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Summary. Based on the research results of the Kiel University Cognitive Systems
Group in the field of multidimensional signal processing and Computer Vision, this
book chapter presents new ideas in 2D/3D and multidimensional signal theory. The
novel approach, called the conformal monogenic signal, is a rotationally invariant
quadrature filter for extracting i(ntrinsic)1D and i2D local features of any curved 2D
signal - such as lines, edges, corners and circles - without the use of any heuristics or
steering techniques. The conformal monogenic signal contains the monogenic signal
as a special case for i1D signals - such as lines and edges - and combines mono-
genic scale space, local energy, direction/orientation, both i1D and i2D phase and
curvature in one unified algebraic framework. The conformal monogenic signal will
be theoretically illustrated and motivated in detail by the relation of the 3D Radon
transform and the generalized Hilbert transform on the sphere. The main idea of
the conformal monogenic signal is to lift up 2D signals by stereographic projection
to a higher dimensional conformal space where the local signal features can be an-
alyzed with more degrees of freedom compared to the flat two-dimensional space
of the original signal domain. The philosophy of the conformal monogenic signal is
based on the idea to make use of the direct relation of the original two-dimensional
signal and abstract geometric entities such as lines, circles, planes and spheres. Fur-
thermore, the conformal monogenic signal can not only be extended to 3D signals
(image sequences) but also to signals of any dimension.
The main advantages of the conformal monogenic signal in practical applications
are the completeness with respect to the intrinsic dimension of the signal, the rota-
tional invariance, the low computational time complexity, the easy implementation
into existing Computer Vision software packages and the numerical robustness of
calculating exact local curvature of signals without the need of any derivatives.
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1 Introduction

Low level two-dimensional image analysis is often the first step of many Com-
puter Vision tasks. Therefore, local signal features such as gray value or color
information, gradient, curvature, orientation and phase determine the quality
of subsequent higher level processing steps. It is important not to lose or to
merge any of the original information within the local neighborhood of the
test point3. The constraints of local signal analysis are: to span an orthogo-
nal feature space (split of identity) and to be robust against stochastic and
deterministic deviations between the actual signal and the model.
This book chapter is organized as follows: First the fundamental 1D and 2D
local signal models with specific geometric and structural features are defined.
The feature set of the assumed 2D signal model contains energy, phase, direc-
tion/orientation and curvature. Regarding those features, already known and
closely related phase based and rotationally invariant quadrature filter signal
processing approaches such as the monogenic signal, the structure multivec-
tor and the monogenic curvature tensor are being analyzed. Their possibilities
and limitations are shown by means of the generalized Hilbert transform in
Euclidean space and its relation to the Radon transform, which enables ex-
plicit extraction of the features by all different approaches in one framework.
The monogenic signal, the structure multivector and the monogenic curva-
ture tensor make use of generalized Hilbert transforms of different order in
Euclidean space. Whereby the monogenic signal is limited to the first order
generalized Hilbert transform and the structure multivector and the mono-
genic curvature tensor are extended to the second and third order generalized
Hilbert transforms. The limitations of the nth-order generalized Hilbert trans-
forms concerning 2D signal analysis are being shown and a novel 2D signal
approach in conformal space called the conformal monogenic signal is pre-
sented.
Image signals f ∈ L2(Ω; R) with Ω ⊂ R2 will be locally analyzed on a low
level. 2D signals are classified into local regions N ⊆ Ω of different intrinsic
dimension (see figure 1)

i0D = {f ∈ L2(Ω; R) : f (xi) = f (xj) ∀xi,xj ∈ N} (1)

i1D = {f ∈ L2(Ω; R) : f(x, y) = g (x cos θ + y sin θ) ∀(x, y) ∈ N} \ i0D (2)

i2D = L2(Ω; R) \ (i0D ∪ i1D) . (3)

The assumed local signal model is defined as a curve which can be locally
approximated by a circle with arbitrary orientation and curvature

f(x, y) = a cos
(∥∥∥∥[

x
y

]
− 1

κ

[
cos θ
sin θ

]∥∥∥∥ + φ

)
∈ i1D ∪ i2D (4)

3 There is no method of signal analysis which is universal in respect of any arbitrary
local 2D structure. Hence, it is necessary to formulate a model of local signal
structure as basis of the analysis. The great challenge is the search for a most
general model which can cope with as much as possible variants of local signal
structure.
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with a ∈ R as the local amplitude, φ ∈ [0, 2π) as the local phase, κ ∈ R as the
local curvature and θ ∈ [0, 2π) as the local direction/orientation of the signal
for κ 6= 0. For the special case of κ = 0 the curved 2D signal degrades to an i1D
function. Therefore the task is to solve an inverse problem, i.e. to determine
local features such as amplitude a, phase φ, orientation θ and curvature κ of
any curved signal such as lines, edges, corners and junctions. One important
local structural feature is the phase φ which can be calculated by means of the
Hilbert transform [10]. Furthermore all signals will be analyzed in monogenic
scale space [7] since the Hilbert transform can only be interpreted for narrow
banded signals

f(x, y; ss) = P(x, y; ss) ∗ f(x, y) (5)

with ∗ as the convolution operator and ss as the scale space parameter. The
Poisson kernel of the applied low pass filter reads

P(x) = P(x; ss) =
ss

2π (s2
s + ‖x‖2)

n+1
2

, n ∈ N, x ∈ Rn . (6)

Fig. 1. From left to right: a constant signal (i0D), an arbitrary rotated 1D signal
(i1D) and an i2D checkerboard signal consisting of two simple superimposed i1D
signals. A curved i2D signal and two superimposed curved i2D signals. Note that all
signals displayed here preserve their intrinsic dimension globally.

1.1 Related Work

Phase and energy of 1D signals can be analyzed by the analytic signal [10].
The generalization of the analytic signal to multidimensional signal domains
has been done by the monogenic signal [6]. In case of 2D signals the monogenic
signal delivers local phase, orientation and energy information restricted to
the set of i1D signals. This book chapter presents the generalization of the
monogenic signal for 2D signals to analyze both i1D and i2D signals in one
unified framework. The conformal monogenic signal delivers local phase, ori-
entation, energy and curvature for i1D and i2D signals with the monogenic
signal as a special case. The monogenic signal replaces the classical 1D Hilbert
transform of the analytic signal by the generalized Hilbert transform [3]

R{f}(x) = (Q ∗ f)(x) = (hn ∗ P ∗ f)(x), x ∈ Rn, n ∈ N \ {1} (7)
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with Q as the conjugate Poisson kernel and hn as the generalized Hilbert
transform kernel

hn(x) =
2

An+1

x
‖x‖n+1

, x ∈ Rn, n ∈ N \ {1} (8)

with An+1 as the surface area of the unit sphere Sn in Euclidian space Rn+1.
To enable interpretation of the generalized Hilbert transform, its relation to
the Radon transform is the key [20]. The generalized Hilbert transform can
be expressed by a concatenation of the Radon transform, the inverse Radon
transform and the well known classical 1D Hilbert transform. Note that the
relation to the Radon transform is required solely for interpretation and the-
oretical results. Neither the Radon transform nor its inverse are ever applied
to the signal in practice. Instead the generalized Hilbert transformed signal
will be determined by convolution in spatial domain and the signal features
can be extracted in a rotationally invariant way.

2 Generalized Hilbert Transforms in Conformal Space

The feature space of the 2D monogenic signal is spanned by phase, orientation
and energy information. This restriction correlates to the dimension of the
associated 2D Radon space [20]. Therefore, our main idea is that the feature
space of the 2D signal can only be extended by lifting up the original signal to
higher dimensions. This is one of the main ideas of the conformal monogenic
signal. In the following the 2D monogenic signal will be generalized to analyze
also i2D signals by embedding the 2D signal into the 3D conformal space [15].
The 2D generalized Hilbert transform can be expressed by the 2D Radon
transform which integrates all function values on lines [17]. This restriction
to lines is one of the reasons why the 2D monogenic signal is limited to i1D
signals (such as lines and edges) and can not be applied to corners and general
curves. To analyze also i2D signals and to measure curvature κ = 1

ρ , a 2D
Radon transform which integrates on curved lines (i.e. local circles with radius
ρ) is preferable. In the 3D domain the Radon transform integrates on planes,
although at first sight 3D planes are not related to 2D signals. But the idea is
that circles form the intersection of a sphere (with center at

[
0, 0, 1

2

]
and radius

ρ = 1
2 ) and planes passing through the origin (0, 0, 0) of 3D space. Since the

generalized Hilbert transform can be extended to any dimension [4] and the 3D
generalized Hilbert transform can be expressed by the 3D Radon transform,
the 2D signal coordinates must be mapped appropriately to the sphere. This
mapping must be conformal (i.e. angle preserving), so that angular feature
interpretation of the 3D generalized Hilbert transform in conformal space is
still reasonable. Analogous to the line parametrization by (t, θ) ∈ R × [0, π)
(where t ∈ R is the minimal distance of the 2D line to the origin and θ ∈ [0, π)
is the orientation of the line) of the 2D Radon transform [20], the planes of
the 3D Radon transform are uniquely defined by the parameters (t, θ, ϕ) ∈
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R× [0, 2π)× [0, π) where t is the minimal distance of the plane to the origin
of the 3D space and the angles θ and ϕ determine the orientation of the
plane in 3D space (see figure 3). This new parametrization truly extends the
interpretation space of the monogenic signal by one dimension. In contrast
to the well known Monge patch embedding known from differential geometry
[5], the original 2D signal will now be embedded into the conformal space.

Fig. 2. Lines and circles of the 2D image domain are both mapped to circles on the
sphere. Each circle on the sphere is uniquely defined by its parameterized intersection
plane in conformal space. The third figure illustrates the monogenic signal as a
special case.

2.1 The Conformal Space

The main idea is that the concept of lines in 2D Radon space becomes the
concept of planes in 3D Radon space and the more abstract concept of hy-
perplanes in multidimensional space. These planes determine circles on the
sphere in conformal space. Since lines and circles of the 2D signal domain are
mapped to circles [15] on the sphere (see figure 2), the integration on these
circles determines points in the 3D Radon space. The projection C known
from complex analysis [15] maps the original 2D signal domain to the sphere
and can be inverted by C−1
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C(x, y) =
1

x2 + y2 + 1

 x
y

x2 + y2

 , C−1(ξ1, ξ2, ξ3) =
1

1− ξ3

[
ξ1

ξ2

]
. (9)

This mapping has the property that the 2D origin (0, 0) of a local coordinate
system will be mapped to the south pole (0, 0, 0) of the sphere in conformal
space and both −∞,+∞ will be mapped to the north pole (0, 0, 1) of the
sphere. Lines and circles of the 2D signal domain will be mapped to circles
on the sphere and can be determined uniquely by planes in 3D conformal
space. The integration on these planes corresponds to points (t, θ, ϕ) in the
3D Radon space.

4
q

z

x

y

x

y

t r(t, , )θ ϕ
θ

i

ρ
t

2π

ϕ

r(t, , )θ ϕ

π
0

θ

Fig. 3. Top row: Each with the triple (t, θ, ϕ) with t = 0 parameterized plane can
be determined exactly by the generalized Hilbert transforms on the sphere. The
interpretation of this parameter set delivers the features such as direction, phase
and curvature of the original signal without any steering. Bottom row left figure:
Curved i2D signal with orientation θ and curvature κ = 1

ρ
. Bottom row right figure:

Corresponding 3D Radon space representation of the i2D signal spanned by the
parameters t, θ and ϕ. Since the Radon transform on circles directly on the plane of
the original 2D signal is not possible, the Radon transform has to be done in higher
dimensional 3D conformal space where circles correspond to planes.



The Conformal Monogenic Signal of Image Sequences 7

2.2 3D Radon Transform in Conformal Space

To interpret the conformal monogenic signal, the relation to the 3D Radon
transform in conformal space must be taken into account. The 3D Radon
transform is defined as the integral of all function values on the plane (see
figure 2) defined by

R{c} (t, θ, ϕ) =
∫

x∈R3

c(x)δ0(x

 sinϕ cos θ
sinϕ sin θ

cos ϕ

− t)dx (10)

with δ0 as the Dirac distribution and the mapping c defined in equation (12).
Since the signal is mapped on the sphere and all other points of the con-
formal space are set to zero, the 3D Radon transform actually sums up all
points lying on the intersection of the plane and the sphere. For all planes
this intersection can either be empty or a circle. The concept of circles in the
conformal 3D Radon transform can be compared with the concept of lines
known from the 2D Radon transform. Since lines in the 2D signal domain are
also mapped to circles, the conformal monogenic signal can analyze i1D as
well as curved i2D signals in one single framework. Recall the very important
fact that every corner or curve can be locally approximated by a circle. The
inverse 3D Radon transform exists and differs from the 2D case such that it
is a local transformation [2].

R−1{r}(0, 0, 0) = − 1
8π2

2π∫
θ=0

π∫
ϕ=0

∂2

∂t2
r(t, θ, ϕ)|t=0 dϕ dθ . (11)

That means the generalized Hilbert transform at (0, 0, 0) is completely de-
termined by all planes passing the origin (i.e. t = 0). In contrast, the 2D
monogenic signal requires all integrals on all lines (t, θ) to reconstruct the
original signal at a certain point and is therefore called a global transform.
This interesting fact turns out from the definition of the inverse 3D Radon
transform R−1 {·}. Therefore, the local features of i1D and i2D signals can
be determined by the conformal monogenic signal at each test point of the
original 2D signal without knowledge of the whole 3D Radon space.

2.3 The 2D Conformal Monogenic Signal

To give the generalized Hilbert transform more degrees of freedom for signal
analysis, the original 2D signal will be embedded in a applicable subspace of
the 3D conformal space by the mapping

c(x, y, z) =
{

f(C−1(x, y, z)T ; ss) , x2 + y2 +
(
z − 1

2

)2 = 1
4

0 , else
. (12)
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Thus, the 3D generalized Hilbert transform can be applied to all points on the
sphere. The center of convolution in spatial domain is the south pole (0, 0, 0)
where the test point of the 2D signal domain meets the sphere. At this point
the 3D generalized Hilbert transform will be performed at the origin (0) of the
applied local coordinate system for each test point separately. The conformal
monogenic signal [19, 18] is defined as

fCMS(0) = [c(0), Rx {c} (0), Ry {c} (0), Rz {c} (0)]T (13)

and can be expressed by the classical 1D Hilbert transform kernel h1(τ) = 1
πτ

[10], the 3D Radon transform and its inverse analogous to the monogenic
signal in 2D [20] Rx {c} (0)

Ry {c} (0)
Rz {c} (0)

 =

R−1


 sin ϕ cos θ

sin ϕ sin θ
cos ϕ

 h1(t) ∗ R{c} (t, θ, ϕ)

 (0, 0, 0)

 (14)

with ∗ as the 1D convolution operator. Compared to the 2D monogenic signal
the conformal monogenic signal performs a 3D generalized Hilbert transfor-
mation in conformal space.

2.4 Interpretation

Analogous to the interpretation of the monogenic signal in [20], the parame-
ters of the plane within the 3D Radon space determine the local features of
the curved i2D signal (see figure 2). The conformal monogenic signal can be
called the generalized monogenic signal for i1D and i2D signals, because the
special case of lines and edges can be considered as circles with zero curvature.
These lines are mapped to circles passing through the north pole in conformal
space. The parameter θ will be interpreted as the orientation in i1D case and
naturally deploys to direction θ ∈ [0, 2π) for the i2D case

θ = atan2 (Ry {c} (0), Rx {c} (0)) . (15)

The energy of the signal is defined by

E = a2 = c2(0) + R2
x {c} (0) + R2

y {c} (0) + R2
z {c} (0) . (16)

The i1D and i2D curvature phase is defined by

φ = atan2
(√

R2
x {c} (0) + R2

y {c} (0) + R2
z {c} (0), c(0)

)
. (17)

Note that all proofs are analogous to those for the 2D monogenic signal shown
in [20].
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2.5 Local Curvature

The parameter ϕ of the 3D Radon space corresponds to the isophote curvature
κ [14] known from differential geometry

ϕ = arctan

√
R2

x {c} (0) + R2
y {c} (0)

Rz {c} (0)
(18)

κ =
−fxxf2

y + 2fxfyfxy − fyyf2
x(

f2
x + f2

y

) 3
2

(19)

4
m

g
r

Fig. 4. Top row: Visualization of the circle described by γ projected to S2(mS , ρS).
This figure illustrates geometrically the relation of the curvature κ to the orientation
parameter ϕ of the hyperplane in 3D Radon space 1

κ
= ρ = tan ϕm.

Proof:
Let be

γ(t) = [ρ(cos θ + cos t), ρ(sin θ + sin t)]T (20)

with t ∈ [0, 2π) a parametrization of a circle in the 2D plane touching the
origin (0, 0) with radius ρ and tangential orientation θ. This circle will be the
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model for the osculating circle touching the isophote curve of the 2D signal f
at the origin (0, 0) of the local coordinate system for each test point. Therefore,

f(γ(t1)) = f(γ(t2)) ∀t1, t2 ∈ [0, 2π) . (21)

Define γS(t) = C(γ(t)) as the projection of γ to the sphere

S2(mS , ρS) =
{
v ∈ R3 : ‖v −mS‖ = ρS

}
(22)

with the center mS =
[
0, 0, 1

2

]T and the radius ρS = 1
2 . Furthermore define

fS(γS(t)) = f(C−1(γS(t))) . (23)

The conjugate Poisson kernel in Rn+1
+ reads

Q(x) = [Qx(x),Qy(x),Qz(x)]T = (h3 ∗ P)(x) (24)

with
R{fS}(x) = (Q ∗ fS)(x) . (25)

The radius ρ of the osculating circle described by the parameterized curve γ
reads

ρ =
2Rz{fS}(0)√

R2
x{fS}(0) + R2

y{fS}(0)
. (26)

Since the values of fS(x) will only be nonzero for x ∈ S2(mS , ρS), the inte-
gration can be restricted to the ball

B2(mS , ρS) =
{
v ∈ R3 : ‖v −mS‖ 6 ρS

}
. (27)

Furthermore fS(x) is only nonzero for the circle projected on the sphere

M = {γS(t) : t ∈ [0, 2π)} . (28)

Now let S2(m, ρ) be the sphere whose intersection with S2(mS , ρS) results
in M . Then the set M is a circle on the surface of both S2(mS , ρS) and
S2(m, ρ). The integration over the volumes of B2(m, ρ) and B2(mS , ρS) will
be the same.∫

x∈R3
+

Q(x)fS(x) dx =

∫
x∈B2(mS ,ρS)

Q(x)fS(x) dx =

∫
x∈B2(m,ρ)

Q(x)fS(x) dx (29)

According to the results from harmonic analysis [1] the convolution of a func-
tion in Rn with the Poisson kernel P in upper the half space Rn+1

+ results in
a harmonic function in Rn+1

+ . Therefore, Q is harmonic in R3+1
+ . Using the

mean value theorem for harmonic functions it follows that∫
x∈B2(m,ρ)

Q(x) dx = k Q(m) (30)



The Conformal Monogenic Signal of Image Sequences 11

with the components of Q written in spherical coordinates

Q(m) =

Qx(m)
Qy(m)
Qz(m)

 =
1

[‖m‖2 + s2
s]

2

 sinϕm cos θm

sinϕm sin θm

cos ϕm

 (31)

with ss as the scale space parameter. Since fS is the signal model for the
isophote curve of a signal in the plane, it is a curve consisting of constant
values. Therefore, fS(x) will be constant for all x ∈ M which results in∫

x∈B2(m,ρ)

Q(x)fS(x) dx = fc

∫
x∈B2(m,ρ)

Q(x) dx = fc k Q(m) . (32)

With equation (26) it is now possible to determine sin ϕm

cos ϕm
. Figure 4 illustrates

that this is exactly ρ
2 ρS

. Since ρS = 1
2 it follows that the radius of the local

curvature can be determined by

ρ =
sinϕm

2 cos ϕm
=

√
Q2

x(m) +Q2
y(m)

2Qz(m)
. (33)

2.6 Phase Congruency of the Conformal Monogenic Signal

Since the local phase of the conformal monogenic signal is independent of the
local signal amplitude ass

, it thus has the advantage of being not sensitive to
local illumination changes. Hence, detecting i1D and i2D key points can be
done by searching for points of stationary phase [12, 11, 16, 21] in monogenic
scale-space. This approach is called phase congruency φPC and is based on
comparisons of the local phase at certain distinct scales ss > 0

φPC =

∑
ss∈I

W
⌊
ass(cos(φss − φ)− ‖ sin(φss − φ)‖ − T )

⌋
ε +

∑
ss∈I

ass

(34)

with ss as the scale-space parameter within the interval I ⊂ [sf , · · · , sc] with
‖I‖ ∈ N, W ∈ R as a weighting factor for frequency spread. a2

ss
= ess

= e = a2

is the local signal amplitude of the conformal monogenic signal at the scale-
space parameter ss and φss

is the local phase of the conformal monogenic
signal at the scale-space parameter ss. φ = 1

‖I‖
∑

ss∈I φss
is the mean local

phase for all scale-space parameters ss ∈ I and ε is a constant because of
numerical reasons to avoid division by zero,

bxc =
{

x, x > 0
0, else (35)

The estimated noise influence value T is a constant to ensure that only energy
values that exceed T are taken into account. The phase congruency measure
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can be directly applied to detect rotationally invariant i1D and i2D image
structures. Any test point with a phase congruency greater than a certain
threshold can be marked as a i1D or i2D point respectively.
The so far discussed phase congruency approach is based on comparisons of
local phase at certain distinct scales. Nevertheless, there exist some drawbacks.
Since local features are relatively to the scale, an algorithm using distinct
scales has to contain heuristics to judge whether the structure is present or
not if the phase is only congruent in some of the considered scales. Besides,
it is not straightforward, how to map at different scales estimated phases to
a certainty measure. Hence, the differential phase congruency [7] detects i1D
and i2D structures in a more simple and efficient way. The points in monogenic
scale-space, where the differentials of their phase vector Φ(ss) are zero, are
called points of differential phase congruency. They have to be identified as
i1D or i2D structures. The scale derivative of the phase vector reads

∂

∂ss
Φ(ss) =

c(0; ss)

 ∂
∂ss

Rx{c}(0; ss)
∂

∂ss
Ry{c}(0; ss)

∂
∂ss

Rz{c}(0; ss)

− ∂
∂ss

c(0; ss)

 Rx{c}(0; ss)
Ry{c}(0; ss)
Rz{c}(0; ss)


c(0, ss)2 + ‖R{c}(0; ss)‖2 (36)

Test points where ∂
∂ss

Φ(ss) = 0 are of differential phase congruency and hence
considered as i1D or i2D structures. To find these points, the zeros of the three
components of the numerator in equation (36) have to be found. These zeros
can be easily obtained with subpixel accuracy by a linear regression. The
differential phase congruency is quite useful since it yields a higher accuracy
and a significant speedup of the derivative computation compared to a finite
difference approximation.

2.7 Experimental Results

On synthetic signals with known ground truth the average error of the fea-
ture extraction converges to zero with increasing refinement of the convolu-
tion mask size. Under the presence of noise the conformal monogenic signal
curvature performs more robust than e.g. the gradient based Sobel detector
(see figure 5). The curvature feature delivered by the novel conformal mono-
genic signal performs better in dense optical flow applications with an average
angular error (AAE) of 1.99◦ compared to [22] (with AAE = 2.67◦) on the
cloudy Yosemite sequence (see figure 5). Since the conformal monogenic signal
combines all intrinsic dimensions in one framework it could be an interesting
alternative for the gradient or the Laplace operator.

3 The 3D Conformal Monogenic Signal

In case of visual motion analysis a three dimensional isotropic quadrature
filter is needed [13, 8]. The conformal monogenic signal of a 3D signal f ∈
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Fig. 5. Top row from left to right: Original Yosemite image, Sobel detector out-
put and conformal monogenic signal curvature which delivers much more structural
information (see cloudy sky). Bottom row from left to right: Noise degraded im-
age (SNR=10dB), blurred Sobel output and conformal monogenic signal curvature.
Convolution mask size: 7× 7 pixels.

L2(Ω; R) with Ω ⊂ R3 delivers energy, 3D orientation, phase and curvature.
For image sequences (3D signals) the concept of planes in 3D Radon space
becomes the more abstract concept of hyperplanes in 4D Radon space. These
4D hyperplanes determine 3D spheres on the 4D hypersphere in 4D conformal
space. Since 3D planes and 3D spheres of the three-dimensional signal domain
are mapped to 3D spheres on the 4D hypersphere, the integration on these 3D
spheres determines points in the 4D Radon space. The general stereographic
projection for any dimension n ∈ N which maps the Euclidian space Rn to
the conformal space Rn+1 reads

C(x1, x2, · · · , xn) =
1

1 +
∑n

i=1 x2
i


x1

x2

· · ·
xn∑n
i=1 x2

i

 ∈ Rn+1 . (37)

The stereographic projection maps the Euclidian space Rn to the hypersphere
in Rn+1 with radius 1

2 and the south pole of the hypersphere touching the
origin (0, · · · , 0︸ ︷︷ ︸

n

) ∈ Rn of the Euclidian space Rn and the north pole of the

hypersphere with coordinates (0, 0, · · · , 0︸ ︷︷ ︸
n

, 1) ∈ Rn+1. For the signal dimension

n = 3 the stereographic projection C known from complex analysis [9] maps
the 3D signal domain to the hypersphere
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C(x, y, z) =
1

1 + x2 + y2 + z2


x
y
z

x2 + y2 + z2

 . (38)

This projection is conformal and can be inverted by the general formula

C−1(ξ1, ξ2, · · · , ξn, ξn+1) =
1

1− ξn+1


ξ1

ξ2

· · ·
ξn

 . (39)

The inversion C−1 for all elements of the hypersphere reads

C−1(ξ1, ξ2, ξ3, ξ4) =
1

1− ξ4

 ξ1

ξ2

ξ3

 (40)

with ξ = (ξ1, ξ2, ξ3, ξ4). This mapping has the property that the origin (0, 0, 0)
of the 3D signal domain will be mapped to the south pole 0 = (0, 0, 0, 0) of the
hypersphere and both −∞,+∞ will be mapped to the north pole (0, 0, 0, 1)
of the hypersphere. 3D planes and spheres of the 3D signal domain will be
mapped to spheres on the hypersphere and can be determined uniquely by
hyperplanes in 4D Radon space. The integration on these hyperplanes corre-
sponds to points (t, θ1, θ2, ϕ) in the 4D Radon space.
Since the signal domain Ω ⊂ R3 is bounded, not the whole hypersphere is cov-
ered by the original signal. Anyway, all hyperplanes corresponding to spheres
on the hypersphere remain unchanged. That is the reason why the conformal
monogenic signal models 3D planes and all kinds of curved 3D planes which
can be locally approximated by spheres. To give the Riesz transform more
degrees of freedom, the original three-dimensional signal will be embedded
in an applicable subspace of the conformal space by the so called conformal
signal c ∈ R(R4) of the original 3D signal f :

c(ξ) =
{

f(C−1(ξ1, ξ2, ξ3, ξ4)T ) , ξ2
1 + ξ2

2 + ξ2
3 +

(
ξ4 − 1

2

)2 = 1
4

0 , else
(41)

Thus, the 4D Riesz transform R{·} can be applied to all points on the hyper-
sphere. The center of convolution in spatial domain is the south pole (0, 0, 0, 0)
where the origin of the 3D signal domain meets the hypersphere. At this point
the 4D Riesz transform R{·}(0) will be evaluated in spatial domain by con-
volution

R{c}(ξ)|ξ=(0,0,0,0) =
2

A5
P.V.

∫
x∈R4

x

‖x‖5 c(x− ξ) dx (42)

with P.V. as the Cauchy principal value and A5 as the surface area of the unit
sphere S4. The conformal monogenic signal fCM for 3D signals is defined by
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the even part and the four odd parts of the 4D Riesz transform in conformal
space

fCM(0, 0, 0) =


ce(0)

co1(0)
co2(0)
co3(0)
co4(0)

 =


c(0)

R1 {c} (0)
R2 {c} (0)
R3 {c} (0)
R4 {c} (0)

 =
[

c(0)
R {c} (0)

]
. (43)

Note that the coordinates (0, 0, 0) are relative to the local coordinate system
for each test point of the original 3D signal and 0 = (0, 0, 0, 0) are the corre-
sponding relative coordinates in conformal space, i.e. this is no restriction.
The Riesz transform of the 3D signal embedded in the conformal space can
also be written in terms of the 4D Radon transform and its inverse

R {c} (0) = R−1




cos ϕ sin θ1 sin θ2

sin ϕ sin θ1 sin θ2

cos θ1 sin θ2

cos θ2

 h1(t) ∗ R{c} (t, θ1, θ2, ϕ)

 (0) . (44)

This representation of the Riesz transform is essential for the subsequent
interpretation of the conformal monogenic signal. Remember that without
loss of generality the signal will be analyzed at the origin 0 = (0, 0, 0) of the
local coordinate system of the test point of local interest. Compared to the
2D monogenic signal the conformal monogenic signal of 3D signals is based
on a 4D Riesz transformation in conformal space.
Analogous to the interpretation of the monogenic signal in [20], the parameters
of the hyperplane within the 4D Radon space determine the local features of
the curved 3D signal. The norm of the 4D Riesz transform of the conformal
signal is defined by

‖R {c} (0)‖ =
√

R2
1 {c} (0) + R2

2 {c} (0) + R2
3 {c} (0) + R2

4 {c} (0) . (45)

The conformal monogenic signal can be called the generalized monogenic
signal for 3D signals, because the special case of planes in the original 3D
signal can be considered as spheres with zero curvature. These planes are
mapped to spheres passing through the north pole in conformal space. The
3D curvature corresponds to the parameter ϕ of the 4D Radon space,

ϕ = arctan
R2

2 {c} (0)
R2

1 {c} (0)
. (46)

Besides, the curvature of the conformal monogenic signal naturally indicates
the intrinsic dimension of the signal. The parameters (θ1, θ2) will be inter-
preted as the orientation of the signal in the original 3D space

θ1 = arcsin

√
R2

1 {c} (0) + R2
2 {c} (0)

R4 {c} (0)
(47)
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and

θ2 = atan2
(√

R2
1 {c} (0) + R2

2 {c} (0) + R2
3 {c} (0), R4 {c} (0)

)
. (48)

The energy of the signal is defined by

e = c2(0) + ‖R {c} (0)‖2
. (49)

The phase for curved 3D signals is defined by

φ = atan2 (‖R {c} (0)‖ , c(0)) . (50)

In all different intrinsic dimensions the phase indicates a measure of parity
symmetry. Note that all proofs are analogous to those for the 2D monogenic
signal shown in [20].

3.1 Implementation

The implementation of the conformal monogenic signal of 3D signals such as
images sequences is analogous to the 2D signal case. The computational time
complexity is in O(n3) with n as the convolution mask size in one dimension.

//Input: double Image3D(double x,double y,double z)

//Input: double x,y,z (Local pixel test point for analysis)

//Input: double Coarse > Fine > 0 (Bandpass filter parameters)

//Input: double Size > 0 (Convolution mask size)

//Output: Direction1, Direction2, Phase, Curvature, Energy

double Coarse=2,Fine=0.1; int Size=5;//e.g.

double rp=0,r1=0,r2=0,r3=0,r4=0;

for(double cx = -Size;cx <= Size;cx += 1)

for(double cy = -Size;cy <= Size;cy += 1)

for(double cz = -Size;cz <= Size;cz += 1)

{

//Map points (cx,cy,cz) to conformal space (x1,x2,x3,x4)

double d = pow(cx,2)+pow(cy,2)+pow(cz,2)+1;

double x1 = cx / d;

double x2 = cy / d;

double x3 = cz / d;

double x4 = (d-1) / d;

//Generalized Hilbert transform in conformal space

double a = pow(x1,2)+pow(x2,2)+pow(x3,2)+pow(x4,2);

double pf = pow(pow(Fine ,2) + a,-2.5);

double pc = pow(pow(Coarse,2) + a,-2.5);

double f = Image3D(x + cx,y + cy,z + cz);

double c = f * (pf - pc);

rp += f * (Fine*pf - Coarse*pc);

r1 += x1 * c; r2 += x2 * c; r3 += x3 * c; r4 += x4 * c;
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}

Curvature = atan(r2/r1);

Direction1 = asin(sqrt(pow(r1,2)+pow(r2,2))/r4);

Direction2 = atan2(sqrt(pow(r1,2)+pow(r2,2)+pow(r3,2)),r4);

Phase = atan2(sqrt(pow(r1,2)+pow(r2,2)+pow(r3,2)+pow(r4,2)),rp);

//For energy a DC free convolution kernel must be used instead

Energy = pow(rp,2)+pow(r1,2)+pow(r2,2)+pow(r3,2)+pow(r4,2);

Fig. 6. The 3D conformal monogenic signal delivers four local features which can
be used for image sequence analysis such as optical flow and motion analysis. First
row shows from left to right: Curvature and phase information. Second row: Two
parts of the orientation information. 3D convolution mask size 5× 5× 5 pixels.

4 Conclusion

In this book chapter a new fundamental idea for locally analyzing 2D curved
signals such as lines, edges, corners, arcs and circles in one unified framework
has been presented. It has been shown that the feature space of the nth-order
2D Riesz transform is much too flat for analyzing 2D signals and extracting
real i2D phase information. Generalized Hilbert transforms in Euclidean space
lack from the restriction to the classical 1D phase information for all 2D sig-
nals. In such a case arbitrary 2D signals can be modeled by a superposition
of individual i1D signals. The resulting system of equations to separate these
i1D signals can not be solved in the most general case. The two-dimensional
Riesz transforms of any order are always limited to the related 2D Radon
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space which gives direct access to the feature space. To extend the dimension
of the related feature space to analyze i1D and i2D signals in one framework,
this problem can be solved by embedding 2D signals in higher dimensional
conformal spaces in which the original 2D signal can be analyzed by general-
ized Hilbert transforms with more degrees of freedom. Without steering and
in a rotationally invariant way, local signal features such as energy, phase,
orientation/direction and curvature can be determined in spatial domain by
2D convolution. The conformal monogenic signal can be computed efficiently
and can be easily implemented into existing low level image processing steps
of Computer Vision applications. Furthermore, exact curvature can be cal-
culated with all the advantages of rotationally invariant local phase based
approaches (robustness against brightness and contrast changes) and with-
out the need of any partial derivatives. Hence, lots of numerical problems of
partial derivatives on discrete grids can be avoided. All results can be proved
mathematically as well as by experiments. More applications of the conformal
monogenic signal such as object tracking [14] on three-dimensional data will
be part of our future work. The conformal monogenic signal shows the direct
relation of the original image domain and geometric entities such as lines,
circles, planes and spheres. For further results the reader is advised to have a
look on our website http://www.ks.informatik.uni-kiel.de/.
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