ] j �var:aoc j (term aoc)j (anoc term)

8M;N 2 term; �x:P;Q 2 nf :

M !� N ) c[M ] 7!� c[N ]

M !� N ) noc[M ] 7!�;no noc[N ]

(�x:P Q)!� N ) aoc[(�x:P Q)] 7!�;ao aoc[N ]

Figure 2.7: Normal forms, reduction contexts and reduction strategies

In view of the above, � shall be used as a synonym for �Berkling throughout

the rest of this thesis. Some of the most important results for � are included
in this section for easy reference. For proofs and for more detailed expositions,
the reader is referred to [Bar84, HS86]. Figure 2.7 summarizes some notions

relevant to the following discussion of reduction. Normal forms (nf) are just

the irreducible objects of �, constant applicative forms (caf) are a useful subset

of �-terms, starting either with a variable or with an application that is not a
redex (reducible expression). Head normal forms (hnf) and weak head normal

forms (whnf) are approximations of normal forms (nf � hnf � whnf) that are

needed to give consistent interpretations of � and for practical implementations,

respectively.
So far, all conversion rules have been presented as context-free transforma-

tion rules in the sense of section 2.1, i.e., they apply in all contexts c. Thus, �
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corresponds to an in�nite number of rules if the meta-variables for contexts and

subterms are instantiated. Whereas the instantiation of subterms is uniquely de-

termined by the redex in question, the instantiation of the context meta-variable

is usually possible in more than one way, corresponding to a choice for the next

redex to be reduced by the context-free rule. Fortunately, � is a con
uent trans-

formation system, so that the order in which redices are selected for reduction

(reduction strategy) is irrelevant for the result (apart from termination issues).

Theorem 2.2 (Church-Rosser)

1. 8M;N1; N2 2 term :

(M !�
� N1) ^ (M !

�
� N2), 9R 2 term : (N1 !

�
� R) ^ (N2 !

�
� R)

2. 8M;N 2 term :M =� N ) 9R 2 term : (M !�
� R) ^ (N !

�
� R)

Corollary 2.1 (Uniqueness of normal forms)

8M;R1; R2 2 term : (M #� R1) ^ (M #� R2)) R1 =� R2

However, � is not a terminating transformation system, i.e., there are reduc-
tion sequences of in�nite length (even for terms that have a normal form), so

that not all reduction strategies are complete (they may miss a result while fol-
lowing an in�nite path of reductions). The normalization theorem (also known
as standardization theorem) states that there is at least one complete reduction

strategy, namely normal order reduction (7!�;no), which is speci�ed in �gure 2.7
as �-reduction in normal order contexts (noc).

Theorem 2.3 (Normalization) 8M;R 2 term :M #� R,M #��;no R

Normal order reduction prefers leftmost outermost redices, as can be seen
from the de�nition of applicative normal order contexts (anoc): the hole can

only be in subterms of an application if the operator is not an abstraction (hence

the use of cafnf and anoc in operator position), and it can only be in the operand
if, in addition, the operator is in normal form. In particular, operand terms of

redices are substituted for bound variables without prior reduction which may

cause redices in the operand term to be copied. If more than one of the copies is

eventually reduced, normal order reduction has multiplied the work to be done.

Postponing reductions in argument terms of applications pays only if these terms

are substituted for variables which do not occur free in the abstraction bodies, or

if all copies of these terms are consumed without contributing to the �nal result.

If this cannot happen, as in Church's �I-calculus, the length of the normal order

reduction sequence for a term is an upper bound on the length of any of its

reductions [CF74, p. 142].

Applicative order reduction (7!�;ao), also de�ned in �gure 2.7, prefers inner-

most redices, performing �-reductions only if both operator and operand have
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been reduced to normal form. In doing so, it avoids duplication of redices, but

may try to reduce argument terms that are not needed. In case any of these

terms does not have a normal form, applicative order reduction does not termi-

nate, regardless of whether the overall term has a normal form or not. It is thus

complete only for �I-terms, but not for general �K-terms.

In his PhD thesis, Wadsworth develops a variant of normal order reduction

that is complete and does not copy redices [Wad71, chapter 4]. Using graph

reduction instead of term reduction, he is able to share reductions in argument

terms since copies of arguments are represented as pointers to shared subgraphs.

Viewed as term reduction strategy, reducing a redex in one copy of an argu-

ment simultaneously reduces all copies of the redex. Wadsworth coined the term

call-by-need for the corresponding method of parameter passing in programming

languages. Applicative order and normal order reduction roughly correspond to

call-by-value and call-by-name, respectively. The correspondence is not exact,

however, as the reduction strategies do not only describe methods of parameter

passing, but also the order in which reductions (corresponding to function calls)
are to be carried out. Applicative order reduction only leaves open the choice
which of the innermost redices to reduce �rst while normal order reduction leaves

no choices at all (the next redex to be reduced is uniquely determined). Further-
more, both strategies attempt to reduce to normal forms while, for real program-
ming languages, it is more common to stop whenever a weak head normal form

has been reached, i.e., not to reduce inside abstraction bodies (corresponding to
function de�nitions).

To overcome these mismatches, variants of the �-calculus can be de�ned that
correspond exactly to existing programming languages. For instance, [Plo75]
de�nes a call-by-value calculus �V to show that Landin's ISWIM as mechanized

by the SECD-machine [Lan63, Lan66]

`. . . is more than a speci�cation of some characterless reduction se-

quence. Rather, as well as computationally natural, it gives rise to an

interesting calculus. Its correspondence with this calculus shows it to

be less order of reduction dependent than its de�nition shows.'

Plotkin also de�nes a call-by-name calculus �N , for which an appropriate version

of the SECD-machine can be de�ned, and shows how to simulate call-by-name

by call-by-value and vice versa. The important di�erence between � and �V is
that � does not hold in �V . Instead, only a restricted form �V holds, where

the operand of the redex has to be in whnf . This has immediate consequences
for languages based on a call-by-value regime. The choice of a non-complete

reduction strategy a�ects the basic conversion rule of the underlying calculus and

thus formal reasoning about programs of the language and the usefulness of �-
abstraction. In terms of reasoning, every application of �V or of the corresponding

substitution operator involves a proof that the operand expression in question has

a weak head normal form reachable by �V -reduction. �-abstraction is a�ected
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because it is not allowed to abstract over a subterm if it cannot be proved that

every instance of the subterm has a �V � whnf , which is usually impossible if

the subterm has free occurrences of variables.

2.3 From �-calculi to functional languages

The terms and reduction rules of the �-calculus do already form a simple but

computationally complete programming language. Just as in the early days of

programming, programmers could map problem speci�cations to �-terms, have

them evaluated according to the reduction rules and interpret normal forms as

problem solutions. That such a scheme would work was �rst formulated by

Church and has become known as Church's thesis (`the notion of an e�ectively

calculable function of positive integers [can] be given an exact de�nition by iden-

tifying it with that of a �-de�nable function' [Chu51, p. 41]). This general thesis
cannot be proven, but is a plausible attempt to generalize other, formally proven

results: the functions on integers de�nable in � coincide with the partial recursive
functions, and �-calculus has also been shown to be computationally equivalent
to other notions of computation, e.g., Turing-machines.

While theoretically enlightening, this is not an adequate approach to practical
programming as the mapping between objects in the problem domain and those

of the �-calculus and back is too expensive. To devise a practical programming
language based on �-calculus requires that either the language is equipped with
means to handle objects of the problem domain directly or, at least, that it pro-

vides support for the mappings in order to reduce the e�orts needed to represent
these objects in terms of the programming language. In other words, having

established a system of su�cient computational power, it needs to be extended
with respect to expressive power. When comparing computationally equivalent
languages, a language will be called more expressive for a given problem domain

if the representation of objects of the domain in terms of objects of the language

is simpler.
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The basic solution (cf. �gure 2.8) is to embed the �-calculus into a larger

system that maps high-level representations into �-terms (�), reduces them, and

maps the results back into high-level representations (��1), thus reducing the

e�ort that comes with the user-supplied mappings (map;map�1). However, in

order to assure that the mapping is bijective, it is necessary to keep additional

information, a kind of labels, in the low-level representation. These labels are

irrelevant to reduction and are only used when mapping results back into high-

level representations. In other words, low-level representations can be factorized

into labels and computational contents, and terms that di�er only in their labels

are equivalent as far as reduction is concerned. The calculus has to be extended

to work on equivalence classes of terms, leaving labels unchanged.

As a simple example, consider �-equivalence: the computational content of a

�-abstraction is given by its binding structure, i.e., its in
uence on variables of

the same name occurring free or protected in its body. The name itself is only

a label, irrelevant to reduction, as shown by the possible translation into �NF .

While, in the original �-calculus, it may be necessary to change the names to per-
form further �-reductions, thereby loosing any chance to present (intermediary)
reduction results with the same names as chosen in the start term, the names

are left unchanged in the extended �-calculus. Translation into �NF -terms will
usually be part of � but is omitted here to enhance legibility. Therefore, �-terms

are not modi�ed by the mapping and are left unlabeled.

Further examples of representation mapping include the omission of paren-
theses and �s assuming association to the left and to the right, respectively, and

the introduction of syntactic sugar for (recursive) de�nitions, numbers, booleans,
conditional expressions, data structures, etc., some of which are sketched in �g-
ure 2.9. The additional symbols b, c and the labels will in most cases be omitted

from now on, which means they must be maintained through all conversions.
Church used a similar system of abbreviations in [Chu51]1, but did only for-

malize the direction from left to right (nominal and schematic de�nitions). He

used his human intuition to introduce or keep the right abbreviations throughout

reduction sequences, whereas the labels and representation mappings used here

allow this to be mechanized. Without the labels, it could not be decided whether
(�x:M N) should be retranslated into a let-construct or left as it is, and �xy:y

could stand for zero, for false, or for �x:�y:y. Both the left-to-right and the

right-to-left transformation system are terminating and can be kept con
uent
due to the use of labels: they de�ne a representation mapping � and its inverse

��1. Note that labels are attached mostly to abstractions or terms in operator
position. If a �-reduction changes the shape of the de�ning term in such a way

that the retranslation step corresponding to the label becomes impossible, it will

also consume the label together with the operator.

Using (re�ned) representation mappings similar to the ones given here, it

1cf. also [Bar96b] for further structure-preserving encodings of data types as �-terms.
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8M;M1;M2; N; P 2 term; ~M 2 term�; v 2 var; ~v 2 var+; k; i 2 Nat :

Let p; f; g; x; y; n; l; h; t 2 var (pairwise di�erent). Then

Y =� b�f:(�x:(f (x x)) �x:(f (x x)))cY

I =� b�x:xcI

K =� b�xy:xcK

(M �N) =� b�x:(�+1
x;0M (�+1

x;0N x))c�

M0 =� I

Mk =� bMk�1 �Mcrepeat; if (k > 0)

(M1 M2
~M) =� ((bM1c() M2) ~M)

�v ~v:M =� b�v:�~v:Mc�

let v = N in M =� (b�v:Mclet N)

let f ~v = N in M =� let bfcfundef = �~v:N in M

letrec v = N in M !� let v = b(Y �v:�+1
v;1N) cletrec in M

letrec v = N in v  � b(Y �v:�+1
v;1N) cletrec

letrec f ~v = N in M =� letrec bf cfundef = �~v:N in M

if M then N else P =� (bMcif N P )

true =� b�xy:xctrue

false =� b�xy:ycfalse

hM;Ni =� b�f:(f �+1
f;0M �+1

f;0N)cPair

fst =� b�p:(p �xy:x)cfst

snd =� b�p:(p �xy:y)csnd

h ~Mi =� b�f:(f
�!

�+1
f;0 M)chi

selecti;k =� b�t:(t (Ki K(k�i�1)))cselecti;k
extend =� b�xy:(y � x)cextend

zero =� b�fx:xczero

succ =� b�n:�fx:(f (n f x))csucc

k =� b(succk zero)cnum

add =� b�nm:�fx:(n f (m f x))cadd

mult =� b�nm:(n �m)cmult

nil =� b�fy:ycnil

cons =� b�ht:�fy:(f h (t f y))ccons

isempty =� b�l:(l �ht:false true)cisempty

fold =� b�fxl:(l f x)cfold

Figure 2.9: Examples of representation mappings
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is possible to turn the �-calculus into an expressive functional language. How-

ever, depending on the target architecture, there are usually more direct ways to

represent, e.g., numbers and data structures or to implement recursion. Further-

more, since the representation layer is implemented by means of representation-

independent reduction rules, stepwise reductions may proceed through interme-

diate terms that have no counterpart in the representation, and the interactions

between labeled terms are not restricted to those natural for their representations.

The latter is not necessarily a bad thing, e.g., applying the Church numeral n

to a function yields the n-fold repetition of that function, and multiplying two

functions yields their composition, but, in general, it is preferable to have reduc-

tion rules that correspond with the level of representation. This is the way our

reduction language will be de�ned in chapter 5.

Introducing such representation-level reduction rules requires great care as

the resulting reduction language should be a consistent extension of the core

calculus. One way to guarantee this is to make sure that the extensions could be
consistently modeled by a representation mapping. Each new rule is then only an

abbreviation for a sequence of steps in ��1
�
� �� � ��, abstracting from the lower-

level details of representation mapping and intermediate steps and introducing

larger reduction steps only for terms which are already convertible. Such an
analogy also helps to clarify the nature of new binding constructs (let; letrec)
and provides a guideline on how to extend the substitution and conversion rules

to deal with the additional language constructs, which is indispensable in order
to carry over the properties of the core calculus to the representation layer.

2.4 Summary

Starting from a fairly general model of programming, the major design decisions

leading to reduction languages have been outlined, and a brief review of their for-

mal basis has been given. Many of these �rst design decisions led to restrictions,

which seems to be against the spirit of our design principles. These restrictions

have been justi�ed by the observation that transformation systems, while being
simple, general and expressive, also make it very easy to specify systems that do

not exhibit any of the useful properties we have de�ned. In general, it is even

undecidable whether or not a given system is, e.g., con
uent. This is too much

exibility for almost all uses of a programming language, and so we have been

searching for a compromise that allows to guarantee useful properties { and thus
formal reasoning { without giving up too much of the 
exibility.

Some of the restrictions, e.g., the exclusion of non-con
uent systems, were

made in order to simplify the language framework and should not be taken as

�nal decisions. Since non-determinism is a useful abstraction mechanism (it can
be viewed as abstraction over unknown or irrelevant parameters, i.e., parameters

which can only be guessed or which may be chosen randomly), it remains to be
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seen how far we can get without it, and whether it is possible to extend func-

tional languages with non-deterministic features without destroying their char-

acteristic properties. Other restrictions, namely those following from the use of

�-calculi and reduction languages as an intermediate level between transforma-

tion systems and programmers, were necessary to provide programmers with a

less fragile framework and were compensated by gains in program structure (local

de�nitions), expressiveness (programs as data) and reasoning capability.

Reduction languages are consistent extensions of �-calculi and are de�ned

by con
uent systems of context-free transformation rules. Therefore, they allow

equational reasoning with respect to the equational theory induced by the reduc-

tion rules. This means that programs which can be proven equal in the theory can

be replaced by each other in all contexts (this property is often called referential

transparency [SS90]). Indeed, the whole execution model is based on equivalence-

preserving program transformations (reductions) and thus completely indepen-

dent of particular machine architectures. The Church-Rosser property (or con
u-
ence) of the transformation system guarantees that the choice of reduction strat-

egy has no in
uence on the results of computations (apart from termination),
which means that the strategy can be adapted to operational requirements. If
su�cient resources are available, independent reductions can be performed non-

sequentially (in any order). Furthermore, there are complete reduction strategies
that are guaranteed to �nd equivalent normal forms for programs which have one.

Substitution revisited

�-conversion, based on the de�nition of substitution given in �gure 2.4, looks

rather complicated. Furthermore, viewed as a transformation system, it is not
e�cient: the abstraction body is traversed twice, and the operand term is tra-
versed at least once before the substitution to protect free occurrences of variables

against the additional binding and then once per instance to unprotect the oc-

currences again when the �x is removed. While the speci�cation is modular, it

shows too much detail: �rst, free occurrences of x are substituted by copies of the
operand term (with additional protection), then the �x is removed, and one level

of protection is removed from protected occurrences of variables in the former

abstraction body.

As � is the main conversion rule of the �-calculus, it seems worthwhile to sim-
plify the rule, using information about the combination in which � and substitu-

tion are used. In �gure 2.10, a modi�ed substitution is de�ned that incorporates
the functionality of � needed for the speci�cation of �. A simpli�ed de�nition

of this substitution is then formally derived by an analysis of cases. Viewed as

a transformation system, it traverses the abstraction body only once and avoids
the super
uous protection and unprotection traversals of the operand term. The

modi�ed de�nitions have been used, e.g., in [BF82], and the corresponding name-

free rules are also closer in spirit to the rules used in [dB72].
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8M;N 2 term; x; y 2 var; k; j; n 2 Nat :

[nkx N ]�1x;n M =def ��1
x;n+1 [n

kx �+1
x;n N ] M

[nkx N ]�1x;n n
kx

=� ��1
x;n+1 �

+1
x;n N

=� N

[nkx N ]�1x;n n
jx ; if (j > n) ^ (j 6= k)

=� ��1
x;n+1 n

jx

=� nj�1x

[nkx N ]�1x;n n
jy ; if ((j < n) ^ (j 6= k)) _ (y 6= x)

=� ��1
x;n+1 n

jy

=� njy

[nkx N ]�1x;n (M N)

=�;�;def ([nkx N ]�1x;n M [nkx N ]�1x;n N)

[nkx N ]�1x;n �x:M

=�;� �x:��1
x;n+2 [n

k+1x �+1
x;0 �

+1
x;n N ] M

=� �x:��1
x;n+2 [n

k+1x �+1
x;n+1 �

+1
x;0 N ] M

=def �x:[nk+1x �+1
x;0 N ]�1x;n+1 M

[nkx N ]�1x;n �y:M ; if y 6= x

=�;� �y:��1
x;n+1 [n

kx �+1
y;0 �

+1
x;n N ] M

=� �y:��1
x;n+1 [n

kx �+1
x;n �+1

y;0 N ] M

=def �y:[nkx �+1
y;0 N ]�1x;n M

�x:M =� �y:[x y]�1x;0 �
+1
y;0 M

(�x:M N) =� [x N ]�1x;0 M

Figure 2.10: Alternative de�nitions of substitution, �- and �-conversion
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This example serves to demonstrate two points. Firstly, both functional pro-

grams and the fundamental rules of the calculi they are based on are suited for

formal reasoning. The style of reasoning is a straightforward equational one, re-

placing equals by equals according to the equivalence relations induced by the

transformation systems. Secondly, since transformation systems directly support

both declarative and operational views of speci�cations, it is a common miscon-

ception to see the purely operational view as the only possible implementation

of a given speci�cation, leading to imprecise statements such as `substitution

is ine�cient because it traverses the abstraction body twice'. As the example

derivation has shown, such operational attributes may be used with respect to

operational views of a given speci�cation, but the declarative view of the very

same speci�cation usually allows various possibilities of implementation, related

by formal derivations. The operational view guarantees that a given speci�cation

can be implemented at all, which allows rapid prototyping and supports the idea

of `getting it right before getting it fast', but to �nd e�cient implementations is

usually more di�cult. Some of these optimizations may have to be performed by
application programmers, some of them may be built into optimizing compilers,
and some may be performed by system programmers when upgrading the lan-

guage implementation. However, due to the decision to base reduction languages
on calculi de�ned by transformation systems with certain properties, all these
activities have a formal basis which is rather straightforward to use.
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Chapter 3

Input/Output and State in

Functional Languages

There have been many seemingly di�erent approaches to the problem of doing
input/output from within a functional programming language. Over the last

decade, the emphasis has shifted (at least in the research community) towards
adequate solutions for purely functional languages, i.e., towards extensions for

input/output that do not compromise the properties of these languages. In this
chapter, we review some of the major variants, but we do so not in a chronological
order or as an attempt to compare instances of input/output-schemes in popular

functional languages. Instead, we try to outline a logical development that is
behind the various approaches.

We start from a very naive problem speci�cation and obvious solutions. For
each proposed solution, a discussion of its major pros and cons leads to possible

enhancements either of the solution or of the problem speci�cation. Following
some of the possible lines of development, we encounter basic forms of all popular

input/output-schemes. We identify the modi�cations that distinguish schemes ly-

ing on the same line of development or the design decisions that separate schemes

on di�erent lines. We also investigate the close relationship between the treat-

ment of input/output and global states.

Though the form of presentation is new, most of the concepts and approaches
to input/output in functional languages have been developed and used earlier. To

put things into the right perspective, the section closes with a brief overview of

related work and surveys on the topic. The necessary references are given there,
too.

A note on the program notation

In addition to transformation systems, the discussion of di�erent approaches to
input/output uses a small number of example problems, for which programs are

given in each of the input/output-styles discussed here. A Haskell-like notation
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[PH96] is used to provide a uniform notational basis for all examples. Note

that, even though several input/output-styles have been used in the development

of Haskell, none of the programs in this chapter is likely to be a valid Haskell

program with the intended meaning. The following major constructs are used:

mutually recursive de�nitions (listed between the keywords let and in, valid

in the expression following the keyword in), expression lists (in square brackets

[ ]), also explicitly used as binary lists (head:list), tuples (in round brackets

( )), �-abstractions (written as \var->expr), and function applications (in round

brackets ( )). Application associates to the left, and bodies of �-abstractions

extend as far as possible to the right, allowing many round brackets to be omitted.

Pattern-matching may be used in de�nitions or in �-abstractions. We also provide

type annotations for documentation (expr :: type), and data type de�nitions

(keyword data). Keywords and variable names start with lower-case letters,

whereas data constructors and type names start with upper-case letters. The

keywords let and in are omitted for top-level de�nitions, and the identi�er

main de�nes the start expression of a program. Further constructs and auxiliary
functions are described where they are used.

Furthermore, for some input/output-styles, non-strict evaluation is a neces-
sary prerequisite, so we de�ne the notion of strictness here. For a given transfor-

mation system !T over expressions expr, a context C 2 Cexpr is called strict, if
the evaluation of C[ e ] depends on the evaluation of e, for all e 2 expr:

C strict,def 8e 2 expr : C[ e ] #T ) e #T

In non-strict functional languages, the strictness of the context (f [ ]) de-

pends only on the function f (so the strictness can also be attributed to the
function), whereas in strict languages, this context is always strict (for instance,

due to a call-by-value regime). Note that this de�nition of strictness of a pro-
gramming language is based on its general treatment of application only. Even
in strict languages, there are usually some non-strict contexts (alternatives of

if-then-else, bodies of abstractions, right hand sides of recursive de�nitions), and

applications of, e.g., arithmetic primitives are strict even in non-strict languages.

3.1 The very �rst idea:

using side-e�ecting pseudo-functions

On �rst sight, it might be tempting to simply copy the input/output-operations

of existing imperative languages, based on a �rst speci�cation of the problem:

functional languages should provide input/output-facilities similar in

expressive power to those of imperative languages.
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This idea, if implemented naively, leads to quite a number of problems, and

even if these problems are avoided by a careful rede�nition of the language se-

mantics, the result is far from satisfying. To illustrate this, we assume that we

have an operation each to get a line of text from the keyboard and to put a string

to the screen:

gets :: String -- input a line of text, return text

puts :: String -> String -- output a string, return parameter

Both gets and puts, in addition to returning a string, interact with the

program's runtime environment: gets fetches a new line of text from an input

device each time it is called and returns the text as a string of characters. puts

just returns its parameter, but also delivers the string to an output device. We call

these operations pseudo-functions because they have side-e�ects but are treated

as if they were primitive functions.

The question then becomes: When (in terms of relative ordering) and how

are these operations to be carried out, and what are their results or what do
they e�ect? The natural answer to the �rst part seems to be: In the order in

which the operations appear in the program text. A list of operations would then
correspond to a sequence of interactions performed from left to right:

[ puts "what's your name?", gets, puts "are you sure?\n", gets]

But how can the input data be passed on to parts of the program that occur
after the call to gets (both in the text and in the sequence of events), e.g., how

can the string returned by gets be used in the second call to puts? And what
about two syntactically equivalent expressions (gets) giving di�erent results?
Take, for example, the following piece of program:

let x = gets

in f x x

Is this intended to read one line of input and substitute it for both parameters
of f? Or should x be substituted by the operation gets itself, resulting in two
input operations with possibly di�erent results? Also, the seemingly simple `in

the order of occurrence'{rule is hardly adequate in the presence of �-reduction,

as in the following small program:

let

f x y = g y x

g x y = h y y

h x y = "what?"

in f (puts "hello ") (puts "world\n")
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What is this program supposed to write on the screen? Depending on the

interleaving of reductions and input/output-operations, it might print any of

"hello world\n", or "world\nhello ", only "hello ", only "world\n", twice

"hello ", or nothing at all, since none of the parameters needs to be evaluated

to compute the �nal result of "what?". It is all too clear that we need a better

understanding of the problem and of the input/output-facilities of imperative

languages before we can hope to come up with proposals that are more adequate

for functional languages.

3.2 What is input/output?

Roughly speaking, input/output is a general term that subsumes all kinds of

interactions between a running program and its runtime environment. This in-

cludes terminal input/output, but also �le operations and communication with

external devices (printers, . . . ) and with other programs, possibly running on for-
eign systems (networking). For simplicity, the following discussion is restricted

to character-based terminal-input/output. To understand why input/output-
operations cannot simply be copied from imperative languages, where they seem
to cause no problems at all, to functional languages, it is necessary to compare

the programming paradigms. Both paradigms are easily represented as di�erent
kinds of transformation systems, providing a common basis for further discus-
sions.

Imperative programming is all about program-controlled sequences of state
transformations. Leaving all the details aside, programs are executed by an

abstract machine that has access to the program (a sequence of abstract machine
instructions), a program counter (the address of an instruction in the program),
and a store of box variables (for procedural languages, the store will also include

a stack to hold procedure parameters, temporary values and return addresses).
The essence of this paradigm can be represented by a system of transformations

of the abstract machine state (using jj to separate the program from the rest of

the state):

(instra)a2Addr jj < pc; store > 7! (instra)a2Addr jj (instrpc < pc; store >)

A program is represented by a sequence of instructions, indexed by addresses.
The sequence of state transformations is totally ordered: the value of the pro-

gram counter (pc) determines the next instruction to be executed (instrpc), which

speci�es both the transformation of the store and the new value of the program
counter.

In a certain sense, imperative programs do nothing but input/output: their
only purpose is to interact with the state of the machine they are running on

and to specify exactly the transformations of this state. It is a simple task

to integrate further input/output-operations into such a system: part of the
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store is reserved for this purpose (input/output-registers) and can be accessed by

the input/output-devices, i.e., the input-device delivers any inputs in the input-

register, and the contents of the output register are processed by the output-

device. The access of devices to the registers is assumed to be external to our

discussion and is only re
ected in the state of the registers (string or char if

a string or character is waiting to be processed and 2 if a register is unused).

The purpose of the input/output-operations is then to transfer strings of char-

acters back and forth between the input/output-registers and the store. So,

input/output-operations access a larger part of the machine state, but �t into

the picture immediately { they can appear anywhere in a sequence of instruc-

tions, and their e�ect is a transformation of the machine state:

(instra)a2Addr jj < pc; in; out; store >

7! (instra)a2Addr jj (instrpc < pc; in; out; store >)

In contrast, functional programming is about program transformations. Pro-

grams are executed by an abstract machine that replaces expressions by seman-
tically equivalent ones according to the context-free rules of a reduction calculus:

expr ! expr`

The essential di�erences to the imperative paradigm are that program trans-

formations are context-free and only partially ordered. While context-free trans-
formation rules greatly simplify the understanding of programs and their evalu-
ation, they also mean that program evaluation is fully independent of the con-

text { neither are the program transformations sensitive to context information
nor do they have any e�ect on the state of a context. Since the sole purpose
of input/output is to let a program interact with the context in which it is

evaluated, context-sensitive transformations have to be introduced to the func-
tional paradigm. The �rst attempt was to add rules for primitive input/output-

operations (to interact with some global input/output-registers) without changing

anything else. In other words, both program transformations and input/output-
operations are allowed in all program contexts C (cf. �gure 3.1).

C[ expr ] jj < in; out >

7! C[ expr` ] jj < in; out >; if expr ! expr`

C[ gets ] jj < string; out >

7! C[ string ] jj < 2; out >
C[ (puts string) ] jj < in;2 >

7! C[ string ] jj < in; string >

Figure 3.1: Input/output with pseudo-functions
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The problem with this approach is that the resulting transformation system is

no longer con
uent: program transformations and interactions are only partially

ordered by data dependencies in the program text, and the order in which inter-

actions occur has an in
uence on the values returned by the pseudo-functions.

It is now clear why it is not su�cient to specify a static textual ordering for

interactions: every such ordering could be modi�ed by program transformations

(in particular, calls to the pseudo-functions may be consumed or duplicated by

reduction). The sequence of interactions is thus not fully determined, which not

only makes the program output (via puts) hard to predict but also a�ects the

results of program transformations by the uncontrolled transfer of objects from

the input-register to the program (via gets).

In the imperative case, this problem is avoided due to the total ordering of

all state transformations: the system state includes a program counter, which

uniquely determines the next instruction to be performed. This can be either

an input operation, an output operation or some other state transformation, but

there is never a choice. Of course, the program transformations in the functional
case could also be ordered totally in order to achieve deterministic system be-
havior in the presence of side-e�ecting primitive pseudo-functions, but this would

be a very high price to pay for input/output. Also, referential transparency and
thus the possibility to do equational reasoning independent of the context would
be lost. We conclude that side-e�ecting pseudo-functions do not �t well into the

functional framework, and we add the following constraint to our �rst problem
speci�cation:

The addition of input/output-facilities should not compromise char-

acteristic properties of functional programming languages such as ref-

erential transparency.

Our problem speci�cation still requires expressive power similar to impera-

tive input/output, but simply copying input/output-primitives from imperative
languages would not allow us to meet the additional constraint. So, we may start

from scratch and ask: how do we get something into or out of a functional pro-

gram? The answer seems to be quite simple because this is what functions are

about { mapping input to output { but, as we will see, there are still some prob-

lems to be solved and design decisions to be made. From now on, we will use a

�xed set of very simple problems to investigate the di�erent syntactic constructs

of each proposed input/output-system. The example problems are

1. a simple login procedure: The user is prompted for his name, enters the
name and is greeted by the system. This is intended to illustrate the basic

input/output-constructs.

2. a simpli�ed two-player dialog: Two players log into a system and enter a

dialog, which is not modeled in detail, but simply echoes the names of both
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players. This uses the login procedure in a larger context and is intended to

illustrate the means for composition of programs involved in input/output.

3.3 Utilizing function parameters and values

A direct way of getting computational objects in and out of a function is to pass

them via the function's parameters and via the function value, respectively. The

same scheme could be used to embed a functional program (as a function from

its input to its output) into an environment (cf. �gure 3.2).

start bmainc jj < string; out >

7! (main string) jj < 2; out >
C[ expr ] jj < in; out >

7! C[ expr` ] jj < in; out >; if expr ! expr`
string jj < in;2 >

7! done jj < in; string >

Figure 3.2: Functional programs as functions from input to output

Multiple inputs and outputs may be collected in data structures, and since

a total order on the inputs and outputs is needed, the natural choice is to pass
both inputs and outputs in lists, the functional language equivalent to sequences.

The good thing about this approach is that there are no explicit input/output-
operations that could be in con
ict with each other or with reduction steps. The
inputs are implicitly provided on program startup and the outputs are generated

implicitly after program termination. The bad thing is that the complete se-
quence of inputs has to be �xed before the program is executed, and the complete

sequence of outputs becomes accessible only after the execution has terminated.

3.3.1 Streams

The idea sketched above seems to be based on the right data dependencies (inputs

are supplied as parameters to the program, and outputs are simply the program
value), but has inconvenient synchronization properties, because reduction starts

only after all inputs are available, and output starts only after reduction has
terminated. This is mainly due to overly pessimistic strictness assumptions, as-

suming that all inputs are needed to start any reductions, and that no outputs

can be generated before reduction has terminated. These assumptions are unre-
alistic: in an interactive environment, it should be possible to add elements to
the sequences of inputs and outputs continually, i.e., there should be streams of

inputs and outputs instead of �xed sequences. For instance, in a typical session
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with an interactive program, the program is �rst started, then produces output

to prompt for inputs which are provided only afterwards, and the program con-

tinues with some computation based on the input data. This process may be

repeated ad in�nitum.

Character streams

With non-strict evaluation, and with non-strict list constructors in particular,

possibly in�nite streams can be represented as partially unevaluated lists. Ini-

tial segments of the output list may be produced without full evaluation of the

output list (which is the value of the program's main function applied to the list

of inputs), and the evaluation of the program's main function may start before

its input list has been even partially evaluated, i.e., before any inputs have been

made. Re�ning the parameter/value-idea with non-strict evaluation and charac-

ters as input/output-objects leads to a system known as character streams (cf.

�gure 3.3), in which input, output, and reduction can take place in any order as
long as the data dependencies are respected. The functional program takes as its
parameter a non-strict list of characters (denoted by the special variable in here)

from an input device and produces as its result a non-strict list of characters for
an output device.

start bmainc jj < in; out >

7! (main in) jj < in; out >

C[ expr ] jj < in; out >

7! C[ expr` ] jj < in; out >; if expr ! expr`
expr jj < char; out >

7! [ in (char : in) ] expr jj < 2; out >
expr jj < eos; out >

7! [ in [ ] ] expr jj < 2; out >
char : expr jj < in;2 >

7! expr jj < in; char >

[ ] jj < in;2 >

7! done jj < in; eos >

Figure 3.3: Input/output with character streams

If su�cient resources are available, the transformation rules of �gure 3.3 can
be applied in any order (even non-sequentially). However, a minimal demand-

driven approach to transformation is also possible, in which the demand for the
output stream drives the entire evaluation process. The demand for characters in

the output stream (�fth rule) causes further reductions (second rule), and if these

reductions depend on characters in the input stream, further inputs are requested
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from the input device (third rule). In any case, both the input operations and the

output operations are totally ordered, but otherwise there is only a partial order-

ing among reductions and input/output interactions, which is solely determined

by data dependencies. Note that reductions may proceed as long as they do not

depend on the value of in, in particular, in may be duplicated or consumed due

to reductions (inside the program, in is a free variable that represents the not

yet available part of the input stream). Therefore, all occurrences of in need to

be substituted when further input becomes available. Note also that neither the

input nor the output stream are ever modi�ed: their values are only re�ned when

further inputs or outputs become available. Stream communication is terminated

by special constants eos (end of stream), which correspond to empty lists ([ ])

in the list representation of streams (note the di�erence to 2, which represents a

not yet �lled register).

main input = "What is your name? "

++ (hello (hd (lines input)))

hello name = name ++ "nn"
++ "Hello, " ++ name ++ "!nn"

Figure 3.4: The login example with character-streams

Using character-streams for input/output, the login procedure (�gure 3.4)
can be described basically as the concatenation of the output strings, which

comprise a prompt, the username (to echo the input), and the greeting (which
also includes the username). In addition to list and string concatenation (++),
the following functions are assumed to be prede�ned: lines takes a string of

characters and splits it into a list of strings, using the newline-character '\n'

as a delimiter; hd and tl return the �rst element and the rest, respectively,

of a binary list. For convenience, the input stream, which is available as the

parameter input of main, is restructured into a list of lines. Only the �rst line of

input ((hd (lines input))), which carries the username, is passed on to hello.

Note how the name is echoed in the output string to make sure that the function

value depends on the input, which is therefore requested before the "Hello, "-

part of the greeting is printed. Also, input cannot be inspected by pattern

matching in main, because if the function body depended on the structure of the

input parameter, input would be requested before the prompt was written.

While hello can be directly reused for the dialog example (�gure 3.5), a small
modi�cation to login (the former main) is necessary. The conversion of the input

stream into a list of lines only needs to be done once, in the new main-function,

so login already gets a list of input lines (ls) as its parameter. In addition to
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the output string, login also returns the name that has been read and all but

the �rst line of the input stream. The latter information is needed because the

calling function (main in this case) has no other possibility to determine what

part of the input stream has been read. The function main ties the parts together:

login is called once for each player, �rst with the complete list of input lines,

and then with the lines left over by the �rst call. The function dialog is called

with the lines left over by the second login and two usernames as parameters,

and the concatenated output of the calls to login and dialog is returned as the

value of main.

hello name = name ++ "nn" ++ "Hello, " ++ name ++ "!nn"

login ls = let name = hd ls

in (tl ls, "What is your name? " ++ (hello name), name)

dialog ls a b = "player A: " ++ a ++ " player B: " ++ b ++ "nn"

main input = let

ls = lines input

(ls1,out1,a) = login ls

(ls2,out2,b) = login ls1

in out1 ++ out2 ++ (dialog ls2 a b)

Figure 3.5: The dialog example with character-streams

Even though recursive de�nitions are given in the sequence in which the func-
tions are called, the sequence of interactions is determined solely by the data

dependencies (the value of main depends on out1, which depends on the value of

(login ls), etc.) and the demand for the output of main. The composition of
program parts involved in input/output is a tedious task and best hidden inside

a general composition function. However, to make this work, all subprograms

have to use a common interface, e.g., take the list of input lines as parameter

and return as function value a tuple composed of the unread input, the output

and some return value. Note that the only function in the example using this

interface is login. The other functions, including those mapping an input stream
to an output stream, could not be be composed this way.

Character streams can be quite convenient for pure text processing, but the

style has a number of drawbacks: it is not very 
exible, as there is no simple way

to redirect input or output to other but the prede�ned devices or to communicate
something else but strings of characters, e.g., to indicate status conditions. The

way in which interactions and reductions are interleaved requires the use of a
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demand driven reduction strategy. This, in turn, makes the order of events

sometimes hard to predict, especially the synchronization of input and output

operations. And last, but not least, functions mapping input to output streams

are not directly composable, so that the basic element of this input/output-style,

functions from streams to streams, cannot be the basic building block for program

construction.

Request-/Response streams

The major causes of the low 
exibility of character-streams are that only the

objects of interaction (characters) are embedded into the functional programs,

whereas interactions themselves happen implicitly by mapping register contents

to characters and back. However, now that an orderly form of communication

between programs and their runtime environment has been found, it can also

be used to exchange more complex data objects. The idea is to use the stream

of data structures from programs to the environment to describe requests for

interactions and to use the reverse stream to describe responses of interactions.
This allows to address di�erent devices in the stream of requests or to indicate
success or failure of interactions directly in the stream of responses. Since both

input and output devices can be addressed in the request stream, synchronization
of input and output operations can also be guaranteed, avoiding a whole class of

nasty problems.

data Request = PutString String

| GetString

| ..

data Response = SUCCESS String

| FAILURE String

main :: [Response] -> [Request]

Figure 3.6: Data types for request/response streams

Figure 3.6 presents the data structures used for requests and responses: the

constructs of the request stream describe the interactions requested (kind of inter-

action, device, data), while the constructs of the response stream contain either
the result of a successful interaction or a message describing the failure of an

interaction.

The transformation system for request/response-streams is given in �gure 3.7.

The special variable resp represents the not yet available responses, but the most

important di�erence in comparison to �gure 3.3 is that input and output oper-
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start bmainc jj < in; out >

7! (main resp) jj < in; out >

C[ expr ] jj < in; out >

7! C[ expr` ] jj < in; out > ; if expr! expr`

GetString : expr jj < string; out >

7! [ resp ((SUCCESS string) : resp) ] expr jj < 2; out >
GetString : expr jj < eos; out >

7! [ resp ((FAILURE "eos reached") : resp) ] expr jj < eos; out >

(PutString string) : expr jj < in;2 >

7! [ resp ((SUCCESS "PutString") : resp) ] expr jj < in; string >

[ ] jj < in;2 >

7! done jj < in; eos >

Figure 3.7: Input/output with request/response streams

ations are no longer treated as di�erent implicit transformations, but simply as

services requested from di�erent devices. Indeed, all interactions are explicitly
requested through the program's result value and cause responses to be substi-
tuted for what was the program's parameter on startup (resp). While the list

of responses is never terminated in this description, input operations may fail
when no further input is available (fourth rule). All interactions are speci�ed as

synchronous here (causing immediate responses), but asynchronous interactions
could be integrated into this system easily.

main resp =

[ PutString "What is your name? ", GetString ] ++

(hello (tl resp))

hello ( SUCCESS name : _ ) =

[ PutString ("Hello, " ++ name ++ "!nn") ]

Figure 3.8: The login example with request/response streams

In the modi�ed login function (�gure 3.8), all interactions are explicitly re-
quested in the result stream, and the success of the input operation is checked

by pattern matching (it would be possible to add rules dealing with unsuccessful
interactions). The program is de�ned as a list of the interactions involved, and

no restructuring of the input is necessary to get at the �rst line of input text.

Still, the unprocessed part of the responses needs to be passed on to hello.
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The modi�cations needed for the dialog example (�gure 3.9) are similar to

those in the character stream version: login returns the unprocessed part of the

response stream and the username as additional parts of its function value, and

main does the necessary stream plumbing.

hello (SUCCESS name: rest) =

(tl rest, [PutString ("Hello, " ++ name ++ "!nn")],name)

login resp =

let

req1 = [PutString "What is your name? ", GetString]

(resp2,req2,name) = hello (tl resp)

in (resp2,req1++req2,name)

dialog a b resp =

(tl resp,[PutString ("player A: "++a++" player B: "++b++"nn")])

main resp = let

(resp1,req1,a) = login resp

(resp2,req2,b) = login resp1

(resp3,req3) = dialog a b resp2

in req1++req2++req3

Figure 3.9: The dialog example with request/response streams

Request/response streams are more 
exible (in the kinds of interaction pro-
vided) than simple character streams, but share with them most of their other

problems: a demand driven reduction strategy is still necessary, and though input

and output are synchronized, in this variant it is the synchronization of requests
and responses which is prone to errors. Every attempt to examine a response

before the corresponding request has been generated would cause the program to

deadlock. Furthermore, functions written in this style are still not composable

without modi�cations, and programs tend to get cluttered with the details of

stream handling, which restricts 
exibility (in program construction).

When using this approach, it should be possible to write programs for many

typical input/output-problems, but an additional level of abstraction is needed to
hide the details of stream handling and to ease up the composition of programs

involved in interactions. However, since the style is cumbersome to use without

abstractions, it may be better to support the abstractions directly. Before we
pursue this idea further, we investigate an alternative way of utilizing function

parameters and function values to solve the input/output-problem.
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3.3.2 Environment passing

So far, function values have been used either directly to hold the list of outputs

or a list of interaction descriptions, and the parameters have either been the list

of inputs or the list of interaction results. The second variant can be thought of

as describing a communication between the program and an operating system,

where only the latter has access to the system state. Alternatively, the program

could access the system state directly or, to be precise, a representation of the

system state. The basic idea is that functional programs describe transformations

of the system state, albeit at a coarser, more abstract level than it is common in

imperative languages. Functions get a representation of the current system state

as parameter and return a representation of a new system state as their value (cf.

�gure 3.10).

start bmainc jj < in; out >

7! (main (in; out)) jj < 2;2 >

C[ expr ] jj < 2;2 >

7! C[ expr` ] jj < 2;2 >; if expr ! expr`
(in; out) jj < 2;2 >

7! done jj < in; out >

Figure 3.10: State transformations with functional programs

However, this simple world-in/world-out model is not su�cient in many re-
spects. The �rst problem is that the interactions are again restricted to program
startup and termination. Non-strict evaluation would not help much in this case,

unless inputs and outputs are represented as non-strict streams in the represen-
tation of the system state. What is needed instead is a way to let the functional

program describe a state transformation and still be active (and thus able to gen-

erate further transformations of the state in response to changes made by other

agents acting on the state, e.g., input devices) after the interaction.

One possible way to achieve this is to track the modi�cations of the system
state representation during reduction and to re
ect every change immediately in
the state of the concrete system, e�ectively synchronizing transformations of the

system state with program transformations that modify the state representation1.

Whenever the program modi�es the representation (by an output operation), the

state of the concrete system has to be updated, too, and whenever the program
executes an input operation, it becomes aware of any modi�cations of the system

state (and its representation) caused by external agents (cf. �gure 3.11). Once

1Barendregt [Bar96a] nicely characterized this as the umbilical cord between (formerly autis-

tic) functional programs and the outside world.

50



again, input and output operations are just a special kind of state transforma-

tions.

start bmainc jj < in; out >

7! (main (in; out)) jj < in; out >

C[ expr ] jj < in; out >

7! C[ expr` ] jj < in; out > ; if expr ! expr`

UWC[ (getString (string; out)) ] jj < string; out >

7! UWC[ ((SUCCESS string); (2; out)) ] jj < 2; out >
UWC[ (getString (eos; out)) ] jj < eos; out >

7! UWC[ ((FAILURE "eos reached"); (eos; out)) ] jj < eos; out >

UWC[ (putString string (in;2)) ] jj < in;2 >

7! UWC[ ((SUCCESS "putString"); (in; string)) ] jj < in; string >

(in;2)) jj < in;2 >

7! done jj < in; eos >

Figure 3.11: Input/output with environment passing

There is still one problem to solve in order to make this approach work: if a
one-to-one correspondence between the representation and the real system state
has to be established, it is essential that there is always exactly one representa-

tion of the state of the outside world when the functional program attempts an
interaction. This is indicated in �gure 3.11 by the use of unique world contexts

(UWC). It is simply not possible (with current technology) to make any copies

of the hardware at program runtime or to annihilate (a copy of) the hardware.
There are several possible ways to solve this problem, but for now, we stick with

our current problem, input/output, and assume that the proper use of an envi-
ronment representation can be checked by a global analysis of the program text.
The representation of the current state of the environment is only passed as a

parameter to programs that have been checked this way. The types of the re-

spective parameters are annotated as unique (*) and the type for environment

representation is *World.

As shown in �gure 3.12, primitive interactions are no longer described by

data structures, but are represented as primitive functions. Just as the primitive

pseudo-functions of our �rst approach, their evaluation may have side-e�ects on

the global system state, but this cannot cause problems here because all side-

e�ects are re
ected by transformations of the local state representation. Fur-

thermore, there is only a single representation of the state in the whole program,

and every primitive interaction takes one state representation as a parameter and
returns another one as part of its function value, so the order of interactions is

fully determined by data dependencies. In contrast, other program transforma-
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putString :: String -> *World -> *(Response, *World)

getString :: *World -> *(Response, *World)

data Response = SUCCESS String

| FAILURE String

main :: *World -> *World

Figure 3.12: Data types for environment passing

tions are still only partially ordered, even though this 
exibility may be restricted

by the need to comply with the unique world requirement.

Using a uniqueness-checked environment passing style, the login procedure
can be speci�ed as a sequence of environment accesses, each one returning a
modi�ed environment and an additional value (the successful execution of each

input/output-operation is again checked by pattern matching). The ordering of
interactions is expressed through data dependencies only (regarding the *World

values wi), but the recursive de�nitions re
ect the sequence of interactions (cf.
�gure 3.13).

main w0 =

let

(SUCCESS op1 , w1) = putString "What is your name? " w0

(SUCCESS name, w2) = getString w1

(SUCCESS op3 , w3) = putString ("Hello, " ++ name ++ "!nn") w2

in w3

Figure 3.13: The login example with environment passing

Only a small modi�cation is needed to reuse this function for the dialog ex-
ample (the name has to be included in the function value), and the composition

of programs involved in interactions is reasonably simple, too (cf. �gure 3.14),

if both primitive and complex interactions are de�ned to use the same interface.
They take objects of type *World as parameters and return tuples consisting of
results and possibly modi�ed objects of type *World as their values.

The main disadvantage of this style are the ubiquitous values of type *World.

The explicit environment passing that gives this style its name can be very tedious,

especially under the restrictions of a static uniqueness type checker. Just like the

request/response streams, uniqueness typed explicit environment passing seems
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login w0 =

let

(SUCCESS op1 , w1) = putString "What is your name? " w0

(SUCCESS name, w2) = getString w1

(SUCCESS op3 , w3) = putString ("Hello, " ++ name ++ "!nn") w2

in (name,w3)

dialog a b w =

putString ("player A: "++a++" player B: "++b++"nn") w

main w0 = let

(a,w1) = login w0

(b,w2) = login w1

in dialog a b w2

Figure 3.14: The dialog example with environment passing

to be expressive enough for many typical input/output-problems, but programs
written in either of these styles are overloaded with unnecessary details. This

should not pose great di�culties in a functional language: once the basic problem
has been solved, it should always be possible to de�ne suitable abstractions that
hide the details of stream handling or environment passing. However, it is possible

to devise a style of interaction that uses such abstract constructs as primitives.

3.4 Towards abstract descriptions of interactions

From hindsight, we have emphasized the problems of sequencing and composition

of interactions in our examples and discussions, and we can try to address these
two issues directly when de�ning abstractions for input/output. The idea is that

programmers are only interested in primitive interactions and in means for the

construction of complex interaction-based programs, whereas the details of how
sequencing of interactions is achieved (via stream concatenation or via function

composition) are better hidden in the de�nitions of more abstract operations. As
mentioned before, such abstractions could also be de�ned on top of any of the

previously discussed input/output-schemes to avoid (or hide) their problems.

The major problems with request/response streams are synchronization prob-

lems between requests and responses, clumsy stream handling and problems with
composition. The common root of all these problems is the idea that there should
be a list each for all requests and all responses, which are syntactically completely

unrelated to each other. It has already been noted that this approach describes
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a communication between the program and an operating system, and in this

view, the possibly in�nite streams simply represent communication bu�ers of un-

bounded capacities. Moreover, these bu�ers are fully visible in the program and

have to be manipulated explicitly, resulting in a global view of communication

that is not much easier to handle than the direct manipulation of global system

states. This situation can be simpli�ed greatly if the capacities of both commu-

nication bu�ers are restricted to one: both processes are then tightly coupled,

though not completely synchronized, and programs only have to deal with one

pair of request and response at a time, leading to a local view of communication.

The major problems with the environment passing scheme are caused by the

ubiquitous environment representations and by the uniqueness constraints im-

posed on them. Both result from the decision to internalize a representation of

the outside world into functional programs, and to let the interactions between

the internal representation and the outside world happen behind the scenes. If, in-

stead, we decide to model the context-sensitive embedding of functional programs
into external runtime environments explicitly, programs have to pass control to

this environment for each transformation of the system state. The environment
performs the state transformations (including those caused by other agents) and

passes control back to the functional programs afterwards.

3.4.1 Result continuations { sequencing individual inter-

actions

Following either of the two derivations above, we arrive at an approach to in-

put/output that focuses on individual interactions and their composition. The
result of a program invocation is the description of only one interaction request
and of the intended continuation of computation after the interaction (hence

the name result continuations). The continuation expects the response to this

particular interaction request as its only parameter and is thus a continuation

function.

To summarize the modi�cations (cf. �gure 3.15): the result of evaluating

main is a data structure that describes the �rst interaction request and contains

a continuation function which will be applied to the result of the �rst interaction.

The body of the continuation is recursively constructed in the same way, possibly
terminated by the empty continuation, Done. So, instead of one function dealing

with many responses, as in the stream-based approaches, there are many func-

tions dealing with one response each. Compared with environment passing, the
program does not include and modify a description of the outside world, but ex-

plicitly describes its requests for interaction to an external environment in which
it is embedded.

The transformation system (�gure 3.16) is greatly simpli�ed by this modi�ed

approach to input/output: no unique contexts or special variables are needed.
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data Result = PutString String (Response -> Result)

| GetString (Response -> Result)

| ..

| Done

data Response = SUCCESS String

| FAILURE String

main :: Result

Figure 3.15: Data types for result continuations

Indeed, interactions with the system state occur only if the descriptions of these
interactions (result continuations) are embedded in an empty program context,

i.e., if they are textually located at the border between the functional program
and its environment.

start bmainc jj < in; out >

7! main jj < in; out >

C[ expr ] jj < in; out >

7! C[ expr` ] jj < in; out > ; if expr ! expr`
(GetString cont) jj < string; out >

7! (cont (SUCCESS string)) jj < 2; out >
(GetString cont) jj < eos; out >

7! (cont (FAILURE "eos reached")) jj < eos; out >

(PutString string cont) jj < in;2 >

7! (cont (SUCCESS "PutString")) jj < in; string >

Done jj < in;2 >

7! done jj < in; eos >

Figure 3.16: Input/output with result continuations

The speci�cation of the login procedure (�gure 3.17) becomes even simpler in
this style, and the continuation functions seem to be particularly well suited to

describe the `what to do next?'-idea of interaction sequencing (wildcard patterns
`_' are used to express that results of PutString-interactions are not inspected).

Nevertheless, the function has to be rewritten before it can be reused for the

dialog example (�gure 3.18). Instead of being terminated with Done, it takes an

extra continuation parameter (cont) that is applied to the result of the login-
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main = PutString "What is your name? " n_->
GetString nSUCCESS name->

PutString ("Hello, " ++ name ++ "!nn") n_->
Done

Figure 3.17: The login example with result continuations

interaction (the username).

login cont = PutString "What is your name? " n_->
GetString nSUCCESS name->

PutString ("Hello, " ++ name ++ "!nn") n_->
cont name

dialog a b cont =

PutString ("player A: "++a++" player B: "++b++"nn") n_->
cont

main = login na->
login nb->
dialog a b n_->
Done

Figure 3.18: The dialog example with result continuations

Whereas the composition of primitive interactions is built into the syntax

of result continuations, complex programs involved in interactions need to be

rewritten into a continuation passing style before they can be composed. Com-

pared with the explicit environment passing style, the gain seems to be small,
as environment passing has been replaced by continuation passing, but at least

these continuations do not have to be unique. Still, the need to pass them around

explicitly is annoying, and is usually avoided by de�ning a general composition
operator for interactions.

A closer look at the primitive constructs of this style reveals the causes of
this problem. The primitive constructs are not elementary: each primitive re-

sult continuation describes both an elementary interaction and a continuation

function. Using only the basic constructs, it is simply not possible to specify an
interaction without explicitly mentioning what should happen after it. Since this

information is usually not available where the primitive interactions are used,
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but belongs to other program parts, the continuations need to be passed as pa-

rameters when program parts are composed together. This leads to continuation

parameters scattered all over the program text. The continuation part is similar

for all primitive constructs, but is repeated in each of them, and composition

should work equally well for primitive interactions and for complex interaction

sequences, but it does not.

3.4.2 Monadic style { composing scripts of interactions

As a �rst step towards better support for program composition, the basic con-

structs of the result continuation style can be broken up into their elementary

parts, the �rst one a description of one particular primitive interaction and the

second one a composition with a continuation function. The �rst part can be

derived from the corresponding result continuation construct by simply omitting

the continuation parameter, while the second part is the same for all interac-
tions, so that one additional construct su�ces to describe the same information.
The new construct is called Bind, as it is used to bind together an interaction

description with a continuation function (cf. �gure 3.19).

data IO = PutString String

| GetString

..

| Bind IO (Response -> IO)

| Unit Response

data Response = SUCCESS String

| FAILURE String

main :: IO

Figure 3.19: Data constructors for monadic style

Of course, the evaluation of the two parts has to be separated, too, for oth-
erwise the change in syntax would not make any di�erence. The second new

construct, Unit, is needed to describe the intermediate expression between the

two steps: the interaction has happened and has left a return value, which is the
parameter of Unit. (Unit x) is itself an interaction description and may thus be

combined with a continuation using Bind, but it describes an identity interaction,
i.e., performing Unit x does nothing but returning x. With these prerequisites, it

is possible to describe the two evaluation steps: �rst, the interaction description,

which is the �rst parameter of a Bind-construct, is performed and the return
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value is embedded into a Unit-construct. The Bind-construct itself is only trans-

formed if its �rst parameter is such a Unit-construct, from which the return value

is taken and passed as a parameter to the continuation function.

So far, it may seem as if this was only a reformulation of the result contin-

uation style in more elementary steps. However, having isolated the elementary

constructs and evaluation steps, it becomes possible to combine them in new

ways, thus creating a more 
exible scheme of programming with interactions.

The important insight here is to realize that every complex interaction termi-

nates with a primitive one and will therefore eventually be transformed into a

Unit-construct. Consequently, there is no reason to restrict the �rst parameter

of Bind to primitive interaction descriptions, and Bind can be used to compose

both primitive and complex interaction descriptions with continuation functions.

Formally, this can be speci�ed by giving the same status to the Bind-construct

as to the primitive interactions (cf. �gure 3.19). Informally, programs still return

data structures describing the interactions to be performed, but these struc-
tures are shaped like binary trees instead of binary lists (which was the case not
only with request/response-streams but also with result continuations), and this

greatly simpli�es the composition of complex interaction descriptions. The trees
are interpreted in depth-�rst traversals, performing each primitive interaction
in sequence. The construction of interaction descriptions by program transfor-

mations and their evaluation by interactions with the global system state are
interleaved, just as in the result continuation approach.

main = Bind (PutString "What is your name? ") n_->
(Bind GetString nSUCCESS name->

PutString ("Hello, " ++ name ++ "!nn") )

Figure 3.20: The login example with monadic data constructors

A �rst variant of the login speci�cation (�gure 3.20) looks very similar to
the result continuation version, with additional Binds to compose descriptions

of primitive interactions with continuation functions and no terminating Done.
The latter is important, because it means that no pre-emptive assumptions are

made about whether or not the interaction description will be composed with a

continuation.

Before we give the formal transformation system for this input/output-style,
we use the opportunity to make some convenient syntactic changes. In particular,

we introduce a symbolic in�x operator (>>=) for Bind and rename Unit to return.
All interactions are given as constructors of an abstract data type IO. We also

introduce a variant of >>= that ignores the intermediate return value of its �rst

parameter (>>). The modi�cations are summarized in �gure 3.21.
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putString :: String -> IO

getString :: IO

main :: IO

infix >>,>>=

>>= :: IO -> (Response -> IO) -> IO

return :: Response -> IO

>> :: IO -> IO -> IO

a >> b = a >>= n_-> b

Figure 3.21: Data types for monadic style

The advantage over the algebraic data type used before is that we have bet-

ter control over the means for inspection of interaction description (no pattern
matching over the internal structure of IO). We therefore abstract from the con-
crete representations of interaction descriptions in functional programs.

start bmainc jj < in; out >

7! main jj < in; out >

C[ expr ] jj < in; out >

7! C[ expr` ] jj < in; out > ; if expr! expr`
MC[ getString ] jj < string; out >

7! MC[ (return (SUCCESS string)) ] jj < 2; out >
MC[ getString ] jj < eos; out >

7! MC[ (return (FAILURE "eos reached")) ] jj < eos; out >

MC[ (putString string) ] jj < in;2 >

7! MC[ (return (SUCCESS "putString")) ] jj < in; string >

MC[ ((return result) >>= cont) ] jj < in; out >

7! MC[ (cont result) ] jj < in; out >

(return expr) jj < in; out >

7! done jj < in; eos >

Figure 3.22: Input/output in monadic style

With these modi�cations, the transformation system is de�ned in �gure 3.22.
Apart from the new monadic contexts MC, the rules for the primitive inter-

actions are simpli�ed, and the common behavior of passing on an intermediate

result to a continuation function is de�ned in a separate rule for >>= (sixth rule).
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The use of monadic contexts accounts for the new composition structure of in-

teraction descriptions: whereas the �rst interaction is described in the outermost

constructor of a result continuation, it is described in the �rst leaf of a binary tree

with monadic style constructs. This is formalized in the de�nition of monadic

contexts for interactions:

MC = [ ] j (MC >>= expr)

A speci�cation of the login procedure using the modi�ed syntax is presented in

�gure 3.23. Note how the program is reduced to the essential tasks of describing

the primitive interactions and their composition, and how the composition of

interaction descriptions also speci�es their relative ordering.

main = putString "What is your name? " >>

(getString >>= nSUCCESS name->

putString ("Hello, " ++ name ++ "!nn"))

Figure 3.23: The login example with monadic style input/output

This interaction description can be used as part of more complex descriptions
without modi�cations, and only an identity interaction carrying the username

needs to be added to make the name available as an intermediate result. Compo-
sition of both primitive and complex interaction descriptions is simply done by
>> or >>=, and no additional syntactic baggage for environment, continuation or

stream handling is needed to specify the dialog program (cf. �gure 3.24).

login = putString "What is your name? " >>

getString >>= nSUCCESS name->

putString ("Hello, " ++ name ++ "!nn") >>

return name

dialog a b =

putString ("player A: "++a++" player B: "++b++"nn")

main = login >>= na->
login >>= nb->
dialog a b

Figure 3.24: The dialog example with monadic data constructors
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Compared with request/response streams, result continuations, and environ-

ment passing, monadic input/output seems to be a more declarative way to spec-

ify interactions. Nothing needs to be said about how other language constructs

(such as functions and their composition or lists and their concatenation), lan-

guage properties (strict versus non-strict), or features of type systems (uniqueness

typing) have to be used to achieve sequencing and composition of interactions.

Nor are programs burdened with low-level details (e.g., of stream handling) in

order to de�ne what should be primitive interactions. Programs using monadic

style just describe which interactions are to be performed in which order.

The notation for interactive programs written in the monadic style is irritat-

ingly close to the notation used in imperative languages. This should not be too

surprising, however, since the imperative notation was designed for the purpose

of interaction (with the state of a machine, initially; with the state of a store

of box variables, later). Note also that the monadic notation only includes the

usual imperative notation for the most elementary programs. Beyond this, it

allows various possibilities for program construction that are not available with
usual imperative notation. For instance, descriptions of interactions are �rst-
class data objects, can be stored in data structures, or dynamically composed

into larger interaction scripts. Moreover, functional abstraction can be used to
de�ne control abstractions that, in conventional imperative languages, need to
be built into the language de�nition. Functions that return interaction scripts

correspond to procedures, conditional, interaction-valued expressions correspond
to conditional statements, and di�erent variants of interaction loops can easily

be de�ned via recursive functions. Of course, functions can also take interaction
scripts as parameters.

3.5 The concept of monads

We have introduced the constructs of the monadic programming style as a declar-

ative way of describing programs involved in interactions, but have not yet de-
scribed the concept of monads. The concept originated in category theory, and

was employed by Moggi [Mog89b, Mog89a] to give a categorical semantics for

computational aspects of the �-calculus, especially if extended with additional
features and used as a tool in the study of programming languages. While Moggi

strived for an abstract view of programming languages on the semantic level,

Wadler [Wad92a, Wad92b] translated the ideas to the language level, which �-

nally turned monads into a widely used technique for structuring functional pro-

grams (cf. also [HC94]). Following [Wad92b], a monad in a functional language
is represented by a triple (M, unitM, bindM) consisting of a type constructor M

and a pair of polymorphic functions

unitM :: a -> M a

bindM :: M a -> (a -> M b) -> M b
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unitM has to be a left and right unit for bindM, and bindM has to be associa-

tive in order for such a structure to qualify as a monad (monad laws). The basic

idea of using monads, shared by semantic accounts and functional programming

techniques, is to distinguish between simple values and computations that return

values (but may have some additional computational e�ect). In functional lan-

guage terminology, this distinction is based on types, and the type constructor

M serves to describe the kind of computation. unitM allows to embed simple ex-

pressions into identity computations (returning the expressions without having

e�ects in the kind of computation considered), and bindM allows to compose a

computation and a continuation function to form a new computation.

In our case, the computations we are interested in are interactions with some

external environment that return expressions, and the monad in question consists

of a type constructor that forms the type of interaction scripts from the type of

expressions and the interaction constructors return and >>=. Whether or not

these two constructors obey the monad laws mentioned above depends in part on

the way in which the functional sub-system (de�ned by the transformation rule
given in �gure 3.22) is embedded into a larger system comprising other agents
(including, e.g., communication devices and other functional processes). If only

the rules of the functional sub-system are considered, the rule for >>= directly
de�nes return to be a left unit for >>=, and it follows from the same rule that
return is also a right unit. For associativity (of >>=) to hold, it is important

that the structure of an interaction script has no e�ect on the computation, so
that only the sequence of primitive interactions is important. This is true for the

functional sub-system: �rstly, by the use of monadic interaction contexts, the
�rst primitive interaction in a script is always executed �rst (regardless of and
without changing the exact structure of interaction scripts). And secondly, the

only rule for >>= (which eliminates a local part of the script structure to make
the next primitive interaction the �rst one) neither depends on nor changes the

state of the external input/output-registers.

What has made the concept of monads so successful, both in language se-
mantics and as a basis for functional programming techniques, is its generality:

simple structures, each consisting of a type constructor and two operations, bind

and unit, are suitable to model a large variety of language features, including

input/output, state transformations, exception handling, and non-deterministic

computations (cf. Wadler's papers for examples of functional programming tech-

niques involving these features, and Moggi's papers for examples of semantic ac-

counts of programming languages having these features). So these constructs do

not only abstract from the exact implementation of computations (as in our pre-

sentation of interactions) but also from the exact nature of e�ects (input/output,

state transformations, exceptions, . . . ). While there are other ways to address

each particular kind of computation mentioned above, monads provide a uniform,
abstract framework for the whole class, and the monad laws facilitate reasoning

about programs written in monadic style.
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3.6 Summary and related work

Starting from a very sketchy problem speci�cation, we have been able to develop

basic variants of all major approaches to input/output in purely functional lan-

guages. The steps from one style to the next are reasonably small and can be

derived from a careful analysis of the problems encountered. Though the his-

torical development may not have proceeded this way, the presentation shows

that language design does not necessarily need a 
ash of genius to solve problems

as new and fundamental as the one in question here. As there are still other

problems to be solved in the design of programming languages, we �nd this very

encouraging.

The recurring theme of the presentation of input/output-schemes for func-

tional languages in this chapter is the integration of context-sensitive transforma-

tion rules (that describe interactions of programs with an external environment)

with the context-free rules that describe the evaluation of functional programs.
A simple combination of both kinds of rules, by the use of pseudo-functions,

has proven to be inadequate as it invalidates characteristic properties of func-
tional languages and requires a total ordering on both kinds of rules in order
to guarantee deterministic sequences of interactions. Consequently, all other ap-

proaches limit the contexts in which interactions may occur, and connect the
ordering of interactions to the values returned by functional programs. Char-
acter streams fail to de�ne the ordering of input interactions relative to output

interactions, and request/response-stream, while correcting this shortcoming, do
not guarantee that there is a request for each response that is demanded during

program evaluation. Both stream-based approaches su�er from taking a global
view of communication (programs have access to lists of all interactions), while
the remaining approaches focus on individual interactions, thereby facilitating

the composition of programs involved in interactions. Environment passing is
a very 
exible scheme for input/output, because there are only few restrictions

for the contexts in which interactions may occur. However, interactions are not

explicitly distinguished from other program transformations, so that the context
restrictions extend to all kinds of transformations. Result continuations, on the

other hand, do make such a distinction, but are extremely restrictive about the

permissible interaction contexts. These have to be empty, causing a complete
program continuation to be packed into the description of each primitive inter-

action (contrast this with environment passing, where descriptions of primitive
interactions can appear almost anywhere in program continuations). Finally,

monadic style also separates interactions from other program transformations,

but considerably relaxes the restrictions on interaction contexts.

Just as a mathematical proof tries to make evident the truth of a theorem by
providing a derivation of the theorem from basic axioms by comprehensible steps,
our presentation of input/output-schemes as steps in a line of development tries

to make evident why current schemes of input/output are as they are, and which
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design decisions have lead to their current form. Not only does this help to un-

derstand these schemes and their relationships, it also gives con�dence that they

really ful�ll the problem speci�cation, and it shows which design questions would

have to be answered di�erently if one would set out to develop another style of in-

put/output. In the remainder of this section, we try to complete this conceptual

overview of the problems and solutions regarding functional input/output with a

brief account of the history of input/output in functional languages, and provide

some references to the actual work that has been done in this area. Note that,

though we hope to provide a rough overview of the history and diversity of the

topic, this section is not intended to include a complete list of references. Further

reference to historical material can be found in [HS89, JS89, Per91, Gor94, Sch93].

Since the early 1960s, side-e�ecting input/output-primitives have been used

as pseudo-functions in Lisp [MAE+66, Appendix F], a language with a strong

functional 
avor but imperative in nature2. Today, the ANSI Common Lisp

Standard [X3J94] still de�nes a sequential order of evaluation both for explicit

control structures and for the arguments of function calls. In contrast, the order
of evaluation is explicitly left unspeci�ed for the arguments of function calls in
the Lisp dialect Scheme [Cli91] { it is only constrained to be consistent with some

sequential order of evaluation. While this underspeci�cation does not facilitate
reasoning, it discourages programming styles that do rely on speci�c evaluation
orders, and liberates implementations from the need to guarantee a speci�c se-

quencing of side-e�ects for programs that depend on evaluation order (beyond
the call-by-value regime which is required by the Scheme report). Standard

ML [MTH90, MT91] is another modern functional language that uses pseudo-
functions for input/output and its de�nition has to be explicit about the total
order of evaluation for each and every syntactic construct (including records and

collections of declarations) in order to guarantee a deterministic semantics. Note
that some of these languages refer to streams to describe the sequences of input

and output items, but use side-e�ecting pseudo-functions to get items from in-

put streams or to put items into output streams. All these languages are not
referentially transparent.

Streams as a basis for the formal de�nition of input/output were proposed as

early as 1965 by Landin [Lan65], who used �-abstractions as non-strict contexts

for unevaluated parts of streams (his correspondence between Algol 60 and the �-

calculus was based on an SECD-machine extended with imperative features; thus

the order of evaluation was de�ned through a call-by-value regime towards weak

head normal forms). However, he noted the problems of abstracting over expres-

sions that may not have weak head normal forms under a call-by-value regime.

It took until the late 1970s before Henderson and Morris [HJHM76] presented

2Contrary to common belief, Lisp was never intended as an implementation of the �-calculus

(cf. [McC81]), and despite McCarthy's motive to `allow proofs of properties of programs using

ordinary mathematical methods' and the existence of pure Lisps, the main line of the Lisp

family of languages relied on side-e�ects for e�ciency reasons.
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a lazy evaluator that made Wadsworth's call-by-need evaluation regime [Wad71]

available for a purely functional subset of Lisp, providing better means to han-

dle potentially in�nite streams (cf. also [FW76]). Soon afterwards, Henderson

[Hen80] explored the potential of streams and lazy evaluation and described net-

works of functional processes communicating via potentially in�nite streams. In

the following years, attempts to give (mostly) functional speci�cations of operat-

ing systems and networks of functional processes became the driving forces that

lead to the speci�cation and implementation of input/output-systems based on

streams for purely functional languages (for further references, cf. section 4 of

[Sch93], and also [JS89]).

Just as stream-based approaches, continuations appeared �rst in formal de-

scriptions of programming languages. In the early 1970s, Strachey andWadsworth

used continuations to describe imperative language features in denotational se-

mantics [SW74]. While Wadsworth coined the name `continuation', the concept

of continuation functions was discovered several times under di�erent names (cf.
[Rey93] for an account of this phenomenon). The translation of continuation

functions from semantics to functional languages was simple3, and they were
soon put into use to simulate imperative features in Scheme by Steele and Suss-

man [GLSS76] (who also note that continuation functions have already been used
by Church [Chu51] to model data structure selectors in the �-calculus). How-
ever, continuations were not readily accepted as a means to model input/output

in purely functional languages.

In the late 1980s, programming practice indicated that the seemingly elegant
stream based approaches were rather ill suited for the speci�cation of complex

systems, and abstract combinators were developed to hide the details of stream
plumbing, thus avoiding some of the possible problems in program development.
For instance, Thompson [Tho90] presented such a set of combinators as `the ba-

sis for a disciplined approach to writing [interactive programs]'. His combinators,

de�ned on top of a stream-based input/output-scheme, had some similarities to

the constructs of a monadic style of input/output{ there was a dedicated type of
interactions, a sequential composition operator for interactions, and functions to
read and print characters. The crucial point here is that the second parameter of

the sequential composition operator was a continuation function. According to

[Gor94, chapter 1.2] and [HS89, section 1.1], several other continuation-based ap-

proaches were in use during the 1980s. It was Perry [Per91], who coined the term
`result continuation' and implemented them as the basic input/output-mechanism
in Hope+C. Nevertheless, the apparent simplicity of stream-based approaches and

their close relation to lazy evaluation prohibited a general switch from stream-

to continuation-based input/output-schemes. For instance, Jones and Sinclair
[JS89] note that `Result continuations are very similar, and possibly identical to

3although e�cient implementations were needed for the tail calls that occur frequently in a

continuation passing style of programs (cf. [GLSS76])
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what can be provided by a suitable packaging of streams.' (emphasis added),

but continued: `Overall, we judge that streams provide the best workable ba-

sis for an I/O architecture at present'. Similarly, Hudak and Sundaresh [HS89],

who compared the expressiveness of both styles and gave translations between

them, note that `the continuation style is often easier to use and the resulting

programs easier to read', but then go on to specify the input/output-system of

Haskell, which was based on request-/response-streams. They comment: `This

does not mean that streams are the preferred programming model, but just that

they are considered simple and general enough to be designated as primitive'. A

continuation-based input/output-system was provided as a layer of abstraction

on top of request/response-streams.

Finally, monads were proposed to address several related problems in a uni-

form way (cf. section 3.5). This time, the transfer of tools for the de�ni-

tion of language semantics to the domain of functional programming proceeded

rather rapidly: Moggi's categorical semantics of computational �-calculi [Mog89b,

Mog89a] appeared in 1989, Walder's translation of the concept into a functional
programming technique �rst appeared in 1990, and was re�ned [Wad92a] and sim-
pli�ed [Wad92b] in 1992. In 1993, Peyton Jones and Wadler [PJW93] presented

`a new model, based on monads, for performing input/output in a non-strict,
purely functional language. It is composable, extensible, e�cient, requires no ex-
tensions to the type system, and extends smoothly to incorporate mixed-language

working and in-place array updates.'. Since they also outlined an e�cient im-
plementation scheme, imperative functional programming (the title of the paper)

based on monads was rapidly accepted as `the' new approach to input/output
in purely functional languages. After a period of uno�cial extensions to Haskell
implementations, the Haskell speci�cation switched to monadic input/output as

the basic scheme with version 1.3 of the Haskell report [PH96] in 1996.
Independently, the Clean [PvE97] group adopted an environment passing style

for input/output. This was made feasible by Clean's static uniqueness type in-

ference system [BS95], which allows to check the single-threaded use of envi-
ronments statically. The approach is described in Achten's PhD thesis [Ach96],

where several extensions and applications are also presented. Most notably, an

event-driven, graphical I/O-system is developed, which allows a declarative ap-

proach to the speci�cation for graphical user interfaces in Clean. The unique

environment is hierarchically decomposed into unique sub-environments (e.g., for

the �le system and the devices of the graphical user interface), and interactions

with each of these sub-environments can proceed independently of each other

(the type system ensures that programs re-compose the sub-environments to a

complete environment before they terminate).
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Chapter 4

Module Systems for Functional

Languages

Modular programming can be characterized as a style of programming that orga-

nizes large programs into smaller structures in such a way that they are easier
to understand, to maintain, and to reuse. There is a simple intuitive description

of modules, with which most programming language designers and programmers
will agree, namely that

modules are building blocks for complex programs,

but everybody seems to have his or her own interpretation of what a building
block should be and what kind of linguistic support for modular programming

should be provided. Furthermore, as outlined in the introduction, the basic
understanding of what a program is has developed over time and will continue
to do so in the future. Of course, this a�ects our ideas of what program building

blocks are and how they may be composed to form complex programs. Last,
but not least, the development of higher level programming languages allows to

specify solutions to what would have been called complex problems before in

terms of rather simple programs, thus providing the same kind of complexity

reduction that modules should o�er.

However, to quote from [Dij72], `The increased power . . .made solutions fea-

sible that the programmer had not dared to dream about a few years ago. And
now, a few years later, he had to dream about them and, even worse, he had to

transform such dreams into reality!'. Dijkstra talked about the increased power

of the hardware and tried to identify the origins of the so called software crisis.
Nevertheless, the same argumentation applies just as well to our situation today,

and the same issues of program complexity that led to the development of lin-
guistic support for modular programming around 1970 force us to reinvestigate

these topics today. The complexity of the problems we attempt to solve using

modern programming languages has increased up to a level that no longer seems
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to be adequately compensated by the higher level of abstraction supported by

these languages. Indeed, an end of the software crisis has never been declared.

In contrast to the situation for input/output, we cannot treat language sup-

port for modular programming as an isolated problem in the domain of functional

languages. We cannot even provide some out-of-the-box requirement speci�ca-

tion. Any idea of what should make up a program building block re
ects the

current state of the art with respect to programs, programming languages and

modular program design. Therefore, a historical approach to the topic seems

advisable.

4.1 Some highlights in the history of modular

programming before 1980

It is di�cult to pin down the origin of modules, especially in view of the various

possible de�nitions. Modular programming seems to have been around for a long
time without receiving particular attention or even speci�c language support.
Many experienced programmers knew that it was useful to decompose a problem

into simpler ones during the program design phase. However, the conceptual
gap between program design and the actual coding on some computer equipment

was so wide that they did not even think of getting support for such techniques
on the programming language level. On the other hand, the design phase was
not formalized in a way that allowed such techniques to be disseminated widely.

Consequently, the unful�lled { for a long time even unexpressed { need for better
language support was always ahead of the actual language development and every
new language feature that could be used in any way to alleviate this mismatch

was soon put into (mis-)use to implement the designs.

In the following, we try to illustrate the development of some of the most

important ideas as they present themselves in a few in
uential publications. This

is by no means an attempt to provide a complete overview of the history and the
years of publication do not necessarily re
ect the actual development in time.
The main purpose is to introduce the various ideas of program modularity in

their historical context, and thus the presentation will be very specialized here.

Wegner's description of the �rst 25 years of programming language development

[Weg76] may serve to provide a more general context. The presentation given
here will already show some relations between the otherwise seemingly unrelated
approaches to program modularity and will allow us to extract what we think is

the essence of most of them later.

In early, low-level languages, programs were just sequences of machine in-
struction and program parts corresponded to subsequences. Extracting common

subsequences from programs and specifying a standard way to jump into and

out of such closed subroutines provided the earliest framework for modular pro-
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gramming with language support. Closed subroutines, subroutine libraries and

assembly subroutines that allowed `the assembly of the master routine and the

subroutines to be performed automatically by the machine' were described al-

ready in [WWG57].

Algol 60 [eBB+97] introduced the block as a structuring tool. A block con-

sisted of a sequence of procedure and data declarations followed by a sequence of

executable statements enclosed in begin-end parentheses. Blocks and procedures

(which were just named parameterized blocks) could be arbitrarily nested, dec-

larations local to a block were visible only inside that block and its inner blocks

(provided it was not shadowed by an inner declaration for the same name).

The authors of Simula 67 [DMN70] recognized the block concept as `the funda-

mental mechanism for decomposition in Algol 60', corresponding to `the intuitive

notion of \sub-algorithm" '. They extended the block concept to that of a class

by allowing block instances to survive their call. In brief, classes were textually

similar to procedures and they could be called with parameters which replaced

formal parameters in the class de�nition to form a block instance which was then
executed. However, on return from a class, the instance was not destroyed. In-
stead, a reference to it was returned to the caller: a way to access the variables,

procedures and classes local to this particular block instance, called an object.
Class declarations and simple blocks could be pre�xed with other class identi-
�ers, causing the de�ning blocks to be concatenated (classes de�ned this way

were called subclasses of their pre�xes).
Using the class mechanism, it was possible to model simple concepts, e.g., to

specify data structures and to de�ne operations on them. Program concatenation
and the subclass mechanism then allowed to establish hierarchies of concepts and
to compose programs from constituents found in such a hierarchy. These features

were used heavily to adapt the common base language to special application
domains (e.g., discrete event simulation) by de�ning suitable classes containing

the necessary problem-oriented concepts. To prepare for separate compilation of

procedures and classes, such items could be declared as external (recommended
optional part of the common base language).

The description given above is based on a revised report on Simula 67 pub-

lished in 1970. Earlier versions of the language [DN66] were more oriented towards

the original application area, discrete event simulation, providing the concepts

of an `activity' (declaration for a class of processes) and a `process' (dynamic

instance of an activity declaration). In the revised version, these concepts were

replaced by the more abstract `classes' and `objects' and all simulation-speci�c

language constructs were replaced by an application-speci�c standard class `sim-

ulation'. The authors explicitly acknowledged the in
uence of Hoare's ideas on

records, record classes and references [WH66, Hoa68] on the development of Sim-

ula 67 (cf. also [DDH72]).
In his 1972 ACM Turing Award lecture [Dij72], Dijkstra directly addressed

the intellectual manageability of programs and identi�ed it as an independent
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property, not being related to the mathematical content of programs, but being

at the heart of the `software crisis'. He mentioned closed subroutines, abstraction,

hierarchical and nicely factored solutions as the key concepts in programming

that could make it technically feasible to `. . . design and implement the kind of

systems that are now straining our programming ability at the expense of only

a few percent in man-years of what they cost us now . . . ', i.e., to design large

sophisticated systems while keeping the programs intellectually manageable.

Dijkstra also emphasized the importance of notational support: `I absolutely

fail to see how we can keep our growing programs �rmly within our intellectual

grip when by its sheer baroqueness the programming language { our basic tool,

mind you! { already escapes our intellectual control', `I see a great future for

very systematic and very modest programming languages', `. . . to a much greater

extent than hitherto they [tomorrow's programming languages] should invite us

to re
ect in the structure of what we write down all abstractions needed to cope

conceptually with the complexity of what we are designing.'.

Also in 1972, Parnas [Par72] wrote about `the criteria to be used in decom-
posing systems into modules', discussing `modularization as a mechanism for
improving the 
exibility and comprehensibility of a system, while allowing the

shortening of its development time'. He identi�ed decomposition into major
processing steps (which he called 
owchart abstraction) as the most common
approach to modularization. He claimed that `The 
owchart was a useful ab-

straction for systems with on the order of 5,000-10,000 instructions, but as we
move beyond that it does not appear to be su�cient; something additional is

needed.'.
He proposed information hiding as an alternative criterion for decomposition

in the sense that `every module is characterized by its knowledge of a design deci-

sion which it hides from all others. Its interface or de�nition was chosen to reveal
as little as possible about its inner workings.'. This should lead to a decomposi-

tion into largely independent modules, restricting the e�ects of system changes

and of revisions of design decisions to only a few modules, thus enhancing 
ex-
ibility. Parnas lists independent development and comprehensibility of modules

as two other expected bene�ts of modular programming that could be achieved

by following his decomposition criterion and concludes `that hierarchical struc-

ture and \clean" decomposition are two desirable but independent properties of

system structure'.

Among the speci�c examples of decompositions which seemed advisable, Par-

nas mentioned: `A data structure, its internal linkings, accessing procedures and

modifying procedures are part of a single module.'. Identifying this kind of mod-

ules as important and developing linguistic support for them seems to be a main

line of development towards modular programming at that time. Zilles [Zil73]

used the term procedural encapsulation to describe a similar program structuring
technique used in the development of the experimental operating system OS6

[SS72a, SS72b] and noted that `Using the technique of encapsulation, a data
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type is completely characterized by the set of operations de�ned on the data and

the observable relationships between those operations'. Liskov and Zilles [LZ74]

coined the term abstract data type and introduced special modules, called `oper-

ation clusters', to support programming with these types in the language CLU

[Lis92]. A cluster had three parts: a storage representation for objects of the new

type in terms of existing types, a collection of procedures and a header de�ning

which of these procedures could be called from outside of the cluster.

Many programming languages designed in the 1970s provided explicit support

for modular programming, being in
uenced by Simula's classes or by the ideas of

information hiding and abstract data types. Examples include Alphard [Sha81],

Mesa [GMS77] and Modula [Wir77]. Only the module facility developed for the

Modula family of languages will be described in some detail here as it seems to be

typical for many of the module systems currently used for functional languages.

Wirth [Wir79] described his modules as a simpli�ed language construct for infor-

mation hiding which `has one and only one function, namely to establish a static

scope of identi�ers, whose acrossboundary visibility of identi�ers is strictly under
the programmer's control'. The concept was based on three main elements: `The
module is e�ectively a bracket around a group of . . . declarations . . . the import

list contains those identi�ers de�ned outside which are to be visible inside too,
and the export list contains the identi�ers de�ned inside that are to be visible
outside.'. Later, quali�ed export (pre�xing exported identi�ers with the module

name to avoid name clashings between multiple exports) and the distinction be-
tween de�nition modules and implementation modules were added. A de�nition

module `speci�es the interface of a module, in particular all objects that are ex-
ported', whereas the implementation module `belongs to the de�nition module
carrying the same name. It contains the bodies of the procedures whose headings

are listed in the de�nition module, and possibly declarations of further objects
that are local, i.e. not exported'.

In 1976, DeRemer and Kron [DK76] explicitly distinguished the activities

of writing large programs from that of writing small ones. They coined the
term programming-in-the-large and advocated the introduction of separatemodule

interconnection languages for this kind of task. Moreover, they argued `that

structuring a large collection of modules to form a \system" is an essentially

distinct and di�erent intellectual activity from that of constructing the individual

modules' and that `essentially distinct and di�erent languages should be used for

the two activities'.

We leave the early history of modules here, noting that we have deliberately

left out some facets of modularity such as the partitioning of nonsequential sys-

tems, the interaction between concurrent programming and modular program-

ming in the development of some language facilities, the �eld of software tech-

nology, the algebraic speci�cation of interfaces, or the further development of
object-oriented programming. Research and practice in these �elds have con-

tributed to the current view of modular programming, some of the �elds even
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developed into independent areas of computer science, but we want to concen-

trate on the basic structure of the problem. There will be more to say on the

development of module facilities from 1980 to today later, but it turns out that

many current functional languages, as far as their module systems are concerned,

rely on the state of the art of 1980.

4.2 Conventional module systems for functional

languages?

There seems to be nothing special about module systems for conventional pro-

gramming languages. They allow large programs (viewed essentially as collections

of declarations) to be organized into smaller, more comprehensible modules. The

separation between these program parts is established via explicit control over

the visibility of identi�ers de�ned inside the parts. This view of module sys-
tems can of course be adopted for functional languages and this has been done,

e.g., for the languages Clean [PvE97, version 1.2] and Haskell [PH96, version
1.3]. Both de�ne programs to be collections of modules which are themselves
collections of de�nitions, declarations and explicit references to other modules

via import declarations. In Clean, interfaces and implementations have to be
provided in separate �les, control over exports is by repetition of (parts of) de�-
nitions in the interface �les, cyclic dependencies of interface �les are prohibited.

In Haskell, export is controlled by explicit export declarations, separate interface
�les have been removed from the language de�nition, mutually recursive modules

are allowed. Both languages allow to explicitly import an (exported) de�nition
from another module by referring to the de�ned name or to implicitly import
all exported de�nitions by referring to the module's name; Haskell also provides

selective and quali�ed import and the use of local aliases for imported modules

as means to resolve name clashes.

This is basically the Modula view of modules as additional structures (brack-

ets) around collections of declarations with explicit control over the scope of the
declared identi�ers. Modules are viewed as static objects, i.e., they are not rel-
evant to the dynamic semantics of the programming language and there are no

constructs in the language that could deal with them as data objects directly

(without resorting to source code manipulation). Therefore, a separate module

language is needed in order to describe these structures and their interrelation-
ships and to construct complex programs from these building blocks. This module
language has two parts, the static one explicitly visible in the language de�ni-

tion, the dynamic one rather implicit and not part of the language de�nition:

the static dependencies (import, export) between modules are described in the
source text using extensions to the language syntax, whereas languages and tools

of the programming environment are used to handle the dynamic aspects of mod-
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ules (such as reorganization, version control, compilation and linking). The tools

operate either on the source text or on a low level object code representation.

They are not part of the programming language de�nition but reside at the oper-

ating system level. Even the parts of the module language that are interspersed

among the constructs of the programming language's syntax really belong to a

di�erent domain, to a separate language level. It is mainly for the simplicity of

the visible constructs that this separate level is seldomly recognized as forming

(part of) a language in its own right, and it is partly because of this fact that

module languages are not often extended with more sophisticated constructs for

program construction.

Now what is wrong with this? Early high-level languages were merely thought

of as input data formats for compilers producing machine code modules, with the

machine level and later the operating system level being the only real levels for

programmers to work on. In other words, while the task of programming itself

was relieved from low-level details, any tasks in which it was necessary to work
with programs as data (compilation, linkage, execution, management of program
and module libraries, etc.) were not. In particular, this included the composition

of programs from modules, and Haskell and Clean just seem to have inherited
this attitude towards programs from earlier generations of high-level languages.
However, the paradigm shift involved here, between declarative and imperative

programming on the language and operating system level, makes it obvious that
the two parts of module handling take place on di�erent abstraction levels: the

often neglected task of building a working system from existing modules highlights
a large hole in the programming abstraction provided by these modern functional
languages which forces programmers to work on two di�erent levels of abstraction.

Another source of problems is the static nature of the high-level part of

Modula-style modules: they can be seen as source level structures, i.e., they
structure the static representation of programs. This simple view of modules as
source code structures completely fails to account for the speci�c properties of

functional languages. Notably, a distinction between programs and expressions is

introduced and programs (and thus program building blocks) are no longer �rst-
class data objects in these languages. As an immediate consequence, the ability

to abstract over programs as well as over data, which is an important feature of

functional languages, is lost at this level of program construction. Contrast this

with the level of programs as functional expressions, where it is just as easy to
de�ne program composition operators as it is to de�ne data constructors, and

if higher order functions are used to build programs, every language expression

may function as a program building block. It is one of the main arguments in

[Hug90] that this way of composing programs in functional languages is a signif-

icant contribution to modularity, and that:

The ways in which one can divide up the original problem depend

directly on the ways in which one can glue solutions together. There-
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fore, to increase one's ability to modularize a problem conceptually,

one must provide new kinds of glue in the programming language.

Complicated scope rules and provision for separate compilation help

only with clerical details { they can never make a great contribution

to modularization.

Hughes identi�es higher order functions and lazy evaluation as two new kinds

of glue provided by functional languages and concludes: `Smaller and more gen-

eral modules can be reused more widely, easing subsequent programming. This

explains why functional programs are so much smaller and easier to write than

conventional ones. It also provides a target for functional programmers to aim at.

If any part of a program is messy or complicated, the programmer should attempt

to modularize it and to generalize the parts. He or she should use higher-order

functions and lazy evaluation as the tools for doing this.'.

Whereas the early publications on modular programming seemed to look at
the program and especially at its source text as a part of the problem that had to
be decomposed to be kept manageable, Hughes' work emphasized that program

composition is at least as important as problem decomposition. He also demon-
strated that modular programming in functional languages is not characteristic

for programming-in-the-large, but applies equally well to all program sizes.

Functional languages do already provide sophisticated means for program

composition out of small building blocks, and both the composition tools and the
building blocks are simply expressions of the programming language. In contrast,
conventional module systems are wrapped around the programming language

in that programs are represented by a collection of static structures (modules)
which contain the real program parts (declarations, statements, expressions, . . . ).
Program parts can neither refer to programs nor to modules and the language is

usually rather restricted and static at the level of modules, allowing only explicit
references to other modules (import) and some control over the availability of

program parts outside the module (export). Everything else is delegated to the

programming environment, or rather, programmers are forced to take care of

everything else at this level, which is usually inhabited by lots of fancy tools

and ad hoc solutions, but little order. The lack of means for abstraction is only
one example of this. In order to cope with the complexity of large systems,

it seems quite natural to parameterize modules, i.e., abstraction over modules

should be possible. But whether the principle of abstraction applies to modules
depends on whether they can be described as a `semantically meaningful syntactic

category'. The common semantic description of modules are environments or
collections of bindings which are not usually considered to be �rst-class objects of

the programming language. On the other hand, the module system is usually not

considered as a programming language in its own right and is thus too primitive
to have an abstraction facility.

There is a good reason why the lack of explicit abstraction over modules need
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not be obvious in conventional languages: the components of modules in these

languages are procedure de�nitions, and each procedure is implicitly parame-

terized with the state of the global variable store. Therefore, a simple way to

simulate parameterized modules is to pass the parameters as part of the variable

state, i.e., modules may be parameterized by adjusting the contents of global

box-variables. Of course, this trick is not easily available in purely functional

languages and rightly so, as even in conventional languages its use will only lead

to hidden dependencies between modules. However, if parameterized modules

are not supported explicitly, the possibilities for modularization in comparison

with imperative languages are severely compromised in these cases. Either the

importing and the imported module become mutually recursive (the importing

module depends on the import and the import depends on the parameter which

is de�ned in the importing module) or each of the components of the imported

module has to be parameterized separately (and consistently!).

To sum it up, Modula-style modules are su�cient for a large class of problems
and can be added to functional languages, but this kind of module systems can

hardly be called an adequate basis for modular programming in functional lan-
guages. However, before we look for more functional module systems, we continue
our brief review of the historical development.

4.3 More highlights in the history of modular

programming (1980 - today)

The predominant factor in the development of language support for modular
programming since 1980 has been the type system. The precursor in this direction

probably was the introduction of abstract data types as special modules or, as

Liskov put it in her account of the history of CLU [Lis92]: `I noticed that many
of the modules discussed in the papers on modularity were de�ning data types'.

Combined with Zilles' idea that `a data type is completely characterized by the

set of operations de�ned on the data' (see above), this describes the atmosphere

in which more radical approaches to type systems could be pursued.

Probably the most radical idea was the notion of `types as values', used in

the design of Russell [DD85], Pebble [BL84] and Poly [Mat85] (among others).
Russell's notion of data types was described as follows: `A data type is a collec-

tion of named operations that provide an interpretation of values and variables
of a single universal value space'. Type-checking was understood as checking the

consistency of the interpretation, but more important for the present discussion

is the fact that types, consisting of a �nite set of named function values, were
�rst-class values in Russell, providing for a very 
exible form of modular pro-

gramming based on data abstractions and generic or polymorphic procedures,

i.e., procedures that can operate on values of more than one type.
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While Russell preserved full static type-checking, Pebble took a di�erent ap-

proach: `We remove the sharp distinction between \compile time" and \run

time", allowing evaluation (possibly symbolic) at compile time. This seems ap-

propriate, given that one of our main concerns is to express the linking of modules

and the checking of their interfaces in the language itself'. To this end, (collec-

tions of) bindings of variables to values were �rst-class values in Pebble, modules

were modeled as collections of bindings and parameterized modules as functions

from bindings to bindings. Through the use of dependent types, value bindings

could depend on type bindings in the same collection, providing similar capabili-

ties for user-de�ned types as Russell while separating the facilities used to build

collections of bindings from those used for type formation. One of the motiva-

tions for the design of Pebble was to be able to formally address the part of the

Cedar language (an extension of Mesa) which is concerned with data types and

modules. The Pebble design incorporated many in
uential ideas, e.g., that `the

linking together of a number of modules . . . should not be described in a primitive

and ad-hoc linking language' but rather in a typed functional language. Another
design objective was that a simple notation was needed `for dealing with \big"
objects (pieces of a program) as if they were \small" ones (numbers); this is the

basic good trick in matrix algebra'. As a result, programming-in-the-large should
look very much like programming-in-the-small.

While these activities were oriented towards experimental programming lan-

guage design, they were accompanied by attempts to understand and develop
type systems in general, and the type-theoretical basis of constructs for modular

programming in particular. Mitchell and Plotkin [MP85] provided a framework in
which representations of data abstractions were �rst-class data structures having
existential types, i.e., if there is a representation implementing an abstract data

type, then there exists a type on which the representation is based. The repre-
sentation type is known only to the implementations of the abstract operations

belonging to the particular representation, whereas, outside the representation,

only the existence of such a type is known. Cardelli and Wegner [CW85] took
up the idea in their more general survey of the notion of type in programming

languages. They also showed how modules and data abstractions could be mod-

eled using records with function components in an explicitly typed functional

language called FUN and gave examples of possible applications. Although the

authors noted that FUN could be the basis of a programming language, they used

it solely to provide a `framework for classifying and comparing existing languages

and for de�ning new languages'. MacQueen [Mac86] discussed some shortcom-

ings in the use of existential types for modular programming and investigated the

use of dependent types instead.

MacQueen also designed the module language for Standard ML [Mac85],

which soon reached the status of a reference system. It was not as radical as
the other approaches described here (in particular, modules were not treated as

�rst-class values), but it was freely available in a widely used general purpose
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programming language and it was certainly among the most powerful module

systems for this class. A series of type-theoretical accounts of the Standard

ML module language and variants thereof appeared, addressing issues such as

the strati�ed nature of its type system, the dependence of values in structures

upon types in the same structure and the amount of information available on

structures and functors. Whereas the early accounts focussed on a better un-

derstanding of the existing system, later ones also addressed modi�cations and

extensions. Ultimately, this lead to proposals for higher order functors or even

�rst-class structures.

Standard ML (SML for short) is a strongly typed functional programming

language [HMM86, MTH90, MT91], and even though it also includes imperative

features, its module language brings us back to the development of language

support for modular programming in functional languages.

4.4 Towards functional module systems

Standard ML

The approach taken in the design of Standard ML was to take the module lan-

guage seriously, as advocated earlier by DeRemer and Kron in [DK76]. However,
the module interconnection language was not chosen to be essentially di�erent

from the programming language. Instead, the module language is a restricted
functional language with modules (structures in SML terminology) as the basic
data values [Mac85]. Interface speci�cations (signatures) serve as a kind of types

for these values and �rst-order functions (functors) on modules can be de�ned
and applied.

Structures in SML actually are encapsulated environments (collections of dec-

larations), but look very similar to records. Quali�ed names are written like
record selections and functors provide restricted means to handle structures. In-

deed, in the implementation SML/NJ, which augments the module language of

SML with higher order functors [CM94b], modules are coded as records and func-
tors are coded as functions from records to records. Nevertheless, on the user

level, there are two language levels with values, functions and types on the �rst
and structures, functors and signatures (module interfaces) on the second level.

There are two kinds of abstraction, two kinds of applications, and two kinds of

types.

That a simple functional language can be used as a module interconnection
language follows from the major requirements for such a language, as far as they

have been discussed: the possibility of abstraction over modules and the avail-
ability of sophisticated means to compose programs from collections of modules.

In spite of this, the SML approach uses two distinct functional languages for

programming-in-the-small and programming-in-the-large. The module language
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is introduced at an additional language level above the level of the programming

language, which complicates the language design. While a module consists of

(fragments of) functional programs, a functional program can still not talk about

modules (they are not �rst-class values in SML). Furthermore, since the two lan-

guage levels provide similar, but not equivalent constructs, users have to choose

in which level they model their problem domains, with the module language be-

ing rather restricted compared with the programming language, but with some

features that are only available on the module level (such as abstraction over

types).

The decision to design SML as a two-level language had its origins in typing

issues. Since structures are allowed to contain type declarations, a structure can-

not have an ordinary type and thus cannot be an ordinary value [Mac85]. Recent

research [MT94, CM94b, HL94, Ler94, Ler95] on the typing of structures and

functors seems to aim at the elimination of this level distinction, i.e., providing

�rst-class modules or at least higher-order functors without sacri�cing static type
inference (cf. also section 8.2).

Why modules?

The question seems to be counterintuitive at �rst, but arises naturally if we review

some aspects of the historical development. There are Hughes' comments on mod-
ularity in functional languages. The Pebble designers have expressed their views
that programming-in-the-large should not be too di�erent from programming-in-

the-small, and that the language to describe the linking of modules should be a
functional one. And there is Standard ML with a module system that is based

on these ideas, though using di�erent functional languages for programming and
program construction.

In functional languages, programs are �rst-class data objects, and it should

not be necessary to divert programs to a second class status only to introduce

program building blocks. On the contrary, if a language in which programs are

�rst-class citizens does not support modular programming, there must be some-

thing fundamentally wrong with the de�nition used for �rst-class citizenship.
The very essence of modular programming is the composition of programs from

sub-programs that solve parts of the original problem, and all components of this

basic scheme should be de�nable in functional languages: programs as problem-
solving entities, programs as data objects for program composition, and even the

task of program composition itself. So, instead of taking the need for an addi-
tional module system on top of the programming language for granted, we might

better ask what is wrong with current functional languages. First of all, we need

to know what exactly is missing in these languages that makes them unsuited for
programming-in-the-large. Only then we can decide whether these shortcomings

are unavoidable (making an additional level of program construction for mod-

ular programming necessary) or whether the current languages just need to be
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completed in some respects.

Even among the early high-level languages, there were quite a few that allowed

procedures or functions as data objects (including Lisp [McC60], Pal [AE68],

Gedanken [Rey70] and Algol68 [Tan76]), but most of these languages did not

approach the problem of program modularity directly, making an evaluation dif-

�cult. Morris [Mor73] used Gedanken to describe `linguistic mechanisms which

can be used to protect one subprogram from another's malfunctioning'. After

mentioning the procedure as a means for abstraction, he claimed that `in order

to exploit this device to its fullest extent it is useful to make procedures full-


edged objects in the sense that they can be passed as parameters or values of

other procedures and be assigned to variables'. Prompted by Morris' work, Zilles

described in [Zil73] how his ideas about procedural encapsulation could be ex-

pressed in a language with support for function-returning functions. He used as

an example the implementation of streams in the experimental operating system

OS6 [SS72a, SS72b]: `A stream is uniformly represented by a vector of entry

points, one for each of the above operations. And, because the OS6 system lan-
guage does not provide true function returning functions, the state information
needed by these entries (. . . ) is also stored in the vector.'.

Mesa was one of the �rst languages that had both modules and �rst-class
procedures and, fortunately, the authors presented their early experience with
the language in [GMS77]. After describing Mesa's module facility and the stan-

dard binding mechanisms (capable of simulating both Modula- and Simula-style
modules), they made the following observations: `Because Mesa has procedure

variables, it is possible for a user to create any binding regime he wishes simply by
writing a program that distributes procedures. Some users have created their own
versions of Simula classes. They have not used the binding mechanism described

above for a number of reasons. . . . Their binding scheme deals with such situa-
tions by representing objects as record structures with procedure-valued �elds.

. . . some �elds of each record contain the state information necessary to charac-

terize the object, while others contain procedure values that implement the set
of operations. If the number of objects is much larger than the number of im-

plementations, it is space-e�cient to replace the procedure �elds in each object

with a link to a separate record containing the set of values appropriate to a par-

ticular implementation.'. The basic idea seems to have been borrowed from the

OS6 implementation, but the experience report is surprising, because it means

that in a language with both explicit language support for modules and �rst-

class procedures, some users preferred to use records of procedures for modular

programming.

In the early 1980s, Atkinson and Morrison reported on a similar attitude,

this time from a language design perspective. Their paper was titled `Persistent

�rst class procedures are enough' [AM84] and described `how the provision of
a persistent programming environment together with a language that supports

�rst class procedures may be used to provide the semantic features of other ob-
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ject modeling languages'. They made these observations while working on the

development of a persistent1 variant of Algol [ABC+83b]. In
uenced by the work

of Morris and Zilles (to which they added the means to store procedures in a

long-term storage), they described how `the e�ects of information hiding, data

protection and separate compilation are provided' in a practical programming

language without explicit support for modules. They concluded: `It has long

been understood that it is desirable to be parsimonious in introducing concepts

into a language design. The preceding demonstration therefore challenges lan-

guage designers as to whether it is necessary to introduce a long list of concepts

which can be covered by the persistent procedural mechanism.'. These ideas

seem to have had absolutely no in
uence on the design of functional languages,

but they have since been further developed outside the mainstream of functional

programming research and have a strong relationship to our work which will be

explained in more detail in section 8.3.

Later, the use of �rst-class functions in combination with records to model lan-
guage constructs for modular programming became common practice in semantic
and type-theoretic accounts (to name only a few: [Car84, CW85, KR94, GM94]).

This use of records in theory seems to have been widely ignored as an option
for practical language designs. This is partly due to typing problems (cf. sec-
tion 8.2), but also due to a di�erent interpretation of modules, namely that of

encapsulated environments (bindings of variable names to values). While both
records and environments can be used to model language constructs for modular

programming in meta-languages, we cannot overemphasize the di�erence between
these two views in practice: records are just heterogeneous data structures, and
their use is relatively unproblematic, both in programming languages and in their

meta-languages. In contrast, the meta-level concept of environments is closely
coupled to the static binding structure of functional languages, and introduc-

ing environments as �rst-class data structures at the level of the programming

language is therefore semantically more complex.

Informally, the problems result from two contrary objectives of language de-

sign: on the one hand, lexical scoping requires the variable names bound in

any environment to be statically known, and on the other hand, 
exible use of

environments as a basis for modular programming requires all aspects of environ-
ments to be dynamic. In SML, this con
ict is decided in favor of static scoping:

structures (which are encapsulated environments) are simply denied a �rst-class

status, e.g., there is no conditional expression in the module language. In exten-
sions of SML's module language, elaborate static type systems mediate between

static and dynamic aspects of environments, i.e., environments may be computed
dynamically, but only those bindings which are statically known to exist in these

dynamically computed environments are visible outside (cf. section 8.2 for refer-

ences). The statically known type of environments (structure signatures in SML

1The notion of orthogonal persistence will be discussed in more detail in section 8.3

80



terminology) determines their binding structure. This approach is bound to lead

to more restricted module systems as it would otherwise intertwine program ex-

ecution (computing new modules), static typing (inferring module signatures)

and static semantics (lexical scoping of identi�ers) of the resulting language in

unforeseeable ways.

In an attempt to provide a less complex type-theoretic framework for modular

programming (compared with extensions of SML's module system), Jones [Jon95,

Jon96] proposed a module system in which modules are modeled by �rst-class

records structures. He claimed that his intermediate language `is a useful and

powerful language in its own right', and we interpret his work as an attempt to

use records for modularization on the level of the programming language (the

focus of his work is on the typing problems of this approach; cf. section 8.2).

Summary

The material reviewed in this chapter leads us to a slightly unusual conclusion
about language support for modular programming. The problems experienced

in programming-in-the-large stem from one simple fact: For large programs it
becomes apparent that the program itself has to be seen as data. In particular,
this data has to be organized into an adequate structure, and a language provid-

ing suitable abstractions and tools is needed to support the processes of program
construction, reorganization, and maintenance. However, as long as the underly-
ing programming language provides adequate means to handle large collections

of data and makes no arti�cial distinctions between programs and data, there is
no reason to bring a second language into play.

Functional programming languages do already treat programs as �rst-class

data objects and therefore provide essential support for modular programming.
If they lack any features needed to support programming-in-the-large, these short-

comings are likely to be related to the handling of large collections of data objects

in general, i.e., the problems are not speci�c to modular programming. Still, the

goal of better support for modular programming-in-the-large can serve to high-

light these problems. First of all, large programs need to be organized into smaller
units (program building blocks), and these units cannot always be functions but

have to include collections of functions at least. To keep the �rst-class status of

program building blocks, data structures of the programming language should be
used to represent such collections (instead of external constructs such as mod-

ules), and records have already proven to be useful for this kind of task both in
the theory of modular programming and in implementations. By copying records

from the meta-level to the programming level, it should be possible to use the

programming language as its own module language. With some further enhance-
ments to the data representation and processing capabilities of the programming

language, it should then be possible to organize the data represented by large pro-

grams in just the same way as any other large collection of data, which utilizes
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the full expressive power of functional languages for the task of program construc-

tion. Furthermore, this will lead to orthogonal language extensions, which may

be used not only for program management but for managing large collections of

data in general.
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Part II

The Language Framework
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Chapter 5

Language De�nition

The present chapter is the �rst of three chapters that present our language design.

Its purpose is to formally de�ne a functional programming language extended
with facilities to specify modular program structures and interactions with run-

time environments. The formal language de�nition should be understood as the
interface1 between programs written in the language (discussed in chapter 6) and
implementations of the language (discussed in chapter 7). Since the foundations

for the design decisions to be made have been explored in the �rst part of this
thesis, the presentation is kept rather terse here. As for our major design goal of

simplicity through generality, the simplicity of the language is directly re
ected in
the formal presentation, and the in
uence of the design principles of abstraction,
correspondence, and data type completeness on design decisions is mentioned.

However, the further discussion of our language design is postponed to chapter 6,
where the three components of the language (functions, frames, and interactions)
are combined in various ways to model several well-known approaches to modular

programming. Some options for further work are discussed in chapter 8.

5.1 Notation and auxiliary de�nitions

Transformation systems are used for the formal description of all language parts
to provide a uniform framework for the combination of context-free reduction

rules and context-dependent interaction rules. However, in contrast to the trans-

formation systems given in earlier chapters, not all rules are given directly in

terms of the concrete syntax. Such an approach would be tedious for the more
complex syntax of the language presented here, even if combined with abstrac-
tion over contexts: the language is de�ned as an extended �-calculus, and many

of the additional constructs do not di�er from each other as far as the binding

structure is concerned. Therefore, a naive de�nition of the basic language prop-

erties such as binding structure, substitution, and �-reduction for each language

1This notion is made more precise in section 6.4.
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construct would be highly repetitive, hiding the essence of the de�nitions in a

long list of similar transformation rules. As outlined in section 2.3, all additional

constructs could be given de�nitions as �-terms, but this would have the disad-

vantage of tying the operational behavior of the new constructs to that of the

de�ning �-terms. Such a dependency would undermine the idea of a high-level

programming language as a layer of abstraction: to understand the constructs of

the higher language level, one would have to think in terms of their de�nitions

in a lower language level without these constructs.

The solution adopted here is to factor the terms of the concrete syntax into

their basic properties, such as binding structure, subterms and an identity tag,

thereby establishing a one-to-one correspondence between terms of the concrete

syntax and terms of an abstract syntax. This factorization allows us to abstract

from some of the properties and thus to reason independently about binding

structure and transformation rules. In particular, basic language properties can

be de�ned without reference to the concrete language syntax, which also simpli�es

the introduction of additional language constructs: a concrete syntax of the new
constructs is de�ned to extend the language syntax, a mapping into the abstract
syntax is de�ned to extend the basic language properties to the new constructs,

and �nally, extension-speci�c transformation rules may be de�ned to extend the
language semantics. This approach allows for a concise presentation of the formal
language de�nition and for a clear separation between di�erent aspects of the

language.

FORM+ : non-empty sequences of FORM
FORM� : possibly empty sequences of FORM
FORM1 : : :FORMn : an individual sequence of FORM
(FORMi)1�i�n :

(FORMi)i2f1;:::;ng : the same sequence as an indexed family
~v : an abstract sequence named v (with elements vi)

#x ~v : the number of occurrences of x in the sequence v

Figure 5.1: Notational conventions for sequences of syntactic forms

Sequences of syntactic forms occur frequently in the de�nitions, e.g., to specify
lists of variables or expressions, and so we introduce some notational conventions

for sequences in �gure 5.1. The use of + for non-empty sequences and of � for

possibly empty sequences is common in syntax de�nitions, whereas the notation
for indexed families and vectors is borrowed from mathematics. The indexed

family notation is particularly useful when it is possible to abstract from the index
set, or when an operation is applied uniformly to all elements of a sequence, and

the vector notation is used in de�nitions where not even the individual elements

of sequences are important.
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The purpose of the concrete language syntax is to provide a readable repre-

sentation, while the abstract language syntax suppresses syntactical details and

provides uniform access to those features of language constructs that are relevant

to the formal presentation. These are (a) the distinction between elementary

constructs and those composed from sub-expressions, (b) the distinction between

complex constructs that establish a new scope for variables and those that do

not, and (c) the identity of individual constructs. The general form of an ab-

stract language construct is

Conn~v e1 : : : en

where n is the arity of the construct, e1 : : : en are the sub-expressions (if n = 0, the

construct is a constant), and the elements of ~v, denoted by vj, are the variables

that are bound only in the sub-expressions. Con itself is a tag that identi�es the

syntactical construct, providing for a one-to-one mapping between concrete and

abstract syntax. Note that the concrete syntax may be further enriched with
syntactic sugar, making additional labels necessary in the abstract syntax.

8x 2 var; ~v 2 var+; n; k;m 2 Nat; i; j 2 f1; : : : ; kg; Con 2 Tags; M;N 2
AS :

AS = nn var

j Conk~v (ASj)j2f1;:::;kg

Figure 5.2: Abstract syntax

BC0
x = [ ]

BCn+m
x = Conk~v (ASj)1�j<i (BC

n
x ) (ASj)i<j�k ; if m = (#x ~v)

the occurrence of x in BCn
x [ n

k x ] is

8><
>:

bound if k < n

free if k = n

protected if k > n

Figure 5.3: Binding structure

Using this abstract form of language constructs (de�ned in �gure 5.2), it is

possible to outline the basic properties common to certain classes of language
constructs before any concrete constructs are introduced. Figure 5.3 de�nes the

binding structure, using binding contexts BC, and �gure 5.4 adds de�nitions for

substitution and variable protection. The only concrete language element needed
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for these de�nitions are protected variables as introduced in section 2.2, which are

therefore included in the abstract syntax. Note that the generalized de�nitions

of binding contexts, substitution and variable protection closely resemble those

given for the �-calculus (�gures 2.2, 2.3 and 2.4 in section 2.2) { they just abstract

away syntactical detail and are also generalized to handle constructors binding

multiple variables. When reading the formal de�nitions in �gure 5.4, it is useful

to recall the intended meanings of the auxiliary operations: (�m
x;n M) modi�es

the number of protection keys of each at least n-fold protected occurrence of

x in M by m, and ([nn x  N ] M) substitutes N for each n-fold protected

occurrence of x in M . The formal de�nitions for multi-variable protection (=~�)

and substitution (=~�) are complicated because of the need to prohibit interactions

between the individual substitutions (so that the multi-variable substitution is

not de�ned as a sequence of cumulative substitutions but as a set of independent

substitutions). However, this complexity is local to the de�nitions and the use of

these operations is therefore simpli�ed.

8x; y 2 var; ~v 2 var+; M;N;Mi; Ni 2 term; n; k; j; r 2 Nat; m 2 Int :

�m
~vx;n M =~� �m

~v;n �m
x;n M

[(vi  Ni)1�i�n] M =~� ��1
~v;1 ([vi  �+1

~v;0 Ni])1�i�n �+1
~v;1 M

�m
x;n n

kx =� nk+mx; if k � n

�m
x;n n

ky =� nky; if (k < n) _ (y 6= x)

�m
x;n (Conk~v (Mi)1�i�k) =� Conk~v (�

m
x;n+r Mi)1�i�k; if (r = (#x ~v))

[nnx N ] nnx =� N

[nnx N ] njy =� n
jy ; if (j 6= n) _ (y 6= x)

[nnx N ] (Conk~v (Mi)1�i�k) =� Conk~v ([n
n+rx �+1

~v;0 N ] Mi)1�i�k ;

if (r = (#x ~v))

Figure 5.4: Substitution of expressions for free variables

Given these general de�nitions, the basic properties of individual constructs

are clear from their abstract representations (this classi�cation is the main use
we make of the abstract syntax in later sections; speci�c transformation rules

are much more readable in terms of concrete syntax). The approach taken here
separates the issues of substitution (binding structure, variable protection) from

�-reductions and allows the introduction of new binding constructs with indi-

vidual reduction rules. In general, these additional reduction rules deviate from
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those that would result from a translation into the �-calculus only in so far as

they are de�ned directly on the new constructs. For instance, what would have

been several steps in a �-representation is de�ned as one large step, and the re-

sults are expressed in terms of high-level constructs again. Accidental reductions

(that would not conform to the high-level view of the constructs in question, but

would be possible if high-level constructs had been mapped to a �-representation)

are also ruled out.

5.2 The functional part

The focus of the language de�nition presented in this chapter is on the extensions

and on the interactions between the three language parts (functions, frames, and

interactions). The constructs of the functional core (cf. �gure 5.5) are fairly

standard for an extended �-calculus, including multi-parameter abstractions and
applications, local (recursive) de�nitions, numbers, booleans, strings, lists and
user-de�ned data constructors (starting with an upper-case letter to distinguish

them from keywords and variable identi�ers, which start with lower-case letters)
with the usual primitive operations on these data types. Not all parts of the

given reduction language have been included (for instance, pattern matching
is omitted to simplify the presentation) but it should be clear that the core
described here corresponds to a subset of a practical programming language.

The language is derived from an untyped �-calculus, but the notion of types was
implicitly introduced when constants and primitive operations were added to the

language. No formal de�nitions of the primitive operations are presented here
but, similar to the conditional (cf. �gure 5.6), they all apply only to certain types
of expressions. Nevertheless, �-reduction and substitution are still de�ned on all

language expressions, and types are not explicit on the language level. Therefore,
we sometimes refer to the language as implicitly and dynamically typed, even
though the �-calculus part is still untyped. Since we do not make any unusual

assumptions about features of the core language, any functional language which

subsumes the �-calculus and is not restricted in itself, e.g., by constraints of a

static type inference system, could be used as the functional core of our language.

The concrete syntax of the functional core language is given in �gure 5.5.

Those language constructs that have a non-trivial sub-structure with respect to
the abstract syntax are annotated with their abstract forms. As an example, the

let-construct has as sub-expressions the right-hand sides of the local de�nitions

and a body expression, and the variables de�ned in the de�nition part of the
let-construct are bound only in this body expression, so two abstract constructs

are needed: LET holds the right-hand sides of the local de�nitions and the
auxiliary construct LETH, but introduces no variable bindings, and LETH holds

the body and binds the local variables. In contrast, the local variables in the

letrec-construct are bound both in the right-hand sides of the de�nitions and
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in the body, hence only one abstract construct (LETREC) is needed. The only

other language construct that introduces local variable scopes is �-abstraction

(LAMBDA).

8n; k; i 2 Nat; v 2 var; ei 2 expr; ; ~v 2 var
+ :

expr =S n
n var : nn var

j const

j op

j (expr (expri)1�i�k) : APPLY k+1 expr (expri)1�i�k
j �~v: expr : LAMBDA1

~v expr

j let (vi = defi)1�i�k
in expr : LET k+1 (defi)1�i�k (LETH

1
~v expr)

j letrec (vi = defi)1�i�k
in expr : LETRECk+1

~v (defi)1�i�k expr

j if e1 then e2 else e3 : COND3 expr1 expr2 expr3
j <(expri)1�i�k> : LIST k (expri)1�i�k

op =S primOp

j Konstr

primOp =S arithOp

j relationalOp

j listOp

j stringOp

const =S char

j string

j bool

j num

Figure 5.5: Concrete and abstract syntax of the core language

Figure 5.6 presents the reduction rules of the functional core language. The

reduction rules include the �-calculus rules �, �, and �, but also speci�c rules

for conditional expressions and for local (recursive) de�nitions. Unless explic-

itly stated otherwise, all rules are context-free, i.e., they apply in all reduction
contexts RC2:

8Con 2 Tags; k 2 Nat; 1 � i � k; v 2 var� :
RC = [ ] j Conk~v (ASj)1�j<i (RC) (ASj)i<j�k

The rules for conditional expressions are an example of �-rules: they select one

of the alternatives (the expressions following then and else) and apply only if the

condition can be reduced to one of the constants true and false (otherwise, the

2We regard the choice of a speci�c reduction strategy as an implementation decision (cf.

chapter 7).

90



8M;N; bodyi; body 2 expr; ~M 2 expr
+; ~v 2 var+; x; y; vi; pi 2 var; i; j 2 Nat :

�v ~v:M =S �v:�~v:M

(M N ~M) =S ((M N) ~M)

vi ~p =M =S vi = �~p:M

�x:M =� �y:��1
x;1 [x y] �+1

y;0 M

(�x:M N) =� ��1
x;1 [x �+1

x;0 N ]M

M =� �x:(�+1
x;0 M x)

if true then M else N

=� M

if false then M else N

=� N

let (vi = bodyi)i2I in body

=� [(vi  bodyi)i2I ] body

letrec (vi~pi = bodyi)i2I in body ; if body 62 fvi j i 2 Ig

=� [(vi  letrec (vi~pi = bodyi) in vi)i2I ] body

letrec (vi~pi = bodyi)i2I in v ; if (j 2 I) ^ (v = vj)

=� [(vi  letrec (vi~pi = bodyi) in vi)i2I ] �~pj:bodyj

Figure 5.6: Reduction rules of the core language

91



construct is syntactically valid but irreducible). The rule for let is just a special

instance of �-reduction, but the rules for letrec are new high-level rules that

allow collections of mutually recursive de�nitions to be substituted in two steps:

�rst, every occurrence of recursively bound variables in the body expression is

substituted by a duplicate of the recursive de�nitions (with the recursively bound

variable as body expression), and then the appropriate right-hand side is selected

from the de�nitions (with all occurrences of recursively bound variables in this

right-hand side substituted by a duplicate of the recursive de�nitions). Note

that recursively bound variables are never substituted in the right-hand sides

of the recursive de�nitions themselves, while reduction in all sub-expressions of

these constructs is allowed (by their translation into the abstract syntax and the

de�nition of reduction contexts).

5.3 Interactions with runtime environments

The survey of current input/output-frameworks for functional languages in chap-

ter 3 left only one basic design decision open: should the environment objects
have explicit representations on the language level, in which case an environ-

ment passing style with static uniqueness typing [AP95] would be the way to
go, or should the environment remain implicit, in which case a monadic style
of input/output-programming [PJW93] would be the most 
exible alternative?

The fact that the constructs of a monadic style of input/output could be easily
de�ned in a uniqueness typed environment passing framework seems to suggest

that the environment passing style is more fundamental, but the question is:
fundamental to what? Uniqueness typing addresses the more general problem
of statically controlled use of resources in functional programs and, even if com-

bined with passing unique representations of environment objects as arguments
to these programs, it does not su�ce to solve the input/output-problem. The

reason is that the environment is not updated in one conceptual step after the

evaluation of a program has computed a new environment representation but
rather in small steps whenever the environment representation is modi�ed during

program evaluation. The primitive interactions are thus implemented as side-

e�ecting operations, the use of which is rendered safe in the uniqueness-typed

environment passing framework.

Similarly, monads are used to address the more general problem of computa-

tions (involving state, input/output, backtracking, . . . ) returning values: they do

not solve any input/output-problems directly but rather provide an elegant and

exible abstraction of many solutions to related problems [Wad92b]. In chapter

3, we have developed monadic input/output-constructs simply as means to com-

municate with an external resource manager for the program's runtime environ-
ment. That these constructs can be viewed as an instance of the monad concept

emphasizes the importance of this concept: it helps to embed the input/output-

92



constructs into larger frameworks based on other monads, and hence contributes

to the seamless integration of imperative language features into the functional

world. However, it does not solve the basic problems of input/output. For in-

stance, no less than three di�erent input/output-schemes are used to solve these

basic problems in [PJW93], the paper which originally proposed `a new model,

based on monads, for performing input/output in a non-strict, purely functional

language'. On the user level, an abstract data type of interaction scripts is pro-

vided (cf. section 3.4.2), which are represented internally by state-transforming

functions, i.e., the user program is expanded to a functional program based on en-

vironment passing. This intermediate program representation is generated from

user programs, which do not have direct access to the environment representa-

tion (called `world'), in such a way that it is guaranteed to use the `world' in a

single-threaded way. The intermediate program representation is used to keep

the input/output-handling correct during optimizing program transformations.

Finally, the optimized functional program is compiled to imperative code where

the order of execution is encoded in the order of statements, and the explicit
`world' can be discarded. This �nal representation is based on side-e�ects, but is
faithful to the original program by construction.

So, both input/output-schemes merely provide frameworks in which side-
e�ecting operations can safely be used with a guaranteed order of execution and

without a�ecting the properties of the purely functional parts of the language.
Currently, we do not think that one of these two frameworks is fundamentally
better suited for the problem of input/output than the other. Both have distinct

advantages over each other depending on the problem domain, but most of these
di�erences are not relevant to the problem at hand.3 However, a monadic style,

without the translations into other input/output-schemes proposed in [PJW93],
seems to require fewer and smaller modi�cations to the core language than an
environment passing style. Especially the static uniqueness type checking on

which the latter style is based runs counter to the idea of untyped �-reduction

and substitution. It would be possible to relax the uniqueness condition a bit,

checking it dynamically and only when interactions are about to be performed,

but this would still leave a non-local dependence of interactions on the number
of environment copies in the whole program. Finally, for reasons explained in

chapter 3, it would make sense to use a monadic style of input/output even in

an environment passing framework.

For our current language design, we choose to base interactions on constructs
similar to those developed in section 3.4.2, which seem to provide exactly the right

level of abstraction for our input/output-problem and happen to form a monad,

3They immediately became relevant if we wished to extend the input/output-framework to

achieve non-sequential evaluation. By splitting up the environment into multiple independent

parts, environment passing extends easily to multiple threads of computation inside the eval-

uation of one program [Ach96], whereas the monadic style extends just as easily to multiple

programs sharing one environment [PGF96].
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too. In other words, there is a type of interaction scripts, a binary operator >>=

to compose scripts with continuation functions, and a unary operator return to

act as an identity interaction and to carry the results of intermediate interactions.

Primitive interactions, >>=, and return are the only constructors of interaction

scripts, and interactions are only performed in speci�c interaction contexts to

ensure a deterministic sequence of transformations of the environment state (cf.

�gure 5.7). The next design question is which assumptions should be made

about the runtime environment, and we opt for an abstract variant of current

�le systems (UNIX �le systems in particular): the environment is assumed to

consist of named �les, where each �le contains a sequence of �le elements. As

the UNIX example shows [RT83], other devices such as communication streams

and terminals are easily mapped into such a model. Finally, we need to decide

about the primitive interactions, and we choose to discuss here only the very

basic interactions, namely to get objects from �les and to put them there.

Inside this framework for input/output, a couple of secondary issues arises:

how can the idea of get and put interactions be integrated with the abstract �le
system, and what exactly are the objects of interactions? As for the �rst issue,
get and put interactions need to address the �les they operate on, and a simple

�le name parameter would barely su�ce for this purpose. For instance, �les
persist in the �le system, but without any means to redirect input interactions
to the beginning of �les after they have been read, each �le could only been read

once in each program. We adopt a standard solution and introduce one level
of indirection: before �les can be accessed with get and put interactions, local

connections have to be established to these �les via �le handles. Essentially, each
�le handle represents a stream connected to a �le (or to any other device that
can be mapped into the �le system), and after it is created, interactions proceed

sequentially through the contents of the �le connected to the handle.
The issue of interaction objects has been avoided in chapter 3 by restricting

the attention to character-based input/output. Indeed, this is the common idea

of interaction objects not only in functional languages (with slight variations
that allow bytes and numbers to be communicated). However, this view is in

immediate con
ict with the principle of data type completeness, as it selectively

restricts the rights of more complex data objects. For simple data structures,

this restriction is merely a matter of convenience, and programmers could take

up the tedious and error{prone task of providing explicitly programmed two-way

mappings between their data structures and sequences of characters. For some

types of expressions, however, it is not possible for programmers to provide such

a mapping, and these types include the types of functions. The restricted view

adopted in many common functional languages is therefore not only in con
ict

with one of our chosen language design principles but also in sharp contrast to

the claim of having functions as �rst-class citizens in these languages. From a
language design perspective, there is no reason for such restrictions. Therefore,

we choose to abandon the restriction of input/output to characters and allow
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all valid language expressions to be communicated via interactions. This unre-

stricted view also provides input/output-operations at a higher level of abstrac-

tion, because programmers do not need to deal with the details of communicating

sub-structures of complex data structures or even with representation conversions

from and to sequences of characters.

op =S primInter j >>=2 j return1

primInter =S fput2 j fget1 j fopen1 j fclose1

IC = [ ] j (IC >>= expr)

Figure 5.7: Syntax extensions for interactions, interaction contexts

Since the basic design issues are settled, it is now possible to formally de�ne

the interaction capabilities of our language. The extensions to the language syn-

tax are introduced in �gure 5.7, together with a de�nition of interaction contexts
IC). The additional identi�ers of primitive interactions extend the syntactic cat-
egory op (the operators are annotated with their arities, and we assume that

>>= is always used as an in�x operator). The formal description of interactions
between programs and their runtime environments is a bit more involved than
the description of program transformations. The reason is that every interaction

comprises two di�erent kinds of transformations that are meant to take place in
one conceptual step. Both transformations of the environment state and program

transformations need to be described with one set of transformation rules over
objects that have to represent both the current program and the current state
of the environment. This also means that contexts for program transformations

have to be stated explicitly, and that the program transformations involved in
interactions are context-sensitive: not only do the program contexts have to be

restricted to interaction contexts (IC) to guarantee a well-de�ned order of exe-
cution for the primitive interactions, but the results of these interactions do also

depend on the part of the context that models the current state of the environ-

ment.
The formal means to describe general interactions have been developed in

chapter 3. In order to formally de�ne the primitive interactions in �gure 5.8,

the environment state is modeled as a mapping ((h ! objh)h2H) from handles

to objects. Handles can be compared for equality and include �le names and

temporary �le handles. File names are mapped to Files, which are modeled as
indexed sequences of �le elements and can be accessed via temporary handles.
The interaction fopen is used to open a new stream to a �le. If the �le does not

exist, it is created as an empty sequence of �le elements (second rule), otherwise

only a new �le handle is generated (�rst rule). The �le handles that are returned
to the program are mapped (in the environment) to pairs of �le positions and

�le names, i.e., each �le handle allows access to one �le at a handle-speci�c
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IC[ (fopen name) ] jj (h! objh)h2H ; if (name 2 H) ^ (handle 62 H)

=I IC[ (return handle) ] jj

 
(h ! objh)h2H

(handle ! (0; name))

!

IC[ (fopen name) ] jj (h! objh)h2H ; if (name 62 H) ^ (handle 62 H)

=I IC[ (return handle) ] jj

0
B@

(h ! objh)h2H
(handle ! (0; name))

(name ! ())

1
CA

IC[ (fclose handle) ] jj (h! objh)h2H ; if handle 2 H

=I IC[ (return `fclose') ] jj (h! objh)h2Hnfhandleg

IC[ (fput handle expr) ] jj

0
B@ (h ! objh)h2H

(handle ! (i; name))

(name ! (elemj)j2J)

1
CA

=I IC[ (return `fput') ] jj

0
B@

(h ! objh)h2H
(handle ! (i + 1; name))

(name ! (elemj)j2Jnfig (expr)j=i)

1
CA

IC[ (fget handle) ] jj

0
B@

(h ! objh)h2H
(handle ! (i; name))
(name ! (elemj)j2J)

1
CA ; if

(i 2 J) ^
(elemi 2 expr)

=I IC[ (return elemi) ] jj

0
B@ (h ! objh)h2H

(handle ! (i+ 1; name))

(name ! (elemj)j2J

1
CA

IC[ (fputc handle char) ] jj

0
B@

(h ! objh)h2H
(handle ! (ic; name))

(name ! (charj)j2J)

1
CA

=I IC[ (return `fputc') ] jj

0
B@

(h ! objh)h2H
(handle ! (ic + 1; name))

(name ! (charj)j2Jnfig (char)j=ic)

1
CA

IC[ (fgetc handle) ] jj

0
B@ (h ! objh)h2H

(handle ! (ic; name))

(name ! (charj)j2J)

1
CA ; if (ic 2 J)

=I IC[ (return charic) ] jj

0
B@

(h ! objh)h2H
(handle ! (ic + 1; name))
(name ! (charj)j2J

1
CA

IC[ ((return N) >>= M) ] =I IC[ (M N) ]

Figure 5.8: Interaction rules
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position. The interaction fclose has to be called explicitly to remove temporary

�le handles (and thus to close a connection to a �le). The interaction fput

stores an expression in a �le (at a position indicated by a �le handle), and the

interaction fget retrieves one expression from a �le (again via a �le handle).

Rules for character-based variants fgetc and fputc are also given, but not further

discussed here. The rules for the primitive interactions simply formalize input

and output, either character-wise (fgetc,fputc) or expression-wise (fget,fput),

modifying �le indices and contents accordingly, and only one additional rule (the

last in the �gure, for >>=) is needed to describe how intermediate results are

passed on to continuations. In combination with the use of interaction contexts

IC (de�ned in �gure 5.7), these rules model a depth-�rst traversal of tree-shaped

interaction descriptions, following the ideas described in section 3.4.2.

For readers familiar with monads, it might be strange to see the rule for

composition of interaction descriptions (>>=) in �gure 5.8 restricted to interaction

contexts. It is one of the monad axioms (return as left identity to >>=) and

should be applicable to all continuations that return interaction descriptions.
However, our language is not restricted to allow for static type checking, and it
is, in general, not decidable whether or not the application of the expression in

continuation position to the expression in intermediate result position will reduce
to an interaction script. As long as it does, there is no di�erence between the
rule given in �gure 5.8 and a variant with general contexts instead of interaction

contexts, because the resulting interaction script could only be evaluated in an
interaction context anyway. It is thus safe to avoid the general form of the rule,

and it is reasonable, too, for the monad axioms do only apply to expressions of
certain types.

There are several other things to note here. First, �les in the environment

are modeled as sequences of elements, leaving open the de�nition of elements.
Since the environment stands for entities outside the language de�nition (such

as �le systems), we can hardly be more speci�c here. Even so, we have to make

some assumptions, e.g., of sequential access to �les, to model common features
(such as �les and communication channels). These assumptions should be read

as prerequisites that need to be established in the actual environment in order

for the interaction rules to be applicable, i.e., the assumptions describe the in-

terface of the language de�nition to an environment de�nition. This includes

the assumption in the general fget/fput-rules that every valid language expres-

sion or a suitable representation thereof can become an element of a �le, and

the assumption in the speci�c fgetc/fputc-rules that any �le of elements can

also be viewed as a �le of characters. The latter assumption corresponds to the

view of �les as sequences of bytes or characters which is common in UNIX en-

vironments while the former assumption represents our view that there should

be no unnecessary restrictions on the type of expressions that can be used in
input/output-operations. Second, only few primitive interactions are given here.

The reasons for this are that we are concerned with a presentation of the general
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framework here, for which the selected subset of interactions su�ces, and that

the complete set of interactions provided depends on issues speci�c to individual

languages and environments. For the extension of our reduction language, we

chose primitive interactions similar to those in a UNIX/C environment [KR88]

with some minor adaptations (the character-based part of these is described in

[Tim96]). However, this was merely seen as an intermediate solution, proven to

be useful in practice, to collect some experience with input/output in a functional

language before designing a dedicated set of primitives (cf. chapter 8.1).

Finally, there are some pragmatic considerations that force us to re�ne the

rules given so far: the primitive interactions di�er from other primitive operations

(�-rules) in that they depend on an invisible parameter (we assume that only the

program will be directly visible to programmers). If the �-rules do not allow

to reduce an application of a primitive function, the application simply remains

constant: it is an equivalent and irreducible form of the original program, and

programmers �nd in it detailed information on why their original program is not
further reducible, e.g., because a primitive operation is applied to arguments of

the wrong type or because of the use of a nonexistent index in a selection oper-
ation from a list. They can thus identify the problems and modify their original
program accordingly. However, if a primitive interaction is not executable, this

may have two possible causes, being either related to the explicitly given param-
eters or to the implicitly given state of the environment. Since we have chosen

an input/output-framework in which the environment is implicit and external to
the program, it may not be su�cient to present a non-executable primitive inter-
action to programmers, as they would not be able to identify problems related

to the current state of the environment.

Therefore, we choose to execute primitive interaction in two phases: �rst, the
applicability of interaction rules is checked with respect to the explicit parameters,

and if there is no applicable rule in this �rst phase, the interaction remains con-

stant just as if was a primitive function. If the set of potentially applicable rules

found in this �rst phase is not empty, execution of the interaction is attempted,

and this attempt may either succeed or fail, depending on the current state of the
environment. The former case is described by the rules in �gure 5.8, where it is

only necessary to change the (return expr)-parts on the right-hand side of the

rules to (return (OK expr)) to distinguish these results from the second case,
in which the primitive interaction is replaced by (return (NE message)) and

the environment state is left unaltered. OK and NE are data constructors holding
the results of successfully executed and non-executable interactions, respectively,

and messages are strings describing the problems. Programs may thus provide

continuations for both possible outcomes4. To this end, a check-primitive is in-

cluded in the language subset described here5 to dispatch the interaction result

4additionally, there should be primitive interactions to query the state of the environment
5in the full language, this primitive can be de�ned in terms of the pattern matching facilities,
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to a success or to a failure continuation, depending on the constructor holding

the result (cf. �gure 5.9).

8M;N; P 2 expr :

check M N (OK P ) =� (M P )

check M N (NE P ) =� (N P )

Figure 5.9: Dispatch of interaction results

5.4 Modular programming

The �nal part of the language design is concerned with support for modular pro-
gramming. Here we decide not to add a module language on top of the program-

ming language, but to use the programming language itself as its own module
language. This decision is based on the survey of language support for modular

programming in chapter 4 and on the design principle of simplicity through gen-
erality. The reasons for not using a separate module language are the additional
complexity introduced by a strati�ed design and the search for elementary and

general language constructs. Furthermore, we do not want complex constructs
composed of several features (such as modules with import and export control,
or classes with built-in inheritance) because these would prede�ne the ways in

which the features could be composed and would force us to introduce various
complex constructs where simple recombinations of a few elementary constructs

should do. We are convinced that some of the elementary constructs needed for
modular programming are already available in our language, and that those con-

structs that need to be added can be used for other purposes, too. The survey

revealed collections of language expressions accessible by name and abstraction
as the basic tools for modular programming. Support for abstraction is one of our

design principles and provided in our language by �-abstractions (cf. also section

6.4 for a more detailed discussion of this aspect), and collections of expressions

are simply data structures. Since access to the structure components should be

by name, record-like structures are the obvious choice. Alternatives would have

been �rst-class environments, i.e., collections of bindings, using variable names to
name components, or �nite functions mapping names to components. The former

would have incurred either the risc of losing static scoping or the introduction of

complex constraints to avoid this (cf. the discussion in section 4.4), and the latter

would have unnecessarily overloaded the available means to construct functions

using �-abstractions.

which are neither described nor used here.
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expr =S frame

primOp =S :2 j delete2 j update3

j test2 j slots1

frame =S fslot
�g : FRAMEn sloti

slot =S string::expr : SLOT 2 string expr

Figure 5.10: Syntax extensions for frames

Record-like data structures are named frames here for historical reasons. The

syntax for frames is kept simple (cf. �gure 5.10): a frame is a (possibly empty)

sequence of slots where each slot is a pair of slotname and slotvalue. A slotname

is just a string (and thus a data object, not a variable identi�er), and a slotvalue

can be any syntactically valid expression. Note that frames are expressions and

share all features of expressions, e.g., frames can be written to �les and read
from there using fput and fget, respectively, and frames can be parameters and
results of functions.

8s; si 2 string; e; ei 2 expr; j 2 Nat

(f(si::ei)i2Ig : s) =� ej ; if (j 2 I) ^ (sj = s)

(delete s f(si::ei)i2Ig) =� f(si::ei)i2I;si 6=sg

(update s e f(si::ei)i2Ig) =� f(si::ei)i2I;si 6=s (s::e)g

(test s f(si::ei)i2Ig) =� true ; if 9i 2 I : si = s

(test s f(si::ei)i2Ig) =� false ; if 8i 2 I : si 6= s

(slots f(si::ei)i2Ig) =� < (si)i2I >

Figure 5.11: Reduction rules for frames

The primitive operations on frames are essentially those of extensible records

as proposed in [CM94a]: selection of a slotvalue (denoted by an in�x operator
. here), deletion of a slot (delete), and modi�cation of a slotvalue (update).

Modi�cation works as extension if the named slot is not present in the parameter
frame and as deletion followed by an extension otherwise. In [CM94a], extension

was chosen as primitive (instead of modi�cation) and was only allowed if the

slot to be added was not already present in the frame. In our language, there
is no way to statically guarantee the absence of a slot, and each use of such a

restricted extension operation would have to be protected by an explicit test for
the presence of the named slot. Therefore, we decide to choose modi�cation as

primitive here. There are also two primitive operations to test for the presence of

a particular slot in a frame (test) and to return the list of slotnames for the slots
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in a frame (slots).6 The reduction rules are summarized in �gure 5.11: frames

are represented as indexed sequences of slots, which allows for a concise de�nition

of the operations in terms of index set manipulations. For instance, the value of

a selection from a frame (�rst rule) is the value of the slot that has the selector

string s as its name (as usual for primitive operations, selections from frames

that do not have such a slot are simply irreducible), and update �rst restricts the

sequence of slots to those that do not have the selector string s as their name and

then adds a new slot (with the selector string s as its name and the parameter e

as its value). More complex operations on frames can be de�ned in terms of the

set of primitives given here.

The basic idea of building a module system in this simple language design is

as follows: modules containing function and expression de�nitions are modeled

as records, which contain slots with functions and other expressions as slotvalues,

and slotnames are used to represent names of module components as strings. Pa-

rameterized modules can be expressed as functions that have modules as results,

import relations can be expressed either implicitly, referring to variables bound
to modules, or explicitly, passing the imported modules as parameters to the im-
porting modules. Import of components from modules corresponds to selection

of values from frames. Using interactions, modules can be stored in �les and re-
trieved from there to be reused in other programs. The explanation is very brief
here because more detailed descriptions and a series of examples are provided in

chapter 6, which explicitly focuses on techniques for modular programming.

6The latter may have unwanted properties if it re
ects the order in which slots have been

added. It can be made to depend only on the presence of slots if the slotnames are returned in

a sorted list.
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Chapter 6

Abstractions for Modular

Programming

The formal presentation of our language in chapter 5 has demonstrated the sim-
plicity of the design and the in
uence of the design principles on design decisions.
It is the purpose of this chapter to demonstrate, mainly by means of examples,

the expressiveness of the resulting language which derives from the generality
and orthogonality of the three major parts of the design. In doing so, we provide

further evidence that the design goals have been reached, but we also hope to
hint at the prospects for languages built according to our proposed design. The
chapter concludes with a discussion of the modeling techniques used in the exam-

ples which shows how the language design supports these techniques, providing
pragmatic a posteriori support for the design principles used.

6.1 Modules

A 
ood of language constructs has been developed to support modular program-
ming. Chapter 4 lists some of them, and new variants seem to be proposed with

every new language. Given that our language includes virtually none of these spe-

cial purpose constructs, it is not immediately obvious how it can provide support

for modular programming. Therefore, we �rst give some examples of how the

e�ects of some of the special purpose constructs can be achieved. Of course, the

main emphasis is on sophisticated module facilities, developed in this section. To

begin with, Figure 6.1 shows a typical example program without modules, con-

sisting of several mutually recursive function de�nitions and a goal expression.

In order to focus on program structure, the right-hand sides of function de�ni-

tions have been omitted. The program de�nes some operations on binary lists,

including constructors (cons, nil), selectors (head, tail), a test (empty), and a
few well-known higher-order functions to map a function elementwise over a list,

to filter out a sub-list of elements, each ful�lling a given predicate, and to fold
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the elements of a list, using a binary operation. The result of the program is the

mapping of the function square over a list of three elements.

letrec

empty l = ...

nil = ...

cons h t = ...

head l = ...

tail l = ...

map f l = ...

filter p l = ...

fold f c l = ...

square x = ( x * x )

in ( map square ( cons 1 ( cons 2 ( cons 3 nil ) ) ) )

Figure 6.1: A simple example program { goal expression view

Even without modules, functional abstraction can be used to reduce the com-

plexity of program design and management. Our example program could also be
written directly in terms of the built-in functions and data structures:

( < (1 * 1) > ++ ( < (2 * 2) > ++ ( < (3 * 3) > ++ < > ) ) )

We have chosen a representation of binary lists in terms of the built-in lists
(
at sequences of expressions in angle brackets) here, and have implemented

construction of binary lists via the built-in in�x operator for concatenation of

at lists (++). Other choices would have led to di�erent forms of the program.

With functional abstractions, the example program has been factored into a

de�nition part and a rather simple goal expression (cf. �gure 6.1). The pro-

gram text itself has become more complex in this variant, but the complexity
of program maintenance is reduced in several ways: common program parts are

abstracted out of the goal expression, and these abstractions are shared { they

are instantiated several times (cons and square). The higher-order function map

allows to distinguish the operation (square) from the way it is applied (to all

elements of a list). If we intended to change the representation of binary list, e.g.,
to nested lists, reversed lists, or search trees, substantial and repeated changes

would be required for the direct program version, whereas a rede�nition of a

few functions would su�ce for the variant with abstractions. The relation of
the squared list to the original list is not even explicitly expressed in the direct

version, and a complete rewrite would be necessary to apply a di�erent function

to the list elements, or to apply the same function to a di�erent list.
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...

map f l = if ( empty l )

then nil

else ( cons ( f ( head l ) ) ( map f ( tail l ) ) )

...

Figure 6.2: Example program { one of the function de�nition views

Apart from these advantages of sharing1, programming with abstractions also

allows several views of the program, each one abstracting away some details of the

full program. Suppressing details of the function de�nitions, �gure 6.1 focuses on

the goal expression. Only the goal expression, the names of de�ned functions and

an informal understanding of these functions are required in this view, while the

right-hand sides of function de�nitions are not. One of the function de�nition
views is given in �gure 6.2. The complete program consists of all views, but
functional abstraction allows programmers to concentrate on small parts of the

program, substantially reducing the complexity they have to cope with in each
phase of the program design. We have used dots here to represent program parts

we are not currently interested in, but implementations of the language should
also support such partial views of programs, always showing only the parts of
programs that correspond to the current focus of attention.

If programs get larger, the program structure needs to be changed because

simply adding new function de�nitions would make the interface to be used be-
tween the partial views too complex. The interface would essentially be the
complete list of function de�nitions. Even for this simple example, we have omit-

ted the de�nition list in the function de�nition view (�gure 6.2), assuming that

the interface is obvious, but this is certainly not a valid assumption for larger

programs. In the context of the current section, the obvious idea would be to
partition programs into modules, where each module would correspond to a par-

tial view of the program and the interfaces between modules would be kept simple.

While special purpose constructs such as modules can thus provide guidance for
the decomposition of programs, we argue that it is better to start with problem
decomposition �rst and to look for language support later. In the running ex-

ample, it is possible to introduce an additional level of abstraction to distinguish

between the basic functions that de�ne a representation of binary lists and the

higher-order functions built on top of the representation functions. For more
complex problems, such an approach may lead to a hierarchical decomposition
consisting of several levels of abstraction.

To accomplish this in the given language, as a �rst idea, we may try to use local

1Note, however, that this sharing of abstractions would be counterproductive if we would

want to treat each list element di�erently in a program modi�cation.
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de�nitions to hide the low-level details inside the de�nitions of the higher-level

abstractions. However, there is a problem here because low-level functions are

usually shared by several high-level functions. In our example, map, filter, fold,

and the goal expression all need access to the basic operations on binary lists.

On �rst sight, lexical scoping seems to prohibit the use of locally de�ned de�ned

functions outside their scope2, but if the de�nitions of the low-level operations

need to be given repeatedly for each de�nition of a higher-level operation, the

result is obviously inferior to the original program (cf. �gure 6.4).

letrec

empty l = ...

nil = ...

cons h t = ...

head l = ...

tail l = ...

in letrec

map f l = ...

filter p l = ...

fold f c l = ...

square x = ( x * x )

in ( map square ( cons 1 ( cons 2 ( cons 3 nil ) ) ) )

Figure 6.3: Example program { block structure and sharing

The usual trick used to avoid repetition in functional languages is again based
on functional abstraction: the repeated de�nitions are abstracted out of the whole

expression and can then be shared. The result (cf. �gure 6.3) is only slightly
better than the original program, but programmers can now decide either to look
at functions on all levels or to limit their focus of attention to the high-level

functions. However, the de�nitions of low-level functions are not available when

programmers focus on the high-level functions: in the goal expression of the
outermost letrec, the names of the low-level functions occur as free variables {

only in the full program are these variables bound. Another problem is that there
is no helpful program structure for functions on the same level of abstraction: if

we were to introduce additional data types and their operations (trees, arrays,

. . . ), the de�nitions of these operations would not be separated in any way from
the de�nitions of the basic list operations. As a consequence, the environment

for the higher levels of abstraction would be burdened with bindings for all these
operations, even though, e.g., the higher order list operations depend only on

the basic list operations (and not on the basic tree or array operations). The

2As we will see below, this is actually not the case.
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letrec

map f l = letrec

empty l = ...

nil = ...

cons h t = ...

head l = ...

tail l = ...

in ...

filter p l = letrec

empty l = ...

nil = ...

cons h t = ...

head l = ...

tail l = ...

in ...

fold f c l = letrec

empty l = ...

nil = ...

cons h t = ...

head l = ...

tail l = ...

in ...

square x = ( x * x )

in letrec

empty l = ...

nil = ...

cons h t = ...

head l = ...

tail l = ...

in ( map square ( cons 1 ( cons 2 ( cons 3 nil ) ) ) )

Figure 6.4: Example program { the problems of block structure
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higher the level of abstraction in this approach, the larger is the collection of

variable bindings programmers have to know about, not to speak of the problems

of namespace management (for instance, variants of map can be de�ned for trees

and arrays, but a suitable naming convention is necessary to distinguish between

these operations).

What has happened to the program structure in the step from �gure 6.4 to �g-

ure 6.3 is essentially a complete reversal: instead of low-level function de�nitions

hidden inside the high-level ones, the de�nitions of low-level functions establish

the environment in which the high-level functions are de�ned. The original in-

tention was to introduce a tree-shaped decomposition of programs utilizing block

structures to make each block of function de�nitions (corresponding to a level

of abstraction) the root of a new program tree built from lower-level abstrac-

tions. However, the scope of de�nitions extends only towards the leaves of these

program trees { lexical scoping does not allow to distribute locally bound identi-

�ers outside their de�ning expressions. Since local de�nitions cannot be shared
globally, it was necessary to turn them into global de�nitions and to let the tree

grow in the other direction, with low-level de�nitions at the root and high-level
de�nitions at inner nodes of the program tree. While it seems attractive to build
stacks of collections of de�nitions for small programs, we have argued that it is

actually not practical for large programs to have the high-level de�nitions buried
inside all the low-level de�nitions, or to have only one big collection of de�nitions
for each level of abstraction.

None of the program structures proposed so far supports reuse very well: only
individual functions and complete goal expressions can be reused and even they
only in the unlikely case that they do not depend on other functions. What would

really be necessary are collections of de�nitions as data objects and abstraction
over such collections. This way, the advantages of the structure used in �gure
6.3 would carry over to larger and more complex programs, and de�nitions could

be organized in separate structures independent of the level of abstraction they

belong to. Unfortunately, the de�nition parts of letrec-constructs do not form

valid language expression, so collections of de�nitions cannot be easily shared
with or reused in di�erent goal expressions (other than by copying source text).
These de�nition parts are collections of bindings of identi�ers to de�nitions and

provide environments in which expressions with free occurrences of variables can

be evaluated. Allowing collections of bindings to be used independently of goal

expressions (a kind of �rst-class environments) would immediately con
ict with
lexical scoping, a language feature much too valuable to give up. To realize the
problems, imagine an expression expr that is to become the goal expression part

of a dynamically substituted environment env:

� env . let

env

in expr
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(the variable env is boxed to emphasize that this example is not valid in our

language) Whether or not variables that occur free in expr will be bound in

the combined expression depends on the environment substituted for env { the

binding structure is not obvious until the �nal expression is actually constructed

at runtime, and it depends on the environment substituted for env.

This is a serious problem, a�ecting the very core of our language semantics:

binding structure and substitution. It can only be avoided if the binding struc-

ture can be determined statically, which means that environments cannot really

be �rst-class objects. Whatever operations are allowed to compute an environ-

ment that is to be dynamically attached to an expression, it must be possible

to determine statically where (and if) the identi�ers that are used in the expres-

sion are bound in the environment. At least, restrictions need to be imposed

on the permissible operations on environments, similar to the restrictions gener-

ally present in statically typed languages. This leads to unfortunate interactions

between the design of the static and the dynamic parts of languages that use

(�rst-class) environments for modular programming but do not want to give up
lexical scoping, e.g., Standard ML [Mac85] or the language presented in [Jag94].

For these reasons, we refrain from using �rst-class environments for modular

programming. This decision forces us to take a closer look at the restrictions
imposed on the use of local de�nitions by static scoping, and we �nd that only
identi�ers cannot leave their local scope. Contrary to the �rst impression, lexical

scoping does not prohibit the use of locally de�ned functions outside the scope
of their local identi�ers, and indeed, our language allows (anonymous) functions

to be used as �rst-class data objects (a property inherited directly from the �-
calculus). The next steps are straightforward: if collections of lexically scoped
bindings cannot be used to support reuse, collections of expressions have to be

used instead, i.e., data structures containing functions. Frames are included in
the language exactly to provide for such collections, allowing slotvalues to be

accessed using slotnames, and (anonymous) functions can be placed in frame

slots because they are �rst-class values. Slotnames are simple string constants,
used as selectors in frames, and they are not subject to the restrictions imposed

on variable names by static scoping.

Figure 6.5 gives an example of how frames can be used to make collections of

functions reusable. With this program, we take up the idea to use local de�nitions

for program structuring again, and we use frames to circumvent the limitations of

lexical scoping. This roughly corresponds to the step from the block-structured

Algol 60 to the class-structured Simula 67: local values of blocks are made acces-

sible to other program parts. The main di�erences are that local identi�ers are

not made accessible, only their values, and that there is no update operation for

identi�ers.

Basically, the function de�nitions are grouped into the basic list represen-
tation (basic_list) and the higher-order functions on lists (hof_list), and

frames are used to make (some of) the locally de�ned functions accessible from
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letrec

basic_list = letrec

empty l = ...

nil = ...

cons h t = ...

head l = ...

tail l = ...

in f "empty" :: empty

"head" :: head

"tail" :: tail

"nil" :: nil

"cons" :: cons g
hof_list repr = letrec

empty = ( repr . "empty" )

head = ( repr . "head" )

tail = ( repr . "tail" )

cons = ( repr . "cons" )

nil = ( repr . "nil" )

map f l = ...

filter p l = ...

fold f c l = ...

in f "map" :: map

"filter" :: filter

"fold" :: fold g
in letrec

hof = ( hof_list basic_list )

cons = ( basic_list . "cons" )

nil = ( basic_list . "nil" )

map = ( hof . "map" )

square x = ( x * x )

in ( map square ( cons 1 ( cons 2 ( cons 3 nil ) ) ) )

Figure 6.5: Modular version of the example program
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outside, i.e., frames are used similar to export interfaces of modules. The module

basic_list consists only of local de�nitions and an export frame that makes

all local functions accessible. The module hof_list is a little bit more complex

in that its function de�nitions depend on the functions de�ned in basic_list.

In conventional module systems, such a dependency would be hard-coded using

an import declaration in hof_list. Similarly, the de�nition of hof_list could

refer directly to basic_list in our language, but we prefer to abstract from the

representation module on which hof_list depends, making it a parameter of

the module de�nition. Inside the de�nition, the functions that are needed from

the representation module can be used via frame selection from the parameter,

which would be similar to the use of quali�ed names in conventional systems.

Additionally, abstraction is used here to share the selections, binding them to

local variables which corresponds to the speci�cation of an import interface. In

the goal expression of the top-level letrec, hof_list is applied to basic_list

to yield a module hof of higher-order functions working on this particular repre-

sentation of binary lists. Finally, the functions cons and nil from basic_list

and map from hof are imported and the rest of the program is as in �gure 6.1.
The de�nition of hof_list in �gure 6.5 demonstrates the main features usu-

ally attributed to modules: it has a collection of local de�nitions and explicit
import- and export-interfaces (the selections from the parameter repr and the
frame that is the value of hoflist). Furthermore, it is parameterized, and the

parameter is itself a module, by which fact hof_list can also be seen as a simple
function having modules as parameter and result. Because of the close correspon-

dence of frames used in this way to explicit module constructs in conventional
languages, we refer to these frames as modules. The construction of these frames
may depend on local de�nitions (which are not externally visible) and on the

values substituted for variables that occur free in the frames. If the free vari-
able occurrences are bound by the formal parameters of a function that returns

such a frame as its value, we also refer to the function as a parameterized mod-

ule. Due to the use of modules as parameters, parameterized modules such as
hof_list can be reused with di�erent imports, providing a 
exibility not present

in conventional module systems but available, e.g., with Standard ML's functors.

However, the current de�nition of Standard ML's module system (for the issues

discussed here, [Mac85] is still accurate) does not allow to pass functors as pa-

rameters, making it necessary to resolve all imports of a parameterized module

in the program's top-level de�nitions before such a module can be passed as pa-

rameter to other modules. Some ML implementations, e.g., Standard ML of New

Jersey [CM94b] go beyond this and allow to pass parameterized modules as pa-

rameters as well, providing for higher-order functors. Of course, this is possible

in our language, too, and we can do even more because modules and module

parameters are dynamic, �rst-class values in our language. In contrast, Standard
ML has a strati�ed design, where modules are compile-time values di�erent from

runtime values. For instance, modules can depend on runtime values or can be
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selected using conditional expressions in our language, but not in Standard ML.

The rationale of the decision for the strati�ed design of Standard ML is that it is

a statically typed language, and that its modules can contain type information

[Mac85].

Note that a hierarchical problem decomposition need not lead to hierarchical

programs: although hof_list depends on a representation module, the modules

corresponding to both abstraction levels are treated equally and may be reused

independent of each other. Note also that associations between local identi�ers

and slotnames have to be given explicitly both for import and export: name

clashes due to implicit import of items exported with the same name from several

modules cannot occur, quali�ed names and renaming of imported items fall out

naturally in the frame model. Still, it would be nice to have some syntactic sugar

for trivial import- and export-interfaces. Two examples are given in �gure 6.6: a

collection of de�nitions inside frame braces could be converted into a collection of

de�nitions followed by an export frame, an import declaration in the de�nition
part of a letrec could be converted into a list of de�nitions involving frame
selections. Using this sugar, the program in �gure 6.5 can be rewritten as in

�gure 6.7. The program is still a bit longer than the original version of �gure
6.1, but this is to be expected since modular structure has been added to the

program.

f ( fi ~pi = defi )i2 I g ! letrec

( fi ~pi = defi )i2 I
in f ( "fi" :: fi )i2 I g

letrec ! letrec

from M import [ ( fj )j2J ] ( fj = ( M . "fj" ) )j2J
( defi )i2 I ( defi )i2 I

in N in N

Figure 6.6: Some useful syntactic sugar

One may be tempted to ask whether all the 
exibility of �rst-class modules

is really needed. Therefore, it seems advisable to point out that we have not

described a complex module language that would have to be de�ned and im-
plemented on top of the programming language { on the contrary, there is no

explicit module language in our design. Instead, the programming language
is expressive enough to provide for all the 
exibility usually associated with quite

complex module languages. The main reason for having the potential of �rst-class

modules in our design is that we do not have explicit module constructs at all {
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letrec

basic_list = f empty = ...

nil = ...

cons = ...

head = ...

tail = ... g
hof_list repr = letrec

from repr import [ empty head tail cons nil ]

in f map = ...

filter = ...

fold = ... g
in letrec

from basic_list import [ cons nil ]

from ( hof_list basic_list ) import [ map ]

square x = ( x * x )

in ( map square ( cons 1 ( cons 2 ( cons 3 nil ) ) ) )

Figure 6.7: Modular version of the example program, with syntactic sugar

we just make use of the data structuring facilities of our programming language.
This is the real meaning of the slogan: modules should be �rst-class data struc-

tures. Asking for any restrictions as far as modular programming is concerned

would thus be asking for restrictions of the programming language itself.
Note that we have used essentially the same program for the whole discussion.

The program variants presented so far do not di�er in the result of the given goal
expression, they only di�er in their program structures. Although each variant

would serve the purpose of computing one particular program result, the variants

di�er widely in how they factor the whole program into separately understand-
able parts, how well they support reuse of these program parts, and how complex

the interfaces between the parts are. Programs composed of several parts cor-

respond naturally to problem decompositions and help to reduce the apparent

complexity of programs. The overall complexity of the complete program text is

not reduced (apart from the e�ects of sharing) { programs may even get more

complex due to the additional program structure, but this additional structure

allows to understand the complete program in terms of several partial views, each

one simple enough to be easily and separately understood. Similarly, de�ning the

program parts in such a way that they may be reused in other programs com-

plicates the initial task of just producing a working program, but pays o� in the

long term. Finally, the complexity of the interfaces between program parts is not
only important for the potential reuse of parts, but also for program maintenance

and evolution: complex interactions between the parts make program modi�ca-
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tions di�cult, whereas uncompromising separation and simple interfaces render

it more likely that consequences of changes can be localized to a few parts.

Therefore, modular programming is �rst of all associated with additional ef-

forts. If programs are very large or complex, or subject to frequent changes, the

advantages following from the additional e�orts may manifest themselves in a

single project. More commonly, however, the virtues of modular programming

become apparent only if modules can be reused in several programs, which raises

the issue of how this can be achieved in our language. In conventional languages,

module storage and import happen at the borderline between programming lan-

guage and operating system and, even if programmers need not descend to the

level of operating system tools to compose their programs, the semantics of im-

port declarations does not follow the usual language semantics. In contrast,

our language design allows us to move from these ad-hoc approaches to a more

language-conforming way of handling modules, and it is our goal to extend this

high-level approach to the issues of long-term module storage. Note again that

modules in our terminology are not source code structures but �rst-class data
structures.

Basically, modules are constructed dynamically in the evaluation of programs.

In order to make these modules available to other programs, it is necessary to es-
tablish a communication between programs, a communication involving modules.
Additionally, there need not be any time interval in which both producers and

users of modules are active { the communication needs to be bu�ered in a long-
term storage that serves as an environment for program development. Described

in this way, this is exactly the kind of problem for which we have introduced
interactions into our language design: communication of programs with a run-
time environment. Since we have not restricted the input/output-facilities of our

language to sequences of characters, we can use the �le system as a long-term
storage for modules. Because functions and modules containing functions are

�rst-class values, and every valid language expression can be the object of an

interaction, formally described language features (interactions) can be employed
to handle the storage of modules in �les and the import of modules from the �le

system. Languages in which functions or modules are not �rst-class values with

respect to input/output need to be extended with special purpose constructs to

accomplish this. Users of these languages often su�er from the need to leave the

language level for program construction, using operating system tools for this

essential phase of program development. Only if it is no longer necessary to refer

explicitly to features outside the language de�nition, the whole business of pro-

gram construction can be lifted to the language level, hiding any implementation

details such as compilation and linking below this level (just as the details of

memory management are left to implementations).

In our running example, the modules basic_list and hof_list can be pack-
aged together to form a list_library, which is just a collection of modules, and

stored in the environment, using a �le with this name (�gure 6.9). To avoid clut-
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onFile file prg = ( ( fopen file ) >>= �file_handle.

( ( prg file_handle ) >>= �result.

( ( fclose file_handle ) >>

( return result ) ) ) )

load file = onFile file fget

store file expr = onFile file �file_handle. fput file_handle expr

Figure 6.8: Abstracting away some �le handling

( store "list_library"

f basic = f empty = ...

head = ...

tail = ...

nil = ...

cons = ... g
hof = �repr. letrec

from repr import [ empty head tail cons nil ]

in f map = ...

filter = ...

fold = ... g g )

Figure 6.9: Creating a persistent library

( ( load "list_library" ) >>= �list_library.

letrec

basic = ( list_library . "basic" )

hof = ( ( list_library . "hof" ) basic )

map = ( hof . "map" )

cons = ( basic . "cons" )

nil = ( basic . "nil" )

square x = ( x * x )

in ( map square ( cons 1 ( cons 2 ( cons 3 nil ) ) ) ) )

Figure 6.10: Using a persistent library
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tering programs with low-level �le handling, a function onFile is used to de�ne

load and store (�gure 6.8). onFile takes a �lename and a program, opens the

named �le and passes the �le-handle as a parameter to the program. After the

program has produced a result, the �le-handle is closed and the program's result

is returned. load and store use onFile to get one expression from a �le and

to put one there, respectively. These and other similar abstractions to raise the

level of interactions are collected in a library of input/output-operations (a de-

fault treatment of non-executable interactions is also included in the de�nitions

of these library functions but is not shown here). Afterwards, any other program

can refer to the �le list_library to use the library. It just loads the library from

the environment and extracts the modules basic and hof, instantiates hof to

use the representation de�ned in basic and proceeds as if the modules had been

de�ned in the same program (�gure 6.10). Similar to slotnames, �lenames have

to be explicitly associated with local variables, and it may be useful to introduce

syntactic sugar for the two standard forms of store and load. In this case, it

may even be necessary to include the code for onFile in the syntax extension to
avoid a bootstrapping problem: to use a function from the input/output-library,
the library needs to be accessed, which is exactly the task for which the library

function should be used. Nevertheless, such a language extension is only a matter
of convenience and its semantics can be de�ned in terms of the available prim-
itives. Therefore, our goal to lift the treatment of module storage, module load

and program construction to the language level has been achieved.

6.2 Data abstraction and generic functions

In the early 1970s, it was noted (cf. chapter 4) that modules are often used

to de�ne abstract data types. In our example, the collection of functions in
basic_list can be interpreted as a de�nition of the type binary lists: in Russell

terms, the functions interpret values of some value space as binary lists. Usually,

the kind of values that are actually used in such an interpretation is restricted
and can be viewed as a hidden type. Taken together, a value of a hidden type and

a collection of functions providing an interpretation of this hidden type as a new

(user-de�ned) type form a representation of an abstract data type. In general,

there are many possible representations of an abstract data type, each providing

the same operations on the abstract data type but using di�erent implementations

or di�erent hidden types. This di�erent interpretation of collections of functions
in
uences the structure of our example (repeated in �gure 6.11).

basic_list has been renamed to binary_list to emphasize the change of

intent: it is no longer a module of some basic operations on lists, it is a de�ni-

tion of binary lists in terms of one possible representation. Similarly, hof_list
is a parameterized de�nition of lists with some higher-order functions, de�ned

in terms of a representation of binary lists. Obviously, this program is a gross
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letrec

binary_list = f empty = ...

nil = ...

cons = ...

head = ...

tail = ... g
hof_list repr = letrec

from repr import [ empty head tail cons nil ]

in f map = ...

filter = ...

fold = ... g
in letrec

from binary_list import [ cons nil ]

from ( hof_list binary_list ) import [ map ]

square x = ( x * x )

in ( map square ( cons 1 ( cons 2 ( cons 3 nil ) ) ) )

Figure 6.11: Modules as simple data abstractions?

over-simpli�cation of abstract data types as no type checking is done. Instead,
operations of the `right' type are explicitly selected and only applied to objects be-
longing to the same representation of this type, e.g., (binary_list . "cons" )

is applied to (binary_list . "nil" ). Moreover, the generic `type' hof_list
provides no constructors, making it impossible to construct objects of the ab-

stract data type (hof_list repr) without knowledge of the `hidden' represen-
tation type repr. Finally, the function map belonging to the abstract data type
(hof_list binary_list) is applied to an object of the `hidden' representation

type binary_list outside the de�nition of the abstract type. To sum it up, this
naive attempt shows some similarities to abstract data types, but it is also in

con
ict with the philosophy of abstract data types. Thus, a change in program

structure is necessary to re
ect the change of intent.

Since we have excluded aspects of type systems from our language design, we

cannot fully address the type safety aspects of abstract data types here. There is

no static type checking, there are no means to query the type of an expression at

runtime, we have not even de�ned a type system. For these reasons, we prefer to

talk about data abstractions instead of abstract data types here. Note, however,

that type systems that do not provide for abstract data types at all or cannot

relate their concept of abstract data types to our data abstractions would not

be acceptable for our language. With these restrictions in mind, the program
structure still has to be changed to re
ect the idea of data abstractions. First of

all, each abstract value has to be represented by a package, consisting of a value
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of a representation type3 and a collection of functions implementing the abstract

operations on the representation type. Taken together, the representation type

and the collection of functions de�ned on it form one possible representation of

an abstract value, and frames with two slots named "type" and "value" can be

used to describe such a representation.

letrec

binary_list = f empty = ...

nil = ...

cons = ...

head = ...

tail = ... g
in letrec

wrap v t = f "type" :: t

"value" :: v g
nil = wrap ( binary_list . "nil" ) binary_list

cons h t = wrap (( binary_list . "cons" ) h ( t . "value" ))

binary_list

in ( cons 1 ( cons 2 ( cons 3 nil ) ) )

Figure 6.12: A simple data abstraction

Figure 6.12 shows a simple attempt to use the collection binary_list in the
de�nition of a data abstraction: the operations from binary_list and the con-

crete values on which the de�nitions of these operations are based are lifted to
abstract values by wrapping them into appropriate packages. Correspondingly,
abstract values may have to be unwrapped before operations from the representa-

tion can be applied (cf. the de�nition of the abstract cons). In this attempt, the

abstract constructors nil and cons are de�ned in terms of implementations of

these constructors in a single representation (binary_list). It would be annoy-
ing to modify the de�nitions for every new representation, and it would also lead
to naming con
icts if multiple representations of the same data abstraction are

being used in one program. The problem is aggravated by the fact that multiple

data abstractions may provide similar functions using the same name (e.g., map is
a typical example of a function that will be provided for most kinds of data collec-

tions). A common solution to this kind of problems is the introduction of generic
functions or overloading. A generic function may behave di�erently depending on

the type of its parameters, i.e., the name of a generic function is overloaded with

the de�nitions of all data abstractions (or representations thereof) that support
a function of this name.

3in the sense of a syntactical category or another abstract data type
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( store "generics"

f genConst c ty = ( ty . c )

genOp op da = (( ( da . "type" ) . op ) ( da . "value" ))

genOp2 op x da = (( ( da . "type" ) . op ) x ( da . "value" ))

wrapConst gc ty = f "type" :: ty

"value" :: ( gc ty ) g
wrapOp op da = f "type" :: ( da . "type" )

"value" :: ( op da ) g
wrapOp2 op x da = f "type" :: ( da . "type" )

"value" :: ( op x da ) g g )

Figure 6.13: Helper functions for the construction of generic de�nitions

Figure 6.13 shows a module of de�nitions from which generic functions can

be constructed. For simplicity, we assume that the functions are generic in only
one of their two �rst parameters (which is enough for our running example).

The essence of a generic function is given in genOp. The parameter to a generic
function ( genOp op ) is an abstract value: from its "type"-slot, the actual
type-speci�c function de�nition is selected and then applied to the concrete value

in the "value"-slot of the abstract value. wrapOp is used to wrap the concrete
result of the concrete function into an abstract value (genOp2 and wrapOp2 do

the same for the case that the second parameter of the generic function is the
abstract value; the �rst parameter x is passed on unmodi�ed in this case). The
only di�erence for overloaded constants (genConst, wrapConst) is that there is

no abstract value from which the type can be selected { the type has to be passed
as an explicit parameter.

Figure 6.14 shows how generic functions are constructed from the de�nitions
in "generics". Note that the de�nitions of the generic functions cons and map

and of the overloaded constant nil are independent of any speci�c type and apply

equally well to all data abstractions that supply similar functions and constants.
For instance, the de�nition of hof_list has been modi�ed to extend the represen-

tation supplied as parameter, i.e., it exports not only the higher-order functions,
but also the representation functions. Since the re-exported items are not mod-

i�ed, (hof_list binary_list) is a kind of sub-type to binary_list, and all

abstract values of the former type can be used where an abstract value of the lat-
ter type is expected. In particular, generic functions that apply to binary_list

can also be used with abstract values of its sub-type. The overloaded constant nil
is instantiated to hof_nil, which is comparable to a type annotation. All other

generic operations select type information from their parameters, so that types

are handled implicitly, and the �nal goal expression remains almost unchanged.
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(( load "generics" ) >>= �generics.

letrec

from generics import [ genConst wrapConst genOp2 wrapOp2 ]

binary_list = f nil = ...

cons = ...

empty = ...

head = ...

tail = ... g
hof_list repr = letrec

from repr import [ empty head tail cons nil ]
in f nil = nil

cons = cons

empty = empty

head = head

tail = tail

map = ...

filter = ...

fold = ... g
in letrec

nil = ( wrapConst ( genConst "nil" ) )

cons = ( wrapOp2 ( genOp2 "cons" ) )

map = ( wrapOp2 ( genOp2 "map" ) )

hof_nil = ( nil ( hof_list binary_list ) )

square x = ( x * x )

in ( map square ( cons 1 ( cons 2 ( cons 3 hof_nil ) ) ) ) )

Figure 6.14: Using data abstractions for the example problem
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Usually, data abstractions that provide implementations of generic operations

are somehow related and one could try to organize data abstractions in a hierarchy

just as the representations of data abstractions form a two-level hierarchy in

our example. In other words, collections of generic operations could be built

similar to collections of representations as this is done, e.g., with type classes in

Haskell (type classes correspond to collections of generic operations which are

organized hierarchically and instances of type classes correspond to collections

of concrete function de�nitions that characterize a type). Of course, the 
ow of

type information is restricted in our model, compared with the type inference

process in Haskell where, e.g., the type of identi�ers overloaded with constants

of di�erent types can often be inferred from the context). Also, the information

gathered during type inference can be used to modify program representations

prior to execution to supply type representations as parameters implicitly without

bothering programmers with the details of data abstraction (such as wrapping,

unwrapping, selection of functions from type representations, etc.). Thus it seems

that type systems provide for a useful form of meta-level abstraction that is not
yet easily supported in our language.

6.3 Object-oriented programming

In the series of program variants developed so far, the emphasis has shifted more
and more from functions towards data structures, and the program structures

re
ect this shift of emphasis. In the original version of our running example
(6.1), de�nitions of algorithms were kept with functions, and values were only
supplied as parameters to these functions. Then, functions were collected into

modules (6.5), collections of functions were interpreted as de�nitions of types
(6.12), and functions and values were packaged to form data abstractions (6.14).

Based on these data abstractions, generic functions have been introduced in the

last section, functions whose behavior depends on the type of their parameters

and whose de�nitions are supplied by the representations of these types. In our

�nal example, we arrive at the opposite end of the spectrum, where de�nitions of
algorithms are kept with the objects, and functions (degenerated to messages) are

only supplied as parameters to these objects. Our running example originated

from a function-oriented view of programs where it is natural to think about
lists and higher-order functions on lists (indeed, they are typically pre-de�ned

in functional languages). This may not at all be a typical application from an
object-oriented point of view, i.e., not only the program structures are di�erent,

but problems present themselves not usually in terms of lists and functions, and

the example should therefore only be seen as a simple representative of more
complex programs. However, before we can proceed to restructure the example,

a framework for object-oriented programming has to be de�ned similar to the

framework for generic functions in the previous section.
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find_method class message =

if ( test class message )

then ( class . message )

else if ( test class "super" )

then ( find_method ( class . "super" ) message )

else "message not understood"

send oid message things =

if ( test things oid )

then let

class = ( ( things . oid ) . "class" )

in ( find_method class message )

else "object not found"

Figure 6.15: Finding methods in the class hierarchy in response to messages

If programs are to be organized around objects and algorithm de�nitions are

to be stored in objects, there must also be a protocol for accessing and invoking
these algorithms. In Smalltalk terminology [Ing78], the metaphor of communi-
cating objects is used for this purpose: algorithms de�ned in objects are called

methods and are invoked by sending messages to objects. To be precise, objects
are instances of (object) classes, and the methods to which an object responds are
de�ned in its class or in one of the super-classes of this class (classes are organized

in a hierarchy). Obviously, frames can be used as representations of objects and
classes if these are viewed as collections of object components (instance variables)

and method de�nitions, respectively. Similarly, collections of objects and hierar-
chies of classes can be represented as frames, provided that a suitable message

sending operation can be de�ned. The basic algorithm is given in �gure 6.15:

given an object identi�er, a message, and a collection of objects, send determines
whether the object addressed by oid does exist, and calls find_method with the

object's class and the message if it does. find_method selects the appropriate

method if it exists in the class and recurses upwards (along the "super"-slots) in
the class hierarchy otherwise. If the top of the class hierarchy is reached before

a method is found (no "super"-slot), a message to this e�ect is returned.
Strictly speaking, object-oriented programming is just a way to organize pro-

grams around their data objects. In practice, however, the ability to modify the

value of an object without changing its identity is often an essential ingredient
of object-oriented programs. The reason for this is that the collection of all ob-

jects is used as a communication medium: to make an information available to
other objects, it is stored in one of the publicly known objects. These objects are

known not by their values, but by object identi�ers, and if an object is modi�ed,

its new value is available under the old identi�er. To model this common feature,
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the collection of all objects is also represented by a frame, and slotnames can be

used as object identi�ers (the collection of objects is called things here). Fur-

thermore, a monad is used to organize accesses to the collection, which means

that all methods have to be constructed in this monad. Figure 6.16 shows the

slightly adapted send operation in the context of the other operations which we

describe now.

The functions ret and bind are the familiar state transformer monad opera-

tions (built on the input/output-monad here to provide for input/output in object

methods). All functions in this module take a collection of objects (things) as

the �nal parameter and construct an input/output-interaction script that returns

a pair consisting of a value and a collection of objects. ret takes a value and

the things and returns both in a pair (mainly used to return results from sub-

computations). bind takes two scripts in the objects-monad, executes both in

sequence and passes the result of the �rst to the second. io lifts a script in the

input/output-monad to a script in the objects-monad. Both bind and io check
the intermediate results and pass them on only if they are OK (otherwise, the

evaluation returns immediately with a message indicating that some operation
cannot be executed)4. These were only the basic operations to construct programs
operating on a collection of objects and performing input/output, whereas the re-

maining operations de�ne one possible basis for an object-oriented programming
style: new creates a new object of a class where each class is assumed to provide

a prototype for such objects in a slot "new". For simplicity, prototypes cannot be
parameterized here, and the identity of the new object is provided as a parameter
to new (this would better be handled internally by computing a new name for

each new object; a name generator could be part of the objects collection). set
allows to modify components of objects without changing their identity which

involves two updates: the object has to be modi�ed, and the collection of objects

has to be updated to contain the modi�ed object. Finally, there is the de�nition
of message sending with some small modi�cations. find_method is now local

to send, and both de�nitions have been adapted to �t into the objects-monad.

More interestingly, methods selected from the class hierarchy take the object

that originally received the message as a parameter self, and all methods take

one additional parameter. Both parameters are supplied to the result of the call
(find_method class message) in the goal expression of send.

Given this library, it is now possible to de�ne the object classes for our running

example (�gure 6.17). Since our de�nition of send assumes a uniform method
interface, each method takes two parameters. Most of them do only need the

self parameter to know the object to which a message is addressed, while fold

actually needs more than two parameters. binary_list is now an object class,
and new lists are initially empty, so there is no explicit nil method. hof_list is

4We have silently extended check to handle both unary and binary OK-constructs, but do

not include things in NE-constructs here.
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( store "objects"

f ret v things = ( return ( OK v things ) )

bind a b things = ( ( a things ) >>= ( check b NE ) )

io i things = ( i >>= ( check �r.( return (OK r things) )

NE ) )

new class oid things =

( return ( OK oid ( update things

oid

( update ( class . "new" )

"class"

class ) ) ) )

set oid selector value things =

if ( test things oid )

then ( return ( OK value

( update things

oid

( update ( things . oid )

selector

value ) ) ) )

else ( return ( NE "object not found" ) )

send oid message par things =

letrec

find_method class message =

if ( test class message )

then ( class . message )

else if ( test class "super" )

then ( find_method ( class . "super" ) message )

else �self.( return (NE "message not understood") )

in if ( test things oid )

then letrec

obj = ( things . oid )

class = ( obj . "class" )

in ( ( find_method class message ) obj arg things )

else ( return ( NE "object not found" ) ) g )

Figure 6.16: An objects monad for message send and object modi�cation
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( ( load "objects" ) >>= �objects.

letrec

from objects import [ ret bind io new set send ]

binary_list = f new = f "val" :: < > g
empty self arg = ...

cons self arg = ...

head self arg = ...

tail self arg = ... g
hof_list = f new = f "val" :: < > g

super = binary_list

map self arg = ...

filter self arg = ...

fold self args = ... g
things = f g
square x = ( x * x )

in ( bind ( new hof_list "a_list" ) �oid.

( bind ( send oid "cons" 3 ) �v.

( bind ( set oid "val" v ) �v.

( bind ( send oid "cons" 2 ) �v.

( bind ( set oid "val" v ) �v.

( bind ( send oid "cons" 1 ) �v.

( bind ( set oid "val" v ) �v.

( bind ( send oid "map" square ) ) ) ) ) ) ) ) things ) )

Figure 6.17: Using the objects monad for the list example
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de�ned to have binary_list as its super-class and inherits all methods de�ned

there. The goal expression starts with an empty collection of objects and proceeds

as follows: �rst, a new empty hof_list object is created and its identi�er is

bound to the variable oid. The object with the identi�er oid is then asked to

return a copy of itself with the value 3 prepended and is set to this new value.

This is repeated for 2 and 1 and, �nally, oid is asked to map the function square

over its elements. The program is a bit complicated because our de�nition of

set (roughly corresponding to an assignment in an imperative object-oriented

language) does not allow any access to things on its right-hand side (the third

parameter).

We should point out again that this is only a simpli�ed attempt to provide

for object-oriented programming, and that there are various other possible ap-

proaches to model objects. To give but one example, our de�nitions assume

the classes and the class hierarchy to be �xed, only objects and the collection

of objects can be modi�ed. Another approach would be to include the frames

that model classes in the collection of modi�able objects. In such an approach,
the distinction between objects and classes would vanish { instead of classes
referring to super-classes, there would only be objects that would handle some

messages themselves but could also delegate messages to other objects. Similarly,
variations in the de�nitions of the other constructs (modules, data abstractions,
generic functions) are possible, too, but in general, we have successfully avoided

the hammer-and-nail problem5 at the level of modular programming (if you only
have modules/objects/. . . , every problem looks like a module/object/. . . ). In-

stead, our language design invites programmers to think about the abstractions
they need and to build or use the best tools for a given problem. Useful ab-
stractions can be provided as libraries, but they do not need to be built into the

language. Indeed, they should not be built-in, since none of the constructs is re-
ally fundamental { all of them can be composed from a few fundamental language

constructs. Most of the necessary constructs are available in our design, with the

notable exception of the kind of meta-level abstraction provided by type systems.
Of course, the problem avoided at the module level returns at the next level be-

cause we map all abstractions to �-abstractions and all collections to frames. We

have shown how these tools are adequate for the problems we are interested in

here, but we do not claim them to be adequate for all kinds of abstraction or for

all kinds of collections.

6.4 Discussion

Although our language design is rather simple, we have been able to model spe-
cial purpose constructs of more complex languages with relative ease. So far,

this has been demonstrated only by a number of examples, but the ideas and

5`If all you have is a hammer, everything looks like a nail.'

126



modeling techniques used have been rather general, and there is no reason to as-

sume that these techniques would be restricted to the examples given here. This

brings up the issue of formalizing these techniques in order to achieve a better

understanding of their prospects and foundations.

We believe that the basis for these techniques is a process of abstraction that

can be formalized in a way that corresponds to the intuitive use of the term. As a

consequence, the limits of these techniques are given by the limits of support for

abstraction in programming languages. Moreover, special purpose constructs for

modular programming are nothing but instances of abstraction, and the incor-

poration of such constructs in the de�nition of programming languages is made

necessary only if these languages are restricted in their support for general ab-

stractions.

Throughout this thesis, we have emphasised the importance of abstraction as

the major tool for dealing with complexity, and we have done so in the usual ad

hoc manner. We generalized concepts by abstracting away details that were not
relevant to the issues discussed (the use of the term abstraction for this process
in programming seems to be due to Hoare and Dahl [DDH72, III. Hierarchical

Program Structures, p. 209]). We will now try to explain the success of our
approach by a closer investigation of the process of abstraction, how it relates

to the problems we are trying to solve and to the facilities we provide in our
language.

The mechanics of abstraction

The idea of abstraction is to factor a problem into two parts in order to focus on
one part and to abstract away the other. Figure 6.18 is a �rst attempt to isolate

the major steps involved in the process of forming an abstraction, starting with an
object X. First, X is factored into two parts A and B, where jj denotes a binary
composition operator that constructs the original object from the two parts.

Often, one of the parts is a larger context in which the other part is embedded as

a sub-object, but using a binary operator to denote the composition of the whole

object from the two parts allows to keep the presentation symmetric. The second
step is a quanti�cation over the irrelevant part, e.g., for all a, only the composition

a jj B may be of interest, whereas the actual value of a is considered uninteresting

for the current task. Usually, the uninteresting part is not completely irrelevant
and the quanti�cation thus needs to be restricted to a subset of objects (a 2 A).
Such restrictions have an important in
uence on the �nal step: it is usually not
possible to address the interesting part of the problem in isolation, ignoring the

other part and the composition completely. Instead, at least the restrictions need

to be kept with the interesting part, providing an interface speci�cation. Only if
there are no restrictions, the interface becomes trivial and it is possible to isolate

one part. Note that there are always two views of an abstraction. Even though

only one of the views may be relevant for a given sub-task, there will always
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be a complementary task (however trivial) for which exactly the other view will

be relevant. In other words, abstraction provides two simpler, but partial views

of the original object X, but it does not usually change the complexity of X.

However, the generalization step allows to share partial views between di�erent

abstractions, providing a potential for reuse that can actually reduce the overall

complexity of the partial views: each partial view can occur at several instances

in X.

?

�������9
XXXXXXXz

? ?

A jj B 1. factorization

8b 2 B: A jj b 8a 2 A: a jj B
2. quanti�cation/

generalization

A B 3. isolation

X 0. an object

Figure 6.18: The process of abstraction

The objects in our language are expressions, and the obvious representation
of 8-quanti�ed expressions are �-abstractions. Applications, �-reduction and, �-

nally, substitution model the construction of expressions from abstractions and
sub-expressions. The other language constructs provide the means for the compo-

sition of programs from parts inside abstractions. We are aware that the choices
made here are not the only possibilities { they just re
ect the tools we used.
These may be neither complete nor fundamental (e.g., only valid expressions can

be abstracted away), but they seem to be su�cient for our purposes - su�ciently
expressive and su�ciently simple. Note, however, the importance of our lan-

guage design principles for this representation of abstraction: (a) we need to be
able to build abstractions over every valid language expression, and (b) we need
to be able to abstract away every valid language expression out of any context.

Any deviation from the principles of abstraction or data type completeness would

hamper our freedom to build abstractions. Such restrictions of the general facili-
ties for abstraction are the major reason for the need to introduce special purpose

abstractions as prede�ned language constructs (e.g., procedures, modules, . . . ).
We are now in a position to relate the process of abstraction as outlined above

to our problems and solutions. As a simple example, consider the application of a

function to an argument: functions are just abstractions over expressions, which
are factored into varying sub-expressions (parameters) and �xed contexts that

describe algorithms in terms of these sub-expressions. There are two quanti�ca-
tions involved: at the call site, the algorithm is replaced by a function name and,

at the function de�nition site, the parameters are replaced by names. As a result,

we get two simpli�ed parts of the original program: at the call site, we abstract
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away the implementation of the algorithm and, in the function de�nition, we do

not need to care about possible calling contexts but can focus our attention on

the algorithm instead. Strictly speaking, the calling context includes not only

the actual parameters but the complete expression context in which the function

call is embedded. However, the function de�nitions are independent of these con-

texts (the reduction of function calls to function values is context-free), and these

context can therefore be abstracted away, isolating the function calls from their

embedding contexts. In contrast, the separation between function call site and

function de�nition has to stop after the quanti�cation steps: the result of the

function call depends both on the actual algorithm and the actual parameters,

and therefore the names for the abstracted parts remain in the interfaces between

the two parts (they cannot be isolated from each other).

If interaction descriptions are added to the valid expressions, the same scheme

that is used to build functional abstractions can be used to build procedural

abstractions, and if records are added to model modules, module abstractions
can be built in the sense of conventional module systems, i.e., module de�nitions

can be understood and maintained while abstracting away the complex programs
in which they may be used, and the programs can be understood as a collection

of modules abstracting away the complex module de�nitions. The addition of
records allows to model the collection aspect of modules, i.e., modules group
together collections of expressions (including functions). In all the examples

provided in this chapter that involve the modeling of special purpose constructs
such as modules, data abstractions or objects, the basic idea is to identify the
abstraction behind the language construct and to implement this abstraction

directly without using the special constructs (though the technical details may
be complex enough in some of the examples to hide this central idea).

The in
uence of abstraction on the language design

Since data structures are used to model modules in our language, we get �rst-class

modules for free. But even if we had decided to add modules as separate language

constructs, our emphasis on abstraction would have led us to �rst-class modules
again (the same reasoning applies to the other constructs). Without modules be-

ing �rst-class expressions, the means for abstraction would be seriously restricted,

e.g., it would not be possible to abstract away common sub-expressions from the
collections of expressions in module de�nitions (parameterized modules) or to

abstract away collections of sub-expressions from any valid expression (modules
as parameters). As an immediate consequence of the latter restriction, modules

that depend on other modules (via an import relation) could not be used with

varying imports. In contrast, unrestricted abstraction not only allows to use one
module in several programs requiring similar functionality, it also allows one pro-

gram to use several modules providing similar functionality. This latter quality

of multiple implementations for given interfaces is usually attributed to object-
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oriented languages and has, e.g., been described as the essential new capability

added in the transition from the abstraction-oriented (in the sense of providing

for data abstractions) Ada 83 to the object-oriented Ada 95 [Taf93].

The �-calculus was invented to describe functions and, due to the fact that in-

stantiation of �-abstractions corresponds so nicely to function application, it has

mainly been used as the basis of functional programming languages. However,

we prefer to see it as a (probably partial) solution to the problem of describing

abstractions. In particular, both functional and object-oriented programming

can be supported in a suitably extended �-calculus { even though functions and

objects may not go easily together, they both are just useful instances of the

general scheme of abstraction. Whether the abstractions of the �-calculus model

functions, procedures, modules, data abstractions, objects, classes, or something

else depends mainly on the available primitives. Consequently, we have tried to

keep the pure �-calculus as the core of our language and have added primitives

to address various problem domains: constants, primitive functions, data con-

structors and selectors, primitive interactions, and so on. In view of this, our
language design is better described as consisting of four parts: functions, frames,
interactions, and �-calculus as a means for building abstractions over the avail-

able primitives. Also, we have explicitly added records as data structures instead
of modifying the �-calculus to provide for functions with named parameters (see
[Dam97] for a nice instance of this approach). This alternative would allow to

model records similar to the modeling of other data structures in the pure calculus
(as discussed brie
y in section 2.3), but it would also blur the distinction between

general means for abstraction and speci�c constructs for data structuring.
Our view of abstraction treats both modules and levels of abstraction as in-

stances of one scheme (perhaps focusing on di�erent aspects of the scheme). The

main additional feature of a level of abstraction is the attempt to provide a
consistent layer, comprised of several individual abstractions, that corresponds

to a conceptual level of understanding on each side of the interface (with no

cross-references between the levels, apart from the lower one implementing the
constructs of the higher one). High-level programming languages are a common

example of this: programmers write their programs in terms of the language con-

structs without caring for the implementations of these constructs and language

implementors provide such implementations without caring for programs written

using these language constructs. It is the task of language designers to de�ne a

suitable level of abstraction as an interface between the two separate views. This

description supports and re�nes our earlier claim that modular programming and

high-level languages have similar aims { they even use similar means. However,

the description in terms of a process of abstraction also highlights several possible

problems, concrete examples of which have been documented in the literature.

The problems result from the attempt to treat the two parts of software,
high-level programs and language implementations, in isolation. We have already

noted that this extreme view would only be possible if the parts were independent,
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but even a restricted separation, based on a small interface, will not always

work here. The interface between programs and implementations is the language

de�nition: many programs do not depend on the details of the implementation,

and general implementations can be provided without taking speci�c applications

(programs) into account. But in general, the suitability of software composed of

programs and implementations for a given high-level language may well depend

on complex interactions between both components: certain programs depend on

time- and space-e�cient implementations of language constructs which, on the

other hand, can only be provided with certain assumptions about the kind of

programs in which these language constructs will be used. The question whether

or not programs written in high-level languages can make e�cient use of the

available resources is probably as old as the languages themselves, but there are

also some more speci�c observations about the interface problem, some of which

are addressed below.

One of the earliest observations is that one prede�ned level of abstraction for

a general purpose language may not suit all needs and that a natural way to
tackle problems in complex domains would start with the de�nition of a domain-
speci�c, or even application-speci�c language. To avoid the duplication of ef-

fort involved in the design and implementation of countless individual languages,
several proposals have been made, ranging from extensible languages and im-
plementations [Sch71] to the de�nition of domain-speci�c languages in general

purpose languages, with the simulation classes of Simula 67 [DMN70] being an
early example. Our language design aims at the latter approach but takes it fur-

ther to the level of program components in that neither modules nor objects, nor
any other special purpose constructs for modular programming are introduced as
language primitives, i.e., the conceptual level of the language constructs is kept

rather elementary, but 
exible and general enough to enable the problem-free
introduction of more speci�c higher levels.

This aspect of the design is also an attempt to address, at least at the level of

modular programming, a problem �rst noted by the Alphard designers [SW80].
They argued that language designers, in �xing the interface between programs

and implementations, tend to pre-empt design decisions that could better be

made by programmers: when writing programs in top-down fashion, programmers

start with abstract ideas and continue to re�ne them until every abstract concept

has been implemented in terms of the available resources. The implementations

are usually chosen so as to take the requirements of the context into account,

but this scheme breaks down as soon as the process of re�nement reaches the

ground level of the programming language: there are still a lot of decisions the

programmers would want to make (in contrast to those decisions they do not care

about, where the high-level language really frees them from irrelevant details),

but everything below this level has been decided by the language implementors.
The implementors probably used suitable assumptions for the general case, but

they had no chance to take into account the speci�c needs of our programmers

131



for the particular problems they are trying to solve (cf. also [Low78]).

The de�nition of language constructs for modular programming in terms of

more elementary constructs allows programmers to use pre-de�ned abstractions

as long as this suits their needs, and it allows them to adapt decisions below this

level of abstraction whenever they should need to do so (a similar approach led to

the de�nition of meta-object protocols for CLOS, the Common Lisp Object Sys-

tem [KdRB91, DG87]). Also, new kinds of program components can be de�ned

if necessary, and di�erent kinds of components can be mixed in a single program

(e.g., one can collect classes in modules). Translating this approach to the gen-

eral case of high-level languages requires the provision of elementary and general

constructs for all purposes, to be used either directly or indirectly via additional

abstractions de�ned on top of them. It remains to be seen whether all important

implementation decisions can be represented in terms of a language level below

the real user language without forcing programmers to think about irrelevant

details, but if this should work out well, both parts of the abstraction would be
available to programmers. This would also solve the problems recently discussed

in [Kic92], namely that `black-box' abstractions (following Parnas' principle of
information hiding: the box can be used as it is, but it is not possible to look

inside) are not always adequate. There are cases when clients need control over
the implementation, i.e., they still want to use the abstraction but also need to
make sure that the implementation �ts their needs. This has led to a search for

similar problems and to the proposal of open implementations (in contrast to
the closed black boxes) as a possible solution (cf. [Xer96] and also the work on
aspect-oriented programming [KLM+97]).

A classi�cation of abstractions for modular programming

Since we view modules, objects, etc. as instances of a general scheme of abstrac-

tion, it suggests itself to search for relations between these instances. Figure 6.19

is a �rst attempt to classify some abstractions for modular programming from

a function-oriented and an object-oriented view. The very �rst step is to factor

programs into functions and parameters (we restrict ourselves to one-parameter
functions here). The dichotomy then originates in the abstraction of the algo-

rithm: if it is abstracted with the functions, we get the function-oriented view in

the lower left corner of the picture, if it is abstracted with the objects, we get the
object-oriented view in the lower right corner. The simplest next step is to bun-

dle several abstractions together, yielding either modules consisting of several
function de�nitions or collections consisting of several object de�nitions. Ob-

jects generally respond to several messages with di�erent methods, implementing

several functions in one message-generic object. The counterpart in the function-
oriented view are functions applicable to di�erent parameters, called data-generic

functions here, which execute one of several di�erent algorithms based on a case

analysis of the parameter. In typed function-oriented languages, it is common
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practice to classify related objects into types and to speak of functions working

on objects of certain types. The object-oriented counterpart to a type would thus

be a classi�cation of functions6 and, indeed, there is such a notion, often called

interface.
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Figure 6.19: Classi�cation of abstractions

Just as a type speci�es the acceptable parameters for a function, an interface
speci�es the acceptable messages for an object, i.e., we can now attribute inter-

faces to objects. A classi�cation of objects according to their interfaces yields
the well-known concept of object classes, where a class consists of several objects

sharing one interface - all objects in a class accept the same messages. Again, we

can try to �nd a counterpart for this abstraction on the function-oriented side, a
class of several functions accepting the same type of parameter, and this is just a

primitive variant of user-de�ned data types in the sense introduced by [Zil73] and
further explored in Russell [DD85]. A new type is de�ned by providing functions

that interpret an existing type. If we would package the latter type with the

6Since the algorithm description is kept with the object, functions degenerate to messages

in this view.
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functions de�ned on it, we would make the step from user-de�ned data types to

data abstractions as introduced in CLU [LZ74]. The basic distinction between

the two concepts is that Russell's user-de�ned types are interpretations of one

universal value spaces whereas CLU's abstract data types assume the set of val-

ues used for representations to be typed, too. Hence, data abstractions need to

be explicit about the existing type which is interpreted by the functions in the

abstraction.

We do not need to stop here: for instance, we could generalize from data-

generic to type-generic functions, i.e., functions which accept values of several

types and select the actual algorithm to execute according to the type of the pa-

rameter. Types can then be classi�ed, leading to Haskell's [PH96] type classes7,

and one generic function will only accept values of types belonging to one type

class - Haskell's parametrically overloaded functions. The object-oriented coun-

terpart to type-generic functions seem to be interface-generic objects, objects

responding to di�erent interfaces. However, there seems to be no such concept

and the same holds for the idea of interface classes and objects responding only
to interfaces belonging to one interface class. Since the strategy of searching for

counterparts in our picture has otherwise been quite successful, it may be in-
teresting to look for sensible interpretations of these new concepts. If we insist
on relating interfaces to object classes, an object responding to several interfaces

would necessarily belong to several classes. Note that this is a relation between
objects and classes, di�erent from multiple inheritance which is a relation between

classes alone. The question marks stand for another, as yet unnamed concept
of objects that respond to several interfaces all belonging to the same interface
class. We distinguish between object classes and instances of interface classes

although both may be just di�erent views of the same concept. A similarly close
relationship can be found between instances of type classes and user-de�ned data
types.

This is only a �rst, rather simplistic attempt of a classi�cation, based solely

on the way in which abstractions are constructed, and it certainly needs to be

re�ned and extended (e.g., sub-types and sub-classes are not covered at all). Still,

it has some interesting aspects. First of all, it is surprising that it was actually

possible to build such a symmetric picture. For each abstraction used in one of
the two views, there seems to be a counterpart in the other view, constructed

by similar steps from di�erent starting points. Most of these counterparts cor-

respond to known abstractions, though some of them are not usually named,
and for those counterparts that are not yet known, reasonable interpretations

seem to exist. Another important point is that the abstractions developed for
the function-oriented and for the object-oriented view can be divided into two

groups. While there is a symmetry between these groups, this symmetry is based

on the way abstractions are constructed, not on their interpretations. These in-

7Instances of Haskell's type classes can also be seen as user-de�ned types.
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terpretations are di�erent for the two groups and it seems to make no sense to

mix abstractions that do not belong to the same group. For instance, the concept

of data types belongs to the function-oriented view, but it is rather di�cult to ask

for the type of an object in the object-oriented view. As the picture suggests, it is

more appropriate to ask for the interface accepted by an object. Similarly, object

classes classify objects according to their interfaces, whereas data types are clas-

si�ed in type classes. Interestingly, most object-oriented languages depart from a

purely object-oriented view to allow for methods with multiple parameters, which

leads to a complex mix of object-oriented concepts (classes of objects) and func-

tional concepts (types of methods). The only purely object-oriented language we

currently know of is SELF [US87].

Of course, one could introduce a meta-level and view the abstractions in the

two lower parts of �gure 6.19 as objects of a new programming language. It would

then make sense to ask for the meta-type of an interface or for the meta-type of

a module. Meta-functions could operate on modules, Classes could be grouped

into meta-classes, types into meta-types (usually called kinds). In conventional
languages, the step into the meta-level is actually carried out earlier, and types,
modules or classes do belong to (di�erent) meta-languages. Since more than two

levels of a hierarchy of meta-levels are seldomly used, elements of the three levels
are usually named explicitly (e.g., values, types and kinds in the type hierarchy).
However, even a single hierarchy of meta-levels gets complex very easily, and

the possible combinations between multiple hierarchies tend to aggravate this
problem. For instance, consider modular programming in the function-oriented

view: should a language �rst be extended with a type system and then with
a module system, or should the module system come before the type system?
In the �rst case, modules would naturally contain types, whereas in the second

case modules would naturally have types. The process will usually be repeated
to �nd an additional type system for modules containing types or an additional

module system to organize types of modular programs, and the resulting language

designs will not only be very complex, they may very well di�er for the two
di�erent starting points. This is another reason for keeping abstractions �rst-class

language objects: meta-level abstractions can be more expressive than simple

abstractions, but as long as this additional expressiveness is not needed, meta-

levels should be avoided. To relate this to the given example problem, we have

started to add modules to the language, postponing the treatment of types, but

since �rst-class data structures can be used for modular programming, we have

not needed a meta-level for modules.
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Chapter 7

Implementation

A programming language provides an interface between two conceptual levels of

software development. It allows software to be factored into high-level programs
using constructs of the programming language and low-level implementations of
these constructs. The language speci�cation given in chapter 5 de�nes the inter-

face between programs and implementations of our language, and some aspects of
the high-level view of the language have been developed in chapter 6. The present
chapter is dedicated to the low-level view and thereby completes the presentation

of our language design. The existing implementation of the core language is not
part of the present work, but sets up the framework for the implementation of

the new language constructs, so that a summary account of the general imple-
mentation is provided here. More detailed accounts of the implementation and
of the reduction system itself can be found in [G�ar91, Rat97, GK96, Klu94]. For

completeness, the path from our description of the language design to the cur-
rent implementation is outlined in terms of the major implementation decisions

involved. The focus is then on the implementation of our language extensions
in the existing framework, especially on those aspects that may be relevant to
implementations of other functional languages as well.

7.1 Deriving an implementation of the functional

core language

In order to build an implementation of the language de�ned in chapter 5, it is

necessary to specify the intended uses of the language, because there is nothing

to implement about a de�nition. In this sense, the only implementation of a pro-
gramming language worth this general name would be one that provided for all

possible uses, which would be quite an ambitious goal. Instead, we restrict our
attention to certain uses of the language de�nition and to the implementation of

these. To recall, the language de�nition itself consists of a description of admissi-

ble programs (expression syntax) and a set of (mostly contextfree) transformation
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rules which allow both an operational and a declarative interpretation.

First of all, we need to be able to construct and edit programs (expressions) of

the language and, further, we want to feed programs into an execution phase and

observe the results. Since program execution is de�ned as program transformation

according to the reduction rules of the language, results of program executions are

programs, too, and both execution results and sub-expressions may be subjected

to (further) reductions. Therefore, a tight integration of the program editing and

execution phases is advisable, and the editor should be aware of the language

syntax. The editor is used both to enter and to manipulate programs and to

display results of program executions and thus becomes the user interface to the

implementation. In view of these requirements, the string representation used

to display programs to users does hardly su�ce { internally, a more structured

representation of expressions is needed, together with a representation of the

contexts in which expressions and reductions can occur. The representation of

expressions follows the tree-shaped abstract syntax used in chapter 5, and a

stack is used to keep representations of contexts while traversing sub-expressions.
The editor provides for the conversions between the external and the internal
representation.

Given representations of expressions and contexts, the next step is to �nd an
implementation of reductions in terms of these representations. The simplest case
to consider is the execution of a single reduction step, which means to �nd an

applicable rule and to replace the left-hand side with the right-hand side. There
is only one major reduction rule here, namely �, but this rule is context-free and

abstracts from the sub-expressions that form the body of the �-abstraction and
the operand. To account for these two generalizations, suitable instantiations
for the context and for the two sub-expressions have to be found before the

rule can be applied to an expression. In other words, the given expression has
to be searched for redices (redex: reducible expression). Reducing any of these

redices leads to a new expression with a new set of redices. Each expression may

thus be seen as the root of a tree, and di�erent paths in the tree correspond to
di�erent reduction sequences. A very crude approach to program execution could

generate all possible reduction sequences and search the resulting tree for nodes

which represent program results (a kind of normal form of the root expression).

Provided that a complete search strategy exists, this would be an e�ective, though

not e�cient way to implement the language, but fortunately, there is no need to

actually generate a representation of the search tree: due to the Church-Rosser

property of �, redices may be reduced in any order without a�ecting the �nal

result. From any node in the tree, there is a path to a result if and only if

there is such a path starting with the root (the original program). The partial

order of reduction steps (reduction strategy) may, however, have an in
uence on

the use of resources (number of steps/size of expressions), including the extreme
case that some strategies may not �nd existing solutions with �nite resources.

Beyond these general aspects that can be discussed directly on the basis of the
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formal de�nition of reduction, there are several implementation-speci�c issues of

reduction strategies, but the discussion of these issues has to be postponed until

the necessary foundations have been speci�ed. In particular, the implementation

of reduction steps and the ensuing re�nements of the representation need to be

investigated �rst.

Since redices can occur in operand expressions of other redices, they may

be objects of substitutions, and as such they may be duplicated or consumed,

depending on the number of occurrences of the variable to be substituted. Du-

plication of redices may or may not lead to duplication of work (in terms of

reduction steps), depending on how many of the duplicates need to be reduced to

reach a normal form. On the other hand, reducing redices prior to substitution

may turn out to be unnecessary work if the reduced expressions are not used,

and it may or may not pay o� in terms of space usage (the reduced expressions

are not necessarily smaller than the redices). These problems can be avoided if

the implementation does not prematurely produce copies of the representations

of expressions that are duplicated during substitutions. Instead, copying should
be delayed until a modi�cation to only one of the duplicates is necessary or until
all reductions that are common to all duplicates have been performed. To achieve

these e�ects of delayed copying, all duplicates of one expressions have to share a
single representation, which means that the general representation of expressions
has to be adapted: from a tree to a graph. Shared representations do then have

a natural implementation as edges to the same sub-graph.
Duplication of operand expressions is not the only feature of �-reduction that

deserves special attention in the implementation. Conceptually, each �-reduction
step requires a complete traversal of an abstraction body and of an operand to ac-
complish the substitution and to adapt the number of protection keys of variable

occurrences inside the operator and operand expressions. Implemented naively,
such a traversal would generate a modi�ed copy of the abstraction body, only to

replace the representations of one bound variable with links to a representation of

the parameter. If, instead, substitutions are delayed, it is possible to integrate the
necessary copying with the traversal that evaluates the instantiated abstraction

body and thus to amortize the cost of the copying traversal over several substitu-

tions. The disadvantage is that explicit representations of delayed substitutions

have to be constructed in terms of environments binding variables to values, and

that the combined traversal has to look up variable bindings in these environ-

ments whenever it encounters a variable occurrence. Due to the lexical scoping

discipline, positions of variable bindings for dynamic environment lookups can

be statically computed, so that each dynamic lookup can be implemented as

an indexed access. For instance, expressions with named variables can be con-

verted into expressions in the namefree �NF -calculus and the deBruijn-indices

can be used to access a stack of variable bindings at runtime (the topmost value
on the stack always belongs to the innermost variable binding for the current

sub-expression). The conversion to the namefree �NF -calculus takes place in a
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preprocessing phase and needs to be reversed in a corresponding postprocessing

phase to create the e�ect of executing �-reduction steps at the user-level. Because

the conversions a�ect neither the structure of expressions nor the transformation

behavior, these pre- and postprocessing phases pose no problems, only the names

of variables have to be preserved during the processing phase (e.g., as labels of

nameless abstractions) to enable a complete reconstruction of (partially) evalu-

ated expressions. In the following, the implementation is therefore described in

term of �NF , with nameless abstractions (�) and reductions (�NF ).

The graph representation of expressions should allow a simple and inexpensive

implementation of �NF -reduction if substitutions are delayed and if only pointers

to operand terms need to be copied into and from environments. The major

remaining obstacle to such a simple implementation results from the need to

adapt protection keys in order to keep the static binding structure intact. This is

a fundamental operation that, in general, cannot be avoided without restricting

the language, but it is possible to organize reductions in such a way that a full

implementation of �NF -reduction is only used if the redex demands it. For a large
class of redices, a naive implementation of �NF -reduction (which only substitutes
pointers) su�ces and is more e�cient than the full implementation. To begin

with, modi�cations of protection keys become necessary only if relatively free
occurrences of variables are substituted into the scope of other bindings or if
�NF -reduction removes a level of variable bindings from an expression containing

protected occurrences of variables. Both cases require a search for relatively
free or protected occurrences of variables in complete expressions hidden behind

pointer abstractions. Since substitutions are delayed until expression evaluation,
both problems occur only if bodies of �-abstractions are evaluated: either the �
has just been removed from the abstraction body by a �NF -reduction, unveiling

protected variable occurrences inside, or variable occurrences in the values of
pending substitutions may be transported into the scope of the �. Actually, the

�rst alternative is not a problem with the chosen environment implementation:

while the � has been removed, the operand expression has been placed on the
stack, so that protected variable occurrences in the abstraction body still have to

reach beyond the innermost binding level. Environment stacks are nothing but

compressed representations of static binding structures, �lled with actual variable

values, and if the deBruijn-Indices addressed the correct binding in the original

expressions, they also address the correct value on the stacks.

As a further step, note that globally free or protected variables, i.e., variable

occurrences that are not bound anywhere inside the entire program, do not have

to be manipulated during the processing phase: if they occur in the program

result, their status with respect to the entire program remains unchanged, so the

status can be recorded in the preprocessing phase and reconstructed during the

postprocessing phase, whereas the processing phase can treat them as constant
objects. The problem of relatively free variable occurrences can thus be avoided

by simply not evaluating the bodies of �-abstractions until the abstractions are
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paired with operands to form �NF -redices. This restricts the possible reduction

strategies to a top-down approach, and since globally free variable occurrences are

not an issue anymore, and since no reductions are done inside of abstractions, it

seems as if all relatively free variable occurrences would be substituted by values

before they could participate in further reductions. However, this scheme can

only implement a reduction to weak head normal forms, and abstractions which

are not in operator position of redices are neither evaluated nor are any pending

substitutions performed on them. As a consequence, such abstractions need to

be paired with copies of their environments for later access, forming so called

closures.

The environment stack can become quite large during evaluation, even though

each individual sub-expression usually need access to a few entries only, and it

would therefore be expensive to store a copy of the complete current environment

into each closure. Since the indices by which the environment will be accessed

are known statically, it is possible to pre-compute, for each abstraction, the se-

quence of relevant entries from the current environment and to copy only this
condensed environment into the closure. Of course, variable occurrences in the
each abstraction body need to be adapted to refer to the condensed environment

(the variable bindings in the closure), which provides bindings for all but the
globally free variable occurrences in the abstraction body. Such an abstraction
with a closed local environment can be represented as a �-expression (the rela-

tively free variables are passed as additional parameters to the abstraction), so
that no special runtime mechanisms are needed to express the environment ma-

nipulations. The additional abstractions and applications are introduced in the
preprocessing phase and need to be tagged to distinguish them from the original
program constructs. Tagged constructs that are not evaluated in the processing

phase are eliminated by the postprocessor. If all abstractions in an expression
are closed, the abstractions are also called supercombinators.

Supercombinators are known to have advantageous properties with respect

to an e�cient implementation of reduction. First and foremost, substitutions
never need to cross abstractions because there are no relatively free variables in

them. Operationally speaking: substitutions result from reducing �NF -redices,

and whenever a substitution encounters an abstraction, it is converted back into

a new �NF -redex. The redex itself is the result of statically closing the original

abstraction, and the substitution �lls in the actual values for the parameters at

runtime. However, to take advantage of this property of supercombinators, it

is also necessary to restrict the reduction strategy, as simply reducing the addi-

tional redices in isolation would instantiate new substitutions and cause them to

cross the original abstractions. Therefore, redices with supercombinators in op-

erator position can only be reduced if all parameters are available, and all nested

redices of such a fully applied supercombinator redex have to be reduced in one
step (supercombinator reduction). Due to the statically pre-computed closures,

supercombinator reduction is an e�cient reduction scheme, but it implements
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reduction to weak head normal form only { bodies of (partially applied) abstrac-

tions are still not evaluated.

Fortunately, a simple trick can be employed to combine supercombinator re-

duction with reduction to normal form. To understand this, note that bodies of

(partially applied) abstractions need not be evaluated in the processing phase.

While it may occasionally be useful to partially evaluate abstractions (using full

�NF -reduction) before they are used as operators, the decision to postpone the

evaluation until all parameters are available can usually be justi�ed by e�ciency

considerations. So, supercombinator reduction fails only if (partially applied) ab-

stractions are part of the reduction result. This happens if these abstractions are

never applied to further parameters, i.e., the context in which the abstraction is

embedded is constant { it contains no further redices. Now, the trick is to identify

such abstractions in the postprocessing phase, and to call the processing phase

again with the bodies of these abstractions. To do this, the partial application is

�-expanded to construct a full application inside a new abstraction.

8vi 2 var; r; n 2 Nat; r < n :
(�(vi)1�i�n:expr (expri)1�i�r)

=�

�(vi)(r+1)�i�n:(�(vi)1�i�n:expr (expri)1�i�r (vi)(r+1)�i�n)

The new abstraction has only the missing parameters as formal parameters, and

the original abstraction is applied to these to form a full supercombinator redex.
Since only the body of the new abstraction is subjected to further reductions, the

additional parameters are treated as globally free variables (see above).
With these details in place we can now return to the issue of reduction strate-

gies. Normal order reduction, even if combined with sharing to yield lazy evalua-

tion, incurs an overhead with respect to delayed substitutions. Instead of actually
evaluating each expression in the current environment, evaluation is delayed until

the latest possible point in the reduction sequence. This means that represen-

tations of yet-to-be-evaluated expressions have to be created, and since pointers

to these representations will be substituted into contexts where the original vari-

able environment is no longer directly accessible, each of them has to be paired
with a representation of its environment, forming lots of unevaluated closures.

The costs of building and managing these closures instead of just evaluating the

expressions are one of the main reasons why applicative order reduction is the
standard strategy in our reduction systems (the other reason is its suitability for

non-sequential evaluation). This decision is obviously based on implementation
(e�ciency) considerations and emphasizes that the prevalent focus of research

in our group has not been on language design issues so far, but rather on the

design of hard- and software architectures to support a high-level functional pro-
gramming paradigm. The decision can be justi�ed at the user level, too, because

(a) the availability of e�cient implementations is an important issue for the ac-

ceptance of a paradigm and the usability of its languages, and because (b) even
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an applicative order �-calculus is still computationally complete. In an overall

view of software systems (programs in high-level language plus implementation

thereof), an applicative order reduction strategy simply shifts some responsibility

from the implementation, where it cannot currently be handled completely sat-

isfactory, to the high-level programs, which sometimes have to be reformulated

to take the problems of applicative order reduction into account. From a purely

high-level perspective, however, it would be preferable if user programs would

not be burdened with these e�ciency considerations, especially since applicative

order reduction restricts the validity of �-equivalence (and thus the means for

abstraction in our language design!) to expressions that have a value under this

strategy. Consequently, some of our reduction systems optionally support normal

order reduction or lazy evaluation, but for simplicity we stick with applicative

order reduction here.

cafwhnf = i j (cafwhnf whnf)
whnf = �: expr j cafwhnf

aoc = [ ] j (expr aoc) j (aoc expr)
rc = [ ] j (expr rc) j (rc expr) j �: rc

aoc[(�:expr whnf)] 7!�NF ;aor aoc[��1
1 expr[0 �+1

0 whnf ]]
rc[(�:expr whnf)] 7!�NF ;aor rc[��1

1 expr[0 �+1
0 whnf ]]

Figure 7.1: Weak head normal forms and applicative order reduction contexts

Basically, applicative order reduction requires inner redices to be reduced
before outer ones. Figure 7.1 de�nes weak head normal form (whnf), applicative

order reduction contexts (aoc), and applicative order reduction (7!�NF ;aor) for
the �-calculus fragment of our language. Note again that reduction in applicative

order contexts aoc (to weak head normal form) realizes only a subset of reduction

in all contexts rc (to normal form). These de�nitions can directly be translated
into a recursive algorithm (�gure 7.2), searching an expression for redices and

reducing them. The two-phase scheme accounts for the two kinds of reduction

contexts, rc and aoc (rednf treats redices left over by aor). For the main part

of the algorithm (aor), each expression is either in weak head normal form, or
it has an applicative order reduction context, which can be the empty context

or an application, leading to three rules 1. Essentially, reduction contexts have

been re�ned to a recursive search, and only sub-expressions that might become
new redices are searched anew after reductions. The explicit use of the syntactic

category whnf in some of the rules would require complex recursive tests in

practice but can be avoided easily: the revised main part of the algorithm in �gure
7.3 takes into account that its own result is always in whnf . Two rule sets are

used to distinguish between those applications for which it is known that operand

1The rules have to be applied in sequence because some of the left-hand sides overlap.
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red M = rednf (aor M)

rednf (M N) = (rednf M rednf N)

rednf �:M = �: red M

rednf i = i

aor whnf = whnf

aor (�:M whnf) = aor ��1
1 [0 �+1

0 whnf ]M

aor (M N) = aor (aor M aor N)

Figure 7.2: Direct recursive algorithm

and operator expressions are in whnf (rule set ap) and those for which this may

not be true (rule set aor). As the names indicate, aor searches an expression for

potential redices and ap examines applications after their sub-expressions have

recursively been reduced to weak head normal form. If an application is a redex,

it is reduced and the result is passed to aor again.

Current stock hardware (or the abstract view of it as presented, e.g., by C if
it is used as a portable assembler) does not support the general form of recursion

used in �gures 7.2 and 7.3 very well, necessitating further transformations of the
algorithm to bring it into an iterative (or tail-recursive) form. Such a form lends
itself to an implementation in terms of a control loop manipulating the state

of a store. There are two kinds of recursion involved: the iteration of reduc-
tion over reduced expressions and the recursive descent into sub-expressions that

corresponds to the recursively de�ned reduction contexts. These recursions can
be merged into a single iteration if sub-expressions are treated in sequence, and
if an explicit representation of contexts is introduced. There are two standard

techniques for the latter, either using a control stack to represent context informa-
tion or transforming the whole expression into continuation-passing style (CPS).

CPS-transformations explicitly encode an evaluation order and the original tree-

shaped expressions into expressions of a linearly recursive structure that can be

evaluated iteratively. To this end, the residual of evaluation after each reduction

step is encoded as an explicit continuation function which gets the result of the
step as its parameter. The stack-based approach, on the other hand, encodes

part of the recursive control structure of an algorithm in form of a recursive data

structure, the control stack. The iterative algorithm in �gure 7.4 shows the result
of using this approach on the recursive reduction algorithm. Again, there are two

sets of rules: aor # describes the search for redices in sub-expressions, building a
stack S of contexts, and aor " reduces redices and reconstructs expressions from

reduced sub-expressions and contexts on the stack. The order of reduction has

been sequentialized to reduce operands before operators, leading to an additional
rule in aor " (the �rst one) to switch from the evaluation of an operand expression

to an expression in operator position. This abstract description of the algorithm

makes it obvious that the use of a control stack corresponds closely to construct-
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aor (M N) = ap (aor M aor N)

aor M = M

ap (�:M N) = aor ��1
1 [0 �+1

0 N ]M

ap M = M

Figure 7.3: Recursive algorithm without complex tests for whnf

aor # (M N) S = aor # N (M []) : S

aor # M S = aor " M S

aor " N (M []) : S = aor # M ([] N) : S

aor " �:M ([] N) : S = aor # ��1
1 [0 �+1

0 N ]M S

aor " M ([] N) : S = aor " (M N) S

aor " M nil = M

Figure 7.4: Iterative algorithm with explicit context stack

aorp (M N) S = ap (aorp M (aorp N S))
aorp M S = M : S

ap �:M : N : S = aorp �
�1
1 [0 �+1

0 N ]M S

ap M : N : S = (M N) : S

Figure 7.5: Partially evaluated algorithm

aorp i E S = (lookup i E) : S

aorp (M N) E S = ap (aorp M E (aorp N E S))
aorp M E S = < M; E >: S

ap < �:M; EM >:< N; EN >: S = aorp M < N; EN >: EM S

ap < M; EM >:< N; EN >: S = < ([EM ]M [EN ]N); nil >: S

Figure 7.6: Partially evaluated algorithm { enhanced

aorp i E S = (lookup i E) : S

aorp (M N) E S = ap (aorp M E (aorp N E S))

aorp �:M E S = < �aorp M :M; E >: S

ap < �CM :M; EM >: ClN : S = CM ClN : EM S

ap < M; EM >:< N; EN >: S = < ([EM ]M [EN ]N); nil >: S

Figure 7.7: Separated compiler and runtime system
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ing continuations on the 
y: the context stack holds (most of) the continuation,

and the hole in the top-most context on the stack marks the position where the

result of evaluating the current sub-expression will be placed.

The �rst iterative version of the algorithm corresponds to a universal inter-

preter for reductions: a �xed general control structure interprets representations

of expressions and contexts to determine the speci�c control structure for the

actual program expression just before evaluation. There are several opportuni-

ties to improve on this behavior by pre-computing the program-speci�c control

structure, e.g., by partial evaluation. First of all, the algorithm calls itself with

modi�ed parameters, which are then used to direct the subsequent evaluation.

While the exact parameters are not known statically, some of the modi�cations

are known (they are speci�ed in the right-hand sides of the rules). Specializ-

ing the algorithm with respect to this partial information yields the new variant

de�ned in �gure 7.5. This algorithm has two phases, the �rst of which trans-

lates the static structure of the argument expression into a sequence of stack

manipulations and applications of the old iterative algorithm to the statically
known redices. Since the explicit context information was only used to direct the
subsequent evaluation, this information has been eliminated from this version

completely. The �rst phase (aorp) does not even inspect the stack but uses the
statically known structure of the original expression to pre-compute the evalua-
tion order of the algorithm. The second phase (ap), however, still has to inspect

the stack contents to decide whether the two topmost entries form a redex or not.
If they do, the reductum will be a new expression that does not exist prior to

reduction. Therefore, either the interpreter has to be called to further evaluate
it, or the second phase has to call the �rst phase at runtime to pre-compute the
next sequence of operations (the latter variant is shown in �gure 7.5: apart from

the stack, it closely resembles the variant in �gure 7.3).
This is still not the end of optimization as the structure of expressions that

result from reductions is not taken into account before reduction. While it may

seem as if information about these expressions would not be available statically,
a closer look at the �NF -reduction rule reveals that the topmost part of the

structure of the right-hand side is just taken from the body of the �-abstraction

on the left-hand side. Since variables are just placeholders for unknown expres-

sions, the body of an abstraction contains partial information about the result

of applying the abstraction to an argument. Substitution does not invalidate

this information in any way, but re�nes it by replacing placeholders with known

expressions. The enhanced algorithm in �gure 7.7 employs this property of �NF -

reduction to pre-compute even larger fragments of its own evaluation order for

a given program expression statically. Figure 7.6 shows an intermediate version

that incorporates the idea of delayed substitution: it uses an additional stack

E to represent the current variable environment and looks up bindings of vari-
ables when it encounters them during evaluation. Since bodies of abstractions

are not evaluated, they need to be paired with duplicates of their lexical environ-
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ments, forming closures (for uniform access, every object on a stack is a closure,

written as < expr; env >). Globally free variables are treated as constants to

be reconverted to variables later (with the correct number of protection keys).

This intermediate variant of the algorithm still alternates between two evalua-

tion phases which resemble a compiler (aorp, pre-computing evaluation order)

and an interpreter (ap, performing reductions). The interpreter seems necessary

to handle dynamically constructed applications, to reduce redices and to instan-

tiate constant applicative forms (notation: [env]caf), but at least it can call the

compiler dynamically to avoid some interpretative overhead.

The important observation to make about �gure 7.6 is that the results of

the calls to the compiler in the interpreter do only partially depend on the dy-

namic variable environment. Most of the evaluation order can be pre-computed

using only statically known information { lexical scoping determines the pres-

ence or absence and even the position of variables in the environment, though

not their value bindings, and the decisions to be made in aorp depend only on

the static program structure. If the value bindings of variables and the results
of �NF -reductions are left as dynamic inputs to the reduction algorithm, it is

still possible to completely separate the evaluation into two phases. The �rst
phase (aorp, compilation) pre-computes the evaluation order in several segments,
each corresponding to the body of one �-abstraction, and annotates these �-

abstractions with partially evaluated functions. The second phase (ap, runtime
system) evaluates the argument expression according to the pre-computed eval-

uation order and the dynamic parts of the algorithm input. Instead of calling
an interpreter or compiler at runtime, it uses the code with which �-abstractions
have been annotated (cf. �gure 7.7). The fundamental idea that led to this two-

phase algorithm was to identify statically available information in the arguments
and the de�nition of the �rst iterative reduction algorithm. This �rst version of
the algorithm was then partially evaluated with respect to the static information,

moving all aspects of the algorithm that do not depend on information declared

as dynamic to a �rst phase of the transformed algorithm and leaving all other

aspects in the residual of the partial evaluation2.

All that remains to be done is to actually separate the two phases, i.e., to

de�ne the capabilities of the runtime system and to remove the dynamic parts
of the input (workspace stack S and environment contents E) from the compiler

de�nition (the current size d of the environment is still needed to identify globally

free variables). Figure 7.8 outlines the �nal version of compiler and runtime sys-
tem (still simpli�ed, but complete with reduction to normal form and treatment

of globally free variables) and completes the description of the implementation
at this level of abstraction. A more conventional representation of compiled code

in terms of sequences of instructions is used, and compiled code is attached to

�-abstractions. Variable environment E and workspace stack S are combined

2Partial evaluation is a standard program transformation technique [CD93].
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red d E M = rednf d E (exec (aorp d M) E)

rednf d E (M N) = ((rednf d E M) (rednf d E N))

rednf d E (�n+1
C :M (Ei)1�i�n) = �:(restart (d+ 1)((Ei :)n�i�1 E) C)

rednf d E $i = #(i + d)

rednf d E #i = #i

exec C E = strip (C < E; nil >)

strip < E;M : S > = M

restart d E C = (rednf d ($(�d) : E) (exec C ($(�d) : E)))

f ; g < E; S > = g (f < E; S >)
pushArg i < (Ei)i2I ; S > = < (Ei)i2I ; Ei : S >

pushClos �n+1
C :M < E; (Ei :)n�i�1 S > = < E; (�n+1

C :M (Ei)1�i�n) : S >

pushConst c < E; S > = < E; c : S >

popE n < (Ei :)n�i�1 E; S > = < E; S >

beta �n+1
C :M < E; N : (Ei :)n�i�1 S > = C; popE (n+ 1)

< N : (Ei :)n�i�1 E; S >

aorp d #i = pushArg i ; if i < d

aorp d #i = pushConst $(i� d) ; if i � d

aorp d ((�n+1:M (#ij)1�j�n) N) = (pushArg ij :)1�j�n aorp d N ;

beta �n+1
aorp (d+n+1) M :M

aorp d (�n+1:M (#ij)1�j�n) = (pushArg ij :)1�j�n
pushClos �n+1

aorp (d+n+1) M :M

aorp d (M N) = aorp d N ; aorp d M ; ap

ap < E; (�n+1
C :M (Ei)1�i�n) : N : S > = C; popE (n+ 1)

< N : (Ei :)n�i�1 E; S >

ap < E;M : N : S > = < E; (M N) : S >

Figure 7.8: Final version of simpli�ed compiler and runtime system
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to form an abstract machine state for the runtime system, which is installed

and destroyed in exec. Note that the explicit closures of the intermediate vari-

ants (cf. �gures 7.6 and 7.7) are replaced by partially applied supercombinators

(pushClos), and that existing code can be used when the reduction of partially

applied supercombinators is restarted after �-expansion in rednf (calling restart

instead of red). It is assumed here that each �-abstraction is closed individually

during preprocessing, hence each former one-parameter abstraction is modi�ed

to take n additional parameters (which supply values for the n relatively free

variables of the original abstraction). Of course, multi-parameter abstractions

are closed and reduced as a whole in the full system.

The implementation of reduction has so far been described in terms of a graph

representation but, on conventional hardware, the graph has to be mapped to ran-

dom access memory. Essentially, each node in the graph represents a constructor

of the language (cf. the abstract syntax de�ned in chapter 5). It carries informa-

tion about the language construct (abstraction, application, . . . ) and links to the

representations of the sub-expressions. A natural representation of a node uses
a node-dependent number of consecutive memory cells, each containing a part
of the node information or a pointer to the representation of another node (we

call such sequences of cells heap objects from now on). Initially, heap objects can
simply allocate cells from the beginning of the free memory area, but if memory
requirements go beyond the �nite amount of available memory, representations

of nodes that are no longer used need to be deallocated. To this end, the avail-
able memory fragments are registered in a free (memory) list, and new objects

allocate memory from the beginning of the �rst memory fragment in the free
list that is large enough to hold the new object. If there is no such fragment,
the memory needs to be reorganized by shifting all live objects to the beginning

of memory and by merging all free fragments at the end (garbage collection).
Such a garbage collection changes the location of objects in memory and thus

invalidates any pointer scheme based on these locations. All pointers have to be

adapted to point to the new object locations which means that memory has to
be reserved for a table associating old locations with new ones. This table could

be generated anew on every garbage collection, but can also be used continuously

as an indirect pointer implementation. In the case of a permanent indirection

table, every pointer to a heap object goes via this table. This suggests a slightly

di�erent approach in which every node is represented by a �xed-size entry in

a table of descriptors. The size of descriptors is chosen so as to accommodate

the most important bits of information for each kind of node, and if the amount

of information exceeds the descriptor size, the descriptor is supplemented by a

variable-sized heap object. Due to the �xed descriptor size, no fragmentation can

occur in the descriptor table, and while the heap is still subject to garbage collec-

tions, only the corresponding entry in exactly one descriptor has to be updated
if the location of a heap object changes.

To keep the overall memory usage small without incurring frequent garbage
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collections, memory for unused descriptors and objects has to be deallocated as

early as possible. A large step in this direction can be made if each descriptor

`knows' whether it represents a live object or not. To this e�ect, each descriptor

has a �eld in which the number of references to this descriptor is kept. Whenever

a pointer to a descriptor is duplicated or consumed, the corresponding reference

count is updated, and if it drops to zero, the memory used by the descriptor and

its heap object can be deallocated (added to the free list). The need for some

kind of reference counting is a consequence of the graph sharing that may result

from delayed copying: as long as the reference count of a descriptor is greater

than one, a copy operation of the sub-graph is still pending and the shared

representation of the original sub-graph must neither be deleted nor modi�ed

(unless the modi�cation is valid in all copies). However, reference counting could

also be delayed until a garbage collection actually occurs, leaving parts of the

memory unused in between, while avoiding some of the time and space costs of

continuous reference counting.

This completes the informal derivation of an implementation from the lan-
guage de�nition given in chapter 5, presented at a level of detail that su�ces
for the following discussion of our extensions. Further details of the compilation

scheme and runtime system, including optimizations and the treatment of other
language elements, can be found in [GK96]. The �gures 7.9 and 7.10 outline the
general structure of a reduction system, as it results from the derivation given

above. Figure 7.9 depicts the major phases of di�erent usage cycles supported by
a reduction system, annotated with the abstract representations used for expres-

sions at di�erent levels. Expressions are presented as strings and stored internally
as abstract syntax trees which may be subjected to reduction, edited, or stored in
the �le system. A preprocessor prepares the tree representation for reduction and

a postprocessor undoes the representation changes as far as necessary to present
reduction results at the user level. The abstract syntax graph is based on name-

free expressions, but abstractions are labeled with the original variable names for

use in the postprocessor. Compilation converts graphs to code, and decompila-
tion reverses this process to uncover parts of the graph which are hidden in not

yet executed code fragments. Basically, the remaining code is executed without

performing any further reductions, so that the runtime system only constructs

applications. Reduction to normal form inspects the result of execution and

may start further code execution phases to evaluate bodies of (partially applied)

abstractions. It is thus directly connected to the runtime system.

Figure 7.10 summarizes the memory structures used for the low-level represen-

tations of graphs and contexts. The runtime system is controlled by the code and

accesses the graph representations via a system of stacks. The argument stack A

holds the variable environment, the workspace stack W holds temporaries, and

stack R holds return addresses during function calls (R was not introduced in the
derivation given above but is simply used to make the recursion in the compiled

code explicit). The central component of the memory system is the descriptor
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area because, in principle, every pointer between memory structures goes via a

descriptor. There are about 60 types of descriptors representing di�erent syn-

tactic categories and even more di�erent stack elements, which are both used to

keep small data objects directly in the runtime stack system and for the abstract

syntax tree representation of expressions (unfortunately, this representation is

also used for some kinds of irreducible expressions in the runtime heap). Fur-

thermore, about 200 di�erent instructions may occur in the code region, which is

also special in that it contains direct pointers to code for jumps and function calls

(the code area is assumed to be static, i.e., it is not subject to garbage collections

and relocations, so that there is no need to adapt pointers).

7.2 Frames

The implementation extensions to support frames are straightforward. Each

frame is represented by a descriptor that points to a heap object in which (point-
ers to) the representations of the slots are stored. The names of the primitive
operations (select, delete, update, test, slots) are introduced as new prede-

�ned constants in the compiler, and implementations of the corresponding �-rules
in terms of the graph representation are added to the runtime library (not shown

here). The common core functionality of �nding a slot with a given name (slot
lookup) in a frame is implemented as a linear search over the list of slots. Finally,
new instructions are added to construct frames and slots. Figure 7.11 shows the

extensions to the abstract speci�cation of the implementation derived in the last
section.

rednf d E f (namei :: valuei)1�i�n g
= f (namei :: rednf d E valuei)1�i�n g

mkSlot < E; name : value : S > = < E; (name :: value) : S >

mkFrame n < E; ((sloti)1�i�n S) > = < E; f (sloti)1�i�n g : S >

aorp d f (namei :: valuei)1�i�n g
= (aorp d valuei; pushConst namei; mkSlot; )1�i�n mkFrame n

Figure 7.11: Implementation extensions for frames

Obviously, there are many options for optimizations of this simple imple-

mentation: if frames can be expected to have a large number of slots and if
structure-preserving operations (select or update a slot) are more common than

structure modi�cations (delete or add a slot), hash tables could be used to speed
up slot lookup. If, furthermore, the slot names used in slot lookups are known

in advance, the positions of slots could be pre-computed, sharing the costs of

slot lookup between several operations on frames of known structure (ideally,
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positions for slot lookup could be statically pre-computed similar to positions for

environment lookup). Beyond these optimizations of the internal slot lookup,

the �-rules could be used to `fold away' combinations of operations that cancel

each other, e.g., an update followed by a select of the same slot is equivalent

to the slotvalue, and a frame which is used only for a known set of selection

operations need not even be constructed. On the other hand, frames were intro-

duced to overcome the limitations of static scoping rules, so that slot selection

and frame modi�cations can be expected to be used in not statically predictable

ways frequently.

It might seem as if the main intended use of frames as collections of program

building blocks would be a serious obstacle to optimization, but this need not

be true. If frames are stored and compiled separately from the programs that

use them, it is usually not feasible to produce specialized variants of code for all

possible kinds of use in advance. The major advantages of optimizations, however,

are not bound to the exploration of static knowledge for program modi�cations
before runtime but only to the sharing of costs between several reduction steps
(or function calls, . . . ). So it should still be possible to optimize frame operations

when a frame �rst comes into scope, e.g., through an input/output-operation
(this may involve runtime calls to the compiler). But even if such sophisticated

optimizations are not implemented, the available language constructs can be used
to distinguish clearly between bindings to statically scoped names and selections
from dynamically modi�able frames. For instance, imported items have been

bound to local names prior to using them in the examples in chapter 6, thus
replacing expensive selections with e�cient environment access as soon as possible
and sharing the costs of slot selection between all uses of the imported items

without needing any special optimizations.

7.3 Interactions

Primitive interactions have lots in common with primitive functions, and so it

makes sense to implement the former as a special kind of the latter. The major
di�erences between the interaction rules given in the formal language de�nition

(cf. �gure 5.8 in chapter 5 or the abstract summary in �gure 7.12) and typical

�-rules are the restricted evaluation contexts (either empty or the leftmost path
in a tree of >>=-applications) and the reference to an entity external to the lan-

guage (the environment). As far as the implementation of primitive interactions
is concerned, the environment is an additional parameter and result value, sup-

plied via additional internal mechanisms. In other words, the runtime library

of primitive interactions provides implementations which have to be called us-
ing a scheme that is slightly di�erent from that for implementations of primitive

functions. For the existing implementation, an interaction is similar to a prim-

itive function that can be applied to parameters but is never evaluated. This
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behavior of the existing implementation closely resembles the idea of interactions

outlined in chapter 3: a description of the desired interactions is constructed and

returned as the result of the functional part of the computation. The addition

of input/output-facilities does not a�ect the functional part of the language, and

the implementation of the functional part is not even changed.

ic = [ ] j (ic >>= expr)

ic[ ((return res) >>= cont) ] jj env =I ic[ (cont res) ] jj env
ic[ (primInter parms) ] jj env =I ic[ (return res) ] jj env`

Figure 7.12: Interaction contexts and rules

For the actual execution of interaction descriptions, an external interpreter

was assumed in chapter 3, and the interaction rules of chapter 5 are de�ned in
contexts where (a representation) of the external environment is available (cf.
�gure 7.12). The natural �rst approach to the implementation of interactions

is thus to de�ne an interpreter that inspects the results of program reductions
(cf. �gure 7.13). If this interpreter �nds an executable primitive interaction de-

scription in a valid interaction context, it provides the implementation of this
interaction with access to the program's runtime environment S, replaces the
interaction description with the interaction result and calls itself with the mod-

i�ed interaction script. The implementation of the transformation rule for >>=
and return is integrated into the interaction interpreter. The only complication
arises from the fact that the result of evaluating a composition of interactions

(combined with >>=) may be a dynamically constructed reducible application.
To evaluate such an application, the interaction interpreter calls the reducer,

which may return a new interaction description. In e�ect, expression reducer
and interaction interpreter cooperate as coroutines.

inter (primInter parms) S = inter (return R) S 0 ;

if primInter parms S = (R; S 0)
inter ((return R) >>= M) S = inter (aor (M R)) S

inter (N >>= M) S = bind (inter N S) M

inter whnf S = (whnf; S)

bind (RN ; SN) M = inter (RN >>= M) SN

Figure 7.13: Interaction interpreter

Similar to the core reduction sytem, the interpreter can be transformed into
an iterative form using a stack, and it can be optimized by moving decisions from

the runtime system to a preprocessing phase and by avoiding the creation of in-

termediate structures but, in general, the ability to direct the further evaluation
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by an inspection of intermediate graph structures will be a necessary component

of the runtime system as long as the language allows to compute new interaction

scripts at runtime. Figure 7.14 shows an iterative interpreter variant using a

stack of contexts C (note the embedded call to aor). This variant corresponds

closely to the current implementation (cf. [Tim96]) and keeps the interaction

interpreter and the reduction system separated. The interaction interpreter be-

comes the main entry point for the combined system and calls the reduction

system if necessary (fourth rule in �gure 7.14). This separation is achieved at

the cost of intermediate graph structures for interaction descriptions which are

constructed as irreducible applications in the reduction system and analyzed in

the interaction interpreter. Further optimizations would be possible if the ex-

ecution of interactions would be merged into the reduction system. Similar to

the special treatment of applications with statically known operator expressions

(instruction beta), the construction of intermediate interaction descriptions could

be avoided wherever it is possible to predict that the interactions will be executed

immediately after construction.

inter # (N >>= M) C S = inter # N ([] >>= M) : C S

inter # M C S = inter " M C S

inter " (primInter parms) C S = inter " (return R) C S 0 ;

if primInter parms S = (R; S 0)
inter " (return R) ([] >>= M) : C S = inter # (aor (M R)) C S

inter " N ([] >>= M) : C S = inter " (N >>= M) C S

inter " N nil S = (N; S)

Figure 7.14: Iterative interaction interpreter

One aspect of the implementation that might not be immediately obvious from

this abstract speci�cation relates to the evaluation of dynamically constructed
applications. Of course, it is not necessary to call the compiler at runtime (as

the call to aor might suggest): the code for the interaction result R and that

for the continuation M can be statically pre-computed, and the structure of
the applications constructed by the interaction interpreter is always the same (a
continuation is applied to an interaction result). It su�ces to give the interaction

interpreter access to the code of a general apply function which applies its �rst

parameter to its second. This code may then be called with a continuation and

an interaction result as parameters.
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7.4 Interactions for all valid language expres-

sions

The design of interactions, as described in section 5.3, abandons the restriction of

input/output-facilities to strings of characters and allows them to be used with

any valid expression of our language. This is in line with the principle of data type

completeness and leads to a more uniform and thus simpler language design, but

places rather high demands on the implementation. Due to the complex memory

structures that are used to represent language expressions, the implementation of

the simple high-level operations becomes complex, too, because from this internal

representation, a representation in the �le system has to be generated on output

(store) and vice versa on input (retrieve). These representation conversions and

the movement of data involved can be rather simple in principle, but have to take

the various layouts of descriptors, heap objects and code segments into account,
resulting in a large number of specialized instances of two generic algorithms.
Writing such algorithm instances of similar structure into explicit source code for

a great number of data types is tedious, error-prone and a maintenance nightmare,
and should therefore be avoided whenever this is possible.

To this end, the data structures could be given a uniform layout to allow one

algorithm to cover all cases. As another option, the individual parts of the source
code could be generated from formal descriptions of the memory structures and
of a generic algorithm. Unfortunately, none of these options is supported by

the available implementation, so we tried to reuse available code at least. From
an abstract view of the reduction systems, we identi�ed two system components

that might o�er potential for code reuse. The �rst is rather obvious: the memory
management routines have to deal with all available memory structures. However,
these routines can assume to move objects only inside one virtual memory area,

and can thus be implemented by code that is not necessarily general enough for
our purposes. For instance, the memory organization of the core reduction system
never requires descriptors or code segments to be moved, and heap objects can

be moved without looking at their internals because all pointers are indirect (the

descriptor �elds to be modi�ed can be found via a single back-reference stored

immediately in front of each heap object). The only memory management routine

that needs to traverse (representations of) all nodes of a graph is the deallocator
(reference counts of sub-expressions need to be decremented and, if they drop to

zero, the memory segments for the representations of the sub-expressions need to

be deallocated, too), and even this routine does not touch the code area.

The second alternative arises from the non-sequential variants of the reduc-

tion system described here, especially from distributed memory implementations.

In order to establish processes on another processor, graph representations need

to be copied to the local memory of this other processor, a task that, in prin-

ciple, requires a complete graph traversal routine (there are no real shortcuts
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if the local memories are truly separated). In practice, we found only one ma-

jor deviation from a general traversal mechanism in the routines: the program

graph is divided into a static part (the original program including the abstract

machine code) and a dynamic part (graph structures constructed at runtime),

and the static graph is broadcasted once to all processors before the distributed

execution starts. Afterwards, only nodes in the dynamic part of the graph are

transmitted between processor memories because read-only copies of the static

graph are available in each local memory (under the same set of addresses) and

can be shared between the nodes of the distributed dynamic graph. Apart from

this optimization, no speci�c assumptions are made in the implementation of the

graph send and receive routines, and it was possible to adapt the code for our pur-

pose. Several modi�cations were necessary, mainly related to assumptions about

properties of the static graph that are not valid in our application, but basically

these modi�cations `completed' the available code, i.e., made it less dependent

on speci�c working conditions. The original send and receive routines fall out

as a special (optimized) case of the completed algorithm and all the memory-
structure-speci�c code is shared between send/receive and store/retrieve.

Formal speci�cations of the algorithms to store and retrieve graph structures

are given in �gures 7.17, 7.18 and 7.19. These algorithms necessarily have to
be presented at a very low level of abstraction as they are concerned with the
representations of graph structures in terms of descriptors, heap objects and

code vectors. Figure 7.15 summarizes the relevant abbreviations used in the
description and �gure 7.16 lists the data tags which are used in the external,

linearized representations of program graphs. For simplicity, we assume that
descriptor contents and code vector elements can be treated uniformly, and that
the target area of each pointer can be identi�ed from looking at the pointer.

In practice, descriptor-type- and instruction-speci�c routines have to be used,
a constraint which adds much to code complexity but almost nothing to the

concepts involved.

The basic idea is to do a pre-order traversal of a program graph and to gen-
erate a linear representation of the structures found. The main problems are to

preserve the sharing of sub-graphs while traversing each shared sub-graph only

once, and to keep the pointer abstractions intact while moving memory structures

into a di�erent address space. Another problem is that code for functions is not

stored on a per function basis but on a per program basis, i.e., in the core system,

there is exactly one code vector for one program. Such a code vector contains

the code fragments for all functions in sequence, and function calls use direct

pointers into the code vector wherever possible. Therefore, both descriptors and

code vectors can be shared directly whereas for every heap object there is ex-

actly one descriptor which has a pointer to the object. As a consequence, both

store and retrieve keep indexes of descriptors and code vectors that have been
transmitted. Each descriptor is transmitted exactly once { further pointers to it

are transmitted as indices into the list of known descriptors. Similarly, each code
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const : simple constant

ptd : pointer to descriptor

pth : pointer to heap object

objpth : heap object pointed to by pth

ptc : pointer into code vector

headptd : header of descriptor pointed to by ptd

descptd : contents of descriptor pointed to by ptd

instr : instruction

soc : start address of code vector

S : stack of descriptors to be stored or retrieved
ID; (Di)i2I : index of (local addresses of) transmitted descriptors

ICV ; (soci)i2I : index of (local start addresses of) transmitted code vectors
C; (instri)i2I : sequence of local code vectors, separated by j
maxI : greatest index in index set I

newI : short form of (maxI + 1)
Mfj := xg : short form of ((xi)i2I;i6=j (x)j) if M = (xi)i2I
M; (Ma)a2A : local memory, consisting of separate areas (A = D [H [ C)

for descriptors (D), heap objects (H), and code vectors (C)

Figure 7.15: Parameter names and constructs used in store or retrieve

C const : simple constant

I i : index of a previously transmitted descriptor
PTD : placeholder for pointer to descriptor
DESC head : head of new descriptor, contents follow

HO : heap object, contents follow

CO : code vector, contents follow

j : separator

PTC j; p : pointer to code, relative to start of code vector j

Figure 7.16: Data tags in the linearized representation
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store nil ID ICV C

= nil

store (const : S) ID ICV C

= (C const) : (store S ID ICV C)

store (ptd : S) (Dj)j2J ICV C

= (I i) : (store S (Dj)j2J ICV C) ; if (ptd = Di)

store (ptd : S) ID ICV C

= (DESC headptd) : (st Desc descptd S (ID ptd) ICV C) ; if (ptd 62 ID)

st Desc nil S ID ICV C

= j : (store S ID ICV C)
st Desc (const : t) S ID ICV C

= (C const) : (st Desc t S ID ICV C)
st Desc (ptd : t) S ID ICV C

= PTD : (st Desc t (ptd : S) ID ICV C)

st Desc (pth : t) S ID ICV C

= HO : (st HeapObj t objpth S ID ICV C)
st Desc (ptc : t) S ID ICV C

= st Code t ptc (startofCode ptc C) S ID ICV C

st HeapObj d nil S ID ICV C

= j : (st Desc d S ID ICV C)

st HeapObj d (const : t) S ID ICV C

= (C const) : (st HeapObj d t S ID ICV C)

st HeapObj d (ptd : t) S ID ICV C

= PTD : (st HeapObj d t (ptd : S) ID ICV C)

Figure 7.17: Storing graph structures (part I)
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startofCode ptc (instri)i2I
= ptc ; if instrptc = j

startofCode ptc (instri)i2I
= startofCode (ptc� 1) (instri)i2I ; if instrptc 6= j

st Code d ptc soc S ID (soci)i2I C

= PTC j; (ptc� soc) : (st Desc d S ID (soci)i2I C) ; if socj = soc

st Code d ptc soc S ID (soci)i2I C

= CO :
(st CodeV ec d newI ptc (soc+ 1) S ID ((soci)i2I soc) C); if soc 62 ICV

st CodeV ec d j p c S ID ICV (instri)i2I
= j :
(st Code d p socj S ID ICV (instri)i2I) ; if instrc = j

st CodeV ec d j p c S ID ICV (instri)i2I
= PTD :
(st CodeV ec d j p (c+ 1) (ptd : S) ID ICV (instri)i2I) ; if instrc = ptd

st CodeV ec d j p c S ID (soci)i2I (instri)i2I
= PTC j; (ptc� socj) :
(st CodeV ec d j p (c+ 1) S ID (soci)i2I (instri)i2I) ; if instrc = ptc

st CodeV ec d j p c S ID ICV (instri)i2I
= C instrc :

(st CodeV ec d j p (c+ 1) S ID ICV (instri)i2I) ; if constant instrc

Figure 7.18: Storing graph structures (continued)
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retrieve nil S ID IC M

= < S ID IC M >

retrieve ((C const) : t) (a : S) ID IC M

= retrieve t S ID IC Mfa := constg
retrieve ((I i) : t) (a : S) ID IC M

= retrieve t S ID IC Mfa := Dig
retrieve ((DESC head) : t) S ID IC (Ma)a2D[H[C
= ret Desc (newD + 1) t S (ID newD) IC MfnewD := headg

ret Desc a (j : t) S ID IC M

= retrieve t S ID IC M

ret Desc a ((C const) : t) S ID IC M

= ret Desc (a + 1) t S ID IC Mfa := constg
ret Desc a (PTD : t) S ID IC M

= ret Desc (a + 1) t (a : S) ID IC M

ret Desc a (HO : t) S ID IC (Ma)a2D[H[C
= ret HeapObj (a+ 1) newH t S ID IC Mfa := newHg

ret Desc a (PTC j; p : t) S ID (soci)i2I M
= ret Desc (a + 1) t S ID (soci)i2I Mfa := (p+ socj)g

ret Desc a (CO : t) S ID IC (Ma)a2D[H[C
= ret Code a t newC S ID (IC newC)M

ret HeapObj d a (j : t) S ID IC M

= ret Desc d t S ID IC M

ret HeapObj d a ((C const) : t) S ID IC M

= ret HeapObj d (a+ 1) t S ID IC Mfa := constg
ret HeapObj d a (PTD : t) S ID IC M

= ret HeapObj d (a+ 1) t (a : S) ID IC M

ret Code a (j : t) c S ID IC M

= ret Desc a t S ID IC M

ret Code a (PTD : t) c S ID IC M

= ret Code a t (c+ 1) (c : S) ID IC M

ret Code a (PTC j; p : t) c S ID (soci)i2I M

= ret Code a t (c+ 1) S ID (soci)i2I Mfc := (p+ socj)g
ret Code a (C instr : t) c S ID IC M

= ret Code a t (c+ 1) S ID IC Mfc := instrg

Figure 7.19: Retrieving graph structures
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fragment is transmitted exactly once, but whenever a pointer into a code vector

is encountered during the graph traversal, the whole code vector is transmitted

at once to preserve the memory layout that is expected by the runtime system.

The algorithm store generates a linear representation of a program graph, us-

ing one auxiliary algorithm for each kind of memory structure. One of the avail-

able stacks is used to keep pointers to descriptors encountered while traversing a

memory segment, and memory elements are appropriately tagged for transmis-

sion. We assume here that memory elements can be uniformly identi�ed, whereas

in practice the context (position in descriptor, kind of descriptor, kind of instruc-

tion, parameter position in instruction) needs to be taken into account to get

this information. All non-pointer constants can safely be transmitted without

modi�cation (C const). Pointers to descriptors are either known, in which case

only their index is transmitted (I i) or are encountered for the �rst time. In

the latter case their address is added to the descriptor index and their contents

are transmitted using st Desc after �rst sending the general header (basically

indicating the kind of graph node represented). Note that the reference count
is not transmitted because a complete copy of the graph representation is cre-
ated. In a descriptor, there may be some constant information, pointers to other

descriptors, to heap objects or into a code vector. Pointers to descriptors are
saved on the stack until the traversal of the current descriptor is complete, only
a placeholder (PTD) is sent so that space for the pointer can be reserved on

retrieval. st HeapObj is a simple extension of st Desc to heap objects, where
neither pointers to the heap nor to the code area can occur. Handling pointers to

code is a bit more involved: �rst, the pointer is used to locate the start address
of the code vector which is used for identi�cation. If this code vector has already
been sent, its index is transmitted, together with the pointer to code relative to

the start of its code vector (PTC j; (ptc � soc)). Otherwise, the code vector is
sent out �rst and its start address is added to the index of code vectors. During

code traversals, both pointers to descriptors and pointers to code can be encoun-

tered as instruction parameters and have to be treated correctly. Instructions
and other instruction parameters are treated as constants.

The algorithm retrieve reconstructs a program graph from its linear repre-

sentation, basically following store in its structure. The stack is used here to

save the addresses where pointers to descriptors have to be inserted later (PTD).

Initially, it holds the address where the root of the program graph shall be placed.

Constants are simply placed in memory at pre-determined locations, indexes of

known descriptors are translated into pointers to local addresses unsing the index

of descriptors, and descriptors are placed in the local descriptor area. ret Desc
stores constants in memory, saves addresses for pointers to descriptors on the

stack, and allocates local memory for heap objects and code vectors. It also
reconverts relative pointers to code to absolute addresses using the code vector

index to get the start address of the code vector in local memory. ret HeapObj

is again a simple extension of ret Desc to another area of memory, but this time,
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this also holds for the treatment of code vectors (ret Code).

7.5 Comments on the implementation

All implementation extensions speci�ed in this chapter have been integrated into

the existing implementation of the core reduction system. We have refrained from

listing and describing the C code here or in an appendix to this thesis for two

reasons: such a low-level representation of the implementation would have added

a 
ood of details to be described without adding anything new conceptually, and

it would have been di�cult to disentangle our contributions from the existing

code at this level (mainly due to the complexity of interactions and interfaces

between the parts of the implementation at the coding level). Instead, we have

given abstract speci�cations of the existing system and of our extensions in suf-

�cient detail to allow for a straightforward translation of the speci�cations into
C code. Of course, our abridged description of the implementation of the core
language does not re
ect the full complexity of the complete reduction system,

but it su�ces to describe the implementation of our extensions and their rela-
tionship to the core system. The form of presentation results from an attempt to

describe a full view of the implementation, trying to directly relate the language
de�nition to the speci�cation of the implementation by focusing on the imple-
mentation decisions involved. Therefore, the presentation of the whole system

di�ers from previous accounts, e.g., by factoring an algorithm that implements a
reduction strategy into its static and dynamic parts instead of just postulating an

abstract stack machine and de�ning a compiler from the programming language
into abstract machine code. We have tried to document the decisions that lead
from our language de�nition to an implementation very close in spirit to the ex-

isting one. As is explained below, a documentation of this kind for the complete
system would not only provide rationales for the form and existence of all parts
of the implementation, it would also allow to revise implementation decisions in

response to modi�cations of the language de�nitions.

Our attempts to adapt the existing implementation to accommodate our lan-

guage extensions unveiled a number of problems below the level of the previously
existing implementation speci�cations. While the general implementation design

should be quite 
exible with respect to extensions, the translation of this design
into C-code has several properties that hinder us to explore the full potential

of the implementation design. To give but one example, program evaluation

has been factored into three major phases: a preprocessing phase prepares the
program representation for more e�cient execution during the real processing

phase, and a postprocessing phase undoes all representation changes to produce
a high-level representation of the evaluation result. In brief, each preprocessing

step should be reversible, and its inverse is used as a postprocessing step. If no

reductions or interactions are performed during processing, the combination of
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preprocessing, processing and postprocessing should be the identity. We hoped to

make use of this property by invoking the compiler on the results of the process-

ing phase before writing them to the �le system. However, the implementation

code is \optimized" in several ways to depend on the sequence of phases. In other

words, a program representation before a preprocessing step is not equivalent to

the representation after the corresponding postprocessing step. To get an equiv-

alent representation, the upper part of the usage cycle (cf. �gure 7.9) has to be

followed or at least simulated. This \feature" of the implementation is not part

of the speci�cation, but has somehow found its way into the code. Unfortunately,

the di�erent concrete representations at the coding level are mapped to equiva-

lent abstract representations at the speci�cation level, and so the code can still

claim to conform to the implementation speci�cation3.

Given that formal speci�cations exist both for the language and for the imple-

mentation, the basic problem is that the gaps between the di�erent speci�cation

and code layers are too large. Moreover, the layers are only `upwards-related',

i.e., it is possible to check whether the implementation speci�cation satis�es the
language speci�cation, or whether the implementation code satis�es the imple-

mentation speci�cation, but the relation is always upwards in the abstraction
hierarchy. The higher-level speci�cation is assumed to be �xed, and a lower-
level speci�cation is then `invented' to implement the abstract speci�cation. The

lower levels of speci�cation just happen to be there, and even if they conform
to the higher levels, there is no easy way to relate the language de�nition to the
implementation code. Therefore, every major modi�cation or extension of the

language requires a sophisticated reverse engineering process with the goal to
relate parts of the implementation code to parts of the language de�nition (to

avoid the invention of a completely new implementation). Starting with such a
reversed view of the complete system, it may then be possible to identify large

parts of the existing implementation as reusable for the new language de�nition,

or to relate modi�cations in the de�nition layer to modi�cations in the coding
layer.

We have come to the conclusion that the situation could be improved drasti-
cally if (a) the gaps between speci�cation layers would be smaller (in particular,

there should be no substantial implementation decisions between the �nal imple-
mentation speci�cation and the coding level), and if (b) there existed a description

of how these speci�cation layers are related `downwards' (cf. �gure 7.20). Basi-

cally, we seek to replace the very course-grained and non-deterministic \conforms

to"-relation by a more �ne-grained equivalence transformation. Of course, a con-
crete speci�cation cannot be directly equivalent to an abstract one { some details

have been added. On the left-hand side of �gure 7.20, this could be accounted

3The speci�cation does not explicitly require the mentioned equivalence of representations

at all levels of the usage cycle, but only at the user interface level, where the di�erences in the

internal representations are not observable.
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Figure 7.20: Implementing speci�cations { invent & test versus transformation

for by introducing an observation relation that forgets or hides the additional

details, so that \L conforms to H" could be read as \the observed behavior of L
is equivalent to that of H". While this may be adequate for someone mainly con-

cerned with the high-level views, it is simply not acceptable for those who need a
complete view of the system: the \unobservable" details are exactly what matters
about the implementation! Therefore, we propose another approach to establish

an equivalence between speci�cations of di�erent abstraction levels: instead of
forgetting information about the more concrete speci�cations, we add informa-
tion to the more abstract ones. The additional information turns out to represent

the implementation decisions made, and thus exactly what distinguishes the one
chosen concrete speci�cation from the many other ones that would also conform

to the abstract speci�cation.
The informal derivation of an implementation in the �rst section of the present

chapter may be seen as a �rst step in this direction. One of the expected ad-

vantages of such a description is that every major implementation decision has
to be justi�ed and made explicit in terms of a transformation of the speci�ca-

tion. It is then easy to identify and eliminate those transformations that are

invalidated by a modi�cation of the language de�nition, and a �rst variant of the
modi�ed implementation can be generated by replaying the remaining transfor-

mation steps starting from the modi�ed language de�nition. Ideally, the existing

implementation code can be adapted by incremental modi�cations which do not
have to be guessed but can be derived from the modi�cations to the higher spec-

i�cation levels. Such a derivation approach to implementation nicely expresses
the view that the programming paradigm to be supported determines the imple-

mentation architecture (and not vice versa) and thereby provides better support

for extensions or modi�cations of the language de�nition. The derivation can
even be given a formal basis, e.g., if speci�cations on all layers of abstraction are

uniformly represented as systems of object transformations.
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Chapter 8

Related and Further Work

As has been demonstrated in the previous chapters, we have have ful�lled the

original task speci�cation to extend the existing functional language and its im-

plementation with facilities for modular programming and input/output. We
have also met our additional requirements for a simple language design with gen-
eral and completely integrated components. This work has been shaped by an

unusually large number of connections to other work, partly due to the need to
build on an existing core language and its implementation and partly due to the

integrative nature of our task, involving several areas of high research interest.
In addition to results from the individual research areas, our quest for a simple
and general language design has also allowed us to build on a large body of gen-

eral language design work. Most of these connections have been mentioned in
earlier chapters of this thesis and are not repeated here. Instead, we focus on
general options for further work and elaborate on the connections to research on

type systems and persistence. In particular, we explain why we have purposely
excluded all aspects of type systems from our work, and thus an area of research

with important relations to our topics, and we argue that our generalization of
input/output to all valid language expressions opens new possibilities to combine

the research areas of functional programming and persistent systems.

8.1 Options for further work

There are various possible directions for further work, related to the design of

functional languages, framework design for modular programming, or to the clas-
si�cation of abstractions used for modular programming. One of these directions

is related to a topic we have deliberately left open in our description, namely the

details of the functional core language in our design. Of course, we have added
our extensions to a complete language and its implementation, but an evaluation
or possible redesign of these given components was beyond the scope of our work.

The questions arise to what extent the core language complies with the language
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design principles we have used throughout this thesis, and how our abstract

language design can be re�ned to encompass all details of a full programming

language.

Re�ning the language design

We have described an abstract framework for extending purely functional lan-

guages with facilities for interactions and modular programming, leaving unspec-

i�ed the details of the particular core language we have been working on. We

have only required that it supports a full �-calculus, which is necessary to de�ne

suitable abstractions over functions, frames and interactions and thus to fully

integrate the parts of our language framework. The obvious next step is the re-

�nement of our design to address the issues of the functional core, simplifying its

advanced features according to our design principles and integrating the primitive

operations and interactions into a modular and extensible language design. For
us, this corresponds to a redesign of the given core language and implementation,
but there is also a second possibility to complete our abstract design into a fully

speci�ed language: since we have purposely avoided the speci�cation of details
that are not relevant to our topics, one can start from any given functional lan-
guage that meets our requirements1 and use our abstract design to complete this

particular language with respect to interactions and modular programming. Most
current functional languages do already provide some scheme for character-based

input/output and the extension to support interactions for any valid language ex-
pression basically seems to be an implementation issue. The most di�cult tasks
in translating our design to other functional languages are related to restrictions

imposed by the static type systems that are in widespread use today. A summary
of the typing problems to be expected is given in section 8.2.

A preliminary evaluation of the given reduction language with respect to the

design principles used in this thesis revealed several aspects that need further

investigation. On the positive side, both the language and its implementations

are dedicated to support a full �-calculus, the only exception being a bias to-
wards applicative-order reduction strategies in most implementations. We can
hardly overemphasize the importance of this feature, not only because the �-

calculus provides the means for abstraction in our design and thus the glue for a

full integration of its parts. Without the execution model of high-level program
transformations, e.g., it may still be possible to use �-abstraction for the static

description of parameterization of program components, but programmers could
never see the results of computations that involve program components. And

the idea of �rst class program components that can both be stored in the �le

system and retrieved from there at runtime would soon cease to make sense if it

1Surprisingly, many modern functional languages and implementations do not support a full

�-calculus, even though most claim to be based on one.
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would not be possible to generate high-level representations of the program com-

ponents that currently exist in the long-term storage of the �le system, including

high-level representations of the functions included in these components. If the

execution model of program transformation would only be mapped to low-level

state transformations (with no high-level representation of results unless explic-

itly generated as program output), programmers would always have to go back to

the original program sources and would need to replay mentally all computations

on the long-term store that might have a�ected the components since their �rst

storage. In e�ect, the advantages of our language design would come to nothing

under such conditions.

On the negative side, some of the advanced features of the core language would

be better de�ned in terms of a few elementary constructs. The most prominent

example of this are the very complex pattern matching facilities, which have

developed into a kind of sub-language for case distinctions and structure decom-

positions. The problem here is not the expressiveness of pattern matching, but

the hard-coding of pattern matching facilities in the language de�nition. Not
only does this add to the complexity of the language and its implementation, it is
also a serious obstacle to extensibility. Whenever the language is extended with

a new kind of data structure, the pattern matching facilities have to be extended,
too (the same holds, of course, for modi�cations of the language and its imple-
mentations). This additional burden does not even pay of for programmers, as

the �xed pattern matching constructs cannot be extended in any way, e.g., to
work with user de�ned data abstractions. Instead, every change to the represen-

tation of a data abstraction is likely to break applications of pattern matching at
various places in the program, which runs counter to the basic ideas of modular
programming (this phenomenon is well known from other languages that support

pattern matching and data abstraction [Wad87]). On the other hand, both pat-
tern matching and case distinctions are important language features and it would

be a worthwhile area of research to work out the elementary language constructs

behind these currently rather complex features and to recombine them in a way
that does not su�er from the aforementioned problems. Some of the preliminary

work in this area suggests to explore the relation between extensible records, vari-

ants, fold operations and the current case-constructs based on pattern matching

[MJ95, GJ96, Dam96].

Another problem of the functional core language with respect to modularity

and language extensibility is the organization of �-rules (de�nitions of primitive

operations), which form a completely unstructured set at the language de�ni-

tion level. The implementation and documentation are much more structured in

this case, organizing implementations and descriptions of primitive operations in

di�erent modules according to the kinds of data objects they operate on. This

organization is, however, not re
ected at the language level, and the language
presents itself to programmers on an all or nothing basis as far as built-in op-

erations are concerned. It seems advisable to (a) review the existing primitive
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operations and to remove some of them in favor of prede�ned functions, (b) move

as much as possible of the basic operation framework from the language de�ni-

tion to areas that can be extended by the user, (c) separate the primitive and

prede�ned operations into small groups, e.g., using the module facilities just in-

troduced. In de�ning the primitive interactions, we have followed the existing

practice for primitive operations, so the same arguments apply to this part of the

design, even more so as the kinds of interactions that can be supported depend on

design decisions in the operating system, thus out of our reach. Probably, envi-

ronments should be modeled as abstract data types providing certain operations

to be called from the programming language via the general framework for inter-

actions. This way, the �le system interface could easily be extended or replaced

by a database interface or by an interface to any other component of the runtime

environment in which the program is to be run. A minimal interface needs to be

de�ned along the lines of section 5.3 and language mechanisms for interface ex-

tension need to be provided. If the environment consists of many di�erent kinds

of objects, a modular style of per object interfaces would be necessary, too.

This is essentially the same search for elementary language features that led us
to the proposed framework of functions, frames and interactions on a larger scale,

only pursued further into the parts of this framework. The problems of the given
core language and implementation are a direct consequence of the so far missing
support for modularity and the results of our work are thus one prerequisite for

their solution. However, even though a module facility is available now, there are
still several possible strategies to apply this facility to the problems mentioned
above, and the decision in favor of one of the possibilities is not an easy one.

The problems a�ect a fundamental level of the language and any decision would
therefore have far-reaching consequences. In any case, a major redesign of the core

language and its implementations would be required, making the whole problem
area a topic for further work.

Review of the primitive interactions

Adding imperative features to a purely functional language, even in a safe way,
bears the risk of pushing the level of abstraction on which programs are writ-

ten back to a state where programmers have to deal with cumbersome low-level

details again. There are two kinds of answer to this concern: on the positive
side, the integration of the new features has been done in a way that carefully

avoids any negative e�ects on the functional subset of the new language and even
extends most of its properties to the full language, which is thus no longer purely

functional but still a pure functional language. This means that the full expres-

siveness of the functional language is available to construct imperative functional
programs on the same level of abstraction used to construct functional programs.

The second, less positive answer is that the language level is not only a�ected

by the means for program construction but also by the available primitives. In
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the current design, the primitive interactions are based on the input/output-

operations available in a UNIX/C environment [Tim96], and so it was clear from

the beginning that these operations would probably be too much concerned with

low-level details. This leads to rather �ne-grained interactions and thus to a gran-

ularity mismatch between the interaction-based and the reduction-based parts of

the language. While the granularity of interactions is just �ne for imperative

languages, where every computation step involves an interaction with a global

store, it may not �t well into a reduction language, where programs are usually

much less concerned with the details of how computations are performed.

In spite of this, it was decided to base the �rst implementation on these op-

erations for two reasons: (a) these are the operations our users were thinking of

when they complained about missing facilities for explicit input/output, and (b)

we did not have any experience with the combination of low-level input/output-

operations and a high-level programming language. Without knowing the prob-

lems, it would have been a bad idea to design a new set of operations out of
thin air. Furthermore, the facilities of the functional language enable users to

build their own control abstractions on top of the primitive interactions as long
as the latter provide the necessary functionality. Nevertheless, it will be neces-

sary to evaluate and possibly redesign the set of input/output-operations as soon
as useful abstractions have been established and su�cient practical experience is
available.

Framework design for modular programming

Once the abstract design framework has been instantiated with a concrete func-
tional core language, the next necessary path of research is the identi�cation of

commonly used abstractions. In chapter 6, we have shown how various well-
known language constructs for modular programming can be modeled in our

language design, based on the idea that all these di�erent constructs are just

instances of a general scheme of abstraction. We have also argued that none of

these constructs should be introduced as a language primitive since none of these

constructs is really fundamental. Rather, some of these constructs should be
provided as a second level of abstraction on top of the fundamental constructs of

our design. Our rationale for this decision was to provide programmers both with

a set of useful prede�ned abstractions and with the means to adapt the imple-
mentations of these abstractions to their needs or to de�ne new domain-speci�c

abstractions. However, for a practical language environment, useful abstractions
have to be identi�ed and implemented to provide a library of constructs for

modular programming. Guidelines for the choice of abstractions for particular

problems, for the use and composition of individual abstractions, and for the
design of new abstractions have to be developed. In brief, frameworks for mod-

ular programming need to be developed in which the di�erent kinds of software

components can be used e�ectively in practice.
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Essentially, this work would be an elaboration of the ideas presented in chap-

ter 6, where we have developed the idea to formalize the process of abstraction in

section 6.4 to provide a basis for the modeling techniques used in our examples.

The description given there is still in a simple form, but we were able to relate

various informal uses of the term abstraction to a few formal concepts. Using

these concepts, we have attempted to develop a simple classi�cation of constructs

for modular programming which could all be identi�ed as abstractions emphasiz-

ing di�erent aspects of programs or di�erent phases of the abstraction process. It

would be interesting to further investigate this classi�cation to develop a better

understanding of the pros and cons of the various known abstractions, not only

to prepare for the development of useful abstractions for future functional lan-

guages, but also to provide a formal basis for the discussion of existing languages

with explicit support for modular programming.

Generalized program transformations

The user interface of the reduction system [Klu94] to which we added our exten-
sions features a syntax-oriented editor for inspection and manipulation of pro-

grams, be they user-speci�ed or (intermediate) results of reductions. This editor
provides static support for partial views of programs, i.e., programmers can freely

move their focus of attention to any part of the program, temporarily ignoring the
program context in which the part is embedded (they also have some control over
the style of abbreviation of sub-expressions that is used if the selected program

part is to large to �t on the screen). However, as soon as a reduction sequence
is initiated, abstractions inside the current focus of attention may be substituted
by their de�nitions. This is not so much a consequence of the execution model of

program transformations as a consequence of the very plain interpretation of this
model: independent of the high-level abstractions described by a program, execu-

tion proceeds simply as a step-by-step, one-rule-at-a-time process. Not only does

this cause an exponential growth in program size during stepwise transforma-
tion (function de�nitions are substituted into all sub-expressions to be available

there if the focus of attention is shifted between steps), unfolding all abstrac-

tions also burdens programmers with details they may not at all be interested

in. Essentially, the unfolding of function de�nitions during reduction causes all
previously established levels of abstraction to collapse into one { the system does

not distinguish between reductions in di�erent levels of abstractions. Therefore,

abstraction is supported only statically by the current systems, it is not preserved

during reduction. On closer investigation, it turns out that these inconveniences

at the language level also have very unfortunate consequences for implementation

e�ciency.

Usually, programmers establish abstractions via function de�nitions when
they want to distinguish between a level of function de�nition and a level of

function application. On the level of function de�nition, they may be interested
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in all details of a typical function application. For instance, they might want to

reduce applications of their function de�nitions on a step-by-step basis to verify

their correctness, and of course the reduction system supports this. On the level

of function application, however, programmers are no longer interested in the

details of the de�nition or even in the exact sequence of reduction steps from a

function application to a result. But this is exactly what the current system has

to provide for: even if programmers ask for an unbounded number of reduction

steps to be performed, indicating that they are only interested in a �nal result,

the implementation has to guarantee that the program is executed on the basis

of a step-by-step reduction. One of the unfortunate consequences is that some

common optimizing program transformations cannot be used because they would

cause the program execution to deviate from the usual reduction sequence.

In brief, the programmer-chosen levels of abstraction are not respected by the

current implementation, and programmers even have to pay for this unwanted

feature by an implementation that cannot fully optimize programs. Even on the

system implementation level, the e�ects are rather negative because implemen-
tors have to take care to comply to the pre-de�ned reduction sequences instead
of implementing more optimal and sometimes even simpler shortcuts. In view

of these negative impacts on all levels of the reduction system, an obvious im-
provement would be a feature that allowed programmers to mark those function
de�nitions below their current level of abstraction (in contrast to the focus of

attention, the current level of abstraction is a non-local aspect of programs). In-
dividual reduction steps in `hidden' function de�nitions should then simply be

not observable at the user level, and the implementation would be free to fully
optimize these intermediate reduction sequences. Just as function names are used
as textual abbreviations for function de�nitions, the single high-level step from

a function application to a function result should be used as an abbreviation for
the sequence of low-level reduction steps involved.

Unfortunately, neither the precise de�nition of reductions on di�erent levels

of abstraction nor the details of an implementation are as simple as it might
seem. For instance, the �nal boundaries of high-level reduction steps need to

be de�ned, too, and high-level applications need to be reconstructed if the cor-

responding low-level reduction sequences do not run to completion, e.g., if the

user speci�es an upper limit on the number of reduction steps that is too low.

Furthermore, if an abstraction involves interactions, we face all the problems of

transactions, known from the database world, only in a more complex setting (cf.

also [NW92]). Therefore, an investigation of this interesting high-level view of

the program transformations in the language de�nitions has to be postponed as

a topic for further work. Another idea in this class is to explore the potential of

using transformation rules of the language as a basis for program structure modi�-

cations: so far, the rules have been used only for program evaluation or for formal
program transformations that involve the functionality of programs (derivation

of programs from speci�cations, proof of equivalence of programs with di�erent
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reduction properties). The major topic of programming-in-the-large, however, is

not the functionality, but the structure of programs, and a major problem for

programmers is the need to modify the structure of large programs (to alleviate

maintenance or to optimize extensibility and reusability). These tasks should be

given a formal basis in the transformation rules and they should also be supported

by the language implementation.

8.2 Type systems

We have purposely excluded all aspects of type systems from our design. The

rationale for this decision was our impression (based on an initial search of the

project-relevant literature) that the limited capabilities of current static type sys-

tems would not have allowed an unbiased approach to our design tasks. Indeed,

it seemed as if the language features we had in mind were particularly suited
to highlight the problems of current static type systems. On the one hand, this
phenomenon had already stimulated a 
ood of research on the further develop-

ment of type systems, so there was no need for us to join this trek. On the other
hand, this research had only produced partial solutions to isolated problems (see

below), and no uni�ed framework for the proposed type system extensions was
available in which our design tasks could have been pursued. Trying to force
an extended language design into the constraints of one of the established static

type systems was also not felt to be a reasonable option as the design inescapably
would have been biased to �t into a type system that was known to be inadequate

for our tasks. Instead, we decided to keep the implicitly and dynamically typed
nature of the given reduction language and to use this unrestricted framework to
get an unbiased view of the design options. We hoped that, ideally, the contin-

uing research on type systems would produce acceptable solutions to the typing
problems related to our language design. In any case, it made sense to develop a
design for the complete language before looking for a suitable type system.

This approach was very successful in that it allowed us to develop the sim-

ple, yet expressive language framework that has been presented in the last three

chapters. It also allowed us to disentangle the properties of purely functional
languages and static type (inference) systems and to investigate the prospects

of purely functional languages in isolation. We have not elaborated on this in
chapter 6, but we have come to the conclusion that there is no fundamental dis-

crepancy between functional and object-oriented programming (this follows from

our view of abstractions for modular programming as well as from semantic ac-
counts of object-oriented programming languages and the availability of several

approaches to state-based computations in functional languages). An immedi-
ate consequence of this insight is that the major factor that has delayed the

translation of very successful approaches to object-oriented programming in Lisp

[DG87] to purely functional languages for more than a decade is the prevailing
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assertion that static type inference systems in their current form are not limiting

the expressiveness of functional languages in areas of practical relevance. Wrong

as it is, this assertion is the rationale for not permitting language constructs and

programs that cannot be handled by the type systems attached to current func-

tional languages. Nevertheless, our work would not be complete without at least

a summary account of the problems which our language design would pose to the

addition of a static type system. We do this here by providing references to some

of the ongoing research work on these problems.

Starting with the functional core languages, it is well known that the very

�rst step, from untyped to typed �-calculus, loses computational completeness:

self-applications, an essential prerequisite for the de�nition of �x-point combina-

tors as terms of the �-calculus, are not typable in the simply typed �-calculus.

Therefore, it is necessary to add explicit �x-point combinators or other forms of

recursive de�nitions as primitives to the typed calculi if they are to be used as

the core of general purpose programming languages (in contrast to their de�ni-
tions as �-terms, �x-point combinators themselves are typable in these systems).
It is also common to use a polymorphic �-calculus, because the simply typed

�-calculus does not allow abstraction over expressions of di�erent types, and to
avoid explicit type annotations. However, the Hindley-Milner type inference sys-
tem [Mil78] that forms the core of type inference in current functional languages

computes type information only for untyped terms of a predicative polymorphic
�-calculus (no abstraction over expressions of polymorphic type). To allow at

least for declarative abstractions over polymorphically typed expressions { and
thus the means to de�ne polymorphic functions, the let-construct is given a
special meaning: let-bound variables, in contrast to �-bound variables, may

have a polymorphic type. This is in con
ict with the principle of correspondence
(no parametric abstraction over polymorphically typed expressions), and it does

not allow polymorphic functions to be passed as parameters to other functions

{ polymorphically typed expressions are not �rst-class data objects (against the

principle of data type completeness).

Furthermore, the type inference problem for polymorphic recursion has been

shown to be undecidable [Hen93, KTU93], so that each recursive function can

only be instantiated to a single type inside its de�nition. The same restrictions
that do not allow polymorphically typed expressions to be passed as parameters

(no local quanti�cations in type schemes) do also preclude their storage in data

structures, so that frames could not sensibly be used to represent modules or
objects. In brief, the means for abstraction that form the very core of our design

are severely limited in standard static type inference systems. Moving on to the
second-order polymorphically typed �-calculus [Hue90, part II] would allow local

quanti�cation of types (and thus polymorphic parameters or structure compo-

nents) at the expense of fully implicit typing2. Mixtures of type annotations and

2It seems as if even type-checking in the full calculus is undecidable [Wel96].
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type inference can be used in hope to get the best of both worlds [OL96], or local

quanti�cation can be restricted to certain contexts (data structures, in particular)

to provide the necessary hints for type inference without explicit type annota-

tions in the program (the annotations are abstracted out to the data structure

type de�nitions [Jon97]). So much for the typing problems related to the core

language { for a more detailed description and for further references see, e.g.,

[Mit90].

As mentioned above, each of the proposed language extensions induces further

problems for static typing. Frames, for instance, are record-like data structures

that combine heterogeneously typed components with dynamic access. These

two properties, taken together, stress the capabilities of any static type system

as the type of a selected component may depend on the dynamic evaluation of

both the selector and the frame. In general, there is no way to determine the type

of an expression selected from a frame statically and unambiguously. At best,

safe approximations of sets of possible types of selections can be computed, and
programs can be guaranteed to be well-typed for every possible type of selections
statically (due to dynamic frame modi�cations, these approximations may end

up including all possible types). The actual type of a selection, however, can only
be determined at runtime, when the appropriately typed variant of the selection
context has to be selected. For similar reasons, statically typed languages usually

allow only structures with one of the above mentioned properties (lists and arrays
allow dynamic selection, but are homogeneous collections, i.e., all elements of a

collection have the same type; tuples may have heterogeneously typed elements,
but no selectors of statically unknown type).

As a consequence, support for record-like data structure in current functional
languages is restricted in several ways to account for the limitations of their static

type inference systems. In Standard ML [MTH90], records are treated similar

to tuples3, i.e., the exact structure of records (the set of slot names and types)
has to be known statically for a record operation to be well-typed. There is

simply no way to de�ne a general selection operation that takes a �eld label and

a record as parameters and selects the named �eld from the record (�eld labels are

not even �rst class values, but are mapped into patterns of a selector function).

The same holds for record extension or modi�cation of �elds. In Haskell 1.3
[PH96], record-like structures have been introduced by allowing components of

data constructors in data type de�nitions to be labeled using �eld names. The

use of such �eld names implicitly generates a global selector function of the same
name (�eld names cannot be shared by multiple data types, only by �elds of equal

type in di�erent constructors of one algebraic data type de�nition). In general,
�eld names `do not change the basic nature of an algebraic data type; they are

simply a convenient syntax for accessing the components of a data structure by

name rather than by position' [HPF97]. They have been introduced for good

3More precisely, tuples are de�ned as records with numeric �eld labels.
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reasons, but are not meant as a general purpose record facility.

The problems of adding records to statically typed languages have been known

for about a decade now and some of them have been addressed in the work of

several authors. The fact that the typing of 
exible record operations poses simi-

lar problems as the typing of objects and classes in object-oriented programming

languages has been a major motivation for this work (see [GM94] for a collec-

tion of papers on these topics). The major issues of the ongoing research work

are polymorphic operations on records of di�erent structure (general selector

functions, record updates without loss of type information, structural subtyp-

ing), record structure modi�cations (adding, renaming, removing �elds, record

concatenation), and local type scheme quanti�cation (universal quanti�cation to

allow polymorphic functions to be stored inside records, and existential quan-

ti�cation to allow for the typing of operations on abstract data type representa-

tions). Other topics are the static inference of the absence or presence of �elds in

records and the e�cient implementation of record operations. In their full (dy-
namic) 
exibility, our frame operations cannot be typed statically, but the limits

of static type systems have been extended far enough that a reasonable subset
of these operations can be integrated into statically typed languages. Practical

experience with implementations of these advanced type systems will be needed
to verify whether the remaining limitations really a�ect our design goals in prac-
tice. However, the integration of the partial solutions into a single system and

their interaction with other advanced features of modern type systems is still an
open research topic (see [GJ96] for a recent attempt 4; the paper also includes a
brief summary of the state of the art and further references).

The generalized input/output-facilities raise typing problems, too, as they
allow expressions to be separated from their originating programs or to be intro-
duced into other programs at runtime. Expressions can be stored permanently

in the �le system and may thus outlive program executions { the factorization

of program execution into static and dynamic phases (the very basis of static

type-checking) is neither su�cient nor absolute in such a context. Rather, at-
tributes such as static and dynamic have to be interpreted relative to individual
programs, which may be evaluated and type-checked in two phases as long as

they do not interact with the environment of long-living expressions. For these

interactions, however, some dynamic typing is necessary: whenever expressions

are stored in the �le system, information about their types needs to be attached
to them, and whenever expressions are loaded into running programs, their type
information needs to be checked for consistency with the types expected by the

programs that load them. The interrelations between static and dynamic typing

can be captured nicely by introducing a special type Dynamic, as proposed in
several variants by several authors (we describe here a simpli�ed variant of the

4Indeed, this seems to be the �rst publication to address the integration of the existing

solutions and the simpli�cation of the resulting type system.
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schemes described in [ACPR94]). Basically, Dynamic is a tagged sum of all types,

and by injecting an expression into Dynamic, it gets tagged with a representation

of its actual type (which may be statically inferred). To project an expression

from Dynamic, a typecase construct is used to provide alternative programs for

every possible `real' type of the expression. A runtime type-check compares the

representation of the real expression type with the expected types and passes the

expression (projected from Dynamic to its real type) to the program alternative

that expects an expression of this particular type. Each alternative can be type-

checked statically, and the interface between static and dynamic type-checking

is clearly de�ned: a runtime representation of a static type is created on injec-

tion into Dynamic, and a dynamic type-check is performed on projection from

Dynamic. There are, however, further problems in the details of this proposal

and its interaction with other type system features.

Unfortunately, this still does not account for all aspects of typing our extended

input/output-scheme: programs that store expressions and those that retrieve

expressions from the �le system may not even agree on the types they use, indeed,
an expression in the �le system may outlive all programs that know about the
de�nition of its type. Essentially, the common sequence of static type-checking,

compilation and execution no longer adequately describes the whole process of
program development, but is reduced to a partial view of the complete system,
in which long-living expressions exist in the �le system before, during and after

all three phases of the sequence, and in which other programs may be working on
the same long-term store before, during, and after individual programs proceed

through each of these phases. Of course, many of these aspects are relevant even
for more conventional language designs, but the extended input/output-system
brings these problems into the scope of the language design process (instead of

delegating them to programmers). The general consequences of this extended
view of language design are being explored in the research area of persistence

(cf. section 8.3). For explicitly typed languages, this change of scope means

that all of these activities have to be supported by the type systems (contrast
this with the untyped or character-based view of the �le system in conventional

language designs): as a �rst step, the interface to the �le system needs to be typed,

e.g., using some variant of dynamic types, and the necessary extensions need to

be integrated into the often sophisticated type systems of modern functional

languages (cf. [Pil96] for a description of this process for the language Clean).

Even basic issues such as type equivalence checking (by name or by structure)

need to be reconsidered [CBC+90]. Over time, expressions in the �le system may

also outlive language and implementation versions, or may need to be adapted

to modi�cations of their original type de�nitions. These problems have been

investigated under the name system evolution in the research area of persistent

systems [MCC+93, KCMS96].
This concludes our sketch of the �rst level of typing problems, but the list

of problems continues on the next level: so far, we have only discussed how
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Figure 8.3: The next steps in the hierarchies of meta languages

to type elements of our language design, but if the means to de�ne types are

included into the language, the whole design process needs to be reiterated for
the new, explicitly typed language. In other words, we need modules of type
de�nitions, storage of type de�nitions in the �le system, abstraction over types,

etc. . We sketch only the problems related to support for modular programming

in typed languages here, since this has been a very active area of research. First,

note that both modules and types are constructions (or abstractions) built over
expressions of the programming language, and that there are two alternative
ways to proceed when adding both to a language (cf. �gure 8.1). Either the

constructs for modular programming (M) are introduced before the type system

(T) or vice versa, leading to a typed modular language (TMP) or to a modular
typed language (MTP). The former allows modules to have types and is thus one

prerequisite for modules as �rst-class values in a typed language, and the latter
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allows type de�nitions to be included into modules (cf. the two sides of �gure

8.2). For the typed modular language TMP, an additional level of the module

system (M2) is needed to allow for modular programming with types, and for

the modular typed language MTP, an additional level of the type system (T2)

is needed to allow for typed programming with modules (cf. �gure 8.3). To

avoid the construction of an in�nite number of meta levels, the process is usually

stopped at this level, either by leaving an open end at the top (for instance, no

types for the constructs of M2) or by trying to build a closed loop (for instance,

by merging M and M2). The obvious questions are whether the process has

�x-points, and whether the two lines of development may converge, but these

questions are usually not even posed. Instead, the line of development that �ts

a given language best is pursued as if it was the only possible one.

Examples of this phenomenon can be found by comparing the facilities for

modular programming in Haskell [PH96] and Standard ML [MTH90, MT91,

HMM86]: Haskell has a rather straightforward module system to organize source

code (including function and type de�nitions) into modules, and the focus of lan-
guage design has been on the development of a sophisticated type system inside
the module structure (matching the right-hand side of �gure 8.2). Techniques

for modular programming were then developed with no particular support from
the module system, using mainly facilities of the type language (type classes in
particular). There are, however, proposals to establish further language support

for modular programming below the level of the simple module system by provid-
ing �rst-class record structures in the programming language, together with the

necessary extensions to the type language [Jon95, Jon96, JJ96]. In other words,
Haskell seems to drift towards the situation symbolized in the left-hand side of
�gure 8.3, with a simple module language M2 at the top of its hierarchy and a

sophisticated second module language below the type language.
Standard ML, on the other hand, has a rather straightforward type system for

its core language, and the focus of language design has been on the development

of a sophisticated module language on top of the typed core language. While
the starting point was similar (right-hand side of �gure 8.2), the direction of

development was to the outside in this case. This led to the development of

the functor and structure language [Mac85], with signatures playing the role of

types in T2 (cf. the right-hand side of �gure 8.3). The language of functors and

structures forms an own typed �rst-order functional language and is separated

from the core language (so T2 is built directly on M, not on MTP as shown in

the �gure). There have been several attempts to bring T and T2 closer together,

viewing them as parts of one type universe (allowingmodules with type de�nitions

to be �rst-class data objects of the core language), or at least permitting higher-

order functors (see, e.g., [HL94, Ler94, Ler95, Lil97]). Nevertheless, the current

tendency in the ML community is towards keeping the strati�ed nature of the
language. According to Mark Lillibridge [Lil97], this will also be true for the

design of the successor language to Standard ML, currently called ML2000.
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It would be beyond the scope of this thesis to elaborate on the problems en-

countered at this level of typed language design (see [Jon96, Lil97] for summary

accounts of the �eld), but note that the problems are entirely on the static typ-

ing side, especially on �nding reasonable compromises between the 
exibilities of

dynamic manipulation of modules and the restrictions of static typing. This is

even more di�cult if the module language becomes `an organic extension of the

underlying polymorphic type system' [Mac92], as it is the case for Standard ML:

module manipulation subsumes type manipulation, and a central topic of the

work of Lillibridge and Leroy is the wish to maximize the visibility of type ma-

nipulations in higher-order module languages while guaranteeing termination of

static type elaboration. To solve this apparent con
ict, they invented translucent

(or manifest) types for modules with type components: only parts of the internal

type information are visible through module boundaries, and by making these

boundaries more or less translucent, the type system can statically compute safe

approximations of dynamic module manipulations. While the idea looks simple

(from hindsight), the technical elaborations are rather complex, and it is no sur-
prise that the technical di�culties left almost no room to scrutinize fundamental
design decisions. It has become almost impossible to disentangle the type and

module systems in Standard ML without giving up the character of the language,
and advances in the module language go hand in hand with advances in the type
system. By re
exivity, it follows that advances in the type system (for instance,

to accommodate it to the requirements of language constructs for object-oriented
programming) should be re
ected in the module system to avoid duplication or

inconsistencies of features in these two parts of the language.
On the other side of the spectrum, one motivation for the work of Jones

[Jon95, Jon96] is the hope to �nd less complex foundations for �rst-class mod-

ules in statically typed languages. Using Haskell as his starting point, his major
problem is to identify and change those aspects of the type system that hinder

programmers from using the programming language for modular programming.

He tries to separate the issues of modules and types, but runs the risk of du-
plicating features of the sophisticated type language in the module language.

For instance, a standard implementation of type classes implicitly passes dictio-

naries of functions around as evidences for the membership of types in classes

[HHJW96, JJM97, Aug93]. Currently, the program transformation that intro-

duces dictionaries as additional parameters to functions may produce programs

that could not be written in Haskell itself (the type system would not allow poly-

morphic functions in dictionaries), but these programs would be admissible in an

extended language. Additionally, his proposals have been criticized as being in-

complete [Lil97, p. 310], because they do not allow type components in �rst-class

structures. By analogy with the approach used for Standard ML (merging T and

T2 in the right-hand side of �gure 8.3), this problem could be solved if it would
possible to merge �rst-class structures and the existing module language (corre-

sponding to M and M2 in the left-hand side of �gure 8.3). This would depend on
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further extensions to the type and structure system and would probably lead to

problems similar to those encountered in the context of the Standard ML module

language.

The strati�ed language designs described above have some unpleasant proper-

ties: just as the two module languages in an extended Haskell would have di�erent

characteristics, the two type languages of Standard ML di�er in their capabili-

ties, too. Some of these di�erences were intended (the possibility to abstract over

types in T using expressions that have types in T2), others probably not [Kah93],

and the sum of di�erences can be confusing to programmers, who are forced to

decide early in their projects which of the levels to use for modeling their prob-

lems. Therefore, one may wonder whether the two paths of development will

eventually converge into one system by merging both types and modules as �rst-

class values into the programming language (cf. section 4.3). The major problem

on this way is of course the type system, in particular, the isolation of statically

computable information from dynamic computations, but some of the problems
have been solved already. And if we were to include types into our language, our
chosen design principles would leave us no choice: any feature important enough

to be included into the design at all has to be fully integrated with all parts of the
language. We would have to give full civil rights to types, including abstraction

over types, modules of types, and interactions for types.

8.3 Persistent systems

All of these directions are interesting, and some of them have already seen some
work on which further research could be based. However, the most promising di-

rection for further work in our opinion stems from the extension of input/output
to all kinds of expressions. This directly connects functional programming to

the large body of research results and practical experience collected in the area

of persistence (cf. [AM95] for a recent survey). Persistence is the lifetime of

data objects, ranging from very short (temporary objects) to very long (objects

in a database). Orthogonal Persistence names a language design principle, in
line with the principle of data type completeness, by which the possible range

of lifetimes should be the same for all kinds of objects. In particular, the treat-

ment of data objects should be independent of their actual lifetime. Originally
intended to remove the separation between programming languages (with poor

support for objects of long lifetime) and database languages (with poor general
programming capabilities), research on persistent languages and systems has led

to a completely di�erent view of programming environments. Not only have pro-

gramming languages been developed that operate uniformly over data of di�erent
lifetime, but objects of all types { including procedures { can be stored in per-

sistent stores. Over time, the separation between programs and the environment

in which they are stored and executed is removed, leading to fully integrated
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programming environments.

Apart from historical reasons, persistent languages (some of which are dis-

cussed in [Cla91]) have an obvious need to control the state of the persistent

store and thus for a state-based programming paradigm. Typically, each per-

sistent store has an entry point, the root of persistence, and all data objects

reachable from this root are persistent. Programs connect to a store and may

then access and update the structures reachable from the root of this store as if

these were part of the programs local memories. If a sequence of updates is ex-

plicitly committed, or if a program closes its connection to a store, the persistent

store is brought up to date. The movement of (parts of) data objects is usu-

ally treated implicitly in the runtime system, freeing programmers from tedious

and error-prone work, and great attention has been paid to the development of

e�cient persistent stores.

Most of the goals of persistence research, e.g., better integration of program-

ming languages and databases, the development of fully integrated data environ-

ments (theme of two successive ESPRIT Basic Research Actions [FID92]), or the
use of persistent store technology as a foundation for integrated software devel-
opment environments (cf. [KM97]) are of immediate practical relevance. It is

therefore imperative to connect functional programming languages to the results
of this very active research community, and some initial work has been done in
the ML community [Har86, Mat88, NW92]. However, as long as the support

for state-based computations in purely functional languages was underdeveloped,
it was simply not practical to combine these languages with persistent stores.

Consequently, only very little work has been done in this promising direction so
far.

The �rst notable exception is Staple [MD91, McN93], a lazy functional lan-

guage and its programming environment (STAPLE is an acronym for Statically
Typed Applicative Persistent Language Environment). In Staple, modules may

be added to a persistent store using commands on the operating system level

and programs may access this store using the request/response-stream model. A
dynamic type Any with suitable projection and injection operations is used to

reconcile dynamic load and store of expressions with an otherwise static type

system. The disadvantages of stream-based input/output-models have been dis-

cussed in chapter 3, and the two uses of the store are completely separated as

modules are not values of the programming language in Staple. Furthermore, the

projection of objects from type Any to a statically known type may fail with a

type-error at runtime (no alternative code can be provided in the program for

the case that a dynamic type does not match the expected static type).

More recently, Davie and Hammond [DH96] have proposed to integrate lazy

functional programming, hyperprogramming and persistence into a program de-

velopment environment (the term hyperprogramming is used in the persistence
research community to describe a form of programming in which program source

text may statically link to objects in a persistent store; it has been chosen by
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analogy to hypertext, i.e., text that may contain links to other texts). In
uenced

by the module aspect of Staple, the proposal focuses on program construction in

a persistent environment, de�ning an interactive functional hyperprogramming

system on top of a persistent store. The hyperprogramming system controls the

store and allows to create and manipulate functional program fragments (called

hypersheets by analogy with spreadsheets) in this store via a graphical user in-

terface. The functional language itself (probably Haskell) has no explicit access

to the store. The proposal thus avoids the problem of program-controlled ma-

nipulations of the store and provides only a unidirectional integration: while

functional programs are expected to reside and run in a persistent store, the

store cannot be explicitly accessed by functional programs. Similar to Staple

modules, hypersheets are not data structures of the programming language but

of the (hyper-)programming environment.

While investigating the possibilities of writing an operating system in the lazy

functional language Clean [PvE97], Pil has also discovered that the restrictions

of input/output-systems in current purely functional languages contrast sharply
with the claim that functions are �rst-class citizens in these language. He fo-
cuses on the typing aspects and judges that `the �le system [in most functional

languages] is poorly typed at best and some classes of objects, in particular
functions, cannot be stored on disk at all'. As a prerequisite for an extended
input/output-system for Clean, called First Class File I/O, he develops a vari-

ant of dynamic types to provide an interface between statically and dynamically
typed parts of a program. The type system and his plans for implementing the

storage of functions in �les are described in [Pil96].
Interestingly, database researchers, in search for expressive database program-

ming languages, have invented their own functional programming languages. In

the design of PFL (Persistent Functional programming Language), even referen-
tial transparency was a major design goal. Two variants of the language have

been described: the �rst one uses a variant of result continuations to provide safe

access to a persistent store [Sma93], the second one ensures safety of destructive
store updates through a linear type system [SS95]. Both function de�nitions (sets

of equations) and relations (sets of values of homogeneous type) are stored in a

database and may be updated at runtime using one of the mechanisms listed

above (in [Sma93], even type de�nitions are stored in the database and may be

modi�ed). However, the program component of the database is an unstructured

set of equations, and no constructs for modular programming are described. Only

the relation part of the database can be queried, and the types of values in rela-

tions have to be �rst-order (no functions allowed), probably even monomorphic.

Therefore, the design is based on the separation between programs and �rst-order

data, even though both are stored in one database. Other persistent languages

exist that support both orthogonal persistence and �rst-class programs, but do
not strive for referential transparency [MS92, MBC+96]. Similar to languages in

the ML family, they allow both functional and imperative programming styles.
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They provide a wealth of research results and implementation experience in top-

ics such as type systems, programming environments, persistent store technology,

and language design (for detailed information, cf. [Tyc97a, Tyc97b, Nap88]) that

only needs to be harvested and adapted for use in purely functional languages.

In sum, the major prerequisites needed to support orthogonal persistence in

purely functional languages are available: direct manipulation of persistent stores

can be replaced by using the now common input/output-facilities to communi-

cate with these stores, and the additional problems of typed languages can be

solved if static typing (no typing at runtime) is replaced by strong typing. To

these ends, input/output has to be extended to all kinds of expressions, and type

systems have to provide both static and dynamic typing, as well as an interface

between the two. However, even if these necessary prerequisites were standard

in modern functional languages (which they are not yet), we would still have a

backlog of several years with respect to the advanced aspects of orthogonal per-

sistence. This estimated backlog is alarmingly large, especially if compared with

the prevailing idea that functional languages are at the forefront of programming
language development. The estimate is based the fact that, as early as 1984,
Atkinson and Morrison [AM84] did already describe how persistent languages

can support modular programming if they provide �rst-class procedures, thus
having all essential ideas in place, albeit in the hostile framework of a procedural
language. The competitive advantages manifest themselves in various areas of

persistent systems, most notably in implementation experience (for instance, the
�le system is usually a poor replacement for an e�ciently implemented persis-

tent store). A second major advantage is the practical experience with persistent
systems over longer periods of time (which led to the interest in integrated pro-
gramming environments). On the positive side, the research results in orthogonal

persistence are well documented, enabling functional language designers and im-
plementors to build on the existing experience, and general language design and

implementation issues (development of advanced type systems, e�cient imple-

mentation of higher-order abstractions, etc.) have been pursued concurrently in
both research areas. Therefore, a backlog estimate of a few years (instead of a

full decade) is reasonable5.

It should be noted that the advantages of persistent languages are not in ob-

scure research areas but in areas of immediate practical relevance: support for

the manipulation of large databases of long-lived data and support for integrated

programming environments. While high-publicity languages such as Java [Jav95]

are rapidly embracing persistence technology [PJa96, For95, PJW96, PJW97],

the lack of support for database programming in current functional languages is

getting increasingly important as a (negative) decision factor. The problem is

5Even with extended input/output-facilities and type systems, some of the advanced results

cannot be adopted without further basic research. This is especially true for the re
ective

language features that are provided in some persistent languages to address issues such as

system evolution [KCMS96] and dynamic typing [MM93, section 6.3].
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aggravated by a tendency towards larger and larger accumulations of long-lived

data, e.g., in the world-wide web, that need to be administrated. This simple fact

alone could seriously hamper the transition of functional programming languages

from research vehicles to practical tools, and the situation is hardly better for

programming environments. The development of adequate programming environ-

ments for (purely) functional languages has so far been regarded as not a research

topic, and has thus received very little attention, even though it is considered a

major factor in practice. This leads to a vicious cycle: the development of suit-

able programming environments is assumed to be a task for commercial language

implementations, which are not provided unless there is a large base of poten-

tial customers, i.e., professional software developers who are willing to pay for a

language implementation with a full-featured environment. Professional software

developers, however, cannot a�ord to invest time and money into a language for

which essential tools do not exist. Experience with persistent systems has not

only shown that orthogonal persistence is a solid foundation for the construction

of software development environments [KM97], but also that these environments
do generate new research problems [AM95]. In conclusion, orthogonal persistence
o�ers tested solutions to the problems of database programming and encouraging

perspectives for the problems of programming environments. Given that these
topics are crucial to the success of a programming language in practice, we see
no excuse for not following the principle of orthogonal persistence in the design

of modern functional languages.
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Chapter 9

Summary and Conclusions

The key idea of this thesis is to present the extension of a purely functional lan-

guage with facilities for input/output and modular programming as a language
design process. Starting from object transformations as a natural model of com-

putations, we brie
y develop functional languages as a means for declarative pro-
gramming. Compared to general transformation systems, functional languages
are slightly less 
exible, but do not burden the daily programming task with

concerns about fundamental system properties such as con
uence. If properly
designed on top of a suitable calculus, these languages compensate for the re-

strictions they impose with a re�ned theory for reasoning about programs. In
particular, properties such as Church-Rosser and referential transparency can be
guaranteed by the language designs, so that they cannot inadvertently be invali-

dated by programmers (chapter 2). Having thus embedded functional languages
into our design framework, we collect the available design options regarding lan-
guage support for input/output (chapter 3) and modular programming (chapter

4). After these preliminaries, we develop our language design, giving a formal
de�nition of the language (chapter 5), a discussion of its support for modular

programming techniques (chapter 6), and an abstract speci�cation of our imple-

mentation (chapter 7). Finally, we show several options for further work and

connect our work to research on type systems and on orthogonally persistent

languages and systems (chapter 8).

When we started to take the language design aspect of our work seriously,

we were surprised to �nd essential support in language design principles col-
lected in the late 1970s. Functional languages have been in
uenced deeply by

developments in the formal semantics of programming languages, and it is only

reasonable to base the (re-)design of functional languages on semantic consider-
ations, but it is interesting that characteristics of functional languages can be

condensed into a few principles, which were not even developed for this purpose.
The de�nitions of the three principles of abstraction, correspondence, and data

type completeness given in the introduction to this thesis are obviously informal

and leave room for di�erent interpretations. Moreover, the purpose of the princi-
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ples is easily defeated by malevolent interpretations of their de�ning terms. Our

benevolent interpretation has turned the principles into essential tools for our

language design process, but it would certainly be worthwhile if their de�nitions

could be formalized (putting their bene�ts on �rm ground).

In contrast to the helpful work on general language design, we found essen-

tially no comparative surveys of design options in three areas of research that are

relevant to our particular language design problem. These areas are input/output

in functional languages, language support for modular programming, and the in-

teractions between these two areas and type systems. There exist several in-depth

surveys that cover large sub-areas of type system research, but the �eld is cur-

rently too diverse to allow for any comprehensive surveys. Unfortunately, several

issues of typing language constructs for input/output and modular programming

are located at the very frontier of active research on type systems, and are there-

fore not covered by the existing surveys (some of the issues are summarized in

section 8.2). As a consequence, we decided to put aside the issues of type systems

for the present thesis, and have compiled surveys of the remaining two areas that
are not exhaustive, but have su�ced as a foundation for our design decisions.

In the area of input/output, several more or less detailed historical accounts

of the �eld exist which also accurately describe some of the problems of di�erent
input/output-schemes. However, when it comes to a comparison of the di�erent
approaches, these papers are often biased either to support the particular new

approach they introduce or to retain one of the well-established approaches in
spite of its shortcomings. Also, the comparisons are usually informal, rendering

an evaluation di�cult, and even if formal accounts are given (e.g., translations
between input/output-schemes in [HS89], or the operational semantics and equiv-
alence proofs in [Gor94]), these are not in a form that could readily be employed to

address the issues of language design. Nevertheless, the existing work enables us
to develop a formal presentation that reduces the various input/output-schemes

to their essence: the integration of context-sensitive transformations into the

formerly context-free world of functional programming. Formally, the various
schemes di�er mainly in the restrictions which they impose on permissible con-

texts for interactions, but the consequences of these di�erences on programs that

engage in interactions are considerable (as discussed in chapter 3).

The �eld of language support for modular programming is simply too diverse

to allow for a comprehensive survey of the various language constructs and pro-

gramming styles that have been proposed so far, and the problems are aggravated

by the lack of a common basis for comparisons. Since we cannot build on exist-

ing work in this case, we present the relevant ideas in their historical context in

chapter 4. This historical survey provides the foundation for our design decisions,

but it cannot produce the necessary con�dence in the �nal design. Therefore, we

evaluate the support for the most common modular programming techniques in
our language in chapter 6, establishing pragmatic a posteriori support for our

design principles. Hopefully, the discussion in section 6.4 can be taken as a start-
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ing point for a classi�cation of language support for modular programming, but

further work is required to develop the ideas presented in this section into a basis

for a comprehensive comparison.

The major contribution of this thesis is the design of a functional program-

ming language with explicit support for interactions with an external environ-

ment, and with implicit support for modular programming. The language is no

longer purely functional, but it is still a pure language in that the integration of

context-sensitive transformation rules does not a�ect reasoning about context-

free program transformations. The overall design goal of simplicity through gen-

erality has been achieved for the extended language, and the conformance of the

functional core language with the principles of abstraction, correspondence and

data type completeness has been preserved for the extended language. In other

words, functions, frames, and interactions are �rst-class data objects, abstraction

is provided over all these categories, and to each declarative form of abstraction

there is a corresponding parametric form. The �rst-class status of data objects

has been extended to include participation in interactions, which allows program
building blocks (modeled, e.g., as frames containing functions or interactions) to
be stored in the �le system and retrieved from there to become parts of other

programs. Both storage and retrieval of expressions are simply interactions of
programs with the �le system, lifting the level of tools for program construction
and maintenance to the level of programs written in the extended language.

While solving our original problems, this language design also opens some
new issues regarding the interactions between the external long-term store and

the programming language. For instance, should the �le system be described as
a data structure of the language or as some external structure (which is what
we have done in chapter 5)? In other words, the questions are how tight the

integration of the long-term store and the programming language should be, and
how fully integrated programming systems (language + store) could look like.

Fortunately, this is exactly the kind of questions that have been investigated in

the research area of persistent systems (cf. section 8.3). Therefore, our language
design connects the research areas of functional languages and persistent systems,

and it should be possible to translate the results of research on persistent systems

with imperative languages to persistent systems with functional languages.

The connection to research on persistent systems is the most promising area

for further work, but the idea that functional languages can be characterized

on the basis of semantic design principles, to which these languages conform

more thoroughly than conventional languages, merits further investigations, too.

The surveys of language support for input/output and modular programming in

functional languages are also contributions of this thesis (though neither of the

surveys covers its area exhaustively), and the preliminary results of section 6.4,

in particular the emphasis on abstraction instead of speci�c language constructs,
suggest that the currently very diverse lines of research and development in the

�eld of language support for modular programming do have a common basis.
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