PAKCS 1.14.0
The Portland Aachen Kiel Curry System

User Manual

Version of 2016-04-19

Michael Hanus! [editor]
Additional Contributors:

Sergio Antoy?
Bernd Brafiel?
Martin Engelke?
Klaus Hoppner®
Johannes Koj®
Philipp Niederau’
Bjorn Peemoller®

Ramin Sadre?

Frank Steiner!?

(1) University of Kiel, Germany, mh@informatik.uni-kiel.de
(2) Portland State University, USA, antoy@cs.pdx.edu
(3) University of Kiel, Germany, bbr@informatik.uni-kiel.de
(4) University of Kiel, Germany, men@informatik.uni-kiel.de
(5) University of Kiel, Germany, k1h@informatik.uni-kiel.de
(6) RWTH Aachen, Germany, johannes.koj@sdm.de
(7) RWTH Aachen, Germany, philipp@navigium.de
(8) University of Kiel, Germany, bjp@informatik.uni-kiel.de
(9) RWTH Aachen, Germany, ramin@lvs.informatik.rwth-aachen.de
(10) LMU Munich, Germany, fst@bio.informatik.uni-muenchen.de

Contents
Preface

1 Overview of PAKCS

1.1 General Use
1.2 Restrictions
1.3 Modules in PAKCS s

2 PAKCS: An Interactive Curry Development System

2.1 Invoking PAKCS
2.2 Commands of PAKCS e
2.3 Options of PAKCS e
2.4 Using PAKCS in Batch Mode
2.5 Command Line Editing
2.6 Customization L e e
2.7 Emacs Interface L e

3 Extensions

3.1 Recursive Variable Bindings
3.2 Functional Patternso o
3.3 Order of Pattern Matching

4 Recognized Syntax of Curry

4.1 Notational Conventions e
4.2 LexiCono e e e
4.2.1 Case Mode e
4.2.2 Identifiers and Keywords
423 Comments. e e e
4.2.4 Numeric and Character Literals
4.3 Layout e
4.4 Context Free Grammar e e

5 Optimization of Curry Programs
6 CurryDoc: A Documentation Generator for Curry Programs
7 CurryBrowser: A Tool for Analyzing and Browsing Curry Programs

8 CurryCheck: A Tool for Testing Curry Programs

8.1 Testing Properties e
8.2 Generating Test Data e
8.3 Checking Contracts and Specifications oL
8.4 Checking Usage of Specific Operations

9 CurryTest: A Tool for Testing Curry Programs

12
15
16
16
16

17
17
17
19

20
20
20
20
20
21
21
22
23

27

28

31

33
33
36
39
40

42

10 CurryPP: A Preprocessor for Curry Programs

10.1 Integrated Code o o e
10.1.1 Regular Expressions
10.1.2 Format Specifications
10.1.3 HTML Code e
10.1.4 XML Expressionso e

10.2 Sequential Rules o e

10.3 Default Rules o e

11 runcurry: Running Curry Programs

12 ERD2Curry: A Tool to Generate Programs from ER Specifications
13 Spicey: An ER-based Web Framework

14 UI: Declarative Programming of User Interfaces

15 Preprocessing FlatCurry Files

16 Technical Problems

Bibliography

A Libraries of the PAKCS Distribution

A.1 Constraints, Ports, Meta-Programming
A.1.1 Arithmetic Constraints
A.1.2 Finite Domain Constraints
A.1.3 Ports: Distributed Programming in Curry
A.1.4 AbstractCurry and FlatCurry: Meta-Programming in Curry

A.2 General Libraries
A.2.1 Library AllSolutions
A.2.2 Library Assertion
A2.3 Library Char e
A.2.4 Library CHR 0. o
A.2.,5 Library CHRcompiled
A.2.6 Library CLP.ED e
A.2.7 Library CLPFD
A.2.8 Library CLPR e
A.2.9 Library CLPB
A.2.10 Library Combinatorial
A.2.11 Library CPNS e
A.2.12 Library CSV L o
A.2.13 Library Database
A.2.14 Library Debug
A.2.15 Library Directory
A.2.16 Library Distribution

44
44
45
45
46
47
47
48

49

51

52

53

54

56

57

A3

A.2.17 Library Dynamic 99

A.2.18 Library Either 101
A.2.19 Library ErrorState L 102
A.2.20 Library FileGoodies e 103
A.2.21 Library FilePath 104
A.2.22 Library Findall 108
A.2.23 Library Float 110
A.2.24 Library Function e 112
A.2.25 Library Functionlnversion 113
A.2.26 Library GetOpt o 113
A.2.27 Library Global 115
A.2.28 Library GlobalVariable 116
A.2.29 Library GUIL 00 0o 116
A.2.30 Library Integer L 129
A.2.31 Library IO . . . o 0 oo 131
A.2.32 Library IOExts 133
A.2.33 Library JavaScript 135
A.2.34 Library KeyDatabase 138
A.2.35 Library KeyDatabaseSQLite 139
A.2.36 Library KeyDB o 144
A2.37 Library List o o o 145
A.2.38 Library Maybe 149
A.2.39 Library NamedSocket 150
A.2.40 Library Parser 152
A.2.41 Library Ports 153
A.2.42 Library Pretty 155
A.2.43 Library Profile 168
A.2.44 Library Prolog e 170
A.2.45 Library PropertyFile 171
A.2.46 Library Read 172
A.2.47 Library ReadNumeric 172
A.2.48 Library ReadShowTerm 173
A.2.49 Library SetFunctions L 175
A.2.50 Library Socket 178
A.2.51 Library System 179
A.2.52 Library Time e 180
A.2.53 Library Unsafe 183
A.2.54 Library Test.EasyCheck, 185
Data Structures and Algorithms 191
A3.1 Library Array L 191
A.3.2 Library Dequeue 192
A.3.3 Library FiniteMap L 194
A.3.4 Library Graphlnductive L 197
A.3.5 Library Random 203

A4

A5

A.3.6 Library RedBlackTree 204

A3.7T Library SCC e e 205
A.3.8 Library SearchTree 206
A.3.9 Library SearchTreeTraversal 208
A.3.10 Library SetRBT 209
A3.11 Library Sort L 210
A.3.12 Library TableRBT 211
A.3.13 Library Traversal 212
A.3.14 Library ValueSequence 214
A.3.15 Library Rewriting. Term 214
A.3.16 Library Rewriting.Substitution 215
A.3.17 Library Rewriting.Unification 216
A.3.18 Library Rewriting.UnificationSpec 216
Libraries for Web Applications 217
A.4.1 Library Bootstrap3Style 217
A.4.2 Library CategorizedHtmlList 218
A4.3 Library HTML o e 218
A4.4 Library HtmlCgi 231
A.4.5 Library HtmlParser 233
A.4.6 Library Mail 233
A.4.7 Library Markdown 234
A48 Library URL o 237
A4.9 Library WUL00 e 237
A.4.10 Library WUIjs o 0 0o 244
A4.11 Library XML 00 252
A4.12 Library XmlConv 254
Libraries for Meta-Programming oo 261
A.5.1 Library AbstractCurry. Types 261
A.5.2 Library AbstractCurry.Files 267
A.5.3 Library AbstractCurry.Select 268
A.5.4 Library AbstractCurry.Build o 271
A.5.5 Library AbstractCurry.Pretty o 275
A.5.6 Library FlatCurry. Types o 278
A5.7 Library FlatCurry.Files 285
A.5.8 Library FlatCurry.Goodies 286
A.5.9 Library FlatCurry.Pretty 298
A.5.10 Library FlatCurry.Read 302
A.5.11 Library FlatCurry.Show 303
A.5.12 Library FlatCurry. XML 303
A.5.13 Library FlatCurry.FlexRigid 304
A.5.14 Library FlatCurry.Compact 304
A.5.15 Library FlatCurry.Annotated. Types 306
A.5.16 Library FlatCurry.Annotated.Pretty 308
A.5.17 Library FlatCurry.Annotated.Goodies 311

A.5.18 Library FlatCurry.Annotated. TypeSubst
A.5.19 Library FlatCurry.Annotated.Typelnference
A.5.20 Library CurryStringClassifier o

B Markdown Syntax
B.1 Paragraphs and Basic Formatting oo,
B.2 Lists and Block Formatting oo
B.3 Headers e

C Overview of the PAKCS Distribution
D Auxiliary Files
E External Functions

Index

329
329
330
332

333

335

336

340

Preface

This document describes PAKCS (formerly called “PACS”), an implementation of the multi-
paradigm language Curry, jointly developed at the University of Kiel, the Technical University
of Aachen and Portland State University. Curry is a universal programming language aiming at
the amalgamation of the most important declarative programming paradigms, namely functional
programming and logic programming. Curry combines in a seamless way features from functional
programming (nested expressions, lazy evaluation, higher-order functions), logic programming (log-
ical variables, partial data structures, built-in search), and concurrent programming (concurrent
evaluation of constraints with synchronization on logical variables). Moreover, the PAKCS im-
plementation of Curry also supports constraint programming over various constraint domains, the
high-level implementation of distributed applications, graphical user interfaces, and web services
(as described in more detail in [18, 19, 20]). Since PAKCS compiles Curry programs into Prolog
programs, the availability of some of these features might depend on the underlying Prolog system.

We assume familiarity with the ideas and features of Curry as described in the Curry language
definition [26]. Therefore, this document only explains the use of the different components of
PAKCS and the differences and restrictions of PAKCS (see Section 1.2) compared with the language
Curry (Version 0.9.0).

Acknowledgements

This work has been supported in part by the DAAD/NSF grant INT-9981317, the NSF grants
CCR~0110496 and CCR-0218224, the Accién Integrada hispano-alemana HA1997-0073, and the
DFG grants Ha 2457/1-2, Ha 2457/5-1, and Ha 2457/5-2.

Many thanks to the users of PAKCS for bug reports, bug fixes, and improvements, in particular,
to Marco Comini, Sebastian Fischer, Massimo Forni, Carsten Heine, Stefan Junge, Frank Huch,
Parissa Sadeghi.

1 Overview of PAKCS

1.1 General Use

This version of PAKCS has been tested on Sun Solaris, Linux, and Mac OS X systems. In principle,
it should be also executable on other platforms on which a Prolog system like SICStus-Prolog
or SWI-Prolog exists (see the file INSTALL.html in the PAKCS directory for a description of the
necessary software to install PAKCS).

All executable files required to use the different components of PAKCS are stored in
the directory pakcshome/bin (where pakcshome is the installation directory of the complete
PAKCS installation). You should add this directory to your path (e.g., by the bash command
“export PATH=pakcshome /bin:$PATH”).

The source code of the Curry program must be stored in a file with the suffix

“.curry”’, e.g.,

prog.curry. Literate programs must be stored in files with the extension “.lcurry”.

Since the translation of Curry programs with PAKCS creates some auxiliary files (see Section D
for details), you need write permission in the directory where you have stored your Curry programs.
The auxiliary files for all Curry programs in the current directory can be deleted by the command

cleancurry

(this is a shell script stored in the bin directory of the PAKCS installation, see above). The

command
cleancurry -r

also deletes the auxiliary files in all subdirectories.

1.2 Restrictions
There are a few minor restrictions on Curry programs when they are processed with PAKCS:

e Singleton pattern variables, i.e., variables that occur only once in a rule, should be denoted
as an anonymous variable “_”, otherwise the parser will print a warning since this is a typical

source of programming errors.

e PAKCS translates all local declarations into global functions with additional arguments
(“lambda lifting”, see Appendix D of the Curry language report). Thus, in the compiled
target code, the definition of functions with local declarations look different from their origi-
nal definition (in order to see the result of this transformation, you can use the CurryBrowser,

see Section 7).

e Tabulator stops instead of blank spaces in source files are interpreted as stops at columns 9,
17, 25, 33, and so on. In general, tabulator stops should be avoided in source programs.

e Since PAKCS compiles Curry programs into Prolog programs, non-deterministic computa-
tions are treated as in Prolog by a backtracking strategy, which is known to be incomplete.
Thus, the order of rules could influence the ability to find solutions for a given goal.

e Threads created by a concurrent conjunction are not executed in a fair manner (usually,
threads corresponding to leftmost constraints are executed with higher priority).

e Encapsulated search: In order to allow the integration of non-deterministic computations in
programs performing I/O at the top-level, PAKCS supports the search operators findall and
findfirst. These and some other operators are available in the library Findall (i.e., they are
not part of the standard prelude). In contrast to the general definition of encapsulated search
[25], the current implementation suspends the evaluation of findall and findfirst until the
argument does not contain unbound global variables. Moreover, the evaluation of findall is
strict, i.e., it computes all solutions before returning the complete list of solutions.

Since it is known that the result of these search operators might depend on the evaluation
strategy due to the combination of sharing and lazy evaluation (see [13] for a detailed dis-
cussion), it is recommended to use set functions [7] as a strategy-independent encapsulation
of non-deterministic computations. Set functions compute the set of all results of a defined
function but do not encapsulate non-determinism occurring in the actual arguments. See the
library SetFunctions (Section A.2.49) for more details.

e There is currently no general connection to external constraint solvers. However, the PAKCS
compiler provides constraint solvers for arithmetic and finite domain constraints (see Ap-
pendix A).

1.3 Modules in PAKCS

PAKCS searches for imported modules in various directories. By default, imported modules are
searched in the directory of the main program and the system module directory “pakcshome/1ib”.
This search path can be extended by setting the environment variable CURRYPATH (which can be also
set in a PAKCS session by the option “:set path”, see below) to a list of directory names separated
by colons (“:”). In addition, a local standard search path can be defined in the “.pakcsrc” file (see
Section 2.6). Thus, modules to be loaded are searched in the following directories (in this order,
i.e., the first occurrence of a module file in this search path is imported):

1. Current working directory (“.”) or directory prefix of the main module (e.g., directory
“/home/joe/curryprogs” if one loads the Curry program “/home/joe/curryprogs/main”).

2. The directories enumerated in the environment variable CURRYPATH.

¢

3. The directories enumerated in the “.pakcsrc” variable “libraries”.

4. The directory “pakcshome/1ib”.

The same strategy also applies to modules with a hierarchical module name with the only difference
that the hierarchy prefix of a module name corresponds to a directory prefix of the module. For
instance, if the main module is stored in directory MAINDIR and imports the module Test.Func, then
the module stored in MAINDIR/Test/Func.curry is imported (without setting any additional import
path) according to the module search strategy described above.

Note that the standard prelude (pakcshome/lib/Prelude.curry) will be always implicitly im-
ported to all modules if a module does not contain an explicit import declaration for the module
Prelude.

2 PAKCS: An Interactive Curry Development System

PAKCS is an interactive system to develop applications written in Curry. It is implemented in
Prolog and compiles Curry programs into Prolog programs. It contains various tools, a source-level
debugger, solvers for arithmetic constraints over real numbers and finite domain constraints, etc.
The compilation process and the execution of compiled programs is fairly efficient if a good Prolog
implementation like SICStus-Prolog is used.

2.1 Invoking PAKCS

To start PAKCS, execute the command “pakcs” (this is a shell script stored in pakcshome/bin
where pakcshome is the installation directory of PAKCS). When the system is ready (i.e., when the
prompt “Prelude>” occurs), the prelude (pakcshome /1ib/Prelude.curry) is already loaded, i.e., all
definitions in the prelude are accessible. Now you can type various commands (see next section)
or an expression to be evaluated.

One can also invoke PAKCS with parameters. These parameters are usual a sequence of com-
mands (see next section) that are executed before the user interaction starts. For instance, the
invocation

pakcs :load Mod :add List
starts PAKCS, loads the main module Mod, and adds the additional module List. The invocation
pakcs :load Mod :eval config

starts PAKCS, loads the main module Mod, and evaluates the operation config before the user
interaction starts. As a final example, the invocation

pakcs :load Mod :save :quit

starts PAKCS, loads the main module Mod, creates an executable, and terminates PAKCS. This
invocation could be useful in “make” files for systems implemented in Curry.
There are also some additional options that can be used when invoking PAKCS:

(if used, this must be the first option): Do not use input line editing (see Sec-

tion 2.5).

(these options must come before any PAKCS command): Overwrite values defined

¢

in the configuration file “.pakcsrc” (see Section 2.6), where name is a property defined in the

configuration file and val its new value.

or : With this option, PAKCS works silently, i.e., the initial banner and the in-

put prompt are not shown. The output of other information is determined by the options

“verbose” and “vn” (see Section 2.3).

2.2 Commands of PAKCS

The most important commands of PAKCS are (it is sufficient to type a unique prefix of a

command if it is unique, e.g., one can type “:r” instead of “:reload”):

Show a list of all available commands.

Compile and load the program stored in prog.curry together with all its imported
modules. If this file does not exist, the system looks for a FlatCurry file prog.fcy and

compiles from this intermediate representation. If the file prog.fcy does not exists, too, the
system looks for a file prog_flat.xml containing a FlatCurry program in XML representation
(compare command “:xml”), translates this into a FlatCurry file prog.£fcy and compiles from
this intermediate representation.

Recompile all currently loaded modules.

’ radd mq . mn‘ Add modules myq,...,m, to the set of currently loaded modules so that their

exported entities are available in the top-level environment.

Evaluate the expression expr to normal form and show the computed results. Since PAKCS
compiles Curry programs into Prolog programs, non-deterministic computations are imple-
mented by backtracking. Therefore, computed results are shown one after the other. In the

3

interactive mode (which can be set in the configuration file “.pakcsrc” or by setting the op-
tion interactive, see below), you will be asked after each computed result whether you want
to see the next alternative result or all alternative results. The default answer value for this

question can be defined in the configuration file “.pakcsrc” file (see Section 2.6).

Free variables in initial expressions must be declared as in Curry programs (if the free
variable mode is not turned on, see option “+free” below). Thus, in order to see the results
of their bindings, they must be introduced by a “where...free” declaration. For instance,
one can write

not b where b free

in order to obtain the following bindings and results:

{b
{b

True} False
False} True

Without these declarations, an error is reported in order to avoid the unintended introduction
of free variables in initial expressions by typos.

Same as expr. This command might be useful when putting commands as arguments

when invoking pakcs.

’:deﬁne x:expr‘ Define the identifier z as an abbreviation for the expression expr which can

be used in subsequent expressions. The identifier x is visible until the next load or reload
command.

Exit the system.

There are also a number of further commands that are often useful:

Show the type of the expression expr.

10

Start the CurryBrowser to analyze the currently loaded module together with all its
imported modules (see Section 7 for more details).

Load the source code of the current main module into a text editor. If the variable

“.pakcsrc” (see Section 2.6), its value is used

editcommand is set in the configuration file
as an editor command, otherwise the environment variable “EDITOR” or a default editor (e.g.,

“vi”) is used.

Load the source text of module m (which must be accessible via the current load path if
no path specification is given) into a text editor which is defined as in the command “:edit”.

Show the interface of the currently loaded module, i.e., show the names of all imported
modules, the fixity declarations of all exported operators, the exported datatypes declarations
and the types of all exported functions.

3

’ :interface prog‘ Similar to “:interface” but shows the interface of the module “prog.curry”. If

this module does not exist, this command looks in the system library directory of PAKCS for
a module with this name, e.g., the command “:interface FlatCurry’ shows the interface of
the system module FlatCurry for meta-programming (see Appendix A.1.4).

Show all calls to imported functions in the currently loaded module. This might

be useful to see which import declarations are really necessary.

Show the list of all currently loaded modules.

Show the list of all Curry programs that are available in the load path.

Set or turn on/off a specific option of the PAKCS environment (see 2.3 for a de-

scription of all options). Options are turned on by the prefix “+” and off by the prefix “-”.
Options that can only be set (e.g., printdepth) must not contain a prefix.

Show a help text on the possible options together with the current values of all options.

Show the source text of the currently loaded Curry program. If the variable showcommand

¢

is set in the configuration file “.pakcsrc” (see Section 2.6), its value is used as a command

to show the source text, otherwise the environment variable PAGER or the standard command
“cat” is used. If the source text is not available (since the program has been directly compiled
from a FlatCurry or XML file), the loaded program is decompiled and the decompiled Curry
program text is shown.

Show the source text of module m which must be accessible via the current load path.

Show the source code of function f (which must be visible in the currently loaded
module) in a separate window.

Show the source code of function f defined in module m in a separate window.
Change the current working directory to dir.

Show the names of all Curry programs in the current working directory.

11

Shell escape: execute cmd in a Unix shell.

Save the currently loaded program as an executable evaluating the main expression “main”.
The executable is stored in the file Mod if Mod is the name of the currently loaded main module.

Similar as “:save” but the expression expr (typically: a call to the main function)
will be evaluated by the executable.

The expression expr, which must be of type “I0 ()”, is evaluated in an independent
process which runs in parallel to the current PAKCS process. All output and error messages

from this new process are suppressed. This command is useful to test distributed Curry
programs (see Appendix A.1.3) where one can start a new server process by this command.
The new process will be terminated when the evaluation of the expression expr is finished.

Start the Curry Object Observation System COOSy, a tool to observe the execution of
Curry programs. This commands starts a graphical user interface to show the observation
results and adds to the load path the directory containing the modules that must be imported
in order to annotate a program with observation points. Details about the use of COOSy can
be found in the COOSy interface (under the “Info” button), and details about the general
idea of observation debugging and the implementation of COOSy can be found in [12].

Translate the currently loaded program module into an XML representation according to the
format described in http://www.informatik.uni-kiel.de/~curry/flat/. Actually, this
yields an implementation-independent representation of the corresponding FlatCurry program
(see Appendix A.1.4 for a description of FlatCurry). If prog is the name of the currently
loaded program, the XML representation will be written into the file “prog_flat.xml”.

Translate the currently loaded program module into an equivalent program where some
subexpressions are partially evaluated so that these subexpressions are (hopefully) more ef-
ficiently executed. An expression e to be partially evaluated must be marked in the source
program by (PEVAL e) (where PEVAL is defined as the identity function in the prelude so that
it has no semantical meaning).

The partial evaluator translates a source program prog.curry into the partially evaluated
program in intermediate representation stored in prog_pe.fcy. The latter program is implicitly
loaded by the peval command so that the partially evaluated program is directly available.
The corresponding source program can be shown by the show command (see above).

The current partial evaluator is an experimental prototype (so it might not work on all
programs) based on the ideas described in [, 2, 3, 4].

2.3 Options of PAKCS

The following options (which can be set by the command “:set”) are currently supported:

Debug mode. In the debug mode, one can trace the evaluation of an expression, setting
spy points (break points) etc. (see the commands for the debug mode described below).

12

http://www.informatik.uni-kiel.de/~curry/flat/

Free variable mode. If the free variable mode is off (default), then free variables occur-
ring in initial expressions entered in the PAKCS environment must always be declared by
“where...free”. This avoids the introduction of free variables in initial expressions by typos
(which might lead to the exploration of infinite search spaces). If the free variable mode is on,
each undefined symbol occurring in an initial expression is considered as a free variable. In
this case, the syntax of accepted initial expressions is more restricted. In particular, lambda
abstractions, lets and list comprehensions are not allowed if the free variable mode is on.

Print failures. If this option is set, failures occurring during evaluation (i.e., non-
reducible demanded subexpressions) are printed. This is useful to see failed reductions due
to partially defined functions or failed unifications. Inside encapsulated search (e.g., inside
evaluations of findall and findfirst), failures are not printed (since they are a typical
programming technique there). Note that this option causes some overhead in execution time
and memory so that it could not be used in larger applications.

If this option is set, all failures (i.e., also failures on backtracking and failures of

enclosing functions that fail due to the failure of an argument evaluation) are printed if
the option printfail is set. Otherwise, only the first failure (i.e., the first non-reducible
subexpression) is printed.

Print constructor failures. If this option is set, failures due to application of functions
with non-exhaustive pattern matching or failures during unification (application of “=:=") are
shown. Inside encapsulated search (e.g., inside evaluations of findall and findfirst), failures
are not printed (since they are a typical programming technique there). In contrast to the
option printfail, this option creates only a small overhead in execution time and memory
use.

| +consfail all| Similarly to “+consfail”, but the complete trace of all active (and just failed)

function calls from the main function to the failed function are shown.

’+consfai1 file:f‘ Similarly to “+consfail all”, but the complete fail trace is stored in the file

f. This option is useful in non-interactive program executions like web scripts.

]+consfail int\ Similarly to “+consfail all”, but after each failure occurrence, an interactive

mode for exploring the fail trace is started (see help information in this interactive mode).
When the interactive mode is finished, the program execution proceeds with a failure.

Reduce the size of target programs by using the parser option “--compact” (see Sec-

tion 15 for details about this option).

’+/—interactive‘ Turn on/off the interactive mode. In the interactive mode, the next non-

deterministic value is computed only when the user requests it. Thus, one has also the
possibility to terminate the enumeration of all values after having seen some values. The

¢

default value for this option can be set in the configuration file “.pakcsrc” (initially, the

interactive mode is turned off).

Turn on/off the first-only mode. In the first-only mode, only the first value of the main
expression is printed (instead of all values).

13

Profile mode. If the profile mode is on, then information about the number of calls,
failures, exits etc. are collected for each function during the debug mode (see above) and

shown after the complete execution (additionaly, the result is stored in the file prog.profile
where prog is the current main program). The profile mode has no effect outside the debug
mode.

Suspend mode (initially, it is off). If the suspend mode is on, all suspended expressions

(if there are any) are shown (in their internal representation) at the end of a computation.

Time mode. If the time mode is on, the cpu time and the elapsed time of the computation
is always printed together with the result of an evaluation.

Verbose mode (initially, it is off). If the verbose mode is on, the initial expression of
a computation is printed before it is evaluated. If the verbose mode is on and the verbosity
level (see below) is non-zero, the type of the initial expression is also printed and the output
of the evaluation is more detailed.

Parser warnings. If the parser warnings are turned on (default), the parser will print
warnings about variables that occur only once in a program rule (see Section 1.2) or locally
declared names that shadow the definition of globally declared names. If the parser warnings
are switched off, these warnings are not printed during the reading of a Curry program.

Set the additional search path for loading modules to path. Note that this search
path is only used for loading modules inside this invocation of PAKCS, i.e., the environment

variable “CURRYPATH” (see also Section 1.3) is set to path in this invocation of PAKCS.

The path is a list of directories separated by “:”. The prefix “~” is replaced by the home
directory as in the following example:

:set path aux:”/tests

Relative directory names are replaced by absolute ones so that the path is independent of
later changes of the current working directory.

Set the depth for printing terms to the value n (initially: 0). In this case subterms

with a depth greater than n are abbreviated by dots when they are printed as a result of a
computation or during debugging. A value of 0 means infinite depth so that the complete
terms are printed.

Set the verbosity level to n. The following values are allowed for n:

n = 0: Do not show any messages (except for errors).
n = 1: Show only messages of the front-end, like loading of modules.

n = 2: Show also messages of the back end, like loading intermediate files or generating Prolog
target files.

n = 3: Show also messages related to loading Prolog files and libraries into the run-time
systems and other intermediate messages and results.

14

Turn on the safe execution mode. In the safe execution mode, the initial goal is not allowed
to be of type I0 and the program should not import the module Unsafe. Furthermore, the
allowed commands are eval, load, quit, and reload. This mode is useful to use PAKCS in
uncontrolled environments, like a computation service in a web page, where PAKCS could be
invoked by

pakcs :set safe

Define additional options passed to the PAKCS front end, i.e., the parser program
pakcshome /bin/cymake. For instance, setting the option

:set parser -F --pgmF=transcurry

has the effect that each Curry module to be compiled is transformed by the preprocessor
command transcurry into a new Curry program which is actually compiled.

args arguments| Define run-time arguments for the evaluation of the main expression. For in-

stance, setting the option

:set args first second

has the effect that the 1/O operation getArgs (see library System (Section A.2.51) returns the
value ["first","second"].

PAKCS can also execute programs in the debug mode. The debug mode is switched on by
setting the debug option with the command “:set +debug’. In order to switch back to normal
evaluation of the program, one has to execute the command “:set -debug’.

In the debug mode, PAKCS offers the following additional options:

Turn on/off single mode for debugging. If the single mode is on, the evaluation of an

expression is stopped after each step and the user is asked how to proceed (see the options
there).

Turn on/off trace mode for debugging. If the trace mode is on, all intermediate expres-
sions occurring during the evaluation of an expressions are shown.

Set a spy point (break point) on the function f. In the single mode, you can “leap” from
spy point to spy point (see the options shown in the single mode).

Turn on/off spy mode for debugging. If the spy mode is on, the single mode is automati-
cally activated when a spy point is reached.

2.4 Using PAKCS in Batch Mode

Although PAKCS is primarily designed as an interactive system, it can also be used to process data
in batch mode. For example, consider a Curry program, say myprocessor, that reads argument
strings from the command line and processes them. Suppose the entry point is a function called
just_doit that takes no arguments. Such a processor can be invoked from the shell as follows:

15

> pakcs :set args stringl string2 :load myprocessor.curry :eval just_doit :quit

The “:quit” directive in necessary to avoid PAKCS going into interactive mode after the excution
of the expression being evaluated. The actual run-time arguments (stringl, string2) are defined
by setting the option args (see above).

Here is an example to use PAKCS in this way:

> pakcs :set args Hello World :add System :eval "getArgs >>= putStrLn . unwords" :quit
Hello World
>

2.5 Command Line Editing

In order to have support for line editing or history functionality in the command line of PAKCS
(as often supported by the readline library), you should have the Unix command rlwrap installed
on your local machine. If rlwrap is installed, it is used by PAKCS if called on a terminal. If it
should not be used (e.g., because it is executed in an editor with readline functionality), one can
call PAKCS with the parameter “--noreadline”.

2.6 Customization

In order to customize the behavior of PAKCS to your own preferences, there is a configuration file
which is read by PAKCS when it is invoked. When you start PAKCS for the first time, a standard

version of this configuration file is copied with the name °

‘.pakcsrc” into your home directory.
The file contains definitions of various settings, e.g., about showing warnings, progress messages
etc. After you have started PAKCS for the first time, look into this file and adapt it to your own

preferences.

2.7 Emacs Interface

Emacs is a powerful programmable editor suitable for program development. It is freely available
for many platforms (see http://www.emacs.org). The distribution of PAKCS contains also a
special Curry mode that supports the development of Curry programs in the Emacs environment.
This mode includes support for syntax highlighting, finding declarations in the current buffer, and
loading Curry programs into PAKCS in an Emacs shell.

The Curry mode has been adapted from a similar mode for Haskell programs. Its installation is
described in the file README in directory “pakcshome/tools/emacs” which also contains the sources
of the Curry mode and a short description about the use of this mode.

16

http://www.emacs.org

3 Extensions

PAKCS supports some extensions in Curry programs that are not (yet) part of the definition of
Curry. These extensions are described below.

3.1 Recursive Variable Bindings

Local variable declarations (introduced by let or where) can be (mutually) recursive in PAKCS.
For instance, the declaration

onesb = let ones = 1 : ones
in take 5 ones

introduces the local variable ones which is bound to a cyclic structure representing an infinite list
of 1’s. Similarly, the definition

onetwo n = take n one2

where
one2 = 1 : twol
twol = 2 : one2

introduces a local variables one2 that represents an infinite list of alternating 1’s and 2’s so that

the expression (onetwo 6) evaluates to [1,2,1,2,1,2].

3.2 Functional Patterns

Functional patterns [6] are a useful extension to code operations in a more readable way. Fur-
thermore, defining operations with functional patterns avoids problems caused by strict equality
(“=:=") and leads to programs that are potentially more efficient.

Consider the definition of an operation to compute the last element of a list xs based on the
prelude operation “++” for list concatenation:

last xs | _++[y] =:= xs =y where y free

W, _»

Since the equality constrain :=" evaluates both sides to a constructor term, all elements of the
list xs are fully evaluated in order to satisfy the constraint.

Functional patterns can help to improve this computational behavior. A functional pattern is
a function call at a pattern position. With functional patterns, we can define the operation last

as follows:
last (_++[y]) =y

This definition is not only more compact but also avoids the complete evaluation of the list elements:
since a functional pattern is considered as an abbreviation for the set of constructor terms obtained
by all evaluations of the functional pattern to normal form (see [0] for an exact definition), the
previous definition is conceptually equivalent to the set of rules

last [yl =y
last [_,y] =y
last [_,_,y] =y

17

which shows that the evaluation of the list elements is not demanded by the functional pattern.

In general, a pattern of the form (f ¢;...t,) (n > 0) is interpreted as a functional pattern if f
is not a visible constructor but a defined function that is visible in the scope of the pattern.

It is also possible to combine functional patterns with as-patterns. Similarly to the meaning of
as-patterns in standard constructor patterns, as-patterns in functional patterns are interpreted as
a sequence of pattern matching where the variable of the as-pattern is matched before the given
pattern is matched. This process can be described by introducing an auxiliary operation for this
two-level pattern matching process. For instance, the definition

f(_ ++ x0[(42,.)] ++) =x
is considered as syntactic sugar for the expanded definition

f (_++x++ _) =1f x
where
£ [(42,.0] = x

However, as-patterns are usually implemented in a more efficient way without introducing auxiliary
operations.

Optimization of programs containing functional patterns. Since functions patterns can
evaluate to non-linear constructor terms, they are dynamically checked for multiple occurrences
of variables which are, if present, replaced by equality constraints so that the constructor term is
always linear (see [0] for details). Since these dynamic checks are costly and not necessary for func-
tional patterns that are guaranteed to evaluate to linear terms, there is an optimizer for functional
patterns that checks for occurrences of functional patterns that evaluate always to linear construc-
tor terms and replace such occurrences with a more efficient implementation. This optimizer can
be enabled by the following possibilities:

e Set the environment variable FCYPP to “--fpopt” before starting PAKCS, e.g., by the shell
command

export FCYPP="--fpopt"

Then the functional pattern optimization is applied if programs are compiled and loaded in
PAKCS.

e Put an option into the source code: If the source code of a program contains a line with a
comment of the form (the comment must start at the beginning of the line)

{-# PAKCS_OPTION_FCYPP --fpopt #-}

then the functional pattern optimization is applied if this program is compiled and loaded in
PAKCS.

The optimizer also report errors in case of wrong uses of functional patterns (i.e., in case of a
function f defined with functional patterns that recursively depend on f).

18

3.3 Order of Pattern Matching

Curry allows multiple occurrences of pattern variables in standard patterns. These are an abbrevi-
ation of equational constraints between pattern variables. Functional patterns might also contain
multiple occurrences of pattern variables. For instance, the operation

f (_++[x]++_++[x]++_) = x

returns all elements with at least two occurrences in a list.

If functional patterns as well as multiple occurrences of pattern variables occur in a pattern
defining an operation, there are various orders to match an expression against such an operation.
In the current implementation, the order is as follows:

1. Standard pattern matching: First, it is checked whether the constructor patterns match.
Thus, functional patterns and multiple occurrences of pattern variables are ignored.

2. Functional pattern matching: In the next phase, functional patterns are matched but occur-
rences of standard pattern variables in the functional patterns are ignored.

3. Non-linear patterns: If standard and functional pattern matching is successful, the equational
constraints which correspond to multiple occurrences pattern variables are solved.

4. Guards: Finally, the guards supplied by the programmer are checked.

The order of pattern matching should not influence the computed result. However, it might have
some influence on the termination behavior of programs, i.e., a program might not terminate
instead of finitely failing. In such cases, it could be necessary to consider the influence of the order
of pattern matching. Note that other orders of pattern matching can be obtained using auxiliary
operations.

19

4 Recognized Syntax of Curry

The PAKCS Curry compiler accepts a slightly extended version of the grammar specified in the
Curry Report [26]. Furthermore, the syntax recognized by PAKCS differs from that specified in the
Curry Report regarding numeric or character literals. We therefore present the complete description
of the syntax below, whereas syntactic extensions are highlighted.

4.1 Notational Conventions

The syntax is given in extended Backus-Naur-Form (eBNF), using the following notation:

NonTerm := « production
NonTerm nonterminal symbol
Term terminal symbol
[a] optional
{a} zero or more repetitions
(a) grouping
a | B alternative
a(gy difference — elements generated by a
without those generated by [

The Curry files are expected to be encoded in UTF8. However, source programs are biased
towards ASCII for compatibility reasons.

4.2 Lexicon
4.2.1 Case Mode
Although the Curry Report specifies four different case modes (Prolog, Godel, Haskell, free), the

PAKCS only supports the free mode which puts no constraints on the case of identifiers.

4.2.2 Identifiers and Keywords

Letter ::= any ASCII letter
Dashes = --{-}
Ident ::= Letter {Letter | Digit | _ | ’}
Symbol = ~ [t |e|#[$|h[~|&][*x[+]|-[=|<[>[?].[/[1|\]:
ModuleID ::= {Ident .} Ident
TypeConstrID ::= Ident
DataConstrID ::= Ident
TypeVarID = Ident | _
InfizOpID = (Symbol {Symbol}) p,spes)
FunctionID := Ident
VariableID ::= Ident
LabellD ::= Ident

20

QTypeConstrID = [ModuleID .| TypeConstrID
QDataConstrID = [ModuleID .| DataConstrID
QInfirtOpID ::= [ModulelD .| InfiztOpID
QFunctionID ::= [ModuleID .| FunctionID
QVariableID ::= [ModuleID .] VariableID
QLabellID ::= [ModuleID .] LabellD

The following identifiers are recognized as keywords and cannot be used as an identifier:

case data do else external fcase foreign
free if import in infix infixl infixr
let module newtype of then type where

Note that the symbols as, hiding and qualified are not keywords. They have only a special
meaning in module headers and can be used as ordinary identifiers.

The following symbols also have a special meaning and cannot be used as an infix operator
identifier:

4.2.3 Comments

9

Comments begin either with “-=-" and terminate at the end of the line or with “{-” and terminate

with a matching “-}”, i.e., the delimiters “{-" and “-}” act as parentheses and can be nested.

4.2.4 Numeric and Character Literals

Contrasting to the Curry Report, PAKCS adopts Haskell’s notation of literals, for both numeric
literals as well as Char and String literals. The precise syntax for both kinds is given below.
Int = Decimal
| Ob Binary | OB Binary

| 0o Octal | 00 Octal
| 0x Hezxadecimal | 0X Hezadecimal

Float ::= Decimal . Decimal [Exponent]
| Decimal Exponent
Ezponent == (e |E) [+ | -] Decimal
Decimal ::= Digit [Decimal
Binary = DBinit [Binary|
Octal = Octit [Octal]
Hezadecimal ::= Hexit [Hexadecimal]
Digit == 0|1|2|3]4|5|6|7|8]9
Binit = 0|1
Octit == 0]1]2]3|4|5]6]|7
Hexit == 0|1]|2|3|4|5|6|7|8|9|A|B|C|D|E|Fla|b|c|d]|e]f
Char ::= ’(Gmphz'c<\> | Space | Escape<\&>)’
String = "{Gmphic< "y | Space | Escape | Gap}"

21

Escape ::= \ (CharEsc | Ascii | Decimal | o Octal | x Hezadecimal)
CharEsc == al|b|f|n|r|t|v|[\|"]’]|&
Ascii ::= =~ Cntrl | NUL | SOH | STX | ETX | EOT | ENQ | ACK
| BEL|BS |HT |LF|VT|FF|CR|SO|SI|DLE
| DC1|DC2|DC3|DC4 | NAK | SYN | ETB | CAN
| EM|SUB|ESC|FS|GS|RS|US|SP|DEL

Cntrl == AsciiLlarge |@ | [|\]1]"|_
Asciilarge == A|...|Z
Gap == \ WhiteChar { WhiteChar} \

4.3 Layout

Similarly to Haskell, a Curry programmer can use layout information to define the structure of
blocks. For this purpose, we define the indentation of a symbol as the column number indicating
the start of this symbol. The indentation of a line is the indentation of its first symbol.!

The layout (or “off-side”) rule applies to lists of syntactic entities after the keywords let, where,
do, or of. In the subsequent context-free syntax, these lists are enclosed with curly brackets ({ })
and the single entities are separated by semicolons (;). Instead of using the curly brackets and
semicolons of the context-free syntax, a Curry programmer must specify these lists by indentation:
the indentation of a list of syntactic entities after let, where, do, or of is the indentation of the
next symbol following the let, where, do, of. Any item of this list start with the same indentation
as the list. Lines with only whitespaces or an indentation greater than the indentation of the list
continue the item in its previous line. Lines with an indentation less than the indentation of the list
terminate the entire list. Moreover, a list started by let is terminated by the keyword in. Thus,
the sentence

fx=hzxvwvhere {gy=y+1; hz=1(gz *21}

which is valid w.r.t. the context-free syntax, is written with the layout rules as

f x =hx
where gy =y + 1
hz=(gz) 2
or also as

f x = h x where

gy=y+1
hz= (g2
* 2

To avoid an indentation of top-level declarations, the keyword module and the end-of-file token are
assumed to start in column 0.

'In order to determine the exact column number, we assume a fixed-width font with tab stops at each 8th column.

22

4.4 Context Free Grammar

Module

ModuleID

Ezxports
Ezxport

ConsLabelName
Block

ImportDecl

ImportRestr =

Import

BlockDeclaration

TypeSynonymDecl
Simple Type
TypeConstriD

DataDeclaration

ConstrDecl

FieldDeclaration
LabellD

TypeFExpr ::

TypeConsExpr

Simple TypeExpr

module ModuleID [Exports| where Block
Block
see lexicon

(Exporty , ..., Export,) (n>0)
QFunctionName
QTypeConstrID [(ConsLabelName, , ... , ConsLabelName,,)] (n>0)

QTypeConstrID (..)
module ModuleID

LabelID | DataConstr
{ [ImportDecly ; ...

; ImportDecly, ;] (no fizity declarations here)

BlockDeclarationy ; ... ; BlockDeclaration,, } (k,n>0)
import [qualified| ModuleID [as ModulelID] [ImportRestr]
(Importy , ... , Import,) (n>0)
hiding (Importy , ... , Import,) (n>0)
FunctionName
TypeConstrID [(ConsLabelName; , ... , ConsLabelName,,)] (n>0)
TypeConstriD (. .)
TypeSynonymDecl
DataDeclaration
FizityDeclaration
FunctionDeclaration
type SimpleType = TypeExpr
TypeConstrID TypeVarlD; TypeVarID,, (n>0)
see lexicon
data SimpleType (external data type)
data SimpleType = ConstrDecly | ... | ConstrDecl, (n>0)
DataConstr Simple TypeExpr Simple Type Expr, (n>0)
Sitmple TypeExpr ConsOp TypeConsEzpr (infix data constructor)

DataConstr { FieldDeclaration; , ... , FieldDeclaration, } (n>0

)
LabellDy , ... , LabellD,,)

:: TypeExpr (n>0

see lexicon

TypeConsExpr [-> TypeExpr]

QTypeConstrID Simple TypeExpr, Simple Type Expr, (n>0)
Simple Type Expr

TypeVarlD

QTypeConstriD

O (unit type)
(TypeExpry , ..., TypeExpr,) (tuple type, n > 1)
[TypeExpr] (list type)
(TypeExpr) (parenthesized type)

23

TypeVarlD
FizityDeclaration

FizityKeyword
InfixOpID

FunctionDeclaration
Ezxternal

Signature
FunctionNames

FEquat

FunLHS ::

CondFEzprs
Pattern

ConsPattern

SimplePat

FieldPat
QLabellD
LocalDefs

ValueDeclaration

PatternDeclaration

Expr

see lexicon
FizityKeyword Digit InfixOpID; , ... ,

infix1l | infixr | infix
see lexicon

Signature | External | Equat
FunctionNames external
FunctionNames :: TypeFxpr
FunctionNamey , ... , FunctionName,,

FunLHS = Expr [where LocalDefs]
FunLHS CondExprs [where LocalDefs

FunctionName SimplePaty
SimplePat InfirtOpID SimplePat

SimplePat,

| InfixExpr = Ezpr [CondEzprs
ConsPattern [()ConsOp Pattern]

GDataConstr SimplePat;
SimplePat

SimplePat,

Variable

QDataConstr
Literal

- Int

-. Float

O

(Patterny , ...
(Pattern)

[Pattern; , ... , Pattern,]
Variable @ SimplePat

= SimplePat

(SimplePat QFunOp SimplePat)
(QFunctionName SimplePat,
QDataConstr { FieldPat; , ...,

, Pattern,,)

FieldPat, }
QLabellD = Pattern

see lexicon

{ ValueDeclarationy ; ...

; ValueDeclaration,, }

FunctionDeclaration
PatternDeclaration

VariableID, , ... , VariableID,, free
FizityDeclaration

Pattern = Ezpr [where LocalDefs]

InfiztExpr :: TypeExpr

24

InfixOpID,,

SimplePat,,)

(n>0)

(externally defined functions)

(n>0)

(infix constructor pattern)

(constructor pattern)

(wildcard)

(negative pattern

(negative float pattern

(empty tuple pattern
(n>1

(parenthesized pattern

(as-pattern
irrefutable pattern
(irrefi p

(infiz functional pattern
(functional pattern, n >0
(labeled pattern, n >0

)
)
)
)
)
(n>0)
)
)
)
)
)

(n>0)

(n>0)

(expression type signature)

InfirExpr

NoOpExpr ::

FunctExpr =
BasicExpr =

Al

GdAlts

FBind ::
Qual ::

Stmt

Literal ::

GDataConstr ::

FunctionName
QFunctionName

InfizExpr

NoOpEzxpr QOp InfixExpr
- InfixExpr

-. InfizFxpr

NoOpExpr

\ SimplePaty SimplePat, -> Expr
let LocalDefs in Expr

if Fxpr then Fxpr else Expr

case Expr of {Alt; ; ... ; Alt, }
fcase Fapr of {Alty ; ... ; Alt, }

do { Stmty ; ... ; Stmt, ; Expr }
FunctExpr

[FunctExpr] BasicExpr

QVariableID

QFunctionName
GDataConstr

Literal

(Expr)

(Expry , ..., Expr,)

[Bxpry , ..., Fxpr,]

[Expr [, Expr] .. [Expr]]

[Expr | Qualy , ..., Qual,]

(InfixExpr QOp)

(QOp(- -y InfizrEzpr)
QDataConstr { FBindy , ..
BasicExpropaiaconstry 1 FBindy , ..

Pattern -> Expr [where LocalDefs|
Pattern GdAlts [where LocalDefs]

| InfizExpr -> Expr [GdAlts]
QLabellD = Expr

FExpr
let LocalDefs
Pattern <- Expr

FExpr
let LocalDefs
Pattern <- Expr

Int | Char | String | Float

O
(]

GLP
QDataConstr

FunctionID | (InfizOpID)
QFunctionID | (QInfixOpID)

25

., FBind, }

(infix operator application)
(unary int minus)
(unary float minus)

(lambda expression, n > 0)
(let expression)
(conditional)

(case expression, n > 0)
(fease expression, n > 0)
(do expression, n > 0)

(function application)
(variable)

(anonymous free variable)
(qualified function)
(general constructor)

(parenthesized expression)
(tuple, n > 1)

(finite list, n > 0
(arithmetic sequence

(list comprehension, n > 1

(right section

(labeled construction, n > 0
., FBind, }

)
)
)
(left section)
)
)
)

(labeled update, n >0

(function)
(qualified function)

Variable

DataConstr ::
QDataConstr ::

QFunOp
ConsOp
QOp
QConsOp
GConSym

VariableID | (InfiztOpID)
DataConstrID | (InfiztOpID)
QDataConstrID | (QConsOp)

QInfizOpID | < QFunctionID ¢
InfixOpID | ¢ DataConstrID ¢
QFunOp | QConsOp
GConSym | ¢ QDataConstrID ¢
: | QInfixOpID

26

(variable)
(constructor)
(qualified constructor)

(qualified function operator)
(constructor operator)
(qualified operator)

(qualified constructor operator)

(general constructor symbol)

5 Optimization of Curry Programs

After the invocation of the Curry front end, which parses a Curry program and translates it into
the intermediate FlatCurry representation, PAKCS applies a transformation to optimize Boolean
equalities occurring in the Curry program. The ideas and details of this optimization are described
in [10]. Therefore, we sketch only some basic ideas and options to influence this optimization.
Consider the following definition of the operation last to extract the last element in list:

last xs | xs == _++[x]
= x
where x free

In order to evaluate the condition “xs == _++[x]”, the Boolean equality is evaluated to True or
False by instantiating the free variables _ and x. However, since we know that a condition must
be evaluated to True only and all evaluations to False can be ignored, we can use the constrained
equality to obtain a more efficient program:

last xs | xs =:= _++[x]
= x
where x free

Since the selection of the appropriate equality operator is not obvious and might be tedious, PAKCS

[43

encourages programmers to use only the Boolean equality operator “==" in programs. The con-

[13 7

straint equality operator “=:=" can be considered as an optimization of “==

7

if it is ensured that
only positive results are required, e.g., in conditions of program rules.
To support this programming style, PAKCS has a built-in optimization phase on FlatCurry

9

files. For this purpose, the optimizer analyzes the FlatCurry programs for occurrences of “==" and

” whenever the result False is not required. The usage of the optimizer can

replaces them by “=:=
be influenced by setting the property flag bindingoptimization in the configuration file .pakcsrc.

The following values are recognized for this flag:
no: Do not apply this transformation.

fast: This is the default value. The transformation is based on pre-computed values for the prelude
operations in order to decide whether the value False is not required as a result of a Boolean
equality. Hence, the transformation can be efficiently performed without any complex anal-
ysis.

full: Perform a complete “required values” analysis of the program (see [10]) and use this infor-
mation to optimize programs. In most cases, this does not yield better results so that the
fast mode is sufficient.

Hence, to turn off this optimization, one can either modify the flag bindingoptimization in the
configuration file .pakcsrc or dynamically pass this change to the invocation of PAKCS by

. -Dbindingoptimization=no ...

27

6 CurryDoc: A Documentation Generator for Curry Programs

CurryDoc is a tool in the PAKCS distribution that generates the documentation for a Curry
program (i.e., the main module and all its imported modules) in HTML format. The generated
HTML pages contain information about all data types and functions exported by a module as well
as links between the different entities. Furthermore, some information about the definitional status
of functions (like rigid, flexible, external, complete, or overlapping definitions) are provided and
combined with documentation comments provided by the programmer.

A documentation comment starts at the beginning of a line with “--- 7 (also in literate pro-
grams!). All documentation comments immediately before a definition of a datatype or (top-level)
function are kept together.? The documentation comments for the complete module occur before
the first “module” or “import” line in the module. The comments can also contain several special
tags. These tags must be the first thing on its line (in the documentation comment) and continues
until the next tag is encountered or until the end of the comment. The following tags are recognized:

Qauthor comment
Specifies the author of a module (only reasonable in module comments).

@version comment
Specifies the version of a module (only reasonable in module comments).

Qcons id comment
A comment for the constructor id of a datatype (only reasonable in datatype comments).

@param id comment
A comment for function parameter id (only reasonable in function comments). Due to pattern
matching, this need not be the name of a parameter given in the declaration of the function
but all parameters for this functions must be commented in left-to-right order (if they are
commented at all).

Q@return comment
A comment for the return value of a function (only reasonable in function comments).

The comment of a documented entity can be any string in Markdown’s syntax (the currently sup-
ported set of elements is described in detail in the appendix). For instance, it can contain Markdown
annotations for emphasizing elements (e.g., _verb_), strong elements (e.g., **important**), code
elements (e.g., ‘3+4¢), code blocks (lines prefixed by four blanks), unordered lists (lines prefixed
by ¢ * 7), ordered lists (lines prefixed by blanks followed by a digit and a dot), quotations (lines
prefixed by “> 7), and web links of the form “<http://...>” or “[link text] (http://...)". If the
Markdown syntax should not be used, one could run CurryDoc with the parameter “-~-nomarkdown”.

The comments can also contain markups in HTML format so that special characters like “<”
must be quoted (e.g., “&1t;”). However, header tags like <h1> should not be used since the struc-
turing is generated by CurryDoc. In addition to Markdown or HTML markups, one can also mark
references to names of operations or data types in Curry programs which are translated into links

2The documentation tool recognizes this association from the first identifier in a program line. If one wants to
add a documentation comment to the definition of a function which is an infix operator, the first line of the operator
definition should be a type definition, otherwise the documentation comment is not recognized.

28

http://en.wikipedia.org/wiki/Markdown

inside the generated HTML documentation. Such references have to be enclosed in single quotes.
For instance, the text ’conc’ refers to the Curry operation conc inside the current module whereas
the text Prelude.reverse’ refers to the operation reverse of the module Prelude. If one wants
to write single quotes without this specific meaning, one can escape them with a backslash:

--- This is a comment without a \’reference\’.

To simplify the writing of documentation comments, such escaping is only necessary for single
words, i.e., if the text inside quotes has not the syntax of an identifier, the escaping can be omitted,
as in

—--- This isn’t a reference.

The following example text shows a Curry program with some documentation comments:

--- This is an

--- example module.

—---— Qauthor Michael Hanus
-—- @version 0.1

module Example where

--- The function ‘conc‘ concatenates two lists.

—--— @param xs - the first list

--- @param ys - the second list

--- @return a list containing all elements of ‘xs‘ and ‘ys®
conc [] ys = ys

conc (x:Xxs) ys = X : conc Xs ys

-- this comment will not be included in the documentation

--- The function ‘last‘ computes the last element of a given list.
--— It is based on the operation ’conc’ to concatenate two lists.
--— @param xs - the given input list

--- Q@return last element of the input list

last xs | conc ys [x] =:= xs = x where x,ys free

--— This data type defines _polymorphic_ trees.
—-—— Qcons Leaf - a leaf of the tree

—-— Q@cons Node - an inner node of the tree
data Tree a = Leaf a | Node [Tree al

To generate the documentation, execute the command
currydoc Example

(currydoc is a command usually stored in pakcshome/bin (where pakcshome is the installation
directory of PAKCS; see Section 1.1). This command creates the directory DOC_Example (if it does
not exist) and puts all HTML documentation files for the main program module Example and all
its imported modules in this directory together with a main index file index.html. If one prefers
another directory for the documentation files, one can also execute the command

currydoc docdir Example

29

where docdir is the directory for the documentation files.
In order to generate the common documentation for large collections of Curry modules (e.g., the
libraries contained in the PAKCS distribution), one can call currydoc with the following options:

currydoc --noindexhtml docdir Mod : This command generates the documentation for module Mod
in the directory docdir without the index pages (i.e., main index page and index pages for
all functions and constructors defined in Mod and its imported modules).

currydoc --onlyindexhtml docdir Modl Mod2 ...Modn : This command generates only the index
pages (i.e., a main index page and index pages for all functions and constructors defined in
the modules Mod1, M2,. .. ,Modn and their imported modules) in the directory docdir.

30

7 CurryBrowser: A Tool for Analyzing and Browsing Curry Pro-
grams

CurryBrowser is a tool to browse through the modules and functions of a Curry application, show
them in various formats, and analyze their properties.®> Moreover, it is constructed in a way so
that new analyzers can be easily connected to CurryBrowser. A detailed description of the ideas
behind this tool can be found in [21, 22].

CurryBrowser is part of the PAKCS distribution and can be started in two ways:

e In the command shell via the command: pakcshome /bin/currybrowser mod
e In the PAKCS environment after loading the module mod and typing the command “:browse”.

Here, “mod” is the name of the main module of a Curry application. After the start, CurryBrowser
loads the interfaces of the main module and all imported modules before a GUI is created for
interactive browsing.

To get an impression of the use of CurryBrowser, Figure 1 shows a snapshot of its use on a
particular application (here: the implementation of CurryBrowser). The upper list box in the
left column shows the modules and their imports in order to browse through the modules of an
application. Similarly to directory browsers, the list of imported modules of a module can be opened
or closed by clicking. After selecting a module in the list of modules, its source code, interface, or
various other formats of the module can be shown in the main (right) text area. For instance, one
can show pretty-printed versions of the intermediate flat programs (see below) in order to see how
local function definitions are translated by lambda lifting [27] or pattern matching is translated
into case expressions [17, 28]. Since Curry is a language with parametric polymorphism and type
inference, programmers often omit the type signatures when defining functions. Therefore, one can
also view (and store) the selected module as source code where missing type signatures are added.

Below the list box for selecting modules, there is a menu (“Analyze selected module”) to analyze
all functions of the currently selected module at once. This is useful to spot some functions of a
module that could be problematic in some application contexts, like functions that are impure (i.e.,
the result depends on the evaluation time) or partially defined (i.e., not evaluable on all ground
terms). If such an analysis is selected, the names of all functions are shown in the lower list box
of the left column (the “function list”) with prefixes indicating the properties of the individual
functions.

The function list box can be also filled with functions via the menu “Select functions”. For
instance, all functions or only the exported functions defined in the currently selected module can
be shown there, or all functions from different modules that are directly or indirectly called from a
currently selected function. This list box is central to focus on a function in the source code of some
module or to analyze some function, i.e., showing their properties. In order to focus on a function,
it is sufficient to check the “focus on code” button. To analyze an individually selected function,
one can select an analysis from the list of available program analyses (through the menu “Select
analysis”). In this case, the analysis results are either shown in the text box below the main text
area or visualized by separate tools, e.g., by a graph drawing tool for visualizing call graphs. Some

3 Although CurryBrowser is implemented in Curry, some functionalities of it require an installed graph visualization
tool (dot http://www.graphviz.org/), otherwise they have no effect.

31

http://www.graphviz.org/

== Curry Browse
Selectmodulorandimports: Show source | Show selected module as... Tools... File... Settings... Help...
- BrowserGUI
Prelud —- Read an existing(!) FlatCurry file w.r. t. current load path: K
i e readFlatCurryFileInLoadPath prt mod = do
+ GUI mhfilename <- findFileInLoadPath mod [". foy"]
+ Read maybe (error § "FlatCurry file "++mod++". foy not found!®)
(readFlatfurcyFiledndReport prt mod)
i LTI mhfilename
+ Prelude readFlatCurryFileandReport prt mod filename = do
+ FatCurry size <- fileSize filename
: prt $ "Reading FlatCurry file of module '"++mod++"' ("++show size++" hytes). ..
+ FlatCurry Goodies prog <- readFlatfurrcyFile filen=me
+ AatCurryRead seq (prog==prog) (return prog)
+ File Goodies | _ _ _ _ e
+ 3ystem --- Finds the first file with a possible suffix in the load path:
+ Directory findFileInLoadPath :: String -» [String] -» I0 {(Maybe String)
+ Mayhe ¥ findFileInLoadPath file suffixes = do
loadpath <- getLocalLoadPath
I-\| [findFileInPath file suffixes loadpath
Analyze selected module... -- computes real load path in case of non-local first program argqument:
)) getLocalLoadPath = do
Select functions... W focus in code loadpath <- getLoadPath
- LA
indFileInLoadPath S ?;gzull gigsrgs
getimportedinterfaces then return loadpath
ifOrProg else return (dirName (head args) : tail loadpath)
module imports | _ _ _ - e
prog OTIFFP 7
read AatCurryFileInLoad Path =
Current function analysis: |N0ndeterministic Select analysis...
Deterministic operation

Figure 1: Snapshot of the main window of CurryBrowser

analyses are local, i.e., they need only to consider the local definition of this function (e.g., “Calls

) ?

directly,” “Overlapping rules,” “Pattern completeness”), where other analyses are global, i.e., they
consider the definitions of all functions directly or indirectly called by this function (e.g., “Depends
on,” “Solution complete,” “Set-valued”). Finally, there are a few additional tools integrated into
CurryBrowser, for instance, to visualize the import relation between all modules as a dependency
graph. These tools are available through the “Tools” menu.

More details about the use of CurryBrowser and all built-in analyses are available through the

“Help” menu of CurryBrowser.

32

8 CurryCheck: A Tool for Testing Curry Programs

CurryCheck is a tool that supports the automation of testing Curry programs. The tests to be
executed can be unit tests as well as property tests parameterized over some arguments. The
tests can be part of any Curry source program and, thus, they are also useful to document the
code. CurryCheck is based on EasyCheck [15]. Actually, the properties to be tested are written
by combinators proposed for EasyCheck, which are actually influenced by QuickCheck [16] but
extended to the demands of functional logic programming.

8.1 Testing Properties

To start with a concrete example, consider the following naive definition of reversing a list:

rev :: [a] — [a]
rev [] = [
rev (x:xs) = rev xs ++ [x]

To get some confidence in the code, we add some unit tests, i.e., test with concrete test data:

revNull = rev [] -=- 11
revl23 = rev [1,2,3] -=- [3,2,1]
The operator “-=-" specifies a test where both sides must have a single identical value. Since this

operator (as many more, see below) are defined in the library Test.EasyCheck, we also have to
import this library. Apart from unit tests, which are often tedious to write, we can also write a
property, i.e., a test parameterized over some arguments. For instance, an interesting property of
reversing a list is the fact that reversing a list two times provides the input list:

revRevIsId xs = rev (rev xs) -=- Xs

Note that each property is defined as a Curry operation where the arguments are the parameters
of the property. Altogether, our program is as follows:

module Rev(rev) where

import Test.EasyCheck

rev :: [a] — [al

rev [] = [

rev (x:xs) = rev xs ++ [x]

revNull = rev [] -=- []

revli23 = rev [1,2,3] -=- [3,2,1]
revRevIsId xs = rev (rev xs) -=- Xs

Now we can run all tests by invoking the CurryCheck executable “currycheck”, which is stored in
the directory pakcshome/bin. If our program is stored in the file Rev.curry, we can execute the
tests as follows:

> currycheck Rev

33

Executing all tests...

revNull (module Rev, line 7):

Passed 1 test.

revl23 (module Rev, line 8):

Passed 1 test.

revRevIsId_ON_BASETYPE (module Rev, line 10):
0K, passed 100 tests.

Since the operation rev is polymorphic, the property revRevIsId is also polymorphic in its argument.
In order to select concrete values to test this property, CurryCheck replaces such polymorphic tests
by defaulting the type variable to prelude type Ordering (the actual default type can also be set
by a command-line flag). If we want to test this property on integers numbers, we can explicitly
provide a type signature, where Prop denotes the type of a test:

revRevIsId :: [Int] — Prop
revRevIsId xs = rev (rev xs) -=- xs

[43

The command currycheck has some options to influence the output, like “-q” for a quiet execution

4

(only errors and failed tests are reported) or “-v” for a verbose execution where all generated test
cases are shown. Moreover, the return code of currycheck is 0 in case of successful tests, otherwise,
it is 1. Hence, currycheck can be easily integrated in tool chains for automatic testing.

In order to support the inclusion of properties in the source code, the operations defined the
properties do not have to be exported, as show in the module Rev above. Hence, one can add
properties to any library and export only library-relevant operations. To test these properties,
CurryCheck creates a copy of the library where all operations are public, i.e., CurryCheck requires
write permission on the directory where the source code is stored.

The library Test.EasyCheck defines many combinators to construct properties. In particular,
there are a couple of combinators for dealing with non-deterministic operations (note that this list

is incomplete):
e The combinator “<~>” is satisfied if the set of values of both sides are equal.

e The property = ~> y is satisfied if x evaluates to every value of y. Thus, the set of values of
y must be a subset of the set of values of x.

e The property = <~y is satisfied if y evaluates to every value of z, i.e., the set of values of x
must be a subset of the set of values of y.

e The combinator “<~~>" is satisfied if the multi-set of values of both sides are equal. Hence,
this operator can be used to compare the number of computed solutions of two expressions.

e The property always z is satisfied if all values of x are true.

e The property eventually z is satisfied if some value of x is true.

e The property failing x is satisfied if x has no value, i.e., its evaluation fails.
e The property = # n is satisfied if x has n different values.

For instance, consider the insertion of an element at an arbitrary position in a list:

34

insert :: a — [a] — [a]
insert x Xs = X : XS
insert x (y:ys) =y : insert x ys

The following property states that the element is inserted (at least) at the beginning or the end of
the list:

insertAsFirstOrLast :: Int — [Int] — Prop
insertAsFirstOrLast x xs = insert x xs 7> (x:xs 7 xs++[x])

A well-known application of insert is to use it to define a permutation of a list:

perm :: [a] — [al
perm [] =[]
perm (x:xs) = insert x (perm xs)

We can check whether the length of a permuted lists is unchanged:

permLength :: [Int] — Prop
permLength xs = length (perm xs) <”> length xs

Note that the use of “<~>” is relevant since we compare non-deterministic values. Actually, the left
argument evaluates to many (identical) values.

One might also want to check whether perm computes the correct number of solutions. Since
we know that a list of length n has n! permutations, we write the following property:

permCount :: [Int] — Prop
permCount xs = perm xs # fac (length xs)

where fac is the factorial function. However, this test will be falsified with the argument [1,1].
Actually, this list has only one permuted value since the two possible permutations are identical
and the combinator “#” counts the number of different values. The property would be correct if
all elements in the input list xs are different. This can be expressed by a conditional property: the
property b ==> p is satisfied if p is satisfied for all values where b evaluates to True. Therefore, if
we define a predicate allDifferent by

allDifferent [] = True
allDifferent (x:xs) x ‘notElem‘ xs && allDifferent xs

then we can reformulate our property as follows:
permCount xs = allDifferent xs ==> perm xs # fac (length xs)

Now consider a predicate to check whether a list is sorted:

sorted :: [Int] — Bool
sorted [] = True
sorted [_] = True

sorted (x:y:zs) = x<=y && sorted (y:zs)
This predicate is useful to test whether there are also sorted permutations:

permIsEventuallySorted :: [Int] — Prop
permIsEventuallySorted xs = eventually $ sorted (perm xs)

35

The previous operations can be exploited to provide a high-level specification of sorting a list:

psort :: [Int] — [Int}
psort xs | sorted ys = ys
where ys = perm xs

Again, we can write some properties:

psortIsAlwaysSorted xs = always $ sorted (psort xs)

psortKeepsLength xs = length (psort xs) <”> length xs

Of course, the sort specification via permutations is not useful in practice. However, it can be used
as an oracle to test more efficient sorting algorithms like quicksort:

gsort :: [Int] — [Int]
gsort [] =11
gsort (x:1) = gsort (filter (<x) 1) ++ x : gsort (filter (>x) 1)

The following property specifies the correctness of quicksort:

gsortIsSorting xs = gsort xs <"> psort xs

Actually, if we test this property, we obtain a failure:

> currycheck ExampleTests

gsortIsSorting (module ExampleTests, line 53) failed
Falsified by third test.

Arguments:

[1,1]

Results:

[1]

The result shows that, for the given argument [1,1], an element has been dropped in the result.
Hence, we correct our implementation, e.g., by replacing (>x) with (>=x), and obtain a successful
test execution.

For I/0O operations, it is difficult to execute them with random data. Hence, CurryCheck only
supports specific [/O unit tests:

e a ‘returns‘ z is satisfied if the I/O action a returns the value z.
e a ‘sameReturns‘ b is satisfied if the I/O actions a and b return identical values.

Since CurryCheck executes the tests written in a source program in their textual order, one can
write several I/O tests that are executed in a well-defined order.

8.2 Generating Test Data

CurryCheck test properties by enumerating test data and checking a given property with these
values. Since these values are generated in a systematic way, one can even prove a property if the
number of test cases is finite. For instance, consider the following property from Boolean logic:

neg_or bl b2 = not (bl || b2) -=- not bl && not b2

36

This property is validated by checking it with all possible values:

> currycheck -v ExampleTests

0:

False

False

1:

False

True

2:

True

False

3:

True

True

neg_or (module ExampleTests, line 67):
Passed 4 tests.

However, if the test data is infinite, like lists of integers, CurryCheck stops checking after a given
limit for all tests. As a default, the limit is 100 tests but it can be changed by the command-line
flag “-m”. For instance, to test each property with 200 tests, CurryCheck can be invoked by

> currycheck -m 200 ExampleTests

For a given type, CurryCheck automatically enumerates all values of this type (except for the type
Float). In KiCS2, this is done by exploiting the functional logic features of Curry, i.e., by simply
collecting all values of a free variable. For instance, the library Test.EasyCheck defines an operation

valuesOf :: a — [a]

which computes the list of all values of the given argument according to a fixed strategy (in the
current implementation: randomized level diagonalization [15]). For instance, we can get 20 values
for a list of integers by

Test.EasyCheck> take 20 (valuesOf (_::[Int]))
ta,r-11,r-31,01,[11,(-1,01,[-21,[0,0],(3],[-1,1],[-3,0],[0,1],[2],
[_1)_1]) [_5]) [O)_l] B [5]) [_1)2] B [_9]) [0’2]]

Since the features of PAKCS for search space exploration are more limited, PAKCS uses in
CurryCheck explicit generators for search tree structures which are defined in the module
SearchTreeGenerators. For instance, the operations

genInt :: SearchTree Int

genlList :: SearchTree a — SearchTree [al

generates (infinite) trees of integer and lists values. To extract all values in a search tree, the library
Test.EasyCheck also defines an operation

valuesOfSearchTree :: SearchTree a — [a]

so that we obtain 20 values for a list of integers in PAKCS by

37

...> take 20 (valuesOfSearchTree (genList genInt))
tm,r1,04,11,01,-11, (21, 6], (31, [5], (0], [0,1], [0,0], [-1],[-1,0], [-2],
(-31,[1,51,[1,0]1,[2,-11,[4], [3,-11]

Apart from the different implementations, CurryCheck can test properties on predefined types,
as already shown, as well as on user-defined types. For instance, we can define our own Peano
representation of natural numbers with an addition operation and two properties as follows:

data Nat = Z | S Nat

add :: Nat — Nat — Nat

add Z n=n

add (S m) n = S(add m n)

addIsCommutative x y = add x y -=- add y x

addIsAssociative x y z = add (add x y) z -=- add x (add y z)

Properties can also be defined for polymorphic types. For instance, we can define general polymor-
phic trees, operations to compute the leaves of a tree and mirroring a tree as follows:
data Tree a = Leaf a | Node [Tree a]

leaves (Leaf x) = [x]
leaves (Node ts) = concatMap leaves ts

mirror (Leaf x) = Leaf x
mirror (Node ts) = Node (reverse (map mirror ts))

Then we can state and check two properties on mirroring:

doubleMirror t = mirror (mirror t) -=-t

leavesOfMirrorAreReversed t = leaves t —-=- reverse (leaves (mirror t))

In some cases, it might be desirable to define own test data since the generated structures are
not appropriate for testing (e.g., balanced trees to check algorithms that require work on balanced
trees). Of course, one could drop undesired values by an explicit condition. For instance, consider
the following operation that adds all numbers from 0 to a given limit:

sumUp n = if n==0 then 0 else n + sumUp (n-1)
Since there is also a simple formula to compute this sum, we can check it:
sumUpIsCorrect n = n>=0 ==> sumUp n -=- n * (n+l1) ‘div‘ 2

Note that the condition is important since sumUp diverges on negative numbers. CurryCheck tests
this property by enumerating integers, i.e., also many negative numbers which are dropped for
the tests. In order to generate only valid test data, we define our own generator for a search tree
containing only valid data:

genInt = genConsO O ||| genConsl (+1) genInt

The combinator genCons0 constructs a search tree containing only this value, whereas genCons1
constructs from a given search tree a new tree where the function given in the first argument is
applied to all values. Similarly, there are also combinators genCons2, genCons3 etc. for more than

t(l I |77

one argument. The combinator combines two search trees.

38

If the Curry program containing properties defines a generator operation with the name genr,
then CurryCheck uses this generator to test properties with argument type 7. Hence, if we put
the definition of genInt in the Curry program where sumUpIsCorrect is defined, the values to check
this property are only non-negative integers. Since these integers are slowly increasing, i.e., the
search tree is actually degenerated to a list, we can also use the following definition to obtain a
more balanced search tree:

genInt = genConsO O ||| genConsl (\n — 2*(n+1)) genInt
[Il genConsl (\n — 2*n+1) genlnt

The library SearchTree defines the structure of search trees as well as operations on search trees,
like limiting the depth of a search tree (limitSearchTree) or showing a search tree (showSearchTree).
For instance, to structure of the generated search tree up to some depth can be visualized as follows:

...SearchTree> putStr (showSearchTree (limitSearchTree 6 genInt))

If we want to use our own generator only for specific properties, we can do so by introducing a
new data type and defining a generator for this data type. For instance, to test only the operation
sumUpIsCorrect with non-negative integers, we do not define a generator genInt as above, but define
a wrapper type for non-negative integers and a generator for this type:

data NonNeg = NonNeg { nonNeg :: Int }

genNonNeg = genConsl NonNeg genNN
where
genNN = genConsO O ||| genConsl (\n — 2*(n+1)) genNN
[Il genConsl (\n — 2*n+1) genNN

Now we can either redefine sumUpIsCorrect on this type
sumUpIsCorrectOnNonNeg (NonNeg n) = sumUp n -=- n * (n+l1) ‘div‘ 2
or we simply reuse the old definition by

sumUpIsCorrectOnNonNeg = sumUpIsCorrect . nonNeg

8.3 Checking Contracts and Specifications

The expressive power of Curry supports writing high-level specifications as well as efficient im-
plementations for a given problem in the same programming language, as discussed in [3]. If a
specification or contract is provided for some function, then CurryCheck automatically generates
properties to test this specification or contract.

Following the notation proposed in [8], a specification for an operation f is an operation f’spec
of the same type as f. A contract consists of a pre- and a postcondition, where the precondition
could be omitted. A precondition for an operation f of type 7 — 7’ is an operation

f’pre :: 7 — Bool
whereas a postcondition for f is an operation

f’post :: 7 — 7' — Bool

39

which relates input and output values (the generalization to operations with more than one argu-
ment is straightforward).

As a concrete example, consider again the problem of sorting a list. We can write a postcondition
and a specification for a sort operation sort and an implementation via quicksort as follows (where
sorted and perm are defined as above):

-- Postcondition: input and output lists should have the same length
sort’post xs ys = length xs == length ys

-- Specification:

-- A correct result is a permutation of the input which is sorted.
sort’spec :: [Int] — [Int]

sort’spec xs | ys == perm xs && sorted ys = ys where ys free

-- An implementation of sort with quicksort:

sort :: [Int] — [Int]

sort [] =[]

sort (x:xs) sort (filter (<x) xs) ++ [x] ++ sort (filter (>=x) xs)

If we process this program with CurryCheck, properties to check the specification and postcondition
are automatically generated. For instance, a specification is satisfied if it yields the same values as
the implementation, and a postcondition is satisfied if each value computed for some input satisfies
the postcondition relation between input and output. For our example, CurryCheck generates the
following properties (if there are also preconditions for some operation, these preconditions are used
to restrict the test cases via the condition operater “==>”):

sortSatisfiesPostCondition :: [Int] — Prop
sortSatisfiesPostCondition x =

let r = sort x

in (r == r) ==> always (sort’post x r)

sortSatisfiesSpecification :: [Int] — Prop
sortSatisfiesSpecification x = sort x <> sort’spec x

8.4 Checking Usage of Specific Operations

In addition to testing dynamic properties of programs, CurryCheck also examines the source code
of the given program for unintended uses of specific operations (these checks can be omitted via

“

the option “--nosource”). Currently, the following source code checks are performed:

e The prelude operation “

=:<=" is used to implement functional patterns [6]. It should not
be used in source programs to avoid unintended uses. Hence, CurryCheck reports such

unintended uses.

e Set functions [7] are used to encapsulate all non-deterministic results of some function in a set
structure. Hence, for each top-level function f of arity n, the corresponding set function can
be expressed in Curry (via operations defined in the module SetFunctions, see Section A.2.49)
by the application “setn f” (this application is used in order to extend the syntax of Curry

40

with a specific notation for set functions). However, it is not intended to apply the operator
“setn” to lambda abstractions, locally defined operations or operations with an arity different
from n. Hence, CurryCheck reports such unintended uses of set functions.

41

9 CurryTest: A Tool for Testing Curry Programs

General remark: The CurryTest tool described in this section has been replaced by the more
advanced tool CurryCheck (see Section 8). CurryTest is still available in PAKCS but is no more
supported. Hence, it is recommended to use CurryCheck for writing test cases.

CurryTest is a simple tool in the PAKCS distribution to write and run repeatable tests. Cur-
ryTest simplifies the task of writing test cases for a module and executing them. The tool is easy
to use. Assume one has implemented a module MyMod and wants to write some test cases to test
its functionality, making regression tests in future versions, etc. For this purpose, there is a sys-
tem library Assertion (Section A.2.2) which contains the necessary definitions for writing tests.
In particular, it exports an abstract polymorphic type “Assertion a” together with the following

operations:
assertTrue 11 String — Bool — Assertion ()
assertEqual :: String — a — a — Assertion a
assertValues :: String — a — [al] — Assertion a
assertSolutions :: String — (a —+Bool) — [a]l] — Assertion a
assertI0 :: String — I0 a — a —> Assertion a
assertEquall0 :: String — I0 a — I0 a — Assertion a

The expression “assertTrue s b” is an assertion (named s) that the expression b has the value True.
Similarly, the expression “assertEqual s e; ey” asserts that the expressions e; and eo must be equal
(i.e., e1==e2 must hold), the expression “assertValues s e vs” asserts that vs is the multiset of all
values of e, and the expression “assertSolutions s ¢ vs” asserts that the constraint abstraction ¢
has the multiset of solutions vs. Furthermore, the expression “assertI0 s a v” asserts that the I/O
action a yields the value v whenever it is executed, and the expression “assertEquall0 s a; a3”
asserts that the I/O actions a; and ay yield equal values. The name s provided as a first argument
in each assertion is used in the protocol produced by the test tool.

One can define a test program by importing the module to be tested together with the module
Assertion and defining top-level functions of type Assertion in this module (which must also be
exported). As an example, consider the following program that can be used to test some list
processing functions:

import List
import Assertion

testl = assertEqual N ([1,2]1++[3,41) [1,2,3,4]
test2 = assertTrue "all" (all (<5) [1,2,3,41)
test3 = assertSolutions "prefix" (\x — =x++_ =:= [1,2])

(01, [11,[1,2]]

For instance, test1 asserts that the result of evaluating the expression ([1,2]++[3,4]) is equal to
[1,2,3,4].
We can execute a test suite by the command

currytest TestList

42

Test To

Test cases: |38 Failures: - Status: Itestmg Run test

Failed test cases:

Add test module Clear test modules | Exit |

Modules to be tested:

testCombinatorial
testDynamic
testInteger
testList
==rtestSort
IG |- o /
Test protocol: Compilation messages:
gi mﬁxi?sﬁ Loading module "testDynamic"...
g E:!JtlTlS Exported top-level test functions:
A DLLCTHNG testl testl testd testd testh testh testT testd testd testll
OE: b:!.thd
gi g%t}?}rt Loading module "testInteger"...
P b:!-tXD Exported top-level test functions:
P eienor testPow testIlog testIsqrt testabs testFactorial testBinomia
Ok: odd Loading module "testList"...
: 3 5 Exported top-level test functions:
Testing module: testList J teotl test? testl
OE: ++
OK: all : N "
OK: prefix Loading module "testSort"...
- [-

Figure 2: Snapshot of CurryTest’s graphical interface

(currytest is a program stored in pakcshome /bin where pakcshome is the installation directory of
PAKCS; see Section 1.1). In our example, “TestList.curry” is the program containing the definition
of all assertions. This has the effect that all exported top-level functions of type Assertion are
tested (i.e., the corresponding assertions are checked) and the results (“0K” or failure) are reported

together with the name of each assertion. For our example above, we obtain the following successful
protocol:

Testing module "TestList"...

OK: ++
0K: all
OK: prefix

All tests successfully passed.

There is also a graphical interface that summarizes the results more nicely. In order to start this
interface, one has to add the parameter “--window” (or “-w”), e.g., executing a test suite by

currytest --window TestList
or
currytest -w TestList

A snapshot of the interface is shown in Figure 2.

43

10 CurryPP: A Preprocessor for Curry Programs

The Curry preprocessor “currypp”’ implements various transformations on Curry source programs.
It supports some experimental language extensions that might become part of the standard parser
of Curry in some future version.

Currently, the Curry preprocessor supports the following extensions that will be described below
in more detail:

Integrated code: This extension allows to integrate code written in some other language into
Curry programs, like regular expressions, format specifications (“printf”), HTML and XML
code.

Sequential rules: If this feature is used, all rules in a Curry module are interpreted as sequential,
i.e., a rule is applied only if all previous rules defining the same operation are not applicable.
The idea of sequential rules are described in [9].

Default rules: If this feature is used, one can add a default rule to operations defined in a Curry
module. This provides a similar power than sequential rules but with a better operational
behavior. The idea of default rules are described in [11].

The preprocessor is an executable named “currypp”, which is stored in the directory pakcshome /bin.
In order to apply the preprocessor when loading a Curry source program into PAKCS, one has to
add an option line at the beginning of the source program. For instance, in order to use default
rules in a Curry program, one has to put the line

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=defaultrules #-}

at the beginning of the program. This option tells the PAKCS front end to process the Curry
source program with currypp before actually parsing the source text.

The option “defaultrules” has to be replaced by “seqrules” if the sequential rule matching
should be replaced. To support integrated code, one has to set the option “foreigncode” (which can
also be combined with either “defaultrules” or “seqrules”. If one wants to see the result of the

43

transformation, one can also set the option “-o”. This has the effect that the transformed source
program is stored in the file Prog. curry.CURRYPP if the name of the original program is Prog.curry.
For instance, in order to use integrated code and default rules in a module and store the

transformed program, one has to put the line

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=foreigncode --optF=defaultrules --optF=-o #-}

at the beginning of the program.

10.1 Integrated Code

Integrated code is enclosed in at least two back ticks and ticks in a Curry program. The number
of starting back ticks and ending ticks must be always identical. After the initial back ticks, there
must be an identifier specifying the kind of integrated code, e.g., regexp or html (see below). For
instance, if one uses regular expressions (see below for more details), the following expressions are
valid in source programs:

44

s ‘‘regex (al(bcx))+’’

CcCccc¢

s regex abaxc’’’’

The Curry preprocessor transforms these code pieces into regular Curry expressions. The next

sections describe the currently supported foreign languages.

10.1.1 Regular Expressions

In order to match strings against regular expressions, i.e., to check whether a string is contained
in the language generated by a regular expression, one can specify regular expression similar to
POSIX. The foreign regular expression code must be marked by “regexp”. Since this code is
transformed into operations of the PAKCS library RegExp, this library must be imported.

For instance, the following module defines a predicate to check whether a string is a valid
identifier:

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=foreigncode #-}
import RegExp

isID :: String — Bool
isID s = s ‘‘regex [a-zA-Z][a-zA-Z0-9_’]%’

10.1.2 Format Specifications

In order to format numerical and other data as strings, one can specify the desired format with
foreign code marked by “format”. In this case, one can write a format specification, similarly to the
printf statement of C, followed by a comma-separated list of arguments. This format specification
is transformed into operations of the PAKCS library Format so that it must be imported. For
instance, the following program defines an operation that formats a string, an integer (with leading
sign and zeros), and a float with leading sign and precision 3:

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=foreigncode #-}
import Format

showSIF :: String — Int — Float — String
showSIF s i f = ‘‘format "Name: %s | %+.5i | %+6.3f",s,i,f’’

main = putStrLn $ showSIF "Curry" 42 3.14159
Thus, the execution of main will print the line
Name: Curry | +00042 | +3.142

Instead of “format”, one can also write a format specification with printf. In this case, the
formatted string is printed with putStr. Hence, we can rewrite our previous definitions as follows:

showSIF :: String — Int — Float — I0 O
showSIF s i £ = ‘‘printf "Name: %s | %+.51 | %+6.3f\n",s,i,f’’

45

main = showSIF "Curry" 42 3.14159

10.1.3 HTML Code

The foreign language tag “html” introduces a notation for HTML expressions (see PAKCS library
HTML) with the standard HTML syntax extended by a layout rule so that closing tags can be omitted.
In order to include strings computed by Curry expressions into these HTML syntax, these Curry
expressions must be enclosed in curly brackets. The following example program shows its use:

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=foreigncode #-}
import HTML

htmlPage :: String — [HtmlExp]
htmlPage name = ‘‘html
<html>

<head>
<title>Simple Test

<body>
<h1>Hello {name}!</h1>
<p>
Bye!
<p>Bye!
<h2>{reverse name}
Bye!’’

If a Curry expression computes an HTML expression, i.e., it is of type Htm1Exp instead of String, it
can be integrated into the HT'ML syntax by double curly brackets. The following simple example,
taken from [20], shows the use of this feature:

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=foreigncode #-}

import HTML

main :: I0 HtmlForm
main = return $ form "Question" $
‘‘html
Enter a string: {{textfield tref ""}}
<hr>
{{button "Reverse string" revhandlerl}}

{{button "Duplicate string" duphandler}}’’

where
tref free

revhandler env = return $ form "Answer"
‘‘html <hi>Reversed input: {reverse (env tref)}’’

46

duphandler env = return $ form "Answer"
‘‘html
<h1>
Duplicated input:
{env tref ++ env tref}’’

10.1.4 XML Expressions

The foreign language tag “xml” introduces a notation for XML expressions (see PAKCS library
XML). The syntax is similar to the language tag “html”, i.e., the use of the layout rule avoids closing
tags and Curry expressions evaluating to strings (String) and XML expressions (XmlExp) can be
included by enclosing them in curly and double curly brackets, respectively. The following example
program shows its use:

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=foreigncode #-}
import HTML
import XML

main :: I0 Q)
main = putStrLn $ showXmlDoc $ head ¢ ‘xml
<contact>
<entry>
<phone>+49-431-8807271
<name>Hanus
<first>Michael
<email>mh@informatik.uni-kiel.de
<email>hanus@email.uni-kiel.de

<entry>
<name>Smith
<first>Bill
<phone>+1-987-742-9388

)

10.2 Sequential Rules

If the Curry preprocessor is called with the option “seqrules”, then all rules in the Curry module
are interpreted in a sequential manner, i.e., a rule is applied only if all previous rules defining the
same operation are not applicable, either because the left-hand side’s pattern does not match or
the condition is not satisfiable. The idea and detailed semantics of sequential rules are described
in [9]. Sequential rules are useful and preferable over rules with multiple guards if the patterns are
non-trivial (e.g., functional patterns) or the condition involve complex constraints.

As a simple example, the following module defines a lookup operation in association lists by a
functional pattern. Due to the sequential rule strategy, the second rule is applied only if there is
no appropriate key in the association list:

47

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=seqrules #-}

mlookup key (_ ++ [(key,value)] ++ _) Just value

mlookup _

Nothing

10.3 Default Rules

An alternative to sequential rules are default rules, i.e., these two options cannot be simultaneously
used. Default rules are activated by the preprocessor option “defaultrules”. In this case, one can
add to each operation a default rule. A default rule for a function f is defined as a rule defining the
operation “f’default” (this mechanism avoids any language extension for default rules). A default
rule is applied only if no “standard” rule is applicable, either because the left-hand sides’ pattern
do not match or the conditions are not satisfiable. The idea and detailed semantics of default rules
are described in [11].

Default rules are preferable over the sequential rule selection strategy since they have a better
operational behavior. This is due to the fact that the test for the application of default rules is
done with the same (sometimes optimal) strategy than the selection of standard rules. Moreover,
default rules provide a similar power than sequential rules, i.e., they can be applied if the standard
rules have complex (functional) patterns or complex conditions.

As a simple example, we show the implementation of the previous example for sequential rules
with a default rule:

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=defaultrules #-}

mlookup key (_ ++ [(key,value)] ++ _) Just value

mlookup’default _

Nothing

Default rules are often a good replacement for “negation as failure” used in logic programming.
For instance, the following program defines a solution to the n-queens puzzle, where the default
rule is useful since it is easier to characterize the unsafe positions of the queens on the chessboard
(see the first rule of safe):

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=defaultrules #-}

import Combinatorial (permute)
import Integer(abs)

-— A placement is safe if two queens are not in a same diagonal:
safe (_++[x]++ys++[z]++_) | abs (x-z) == length ys + 1 = failed
safe’default xs = xs

-- A solution to the n-queens puzzle is a safe permutation:

queens :: Int — [Int]
queens n = safe (permute [1..n])

48

11 runcurry: Running Curry Programs

runcurry is a command usually stored in pakcshome /bin (where pakcshome is the installation direc-
tory of PAKCS; see Section 1.1). This command supports the execution of Curry programs without
explicitly invoking the interactive environment. Hence, it can be useful to write short scripts in
Curry intended for direct execution. The Curry program must always contain the definition of
an operation main of type I0 (). The execution of the program consists of the evaluation of this
operation.

Basically, the command runcurry supports three modes of operation:

e One can execute a Curry program whose file name is provided as an argument when runcurry
is called. In this case, the suffix (“.curry” or “.lcurry”) must be present and cannot be
dropped. One can write additional commands for the interactive environment, typically
settings of some options, before the Curry program name. All arguments after the Curry
program name are passed as run-time arguments. For instance, consider the following program
stored in the file ShowArgs.curry:

import System(getArgs)
main = getArgs >>= print

This program can be executed by the shell command

> runcurry ShowArgs.curry Hello World!

which produces the output

["Hello","World!"]

e One can also execute a Curry program whose program text comes from the standard input.
Thus, one can either “pipe” the program text into this command or type the program text
on the keyboard. For instance, if we type

> runcurry
main = putStr . unlines . map show . take 8 $ [1..]

(followed by the end-of-file marker Ctrl-D), the output

0 N O O W N

is produced.

e One can also write the program text in a script file to be executed like a shell script. In this
case, the script must start with the line

49

#!/usr/bin/env runcurry

followed by the source text of the Curry program. For instance, we can write a simple Curry
script to count the number of code lines in a Curry program by removing all blank and
comment lines and counting the remaining lines:

#!/usr/bin/env runcurry

import Char (isSpace)
import System(getArgs)

-- count number of program lines in a file:
countCLines :: String — IO Int
countCLines f =
readFile f >>=
return . length . filter (not . isEmptyLine) . map stripSpaces . lines
where

stripSpaces = reverse . dropWhile isSpace . reverse . dropWhile isSpace

isEmptyLine [] True

isEmptyLine [_]

False
cl==’-’ && c2=="-"

isEmptyLine (cl:c2:_)

-— The main program reads Curry file names from arguments:
main = do
args <- getArgs
mapI0_ (\f — do ls <- countCLines f
putStrln $ "Stripped lines of file "++f++": " ++ show 1s)
args

If this script is stored in the (executable) file “codelines.sh”, we can count the code lines of
the file Prog.curry by the shell command

> ./codelines.sh Prog.curry

When this command is executed, the command runcurry compiles the program and evaluates
the expression main. Since the compilation might take some time in more complex scripts,
one can also save the result of the compilation in a binary file. To obtain this behavior, one
has to insert the line

#jit

in the script file, e.g., in the second line. With this option, a binary of the compiled program
is saved (in the same directory as the script). Now, when the same script is executed the
next time, the stored binary file is executed (provided that it is still newer than the script
file itself, otherwise it will be recompiled). This feature combines easy scripting with Curry
together with fast execution.

50

12 ERD2Curry: A Tool to Generate Programs from ER Specifi-
cations

ERD2Curry is a tool to generate Curry code to access and manipulate data persistently stored
from entity relationship diagrams. The idea of this tool is described in detail in [14]. Thus, we
describe only the basic steps to use this tool in the following.

If one creates an entity relationship diagram (ERD) with the Umbrello UML Modeller, one has
to store its XML description in XMI format (as offered by Umbrello) in a file, e.g., “myerd.xmi”.
This description can be compiled into a Curry program by the command

erd2curry -x myerd.xmi

(erd2curry is a program stored in pakcshome /bin where pakcshome is the installation directory of
PAKCS; see Section 1.1). If MyData is the name of the ERD, the Curry program file “MyData.curry”
is generated containing all the necessary database access code as described in [14]. In addition to the
generated Curry program file, two auxiliary program files ERDGeneric.curry and KeyDatabase.curry
are created in the same directory.

If one does not want to use the Umbrello UML Modeller, which might be the preferred method
since the interface to the Umbrello UML Modeller is no longer actively supported, one can also
create a textual description of the ERD as a Curry term of type ERD (w.r.t. the type definition given
in module pakcshome /currytools/erd2curry/ERD. curry) and store it in some file, e.g., “myerd.term”.
This description can be compiled into a Curry program by the command

erd2curry -t myerd.term

The directory pakcshome /currytools/erd2curry/ contains two examples for such ERD term files:
Blog.erdterm: This is a simple ERD model for a blog with entries, comments, and tags.
Uni.erdterm: This is an ERD model for university lectures as presented in the paper [14].

There is also the possibility to visualize an ERD term as a graph with the graph visualization
program dotty (for this purpose, it might be necessary to adapt the definition of dotviewcommand

[4

in your “.pakcsrc” file, see Section 2.6, according to your local environment). The visualization

can be performed by the command

erd2curry -v myerd.term

o1

13 Spicey: An ER-based Web Framework

Spicey is a framework to support the implementation of web-based systems in Curry. Spicey
generates an initial implementation from an entity-relationship (ER) description of the underlying
data. The generated implementation contains operations to create and manipulate entities of
the data model, supports authentication, authorization, session handling, and the composition of
individual operations to user processes. Furthermore, the implementation ensures the consistency
of the database w.r.t. the data dependencies specified in the ER model, i.e., updates initiated by
the user cannot lead to an inconsistent state of the database.

The idea of this tool, which is part of the distribution of PAKCS, is described in detail in [24].
Thus, we describe only the basic steps to use this tool in order to generate a web application.

First, one has to create a textual description of the entity-relationship model as a Curry term of
type ERD (w.r.t. the type definitions given in module pakcshome /currytools/erd2curry/ERD. curry)
and store it in some file, e.g., “mymodel.erdterm”. The directory pakcshome/currytools/spicey/
contains two examples for such ERD term files:

Blog.erdterm: This is a simple ER model for a blog with entries, comments, and tags, as presented
in the paper [24].

Uni.erdterm: This is an ER model for university lectures as presented in the paper [14].

Then change to the directory in which you want to create the project sources. Execute the command
spiceup .../mymodel.erdterm

with the path to the ERD term file as a parameter (spiceup is a program stored in pakcshome /bin
where pakcshome is the installation directory of PAKCS; see Section 1.1). You can also provide a
path name, i.e., the name of a directory, where the database files should be stored, e.g.,

spiceup --dbpath DBDIR .../mymodel.erdterm

If the parameter “--dbpath DBDIR” is not provided, then DBDIR is set to the current directory
(“.”). Since this specification will be used in the generated web programs, a relative database
directory name will be relative to the place where the web programs are stored. In order to avoid
such confusion, it might be better to specify an absolute path name for the database directory.

After the generation of this project (see the generated file README. txt for information about the
generated project structure), one can compile the generated programs by

make compile

In order to generate the executable web application, configure the generated Makefile by adapting
the variable WEBSERVERDIR to the location where the compiled cgi programs should be stored, and

run
make deploy

After the successful compilation and deployment of all files, the application is executable in a web
browser by selecting the URL <URL of web dir>/spicey.cgi.

52

14 UI: Declarative Programming of User Interfaces

The PAKCS distribution contains a collection of libraries to implement graphical user interfaces
as well as web-based user interfaces from declarative descriptions. Exploiting these libraries, it is
possible to define the structure and functionality of a user interface independent from the concrete
technology. Thus, a graphical user interface or a web-based user interface can be generated from
the same description by simply changing the imported libraries. This programming technique is
described in detail in [23].

The libraries implementing these user interfaces are contained in the directory
pakcshome /tools/ui

Thus, in order to compile programs containing such user interface specifications, one has to in-
clude the directory pakcshome /tools/ui into the Curry load path (e.g., by setting the environment
variable “CURRYPATH”, see also Section 1.3). The directory

pakcshome /tools/ui/examples

contains a few examples for such user interface specifications.

93

15 Preprocessing FlatCurry Files

After the invocation of the Curry front end to parse Curry programs and translate them into
the intermediate FlatCurry representation, one can apply transformations on the FlatCurry files
before they are passed to the back end which translates the FlatCurry files into Prolog code. These
transformations are invoked by the FlatCurry preprocessor pakcs/bin/fycpp. Currently, only the
FlatCurry file corresponding to the main module can be transformed.

A transformation can be specified as follows:

1. Options to pakcs/bin/fcypp:

Apply functional pattern optimization (see pakcs/tools/optimize/NonStrictOpt.curry
for details).

Apply code compactification after parsing, i.e., transform the main module and
all its imported into one module and delete all non-accessible functions.

’——compactexport‘ Similar to --compact but delete all functions that are not accessible from

the exported functions of the main module.

’——compactmain:f ‘ Similar to ——compact but delete all functions that are not accessible from

the function “f” of the main module.

Apply command cmd to the main module after parsing. This is useful to in-

tegrate your own transformation into the compilation process. Note that the command
“cmd prog”’ should perform a transformation on the FlatCurry file prog.fcy, i.e., it re-
places the FlatCurry file by a new one.

2. Setting the environment variable FCYPP:
For instance, setting FCYPP by
export FCYPP="--fpopt"

will apply the functional pattern optimization if programs are compiled and loaded in the
PAKCS programming environment.

3. Putting options into the source code:
If the source code contains a line with a comment of the form (the comment must start at
the beginning of the line)

{-# PAKCS_OPTION_FCYPP <options> #-}
then the transformations specified by <options> are applied after translating the source code

into FlatCurry code. For instance, the functional pattern optimization can be set by the

comment

{-# PAKCS_OPTION_FCYPP --fpopt #-}

in the source code. Note that this comment must be in a single line of the source program.
If there are multiple lines containing such comments, only the first one will be considered.

o4

Multiple options: Note that an arbitrary number of transformations can be specified by the
methods described above. If several specifications for preprocessing FlatCurry files are used, they
are executed in the following order:

1. all transformations specified by the environemnt variable FCYPP (from left to right)
2. all transformations specified as command line options of fcypp (from left to right)

3. all transformations specified by a comment line in the source code (from left to right)

95

16 Technical Problems

Due to the fact that Curry is intended to implement distributed systems (see Appendix A.1.3), it
might be possible that some technical problems arise due to the use of sockets for implementing
these features. Therefore, this section gives some information about the technical requirements of
PAKCS and how to solve problems due to these requirements.

There is one fixed port that is used by the implementation of PAKCS:

Port 8766: This port is used by the Curry Port Name Server (CPNS) to implement symbolic
names for ports in Curry (see Appendix A.1.3). If some other process uses this port on the
machine, the distribution facilities defined in the module Ports (see Appendix A.1.3) cannot
be used.

If these features do not work, you can try to find out whether this port is in use by the shell
command “netstat -a | fgrep 8766” (or similar).

The CPNS is implemented as a demon listening on its port 8766 in order to serve requests
about registering a new symbolic name for a Curry port or asking the physical port number of
a Curry port. The demon will be automatically started for the first time on a machine when
a user compiles a program using Curry ports. It can also be manually started and terminated
by the scripts pakcshome/cpns/start and pakcshome/cpns/stop. If the demon is already running,
the command pakcshome /cpns/start does nothing (so it can be always executed before invoking a
Curry program using ports).

If you detect any further technical problem, please write to

pakcs@curry-language.org

56

References

1]

[10]

[11]

E. Albert, M. Alpuente, M. Hanus, and G. Vidal. A partial evaluation framework for Curry
programs. In Proc. of the 6th International Conference on Logic for Programming and Auto-
mated Reasoning (LPAR’99), pages 376-395. Springer LNCS 1705, 1999.

E. Albert, M. Hanus, and G. Vidal. Using an abstract representation to specialize functional
logic programs. In Proc. of the 7th International Conference on Logic for Programming and
Automated Reasoning (LPAR 2000), pages 381-398. Springer LNCS 1955, 2000.

E. Albert, M. Hanus, and G. Vidal. A practical partial evaluator for a multi-paradigm declar-
ative language. In Proc. of the 5th International Symposium on Functional and Logic Pro-

gramming (FLOPS 2001), pages 326-342. Springer LNCS 2024, 2001.

E. Albert, M. Hanus, and G. Vidal. A practical partial evaluator for a multi-paradigm declar-
ative language. Journal of Functional and Logic Programming, 2002(1), 2002.

S. Antoy and M. Hanus. Compiling multi-paradigm declarative programs into Prolog. In Proc.
International Workshop on Frontiers of Combining Systems (FroCoS’2000), pages 171-185.
Springer LNCS 1794, 2000.

S. Antoy and M. Hanus. Declarative programming with function patterns. In Proceedings of
the International Symposium on Logic-based Program Synthesis and Transformation (LOP-
STR’05), pages 6-22. Springer LNCS 3901, 2005.

S. Antoy and M. Hanus. Set functions for functional logic programming. In Proceedings of
the 11th ACM SIGPLAN International Conference on Principles and Practice of Declarative
Programming (PPDP’09), pages 73-82. ACM Press, 2009.

S. Antoy and M. Hanus. Contracts and specifications for functional logic programming. In Proc.
of the 14th International Symposium on Practical Aspects of Declarative Languages (PADL
2012), pages 33-47. Springer LNCS 7149, 2012.

S. Antoy and M. Hanus. Curry without Success. In Proc. of the 23rd International Workshop
on Functional and (Constraint) Logic Programming (WFLP 2014), volume 1335 of CEUR
Workshop Proceedings, pages 140-154. CEUR-WS.org, 2014.

S. Antoy and M. Hanus. From boolean equalities to constraints. In Proceedings of the 25th
International Symposium on Logic-based Program Synthesis and Transformation (LOPSTR
2015), pages 73-88. Springer LNCS 9527, 2015.

S. Antoy and M. Hanus. Default rules for Curry. In Proc. of the 18th International Symposium
on Practical Aspects of Declarative Languages (PADL 2016), pages 65-82. Springer LNCS
9585, 2016.

B. Braflel, O. Chitil, M. Hanus, and F. Huch. Observing functional logic computations. In
Proc. of the Sixth International Symposium on Practical Aspects of Declarative Languages
(PADL’04), pages 193-208. Springer LNCS 3057, 2004.

o7

[13]

[14]

[15]

[16]

[21]

22]

B. Braflel, M. Hanus, and F. Huch. Encapsulating non-determinism in functional logic com-
putations. Journal of Functional and Logic Programming, 2004(6), 2004.

B. Braflel, M. Hanus, and M. Miiller. High-level database programming in Curry. In Proc. of
the Tenth International Symposium on Practical Aspects of Declarative Languages (PADL’08),
pages 316-332. Springer LNCS 4902, 2008.

J. Christiansen and S. Fischer. EasyCheck - test data for free. In Proc. of the 9th International
Symposium on Functional and Logic Programming (FLOPS 2008), pages 322-336. Springer
LNCS 4989, 2008.

K. Claessen and J. Hughes. Quickcheck: A lightweight tool for random testing of haskell
programs. In International Conference on Functional Programming (ICFP’00), pages 268
279. ACM Press, 2000.

M. Hanus. A unified computation model for functional and logic programming. In Proc. of the
24th ACM Symposium on Principles of Programming Languages (Paris), pages 80-93, 1997.

M. Hanus. Distributed programming in a multi-paradigm declarative language. In Proc. of the
International Conference on Principles and Practice of Declarative Programming (PPDP’99),
pages 376-395. Springer LNCS 1702, 1999.

M. Hanus. A functional logic programming approach to graphical user interfaces. In Inter-
national Workshop on Practical Aspects of Declarative Languages (PADL’00), pages 47-62.
Springer LNCS 1753, 2000.

M. Hanus. High-level server side web scripting in Curry. In Proc. of the Third International
Symposium on Practical Aspects of Declarative Languages (PADL’01), pages 76-92. Springer
LNCS 1990, 2001.

M. Hanus. A generic analysis environment for declarative programs. In Proc. of the ACM SIG-
PLAN 2005 Workshop on Curry and Functional Logic Programming (WCFLP 2005), pages
43-48. ACM Press, 2005.

M. Hanus. CurryBrowser: A generic analysis environment for Curry programs. In Proc. of
the 16th Workshop on Logic-based Methods in Programming Environments (WLPE’06), pages
61-74, 2006.

M. Hanus and C. Kluf}. Declarative programming of user interfaces. In Proc. of the 11th
International Symposium on Practical Aspects of Declarative Languages (PADL’09), pages
16-30. Springer LNCS 5418, 2009.

M. Hanus and S. Koschnicke. An ER-based framework for declarative web programming.
Theory and Practice of Logic Programming, 14(3):269-291, 2014.

M. Hanus and F. Steiner. Controlling search in declarative programs. In Principles of Declar-
ative Programming (Proc. Joint International Symposium PLILP/ALP’98), pages 374-390.
Springer LNCS 1490, 1998.

o8

[26] M. Hanus (ed.). Curry: An integrated functional logic language (vers. 0.9.0). Available at
http://www.curry-language.org, 2016.

[27] T. Johnsson. Lambda lifting: Transforming programs to recursive functions. In Functional
Programming Languages and Computer Architecture, pages 190-203. Springer LNCS 201, 1985.

[28] P. Wadler. Efficient compilation of pattern-matching. In S.L. Peyton Jones, editor, The
Implementation of Functional Programming Languages, pages 78-103. Prentice Hall, 1987.

99

http://www.curry-language.org

A Libraries of the PAKCS Distribution

The PAKCS distribution comes with an extensive collection of libraries for application program-
ming. The libraries for arithmetic constraints over real numbers, finite domain constraints, ports
for concurrent and distributed programming, and meta-programming by representing Curry pro-
grams in Curry are described in the following subsection in more detail. The complete set of
libraries with all exported types and functions are described in the further subsections. For a more
detailed online documentation of all libraries of PAKCS, see http://www.informatik.uni-kiel.
de/~pakcs/lib/index.html.

A.1 Constraints, Ports, Meta-Programming
A.1.1 Arithmetic Constraints

The primitive entities for the use of arithmetic constraints are defined in the system module CLPR
(cf. Section 1.3), i.e., in order to use them, the program must contain the import declaration

import CLPR

Floating point arithmetic is supported in PAKCS via arithmetic constraints, i.e., the equational

constraint “2.3 +. x =:= 5.5” is solved by binding x to 3.2 (rather than suspending the evaluation

of the addition, as in corresponding constraints on integers like “3+x=:=5"). All operations related
W

to floating point numbers are suffixed by “.”. The following functions and constraints on floating
point numbers are supported in PAKCS:

(+.) :: Float -> Float -> Float
Addition on floating point numbers.

(-.) :: Float -> Float -> Float
Subtraction on floating point numbers.

(x.) :: Float -> Float -> Float
Multiplication on floating point numbers.

(/.) :: Float -> Float -> Float
Division on floating point numbers.

(<.) :: Float -> Float -> Bool
Comparing two floating point numbers with the “less than” relation.

(>.) :: Float -> Float -> Bool
Comparing two floating point numbers with the “greater than” relation.

(<=.) :: Float -> Float -> Bool
Comparing two floating point numbers with the “less than or equal” relation.

(&

.) :: Float -> Float -> Bool
Comparing two floating point numbers with the “greater than or equal” relation.

60

http://www.informatik.uni-kiel.de/~pakcs/lib/index.html
http://www.informatik.uni-kiel.de/~pakcs/lib/index.html

i2f :: Int -> Float

Converting an integer number into a floating point number.

As an example, consider a constraint mortgage which relates the principal p, the lifetime of the
mortgage in months t, the monthly interest rate ir, the monthly repayment r, and the outstanding
balance at the end of the lifetime b. The financial calculations can be defined by the following two
rules in Curry (the second rule describes the repeated accumulation of the interest):

import CLPR

mortgage pt ir r b | t >. 0.0 \& t <=. 1.0 --lifetime not more than 1 month?
= b=:=p*. (1.0 +. t *. ir) -. t*.r
mortgage p t irr b | t >. 1.0 --lifetime more than 1 month?

= mortgage (p *. (1.0+.ir)-.r) (t-.1.0) ir r b

Then we can calculate the monthly payment for paying back a loan of $100,000 in 15 years with a
monthly interest rate of 1% by solving the goal

mortgage 100000.0 180.0 0.01 r 0.0

which yields the solution r=1200.17.
Note that only linear arithmetic equalities or inequalities are solved by the constraint solver. Non-
linear constraints like “x *. x =:= 4.0” are suspended until they become linear.

A.1.2 Finite Domain Constraints

Finite domain constraints are constraints where all variables can only take a finite number of
possible values. For simplicity, the domain of finite domain variables are identified with a subset
of the integers, i.e., the type of a finite domain variable is Int. The arithmetic operations related
to finite domain variables are suffixed by “#”. The following functions and constraints for finite

domain constraint solving are currently supported in PAKCS:*

domain :: [Int] -> Int -> Int -> Bool
The constraint “domain [z1,...,z,] [u” is satisfied if the domain of all variables x; is the
interval [l, u].

(+##) :: Int -> Int -> Int
Addition on finite domain values.

(-#) :: Int -> Int -> Int
Subtraction on finite domain values.

(x#) :: Int -> Int -> Int
Multiplication on finite domain values.

(=#) :: 1Int -> Int -> Bool
Equality of finite domain values.

4Note that this library is based on the corresponding library of SICStus-Prolog but does not implement the
complete functionality of the SICStus-Prolog library. However, using the PAKCS interface for external functions (see
Appendix E), it is relatively easy to provide the complete functionality.

61

(/=#) :: 1Int -> Int -> Bool
Disequality of finite domain values.

(<#) :: Int -> Int -> Bool
“less than” relation on finite domain values.

(<=#) :: Int -> Int -> Bool
“less than or equal” relation on finite domain values.

(>#) :: Int -> Int -> Bool
“greater than” relation on finite domain values.

(>=#) :: Int -> Int -> Bool
“greater than or equal” relation on finite domain values.

sum :: [Int] -> (Int -> Int -> Bool) -> Int -> Bool
The constraint “sum [z1,...,2,] op z” is satisfied if all 1 + - - - + x,, op x is satisfied, where
op is one of the above finite domain constraint relations (e.g., “=#").

scalar_product :: [Int] -> [Int] -> (Int -> Int -> Bool) -> Int -> Bool
The constraint “scalar_product [eci,...,c,] [z1,...,2,] op 7 is satisfied if all cyzq + -+ - +
cnxy op x is satisfied, where op is one of the above finite domain constraint relations.

count :: Int -> [Int] -> (Int -> Int -> Bool) -> Int -> Bool
The constraint “count k [x1,...,7,] op z” is satisfied if all k op = is satisfied, where n is
the number of the x; that are equal to k and op is one of the above finite domain constraint
relations.
allDifferent :: [Int] -> Bool
The constraint “allDifferent [xy,...,x,]” is satisfied if all x; have pairwise different values.
labeling :: [LabelingOption] -> [Int] -> Bool
The constraint “labeling os [z1,...,2,]” non-deterministically instantiates all x; to the val-

ues of their domain according to the options os (see the module documentation for further
details about these options).

These entities are defined in the system module CLPFD (cf. Section 1.3), i.e., in order to use it, the
program must contain the import declaration
import CLPFD

As an example, consider the classical “send+more=money” problem where each letter must be replaced
by a different digit such that this equation is valid and there are no leading zeros. The usual way to
solve finite domain constraint problems is to specify the domain of the involved variables followed
by a specification of the constraints and the labeling of the constraint variables in order to start
the search for solutions. Thus, the “send+more=money” problem can be solved as follows:

import CLPFD

smm 1 =

62

1 =:= [s,e,n,d,m,0,r,y] &
domain 1 0 9 &
s ># 0 &
m># 0 &
allDifferent 1 &

1000 *# s +# 100 *# e +# 10 *# n +# d
+# 1000 *# m +# 100 *# o +# 10 *x# r +# e
=# 10000 *# m +# 1000 *# o +# 100 *# n +# 10 *# e +# y &
labeling [FirstFail] 1
where s,e,n,d,m,o,r,y free

Then we can solve this problem by evaluating the goal “smm [s,e,n,d,m,o0,r,y]” which yields the
unique solution {s=9,e=5,n=6,d=7,m=1,0=0,r=8,y=2}.

A.1.3 Ports: Distributed Programming in Curry

To support the development of concurrent and distributed applications, PAKCS supports internal
and external ports as described in [18]. Since [18] contains a detailed description of this concept
together with various programming examples, we only summarize here the functions and constraints
supported for ports in PAKCS.

The basic datatypes, functions, and constraints for ports are defined in the system module Ports
(cf. Section 1.3), i.e., in order to use ports, the program must contain the import declaration

import Ports

This declaration includes the following entities in the program:

Port a

This is the datatype of a port to which one can send messages of type a.

openPort :: Port a -> [a] -> Bool
The constraint “openPort p s” establishes a new internal port p with an associated message
stream s. p and s must be unbound variables, otherwise the constraint fails (and causes a
runtime error).

send :: a -> Port a -> Bool
The constraint “send m p” is satisfied if p is constrained to contain the message m, i.e., m will
be sent to the port p so that it appears in the corresponding stream.

doSend :: a -> Port a -> I0 ()
The I/O action “doSend m p” solves the constraint “send m p” and returns nothing.

openNamedPort :: String -> I0 [al]
The I/O action “openNamedPort n” opens a new external port with symbolic name n and
returns the associated stream of messages.

connectPort :: String -> I0 (Port a)
The I/0 action “connectPort n’

' returns a port with symbolic name n (i.e., n must have the

form “portname@machine) to which one can send messages by the send constraint. Currently,

63

no dynamic type checking is done for external ports, i.e., sending messages of the wrong type
to a port might lead to a failure of the receiver.

Restrictions: FEvery expression, possibly containing logical variables, can be sent to a port.
However, as discussed in [18], port communication is strict, i.e., the expression is evaluated to
normal form before sending it by the constraint send. Furthermore, if messages containing logical
variables are sent to external ports, the behavior is as follows:

1. The sender waits until all logical variables in the message have been bound by the receiver.

2. The binding of a logical variable received by a process is sent back to the sender of this
logical variable only if it is bound to a ground term, i.e., as long as the binding contains
logical variables, the sender is not informed about the binding and, therefore, the sender

waits.

External ports on local machines: The implementation of external ports assumes that the
host machine running the application is connected to the Internet (i.e., it uses the standard IP
address of the host machine for message sending). If this is not the case and the application should
be tested by using external ports only on the local host without a connection to the Internet, the
environment variable “PAKCS_LOCALHOST” must be set to “yes” before PAKCS is started. In this
case, the IP address 127.0.0.1 and the hostname “localhost” are used for identifying the local
machine.

Selection of Unix sockets for external ports: The implementation of ports uses sockets
to communicate messages sent to external ports. Thus, if a Curry program uses the I/O action
openNamedPort to establish an externally visible server, PAKCS selects a Unix socket for the port
communication. Usually, a free socket is selected by the operating system. If the socket number
should be fixed in an application (e.g., because of the use of firewalls that allow only communi-
cation over particular sockets), then one can set the environment variable “PAKCS_SOCKET” to a
distinguished socket number before PAKCS is started. This has the effect that PAKCS uses only
this socket number for communication (even for several external ports used in the same application
program).

Debugging: To debug distributed systems, it is sometimes helpful to see all messages sent to
external ports. This is supported by the environment variable “PAKCS_TRACEPORTS”. If this variable
is set to “yes” before PAKCS is started, then all connections to external ports and all messages
sent and received on external ports are printed on the standard error stream.

A.1.4 AbstractCurry and FlatCurry: Meta-Programming in Curry

To support meta-programming, i.e., the manipulation of Curry programs in Curry, there are system
modules AbstractCurry.Types and FlatCurry.Types which define datatypes for the representation
of Curry programs. AbstractCurry.Types is a more direct representation of a Curry program,
whereas FlatCurry. Types is a simplified representation where local function definitions are replaced
by global definitions (i.e., lambda lifting has been performed) and pattern matching is translated

64

into explicit case/or expressions. Thus, FlatCurry.Types can be used for more back-end oriented
program manipulations (or, for writing new back ends for Curry), whereas AbstractCurry.Types is
intended for manipulations of programs that are more oriented towards the source program.
There are predefined I/O actions to read AbstractCurry and FlatCurry programs:
AbstractCurry.Files.readCurry) and FlatCurry.Files.readFlatCurry). These actions parse the
corresponding source program and return a data term representing this program (according to the
definitions in the modules AbstractCurry.Types and FlatCurry.Types).

Since all datatypes are explained in detail in these modules, we refer to the online documentation®
of these modules.

As an example, consider a program file “test.curry” containing the following two lines:

rev [] = [

rev (x:xs) = (rev xs) ++ [x]

Then the I/O action (FlatCurry.Files.readFlatCurry "test") returns the following term:

(Prog "test"
["Prelude"]
1

[Func ("test","rev") 1 Public
(FuncType (TCons ("Prelude","[]1") [(TVar 0)1)
(TCons ("Prelude","[1") [(TVar 0)1))
(Rule [0]
(Case Flex (Var 1)
[Branch (Pattern ("Prelude","[]1") []1)
(Comb ConsCall ("Prelude","[1") [1),
Branch (Pattern ("Prelude",":") [2,3])
(Comb FuncCall ("Prelude","++")
[Comb FuncCall ("test","rev") [Var 3],
Comb ConsCall ("Prelude",":")
[Var 2,Comb ConsCall ("Prelude","[1") [1]
n
11
(]

A.2 General Libraries
A.2.1 Library AllSolutions

This module contains a collection of functions for obtaining lists of solutions to constraints. These
operations are useful to encapsulate non-deterministic operations between I1/O actions in order to
connects the worlds of logic and functional programming and to avoid non-determinism failures on
the I/0 level.

In contrast the "old” concept of encapsulated search (which could be applied to any subexpression
in a computation), the operations to encapsulate search in this module are I/O actions in order to

Shttp://www.informatik.uni-kiel.de/~pakcs/lib/FlatCurry.Types.html and http://www.informatik.
uni-kiel.de/~pakcs/lib/AbstractCurry.Types.html

65

http://www.informatik.uni-kiel.de/~pakcs/lib/FlatCurry.Types.html
http://www.informatik.uni-kiel.de/~pakcs/lib/AbstractCurry.Types.html
http://www.informatik.uni-kiel.de/~pakcs/lib/AbstractCurry.Types.html

avoid some anomalities in the old concept.

Exported types:

data SearchTree

A search tree for representing search structures.

FExported constructors:
e SearchBranch :: [(b,SearchTree a b)] — SearchTree a b

e Solutions :: [a] — SearchTree a b

Exported functions:
getAllSolutions :: (a — Bool) — IO [al

Gets all solutions to a constraint (currently, via an incomplete depth-first left-to-right
strategy). Conceptually, all solutions are computed on a copy of the constraint, i.e.,
the evaluation of the constraint does not share any results. Moreover, this evaluation
suspends if the constraints contain unbound variables. Similar to Prolog’s findall.

getAllValues :: a — I0 [al

Gets all values of an expression. Since this is based on getAllSolutions, it inherits
the same restrictions.

getOneSolution :: (a — Bool) — IO (Maybe a)

Gets one solution to a constraint (currently, via an incomplete left-to-right strategy).
Returns Nothing if the search space is finitely failed.

getOneValue :: a — I0 (Maybe a)

Gets one value of an expression (currently, via an incomplete left-to-right strategy).
Returns Nothing if the search space is finitely failed.

getAllFailures :: a — (a — Bool) — IO [a]
Returns a list of values that do not satisfy a given constraint.
getSearchTree :: [a] — (b — Bool) — IO (SearchTree b a)

Computes a tree of solutions where the first argument determines the branching level
of the tree. For each element in the list of the first argument, the search tree contains
a branch node with a child tree for each value of this element. Moreover, evaluations of
elements in the branch list are shared within corresponding subtrees.

A.2.2 Library Assertion

This module defines the datatype and operations for the Curry module tester ”currytest”.

66

Exported types:

data Assertion

Datatype for defining test cases.
Ezxported constructors:

data ProtocolMsg

The messages sent to the test GUIL. Used by the currytest tool.

FExported constructors:
e TestModule :: String — ProtocolMsg
e TestCase :: String — Bool — ProtocolMsg
e TestFinished :: ProtocolMsg

e TestCompileError :: ProtocolMsg

Exported functions:

assertTrue :: String — Bool — Assertion ()
(assertTrue s b) asserts (with name s) that b must be true.
assertEqual :: String —+ a — a — Assertion a

(assertEqual s el e2) asserts (with name s) that el and e2 must be equal (w.r.t.

assertValues :: String — a — [a] — Assertion a

(assertValues s e vs) asserts (with name s) that vs is the multiset of all values of
e. All values of e are compared with the elements in vs w.r.t. ==.

assertSolutions :: String — (a — Bool) — [a] — Assertion a

(assertSolutions s ¢ vs) asserts (with name s) that constraint abstraction ¢ has
the multiset of solutions vs. The solutions of ¢ are compared with the elements in vs
w.r.t. ==

assertI0 :: String — I0 a — a — Assertion a
(assertI0 s a r) asserts (with name s) that I/O action a yields the result value r.
assertEqualI0 :: String — I0 a — I0 a — Assertion a

(assertEquall0 s al a2) asserts (with name s) that I/O actions al and a2 yield
equal (w.r.t. ==) results.

67

segStrActions :: I0 (String,Bool) — IO (String,Bool) — IO (String,Bool)
Combines two actions and combines their results. Used by the currytest tool.

checkAssertion :: String — ((String,Bool) — IO (String,Bool)) — Assertion a —
I0 (String,Bool)

Executes and checks an assertion, and process the result by an I/O action. Used by the
currytest tool.

writeAssertResult :: (String,Bool) — IO Int

Prints the results of assertion checking. If failures occurred, the return code is positive.
Used by the currytest tool.

showTestMod :: Int — String — I0 ()
Sends message to GUI for showing test of a module. Used by the currytest tool.
showTestCase :: Int — (String,Bool) — IO (String,Bool)

Sends message to GUI for showing result of executing a test case. Used by the currytest
tool.

showTestEnd :: Int — I0 O
Sends message to GUI for showing end of module test. Used by the currytest tool.
showTestCompileError :: Int — IO ()

Sends message to GUI for showing compilation errors in a module test. Used by the
currytest tool.

A.2.3 Library Char

Library with some useful functions on characters.

Exported functions:
isAscii :: Char — Bool

Returns true if the argument is an ASCII character.
isLatinl :: Char — Bool

Returns true if the argument is an Latin-1 character.
isAsciilower :: Char — Bool

Returns true if the argument is an ASCII lowercase letter.
isAsciiUpper :: Char — Bool

Returns true if the argument is an ASCII uppercase letter.

68

isControl :: Char — Bool

Returns true if the argument is a control character.
isUpper :: Char — Bool

Returns true if the argument is an uppercase letter.
isLower :: Char — Bool

Returns true if the argument is an lowercase letter.
isAlpha :: Char — Bool

Returns true if the argument is a letter.
isDigit :: Char — Bool

Returns true if the argument is a decimal digit.
isAlphaNum :: Char — Bool

Returns true if the argument is a letter or digit.
isBinDigit :: Char — Bool

Returns true if the argument is a binary digit.
isOctDigit :: Char — Bool

Returns true if the argument is an octal digit.
isHexDigit :: Char — Bool

Returns true if the argument is a hexadecimal digit.
isSpace :: Char — Bool

Returns true if the argument is a white space.
toUpper :: Char — Char

Converts lowercase into uppercase letters.
toLower :: Char — Char

Converts uppercase into lowercase letters.
digitToInt :: Char — Int

Converts a (hexadecimal) digit character into an integer.
intToDigit :: Int — Char

Converts an integer into a (hexadecimal) digit character.

69

A.2.4 Library CHR

A representation of CHR rules in Curry, an interpreter for CHR rules based on the refined opera-
tional semantics of Duck et al. (ICLP 2004), and a compiler into CHR(Prolog).

To use CHR(Curry), specify the CHR(Curry) rules in a Curry program, load it, add module CHR
and interpret or compile the rules with runCHR or compileCHR, respectively. This can be done in
one shot with

> pakcs :1 MyRules :add CHR :eval ’compileCHR "MyCHR" [rulel,rule2]’ :q

Exported types:

data CHR

The basic data type of Constraint Handling Rules.
FExported constructors:

data Goal

A CHR goal is a list of CHR constraints (primitive or user-defined).

Ezxported constructors:

Exported functions:

(<=>) :: Goal a b — Goal a b — CHR a b
Simplification rule.

==>) :: Goal a b - Goal a b - CHR a b
Propagation rule.

(\\) :: Goal ab —+ CHR ab — CHR a b

Simpagation rule: if rule is applicable, the first constraint is kept and the second con-
straint is deleted.

(I>) :: CHR ab — Goal a b — CHR a b
A rule with a guard.

(/\) :: Goal a b — Goal a b — Goal a b
Conjunction of CHR goals.

true :: Goal a b
The always satisfiable CHR, constraint.

fail :: Goal a b

70

The always failing constraint.
andCHR :: [Goal a b] — Goal a b
Join a list of CHR goals into a single CHR goal (by conjunction).
allCHR :: (a — Goal b ¢c) — [al] — Goal b ¢
Is a given constraint abstraction satisfied by all elements in a list?
chrsToGoal :: [a] — Goal b a
Transforms a list of CHR constraints into a CHR goal.
toGoall :: (a —+ b) — a — Goal ¢ b
Transform unary CHR constraint into a CHR goal.
toGoal2 :: (a - b - c) - a = b — Goal d c
Transforms binary CHR constraint into a CHR goal.
toGoald :: (a b —+c —+d) — a—b—>c — Goal e d
Transforms a ternary CHR constraint into a CHR goal.
toGoald :: (a b —+c —+d —>e) > a—+b—>c—>d— Goal f e
Transforms a CHR constraint of arity 4 into a CHR goal.
toGoals :: (a b —+c >d >e >f) >a—>b—>c—=>d—>e — Goal gt
Transforms a CHR constraint of arity 5 into a CHR goal.

toGoal6 :: (a 4= b +c —+d +e +f +g) +a—+b—>c—+d—>e—f = Goal
h g

Transforms a CHR. constraint of arity 6 into a CHR goal.
(.=.) :: a— a— Goal a b

Primitive syntactic equality on arbitrary terms.
(./=.) 1 a— a — Goal a b

Primitive syntactic disequality on ground(!) terms.
(.<=.) ::'a—>a — Goal a b

Primitive less-or-equal constraint.
(.>=.) ::a—a — Goal a b

Primitive greater-or-equal constraint.

(.<.) ::a—>a — Goal a b

71

Primitive less-than constraint.
(.>.) ::a—a— Goal a b

Primitive greater-than constraint.
ground :: a — Goal a b

Primitive groundness constraint (useful for guards).
nonvar :: a — Goal a b

Primitive nonvar constraint (useful for guards).
anyPrim :: (() — Bool) — Goal a b

Embed user-defined primitive constraint.
solveCHR :: [[a] — CHR a b] — Goal a b — Bool

Interpret CHR rules (parameterized over domain variables) for a given CHR goal (sec-
ond argument) and embed this as a constraint solver in Curry. If user-defined CHR
constraints remain after applying all CHR rules, a warning showing the residual con-
straints is issued.

runCHR :: [[a] — CHR a b] — Goal a b — [b]

Interpret CHR rules (parameterized over domain variables) for a given CHR goal (second
argument) and return the remaining CHR constraints.

runCHRwithTrace :: [[a] — CHR a b] — Goal a b — [b]

Interpret CHR rules (parameterized over domain variables) for a given CHR goal (second
argument) and return the remaining CHR constraints. Trace also the active and passive

constraints as well as the applied rule number during computation.
compileCHR :: String — [[a]l] — CHR a b] — I0 O

Compile a list of CHR(Curry) rules into CHR(Prolog) and store its interface in a Curry
program (name given as first argument).

chr2curry :: Goal a b — Bool

Transforms a primitive CHR constraint into a Curry constraint. Used in the generated
CHR(Prolog) code to evaluated primitive constraints.

A.2.5 Library CHRcompiled

This module defines the structure of CHR goals and some constructors to be used in compiled
CHR(Curry) rules. Furthermore, it defines an operation solveCHR to solve a CHR goal as a
constraint.

This module is imported in compiled CHR(Curry) programs, compare library CHR.

72

Exported types:
data Goal

A typed CHR goal. Since types are not present at run-time in compiled, we use a
phantom type to parameterize goals over CHR constraints. The argument of the goal
is the constraint implementing the goal with the compiled CHR(Prolog) program.

FExported constructors:

e Goal :: Bool — Goal a

Exported functions:

(/\) :: Goal a — Goal a — Goal a

Conjunction of CHR goals.
true :: Goal a

The always satisfiable CHR constraint.
fail :: Goal a

The always failing constraint.
andCHR :: [Goal a] — Goal a

Join a list of CHR goals into a single CHR goal (by conjunction).
allCHR :: (a — Goal b) — [a]l] — Goal b

Is a given constraint abstraction satisfied by all elements in a list?
solveCHR :: Goal a — Bool

Evaluate a given CHR goal and embed this as a constraint in Curry. Note: due to limi-
tations of the CHR(Prolog) implementation, no warning is issued if residual constraints

remain after the evaluation.
warnSuspendedConstraints :: Bool — Bool

Primitive operation that issues a warning if there are some suspended constraints in
the CHR, constraint store. If the argument is true, then all suspended constraints are
shown, otherwise only the first one.

73

A.2.6 Library CLP.FD

Library for finite domain constraint solving.

An FD problem is specified as an expression of type FDConstr using the constraints and expressions
offered in this library. FD variables are created by the operation domain. An FD problem is solved
by calling solveFD with labeling options, the FD variables whose values should be included in
the output, and a constraint. Hence, the typical program structure to solve an FD problem is as

follows:
main :: [Int]
main =
let fdvars = take n (domain u o)
fdmodel = {description of FD problem}

in solveFD {options} fdvars fdmodel

where n are the number of variables and [u..o] is the range of their possible values.

Exported types:
data FDRel

Possible relations between FD values.

Ezxported constructors:

e Equ :: FDRel

Equ
— Equal

e Neq :: FDRel

Neq
— Not equal

e Lt :: FDRel
Lt

— Less than

e Leqg :: FDRel

Leq
— Less than or equal

e Gt :: FDRel
Gt

— Greater than

74

Geq :: FDRel

Geq

— Greater than or equal

data Option

This datatype defines options to control the instantiation of FD variables in the solver
(solveFD).

Ezxported constructors:

LeftMost :: Option

LeftMost
— The leftmost variable is selected for instantiation (default)

FirstFail :: Option

FirstFail

— The leftmost variable with the smallest domain is selected (also known as first-fail prin-
ciple)

FirstFailConstrained :: Option

FirstFailConstrained
— The leftmost variable with the smallest domain and the most constraints on it is selected.
Min :: Option
Min
— The leftmost variable with the smalled lower bound is selected.
Max :: Option
Max
— The leftmost variable with the greatest upper bound is selected.
Step :: Option
Step

— Make a binary choice between x=#b and x/=#b for the selected variable x where b is the
lower or upper bound of x (default).

Enum :: Option

Enum

— Make a multiple choice for the selected variable for all the values in its domain.

75

Bisect :: Option

Bisect

— Make a binary choice between x&1t;=#m and x> ;#m for the selected variable x where
m is the midpoint of the domain x (also known as domain splitting).

Up :: Option
Up
— The domain is explored for instantiation in ascending order (default).

Down :: Option
Down
— The domain is explored for instantiation in descending order.
A1l :: Option
A1l
— Enumerate all solutions by backtracking (default).
Minimize :: Int — Option
Minimize v

— Find a solution that minimizes the domain variable v (using a branch-and-bound algo-
rithm).

Maximize :: Int — Option

Maximize v

— Find a solution that maximizes the domain variable v (using a branch-and-bound algo-
rithm).

Assumptions :: Int — Option

Assumptions x

— The variable x is unified with the number of choices made by the selected enumeration

strategy when a solution is found.

RandomVariable :: Int — Option

RandomVariable x

— Select a random variable for instantiation where x is a seed value for the random numbers
(only supported by SWI-Prolog).

RandomValue :: Int — Option

RandomValue x

76

— Label variables with random integer values where x is a seed value for the random
numbers (only supported by SWI-Prolog).

data FDExpr

FExported constructors:

data FDConstr

Exported constructors:

Exported functions:

domain :: Int — Int — [FDExpr]

Operations to construct basic constraints. Returns infinite list of FDVars with a given
domain.

fd :: Int — FDExpr
Represent an integer value as an FD expression.

(+#) :: FDExpr — FDExpr — FDExpr
Addition of FD expressions.

(-#) :: FDExpr — FDExpr — FDExpr
Subtraction of FD expressions.

(x#) :: FDExpr — FDExpr — FDExpr
Multiplication of FD expressions.

(=#) :: FDExpr — FDExpr — FDConstr
Equality of FD expressions.

(/=#) :: FDExpr — FDExpr — FDConstr
Disequality of FD expressions.

(<#) :: FDExpr — FDExpr — FDConstr
”Less than” constraint on FD expressions.

(<=#) :: FDExpr — FDExpr — FDConstr

”Less than or equal” constraint on FD expressions.

7

(>#) :: FDExpr — FDExpr — FDConstr
”Greater than” constraint on FD expressions.
(>=#) :: FDExpr — FDExpr — FDConstr
”Greater than or equal” constraint on FD expressions.
true :: FDConstr
The always satisfied FD constraint.
(/\) :: FDConstr — FDConstr — FDConstr
Conjunction of FD constraints.
andC :: [FDConstr] — FDConstr
Conjunction of a list of FD constraints.
allC :: (a — FDConstr) — [a] — FDConstr
Maps a constraint abstraction to a list of FD constraints and joins them.
allDifferent :: [FDExpr] — FDConstr
7 All different” constraint on FD variables.
sum :: [FDExpr] — FDRel — FDExpr — FDConstr
Relates the sum of FD variables with some integer of FD variable.
scalarProduct :: [FDExpr] — [FDExpr] — FDRel — FDExpr — FDConstr

(scalarProduct cs vs relop v) is satisfied if (sum (cs*vs) relop v) is satisfied.
The first argument must be a list of integers. The other arguments are as in sum.

count :: FDExpr — [FDExpr] — FDRel — FDExpr — FDConstr

(count v vs relop c) is satisfied if (n relop c), where n is the number of elements
in the list of FD variables vs that are equal to v, is satisfied. The first argument must
be an integer. The other arguments are as in sum.

solveFD :: [Option] — [FDExpr] — FDConstr — [Int]

Computes (non-deterministically) a solution for the FD variables (second argument)
w.r.t. constraint (third argument), where the values in the solution correspond to the
list of FD variables. The first argument contains options to control the labeling/instan-
tiation of FD variables.

solveFDAl1l :: [Option] — [FDExpr] — FDConstr — [[Int]]

Computes all solutions for the FD variables (second argument) w.r.t. constraint (third
argument), where the values in each solution correspond to the list of FD variables. The
first argument contains options to control the labeling/instantiation of FD variables.

solveFDOne :: [Option] — [FDExpr] — FDConstr — [Int]

Computes a single solution for the FD variables (second argument) w.r.t. constraint
(third argument), where the values in the solution correspond to the list of FD variables.
The first argument contains options to control the labeling/instantiation of FD variables.

78

A.2.7 Library CLPFD

Library for finite domain constraint solving.

The general structure of a specification of an FD problem is as follows:
domainconstraint € fdconstraint & labeling

where:

domain_constraint specifies the possible range of the FD variables (see constraint domain)
fd_constraint specifies the constraint to be satisfied by a valid solution (see constraints #+, #-,
allDifferent, etc below)

labeling is a labeling function to search for a concrete solution.

Note: This library is based on the corresponding library of Sicstus-Prolog but does not implement
the complete functionality of the Sicstus-Prolog library. However, using the PAKCS interface for
external functions, it is relatively easy to provide the complete functionality.

Exported types:

data Constraint

A datatype to represent reifyable constraints.
FExported constructors:

data LabelingOption

This datatype contains all options to control the instantiated of FD variables with the
enumeration constraint labeling.

Ezported constructors:

e LeftMost :: LabelingOption

LeftMost
— The leftmost variable is selected for instantiation (default)

e FirstFail :: LabelingOption

FirstFail

— The leftmost variable with the smallest domain is selected (also known as first-fail prin-

ciple)

e FirstFailConstrained :: LabelingOption

FirstFailConstrained
— The leftmost variable with the smallest domain and the most constraints on it is selected.
e Min :: LabelingOption
Min

— The leftmost variable with the smalled lower bound is selected.

79

Max :: LabelingOption
Max
— The leftmost variable with the greatest upper bound is selected.
Step :: LabelingOption
Step

— Make a binary choice between x=#b and x/=#b for the selected variable x where b is the

lower or upper bound of x (default).

Enum :: LabelingOption

Enum
— Make a multiple choice for the selected variable for all the values in its domain.

Bisect :: LabelingOption

Bisect

— Make a binary choice between x<=#m and x>#m for the selected variable x where m is
the midpoint of the domain x (also known as domain splitting).

Up :: LabelingOption
Up
— The domain is explored for instantiation in ascending order (default).

Down :: LabelingQOption

Down
— The domain is explored for instantiation in descending order.

A1l :: LabelingOption
A1l
— Enumerate all solutions by backtracking (default).
Minimize :: Int — LabelingOption
Minimize v

— Find a solution that minimizes the domain variable v (using a branch-and-bound algo-
rithm).

Maximize :: Int — LabelingOption

Maximize v

— Find a solution that maximizes the domain variable v (using a branch-and-bound algo-
rithm).

80

e Assumptions :: Int — LabelingOption

Assumptions x

— The variable x is unified with the number of choices made by the selected enumeration
strategy when a solution is found.

e RandomVariable :: Int — LabelingOption

RandomVariable x

— Select a random variable for instantiation where x is a seed value for the random numbers
(only supported by SWI-Prolog).

e RandomValue :: Int — LabelingOption

RandomValue x

— Label variables with random integer values where x is a seed value for the random
numbers (only supported by SWI-Prolog).

Exported functions:
domain :: [Int] — Int — Int — Bool
Constraint to specify the domain of all finite domain variables.
(+#) :: Int — Int — Int
Addition of FD variables.
(-#) :: Int — Int — Int
Subtraction of FD variables.
(x#) :: Int — Int — Int
Multiplication of FD variables.
(=#) :: Int — Int — Bool
Equality of FD variables.
(/=#) :: Int — Int — Bool
Disequality of FD variables.
(<#) :: Int — Int — Bool
”Less than” constraint on FD variables.
(<=#) :: Int — Int — Bool
”Less than or equal” constraint on FD variables.

(>#) :: Int — Int — Bool

81

”Greater than” constraint on FD variables.
(>=#) :: Int — Int — Bool
”Greater than or equal” constraint on FD variables.
(#=#) :: Int — Int — Constraint
Reifyable equality constraint on FD variables.
(#/=#) :: Int — Int — Constraint
Reifyable inequality constraint on FD variables.
(#<#) :: Int — Int — Constraint
Reifyable "less than” constraint on FD variables.
(#<=#) :: Int — Int — Constraint
Reifyable "less than or equal” constraint on FD variables.
(#>#) :: Int — Int — Constraint
Reifyable ”greater than” constraint on FD variables.
(#>=#) :: Int — Int — Constraint
Reifyable ”greater than or equal” constraint on FD variables.
neg :: Constraint — Constraint
The resulting constraint is satisfied if both argument constraints are satisfied.
(#/\#) :: Constraint — Constraint — Constraint
The resulting constraint is satisfied if both argument constraints are satisfied.
(#\/#) :: Constraint — Constraint — Constraint
The resulting constraint is satisfied if both argument constraints are satisfied.
(#=>#) :: Constraint — Constraint — Constraint

The resulting constraint is satisfied if the first argument constraint do not hold or both
argument constraints are satisfied.

(#<=>#) :: Constraint — Constraint — Constraint

The resulting constraint is satisfied if both argument constraint are either satisfied and
do not hold.

solve :: Constraint — Bool

Solves a reified constraint.

82

sum :: [Int] — (Int — Int — Bool) — Int — Bool
Relates the sum of FD variables with some integer of FD variable.
scalarProduct :: [Int] — [Int] — (Int — Int — Bool) — Int — Bool

(scalarProduct cs vs relop v) is satisfied if ((cs*vs) relop v) is satisfied. The first
argument must be a list of integers. The other arguments are as in sum.

count :: Int — [Int] — (Int — Int — Bool) — Int — Bool

(count v vs relop c¢) is satisfied if (n relop c), where n is the number of elements in the
list of FD variables vs that are equal to v, is satisfied. The first argument must be an
integer. The other arguments are as in sum.

allDifferent :: [Int] — Bool
7 All different” constraint on FD variables.
all different :: [Int] — Bool
For backward compatibility. Use allDifferent.
indomain :: Int — Bool
Instantiate a single FD variable to its values in the specified domain.
labeling :: [LabelingOption] — [Int] — Bool

Instantiate FD variables to their values in the specified domain.

A.2.8 Library CLPR

Library for constraint programming with arithmetic constraints over reals.

Exported functions:
(+.) :: Float — Float — Float

Addition on floats in arithmetic constraints.
(-.) :: Float — Float — Float

Subtraction on floats in arithmetic constraints.
(x.) :: Float — Float — Float

Multiplication on floats in arithmetic constraints.
(/.) :: Float — Float — Float

Division on floats in arithmetic constraints.

(<.) :: Float — Float — Bool

83

”Less than” constraint on floats.
(>.) :: Float — Float — Bool

”Greater than” constraint on floats.
(<=.) :: Float — Float — Bool

”Less than or equal” constraint on floats.
(>=.) :: Float — Float — Bool

”Greater than or equal” constraint on floats.
i2f :: Int — Float

Conversion function from integers to floats. Rigid in the first argument, i.e., suspends
until the first argument is ground.

minimumFor :: (a — Bool) — (a — Float) — a

Computes the minimum with respect to a given constraint. (minimumFor g f) evaluates
to x if (g x) is satisfied and (f x) is minimal. The evaluation fails if such a minimal value
does not exist. The evaluation suspends if it contains unbound non-local variables.

minimize :: (a — Bool) — (a — Float) — a — Bool

Minimization constraint. (minimize g f x) is satisfied if (g x) is satisfied and (f x) is
minimal. The evaluation suspends if it contains unbound non-local variables.

maximumFor :: (a — Bool) — (a — Float) — a

Computes the maximum with respect to a given constraint. (maximumFor g f) evaluates
to x if (g x) is satisfied and (f x) is maximal. The evaluation fails if such a maximal value
does not exist. The evaluation suspends if it contains unbound non-local variables.

maximize :: (a — Bool) — (a — Float) — a — Bool

Maximization constraint. (maximize g f x) is satisfied if (g x) is satisfied and (f x) is
maximal. The evaluation suspends if it contains unbound non-local variables.

A.2.9 Library CLPB

This library provides a Boolean Constraint Solver based on BDDs.

Exported types:

data Boolean

FExported constructors:

84

Exported functions:

true :: Boolean

The always satisfied constraint
false :: Boolean

The never satisfied constraint
neg :: Boolean — Boolean

Result is true iff argument is false.
(.&&) :: Boolean — Boolean — Boolean

Result is true iff both arguments are true.
(.11) :: Boolean — Boolean — Boolean

Result is true iff at least one argument is true.
(./=) :: Boolean — Boolean — Boolean

Result is true iff exactly one argument is true.
(.==) :: Boolean — Boolean — Boolean

Result is true iff both arguments are equal.
(.<=) :: Boolean — Boolean — Boolean

Result is true iff the first argument implies the second.
(.>=) :: Boolean — Boolean — Boolean

Result is true iff the second argument implies the first.
(.<) :: Boolean — Boolean — Boolean

Result is true iff the first argument is false and the second is true.
(.>) :: Boolean — Boolean — Boolean

Result is true iff the first argument is true and the second is false.
count :: [Boolean] — [Int] — Boolean

Result is true iff the count of valid constraints in the first list is an element of the second
list.

exists :: Boolean — Boolean — Boolean

Result is true, if the first argument is a variable which can be instantiated such that
the second argument is true.

85

satisfied :: Boolean — Bool

Checks the consistency of the constraint with regard to the accumulated constraints,
and, if the check succeeds, tells the constraint.

check :: Boolean — Bool

Asks whether the argument (or its negation) is now entailed by the accumulated con-
straints. Fails if it is not.

bound :: [Boolean] — Bool

Instantiates given variables with regard to the accumulated constraints.
simplify :: Boolean — Boolean

Simplifies the argument with regard to the accumulated constraints.
evaluate :: Boolean — Bool

Evaluates the argument with regard to the accumulated constraints.

A.2.10 Library Combinatorial

A collection of common non-deterministic and/or combinatorial operations. Many operations are
intended to operate on sets. The representation of these sets is not hidden; rather sets are repre-
sented as lists. Ideally these lists contains no duplicate elements and the order of their elements
cannot be observed. In practice, these conditions are not enforced.

Exported functions:
permute :: [a] — [al]

Compute any permutation of a list. For example, [1,2,3,4] may give [1,3,4,2].
subset :: [a] — [al

Compute any sublist of a list. The sublist contains some of the elements of the list
in the same order. For example, [1,2,3,4] may give [1,3], and [1,2,3] gives [1,2,3], [1,2],
[1,3], (1], [2,3], 2], [3], or [J.
splitSet :: [a]l] — ([al,[al)
Split a list into any two sublists. For example, [1,2,3,4] may give ([1,3,4],[2]).
sizedSubset :: Int — [a] — [a]

Compute any sublist of fixed length of a list. Similar to subset, but the length of the
result is fixed.

partition :: [a] — [[all

Compute any partition of a list. The output is a list of non-empty lists such that their
concatenation is a permutation of the input list. No guarantee is made on the order of
the arguments in the output. For example, [1,2,3,4] may give [[4],[2,3],[1]], and [1,2,3]
gives [[1,23]], [12,3),[1]], [[1,3}2]], [13}:[1,2]], or [13],[2],[1]].

86

A.2.11 Library CPNS

Implementation of a Curry Port Name Server based on raw sockets. It is used to implement the
library Ports for distributed programming with ports.

Exported functions:

cpnsStart :: I0 O

Starts the ” Curry Port Name Server” (CPNS) running on the local machine. The CPNS
is responsible to resolve symbolic names for ports into physical socket numbers so that
a port can be reached under its symbolic name from any machine in the world.

cpnsShow :: IO ()
Shows all registered ports at the local CPNS demon (in its logfile).
cpnsStop :: I0 O
Terminates the local CPNS demon
registerPort :: String — Int — Int — I0 ()
Registers a symbolic port at the local host.
getPortInfo :: String — String — I0 (Int,Int)
Gets the information about a symbolic port at some host.
unregisterPort :: String — I0 O
Unregisters a symbolic port at the local host.
cpnsAlive :: Int — String — IO Bool
Tests whether the CPNS demon at a host is alive.
main :: I0 O

Main function for CPNS demon. Check arguments and execute command.

A.2.12 Library CSV

Library for reading/writing files in CSV format. Files in CSV (comma separated values) format
can be imported and exported by most spreadsheed and database applications.

87

Exported functions:

writeCSVFile :: String — [[String]l] — I0 ()

Writes a list of records (where each record is a list of strings) into a file in CSV format.
showCSV :: [[String]] — String

Shows a list of records (where each record is a list of strings) as a string in CSV format.
readCSVFile :: String — I0 [[String]l]

Reads a file in CSV format and returns the list of records (where each record is a list

of strings).
readCSVFileWithDelims :: String — String — I0 [[String]]

Reads a file in CSV format and returns the list of records (where each record is a list

of strings).
readCSV :: String — [[String]]

Reads a string in CSV format and returns the list of records (where each record is a list

of strings).
readCSVWithDelims :: String — String — [[String]]

Reads a string in CSV format and returns the list of records (where each record is a list
of strings).

A.2.13 Library Database

Library for accessing and storing data in databases. The contents of a database is represented in
this library as dynamic predicates that are defined by facts than can change over time and can
be persistently stored. All functions in this library distinguishes between queries that access the
database and transactions that manipulates data in the database. Transactions have a monadic
structure. Both queries and transactions can be executed as I/O actions. However, arbitrary I/O
actions cannot be embedded in transactions.

A dynamic predicate p with arguments of type t1,...,tn must be declared by:

p:: tl-> ... ->tn -> Dynamic

p = dynamic

A dynamic predicate where all facts should be persistently stored in the directory DIR must be
declared by:

p:: tl-> ... ->tn -> Dynamic

p = persistent "file:DIR"

88

Exported types:

data Query

Abstract datatype to represent database queries.
Ezported constructors:

data TError

The type of errors that might occur during a transaction.

FExported constructors:

e TError :: TErrorKind — String — TError

data TErrorKind

The various kinds of transaction errors.

Ezxported constructors:
o KeyNotExistsError :: TErrorKind
e NoRelationshipError :: TErrorKind
e DuplicateKeyError :: TErrorKind
e KeyRequiredError :: TErrorKind
e UniqueError :: TErrorKind
e MinError :: TErrorKind
e MaxError :: TErrorKind
e UserDefinedError :: TErrorKind

e ExecutionError :: TErrorKind

data Transaction

Abstract datatype for representing transactions.

FExported constructors:

89

Exported functions:
queryAll :: (a — Dynamic) — Query [al]

A database query that returns all answers to an abstraction on a dynamic expression.
queryOne :: (a — Dynamic) — Query (Maybe a)

A database query that returns a single answer to an abstraction on a dynamic expres-
sion. It returns Nothing if no answer exists.

queryOneWithDefault :: a — (a — Dynamic) — Query a

A database query that returns a single answer to an abstraction on a dynamic expres-
sion. It returns the first argument if no answer exists.

queryJustOne :: (a — Dynamic) — Query a

A database query that returns a single answer to an abstraction on a dynamic expres-
sion. It fails if no answer exists.

dynamicExists :: Dynamic — Query Bool

A database query that returns True if there exists the argument facts (without free
variables!) and False, otherwise.

transformQ :: (a — b) — Query a — Query b

Transforms a database query from one result type to another according to a given
mapping.

runQ :: Query a — I0 a

Executes a database query on the current state of dynamic predicates. If other processes
made changes to persistent predicates, these changes are read and made visible to the
currently running program.

showTError :: TError — String
Transforms a transaction error into a string.
addDB :: Dynamic — Transaction ()

Adds new facts (without free variables!) about dynamic predicates. Conditional dy-
namics are added only if the condition holds.

deleteDB :: Dynamic — Transaction ()

Deletes facts (without free variables!) about dynamic predicates. Conditional dynamics
are deleted only if the condition holds.

getDB :: Query a — Transaction a

Returns the result of a database query in a transaction.

90

returnT :: a — Transaction a

The empty transaction that directly returns its argument.

doneT :: Transaction ()

The empty transaction that returns nothing.

errorT :: TError — Transaction a

Abort a transaction with a specific transaction error.

failT :: String — Transaction a

Abort a transaction with a general error message.

(|>>=) :: Transaction a — (a — Transaction b) — Transaction b

Sequential composition of transactions.

(I>>) :: Transaction a — Transaction b — Transaction b

Sequential composition of transactions.

sequenceT :: [Transaction a] — Transaction [a]

Executes a sequence of transactions and collects all results in a list.

sequenceT_ :: [Transaction a] — Transaction ()

mapT ::

mapT_ ::

runT ::

Executes a sequence of transactions and ignores the results.
(a — Transaction b) — [a] — Transaction [b]

Maps a transaction function on a list of elements. The results of all transactions are
collected in a list.

(a — Transaction b) — [a]l — Transaction ()
Maps a transaction function on a list of elements. The results of all transactions are
ignored.

Transaction a — I0 (Either a TError)

Executes a possibly composed transaction on the current state of dynamic predicates
as a single transaction.

Before the transaction is executed, the access to all persistent predicates is locked (i.e.,
no other process can perform a transaction in parallel). After the successful transac-
tion, the access is unlocked so that the updates performed in this transaction become
persistent and visible to other processes. Otherwise (i.e., in case of a failure or abort
of the transaction), the changes of the transaction to persistent predicates are ignored
and Nothing is returned.

In general, a transaction should terminate and all failures inside a transaction should be
handled (execept for an explicit failT that leads to an abort of the transaction). If a
transaction is externally interrupted (e.g., by killing the process), some locks might never
be removed. However, they can be explicitly removed by deleting the corresponding
lock files reported at startup time.

91

runJustT :: Transaction a — I0 a

Executes a possibly composed transaction on the current state of dynamic predicates
as a single transaction. Similarly to runT but a run-time error is raised if the execution

of the transaction fails.
runTNA :: Transaction a — IO (Either a TError)

Executes a possibly composed transaction as a Non-Atomic(!) sequence of its individual
database updates. Thus, the argument is not executed as a single transaction in contrast
to runT, i.e., no predicates are locked and individual updates are not undone in case of
a transaction error. This operation could be applied to execute a composed transaction
without the overhead caused by (the current implementation of) transactions if one is
sure that locking is not necessary (e.g., if the transaction contains only database reads

and transaction error raising).

A.2.14 Library Debug

This library contains some useful operation for debugging programs.

Exported functions:

trace :: String — a — a

Prints the first argument as a side effect and behaves as identity on the second argument.
traceld :: String — String

Prints the first argument as a side effect and returns it afterwards.
traceShow :: a — b — b

Prints the first argument using show and returns the second argument afterwards.
traceShowld :: a — a

Prints the first argument using show and returns it afterwards.
traceI0 :: String — I0 ()

Output a trace message from the I0 monad.
assert :: Bool — String — a — a

Assert a condition w.r.t. an error message. If the condition is not met it fails with the
given error message, otherwise the third argument is returned.

assertI0 :: Bool — String — I0 ()

Assert a condition w.r.t. an error message from the I0 monad. If the condition is not
met it fails with the given error message.

92

A.2.15 Library Directory

Library for accessing the directory structure of the underlying operating system.

Exported functions:

doesFileExist :: String — IO Bool

Returns true if the argument is the name of an existing file.
doesDirectoryExist :: String — IO Bool

Returns true if the argument is the name of an existing directory.
fileSize :: String — IO Int

Returns the size of the file.
getModificationTime :: String — IO ClockTime

Returns the modification time of the file.
getCurrentDirectory :: IO String

Returns the current working directory.
setCurrentDirectory :: String — I0 O

Sets the current working directory.
getDirectoryContents :: String — IO [String]

Returns the list of all entries in a directory.
createDirectory :: String — I0 ()

Creates a new directory with the given name.
createDirectoryIfMissing :: Bool — String — IO ()

Creates a new directory with the given name if it does not already exist. If the first

parameter is True it will also create all missing parent directories.
removeDirectory :: String — I0 ()

Deletes a directory from the file system.
renameDirectory :: String — String — I0 ()

Renames a directory.
getHomeDirectory :: I0 String

Returns the home directory of the current user.

93

getTemporaryDirectory :: I0 String
Returns the temporary directory of the operating system.
getAbsolutePath :: String — I0 String

Convert a path name into an absolute one. For instance, a leading ~ is replaced by the
current home directory.

removeFile :: String — I0 ()
Deletes a file from the file system.
renameFile :: String — String — I0 ()
Renames a file.
copyFile :: String — String — I0 O

Copy the contents from one file to another file

A.2.16 Library Distribution

This module contains functions to obtain information concerning the current distribution of the
Curry implementation, e.g., compiler version, load paths, front end.

Exported types:

data FrontendTarget

Data type for representing the different target files that can be produced by the front
end of the Curry compiler.

FExported constructors:

e FCY :: FrontendTarget
FCY

— FlatCurry file ending with .fcy

e FINT :: FrontendTarget
FINT

— FlatCurry interface file ending with .fint

e ACY :: FrontendTarget
ACY

— AbstractCurry file ending with .acy
e UACY :: FrontendTarget

UACY

94

— Untyped (without type checking) AbstractCurry file ending with .uacy

e HTML :: FrontendTarget
HTML

— colored HTML representation of source program

e CY :: FrontendTarget
CY

— source representation employed by the frontend

data FrontendParams

Abstract data type for representing parameters supported by the front end of the Curry
compiler.

Ezxported constructors:

Exported functions:
curryCompiler :: String

The name of the Curry compiler (e.g., ”pakes” or "kics2”).
curryCompilerMajorVersion :: Int

The major version number of the Curry compiler.
curryCompilerMinorVersion :: Int

The minor version number of the Curry compiler.
curryRuntime :: String

The name of the run-time environment (e.g., ”sicstus”, "swi”, or "ghc”)
curryRuntimeMajorVersion :: Int

The major version number of the Curry run-time environment.
curryRuntimeMinorVersion :: Int

The minor version number of the Curry run-time environment.
installDir :: String

Path of the main installation directory of the Curry compiler.

rcFileName :: IO String

The name of the file specifying configuration parameters of the current distribution.
This file must have the usual format of property files (see description in module Prop-
ertyFile).

95

rcFileContents :: I0 [(String,String)]

Returns the current configuration parameters of the distribution. This action yields the
list of pairs (var,val).

getRcVar :: String — I0 (Maybe String)

Look up a specific configuration variable as specified by user in his rc file. Upper-
case/lowercase is ignored for the variable names.

getRcVars :: [String] — I0 [Maybe String]

Look up configuration variables as specified by user in his rc file. Uppercase/lowercase
is ignored for the variable names.

splitModuleFileName :: String — String — (String,String)

Split the FilePath of a module into the directory prefix and the FilePath correspond-
ing to the module name. For instance, the call splitModuleFileName "Data.Set"
"lib/Data/Set.curry" evaluates to ("1ib", "Data/Set.curry"). This can be useful
to compute output directories while retaining the hierarchical module structure.

splitModuleIdentifiers :: String — [String]

Split up the components of a module identifier. For instance, splitModuleIdentifiers
"Data.Set" evaluates to ["Data", "Set"].

joinModuleIdentifiers :: [String] — String

Join the components of a module identifier. For instance, joinModuleIdentifiers
["Data", "Set"] evaluates to "Data.Set".

stripCurrySuffix :: String — String
Strips the suffix ”.curry” or ”.lcurry” from a file name.
modNameToPath :: String — String

Transforms a hierarchical module name into a path name, i.e., replace the dots in the
name by directory separator chars.

currySubdir :: String
Name of the sub directory where auxiliary files (.fint, .fcy, etc) are stored.
inCurrySubdir :: String — String

Transforms a path to a module name into a file name by adding the currySubDir
to the path and transforming a hierarchical module name into a path. For instance,
inCurrySubdir "mylib/Data.Char" evaluates to "mylib/.curry/Data/Char".

inCurrySubdirModule :: String — String — String

96

Transforms a file name by adding the currySubDir to the file name. This version respects
hierarchical module names.

addCurrySubdir :: String — String

Transforms a directory name into the name of the corresponding sub directory contain-
ing auxiliary files.

getLoadPathForModule :: String — IO [String]

Returns the current path (list of directory names) that is used for loading modules w.r.t.
a given module path. The directory prefix of the module path (or ”.” if there is no such
prefix) is the first element of the load path and the remaining elements are determined
by the environment variable CURRYRPATH and the entry "libraries” of the system’s

rc file.

lookupModuleSourceInlLoadPath :: String — I0 (Maybe (String,String))

Returns a directory name and the actual source file name for a module by looking up the
module source in the current load path. If the module is hierarchical, the directory is
the top directory of the hierarchy. Returns Nothing if there is no corresponding source
file.

defaultParams :: FrontendParams

The default parameters of the front end.

rcParams :: I0 FrontendParams

The default parameters of the front end as configured by the compiler specific resource
configuration file.

setQuiet :: Bool — FrontendParams — FrontendParams

Set quiet mode of the front end.

setExtended :: Bool — FrontendParams — FrontendParams

Set extended mode of the front end.

setOverlapWarn :: Bool — FrontendParams — FrontendParams

Set overlap warn mode of the front end.

setFullPath :: [String] — FrontendParams — FrontendParams

Set the full path of the front end. If this parameter is set, the front end searches all
modules in this path (instead of using the default path).

setHtmlDir :: String — FrontendParams — FrontendParams

Set the htmldir parameter of the front end. Relevant for HTML generation.

97

setLogfile :: String — FrontendParams — FrontendParams

Set the logfile parameter of the front end. If this parameter is set, all messages produced
by the front end are stored in this file.

setSpecials :: String — FrontendParams — FrontendParams

Set additional specials parameters of the front end. These parameters are specific for
the current front end and should be used with care, since their form might change in
the future.

quiet :: FrontendParams — Bool

Returns the value of the ”quiet” parameter.
extended :: FrontendParams — Bool

Returns the value of the "extended” parameter.
overlapWarn :: FrontendParams — Bool

Returns the value of the ”"overlapWarn” parameter.
fullPath :: FrontendParams — Maybe [String]

Returns the full path parameter of the front end.
htmldir :: FrontendParams — Maybe String

Returns the htmldir parameter of the front end.
logfile :: FrontendParams — Maybe String

Returns the logfile parameter of the front end.
specials :: FrontendParams — String

Returns the special parameters of the front end.
callFrontend :: FrontendTarget — String — I0 ()

In order to make sure that compiler generated files (like .fcy, .fint, .acy) are up to date,
one can call the front end of the Curry compiler with this action. If the front end
returns with an error, an exception is raised.

callFrontendWithParams :: FrontendTarget — FrontendParams — String — I0 ()

In order to make sure that compiler generated files (like .fcy, .fint, .acy) are up to
date, one can call the front end of the Curry compiler with this action where various
parameters can be set. If the front end returns with an error, an exception is raised.

98

A.2.17 Library Dynamic

Library for dynamic predicates. © _dyn.html”> This paper contains a description of the basic ideas
behind this library.

Currently, it is still experimental so that its interface might be slightly changed in the future.

A dynamic predicate p with arguments of type t1,...,tn must be declared by:

p:: tl-> ... ->tn -> Dynamic

p = dynamic

A dynamic predicate where all facts should be persistently stored in the directory DIR must be
declared by:

p:: tl-> ... ->tn -> Dynamic

p = persistent "file:DIR"

Remark: This library has been revised to the library Database. Thus, it might not be further
supported in the future.

Exported types:

data Dynamic

The general type of dynamic predicates.

FExported constructors:

Exported functions:
dynamic :: a

dynamic is only used for the declaration of a dynamic predicate and should not be used
elsewhere.

persistent :: String — a

persistent is only used for the declaration of a persistent dynamic predicate and should
not be used elsewhere.

(<>) :: Dynamic — Dynamic — Dynamic
Combine two dynamics.

(I>) :: Dynamic — Bool — Dynamic
Restrict a dynamic with a condition.

(1&>) :: Dynamic — Bool — Dynamic
Restrict a dynamic with a constraint.

assert :: Dynamic — I0 ()

Shttp://www.informatik.uni-kiel.de/ mh/papers/JFLP04

99

Asserts new facts (without free variables!) about dynamic predicates. Conditional
dynamics are asserted only if the condition holds.

retract :: Dynamic — IO Bool

Deletes facts (without free variables!) about dynamic predicates. Conditional dynamics
are retracted only if the condition holds. Returns True if all facts to be retracted exist,
otherwise False is returned.

getKnowledge :: IO (Dynamic — Bool)

Returns the knowledge at a particular point of time about dynamic predicates. If other
processes made changes to persistent predicates, these changes are read and made visible
to the currently running program.

getDynamicSolutions :: (a — Dynamic) — IO [a]

Returns all answers to an abstraction on a dynamic expression. If other processes
made changes to persistent predicates, these changes are read and made visible to the
currently running program.

getDynamicSolution :: (a — Dynamic) — I0 (Maybe a)

Returns an answer to an abstraction on a dynamic expression. Returns Nothing if no
answer exists. If other processes made changes to persistent predicates, these changes
are read and made visible to the currently running program.

isKnown :: Dynamic — IO Bool

Returns True if there exists the argument facts (without free variables!) and False,
otherwise.

transaction :: I0 a — I0 (Maybe a)

Perform an action (usually containing updates of various dynamic predicates) as a single
transaction. This is the preferred way to execute any changes to persistent dynamic
predicates if there might be more than one process that may modify the definition of
such predicates in parallel.

Before the transaction is executed, the access to all persistent predicates is locked (i.e.,
no other process can perform a transaction in parallel). After the successful transac-
tion, the access is unlocked so that the updates performed in this transaction become
persistent and visible to other processes. Otherwise (i.e., in case of a failure or abort
of the transaction), the changes of the transaction to persistent predicates are ignored
and Nothing is returned.

In general, a transaction should terminate and all failures inside a transaction should
be handled (execept for abortTransaction). If a transaction is externally interrupted
(e.g., by killing the process), some locks might never be removed. However, they can
be explicitly removed by deleting the corresponding lock files reported at startup time.

Nested transactions are not supported and lead to a failure.

100

transactionWithErrorCatch :: I0 a — I0 (Either a IOError)

Perform an action (usually containing updates of various dynamic predicates) as a
single transaction. This is similar to transaction but an execution error is caught and
returned instead of printing it.

abortTransaction :: I0 a

Aborts the current transaction. If a transaction is aborted, the remaining actions of the
transaction are not executed and all changes to persistent dynamic predicates made
in this transaction are ignored.

abortTransaction should only be used in a transaction. Although the execution of
abortTransaction always fails (basically, it writes an abort record in log files, unlock
them and then fails), the failure is handled inside transaction.

A.2.18 Library Either

Library with some useful operations for the Either data type.

Exported functions:
lefts :: [Either a b] — [al]

Extracts from a list of Either all the Left elements in order.
rights :: [Either a b] — [b]

Extracts from a list of Either all the Right elements in order.
isLeft :: Either a b — Bool

Return True if the given value is a Left-value, False otherwise.
isRight :: Either a b — Bool

Return True if the given value is a Right-value, False otherwise.
fromLeft :: Either a b — a

Extract the value from a Left constructor.
fromRight :: Either a b — b

Extract the value from a Right constructor.
partitionEithers :: [Either a b] — ([al, [bl)

Partitions a list of Either into two lists. All the Left elements are extracted, in order,
to the first component of the output. Similarly the Right elements are extracted to the
second component of the output.

101

A.2.19 Library ErrorState

A combination of Error and state monad like ErrorT State in Haskell.

Exported types:
type ES a b ¢ = b — Either a (c,b)

Error state monad.

Exported functions:

evalES :: (a — Either b (c,a)) — a — Either b c
Evaluate an ES monad

returnES :: a — b — Either c (a,b)
Lift a value into the ES monad

failES :: a — b — Either a (c,b)
Failing computation in the ES monad

(>+=) :: (a — Either b (c,a)) — (¢ — a — Either b (d,a)) — a — Either b
(d,a)

Bind of the ES monad

(>+) :: (a — Either b (c,a)) — (a — Either b (d,a)) — a — Either b (4,a)
Sequence operator of the ES monad

(<$>) :: (a - b) —» (¢ — Either d (a,c)) — ¢ — Either 4 (b,c)
Apply a pure function onto a monadic value.

(<*>) :: (a — Either b (¢ — d,a)) — (a — Either b (c,a)) — a — Either b
(d,a)

Apply a function yielded by a monadic action to a monadic value.
gets :: a — Either b (a,a)

Retrieve the current state
puts :: a — a — Either b ((),a)

Replace the current state
modify :: (a — a) — a — Either b (0 ,a)

Modify the current state

mapES :: (a — b — Either ¢ (d,b)) — [a] — b — Either c¢ ([d],Db)

102

Map a monadic function on all elements of a list by sequencing the effects.
concatMapES :: (a — b — Either ¢ ([d],b)) — [a] — b — Either c ([d],b)
Same as concatMap, but for a monadic function.

mapAccumES :: (a =& b — ¢ — Either d ((a,e),c)) — a — [b] — ¢ — Either d
((a, [el),)

Same as mapES but with an additional accumulator threaded through.

A.2.20 Library FileGoodies

A collection of useful operations when dealing with files.

Exported functions:

separatorChar :: Char

The character for separating hierarchies in file names. On UNIX systems the value is

/.
pathSeparatorChar :: Char

The character for separating names in path expressions. On UNIX systems the value is

suffixSeparatorChar :: Char

The character for separating suffixes in file names. On UNIX systems the value is ..
isAbsolute :: String — Bool

Is the argument an absolute name?
dirName :: String — String

Extracts the directoy prefix of a given (Unix) file name. Returns ”.” if there is no prefix.
baseName :: String — String

Extracts the base name without directoy prefix of a given (Unix) file name.

splitDirectoryBaseName :: String — (String,String)

Splits a (Unix) file name into the directory prefix and the base name. The directory

”

prefix is ”.” if there is no real prefix in the name.
stripSuffix :: String — String
Strips a suffix (the last suffix starting with a dot) from a file name.

fileSuffix :: String — String

103

Yields the suffix (the last suffix starting with a dot) from given file name.
splitBaseName :: String — (String,String)

Splits a file name into prefix and suffix (the last suffix starting with a dot and the rest).
splitPath :: String — [String]

Splits a path string into list of directory names.
lookupFileInPath :: String — [String] — [String] — I0 (Maybe String)

Looks up the first file with a possible suffix in a list of directories. Returns Nothing if
such a file does not exist.

getFileInPath :: String — [String] — [String] — IO String

Gets the first file with a possible suffix in a list of directories. An error message is

delivered if there is no such file.

A.2.21 Library FilePath

This library is a direct port of the Haskell library System.FilePath of Neil Mitchell.

Exported types:

type FilePath = String

Exported functions:

pathSeparator :: Char

pathSeparators :: String
isPathSeparator :: Char — Bool
searchPathSeparator :: Char

isSearchPathSeparator :: Char — Bool

extSeparator :: Char

104

isExtSeparator :: Char — Bool

splitSearchPath :: String — [String]

getSearchPath :: I0 [String]

splitExtension :: String — (String,String)

takeExtension :: String — String
replaceExtension :: String — String — String
(<.>) :: String — String — String
dropExtension :: String — String
addExtension :: String — String — String
hasExtension :: String — Bool

splitExtensions :: String — (String,String)

dropExtensions :: String — String

takeExtensions :: String — String

splitDrive :: String — (String,String)

105

joinDrive :: String — String — String

takeDrive :: String — String
dropDrive :: String — String
hasDrive :: String — Bool
isDrive :: String — Bool

splitFileName :: String — (String,String)

replaceFileName :: String — String — String

dropFileName :: String — String

takeFileName :: String — String
takeBaseName :: String — String
replaceBaseName :: String — String — String

hasTrailingPathSeparator :: String — Bool

addTrailingPathSeparator :: String — String

dropTrailingPathSeparator :: String — String

106

takeDirectory :: String — String

replaceDirectory :: String — String — String

combine :: String — String — String

(</>) :: String — String — String

splitPath :: String — [String]

splitDirectories :: String — [String]

joinPath :: [String] — String

equalFilePath :: String — String — Bool

makeRelative :: String — String — String

normalise :: String — String

isValid :: String — Bool

makeValid :: String — String

isRelative :: String — Bool

isAbsolute :: String — Bool

107

A.2.22 Library Findall

Library with some operations for encapsulating search. Note that some of these operations are
not fully declarative, i.e., the results depend on the order of evaluation and program rules. There
are newer and better approaches the encpasulate search, in particular, set functions (see module
SetFunctions), which should be used.

In previous versions of PAKCS, some of these operations were part of the standard prelude. We
keep them in this separate module in order to support a more portable standard prelude.

Exported functions:

getAllValues :: a — I0 [al

Gets all values of an expression (currently, via an incomplete depth-first strategy).
Conceptually, all values are computed on a copy of the expression, i.e., the evaluation
of the expression does not share any results. Moreover, the evaluation suspends as long
as the expression contains unbound variables. Similar to Prolog’s findall.

getSomeValue :: a — IO0 a

Gets a value of an expression (currently, via an incomplete depth-first strategy). The
expression must have a value, otherwise the computation fails. Conceptually, the value
is computed on a copy of the expression, i.e., the evaluation of the expression does not
share any results. Moreover, the evaluation suspends as long as the expression contains
unbound variables.

allValues :: a — [a]

Returns all values of an expression (currently, via an incomplete depth-first strategy).
Conceptually, all values are computed on a copy of the expression, i.e., the evaluation
of the expression does not share any results. Moreover, the evaluation suspends as long
as the expression contains unbound variables.

Note that this operation is not purely declarative since the ordering of the computed
values depends on the ordering of the program rules.

someValue :: a — a

Returns some value for an expression (currently, via an incomplete depth-first strat-
egy). If the expression has no value, the computation fails. Conceptually, the value is
computed on a copy of the expression, i.e., the evaluation of the expression does not
share any results. Moreover, the evaluation suspends as long as the expression contains
unbound variables.

Note that this operation is not purely declarative since the computed value depends
on the ordering of the program rules. Thus, this operation should be used only if the
expression has a single value.

allSolutions :: (a — Bool) — [a]

108

Returns all values satisfying a predicate, i.e., all arguments such that the predicate
applied to the argument can be evaluated to True (currently, via an incomplete depth-
first strategy). The evaluation suspends as long as the predicate expression contains
unbound variables.

Note that this operation is not purely declarative since the ordering of the computed
values depends on the ordering of the program rules.

someSolution :: (a — Bool) — a

Returns some values satisfying a predicate, i.e., some argument such that the predicate
applied to the argument can be evaluated to True (currently, via an incomplete depth-
first strategy). If there is no value satisfying the predicate, the computation fails.

Note that this operation is not purely declarative since the ordering of the computed
values depends on the ordering of the program rules. Thus, this operation should be
used only if the predicate has a single solution.

try :: (a — Bool) — [a — Bool]
Basic search control operator.
inject :: (a — Bool) — (a — Bool) — a — Bool

Inject operator which adds the application of the unary procedure p to the search
variable to the search goal taken from Oz. p x comes before g x to enable a test+generate
form in a sequential implementation.

solveAll :: (a — Bool) — [a — Booll
Computes all solutions via a a depth-first strategy.
once :: (a — Bool) — a — Bool
Gets the first solution via a depth-first strategy.
best :: (a — Bool) — (a — a — Bool) — [a — Bool]

Gets the best solution via a depth-first strategy according to a specified operator that
can always take a decision which of two solutions is better. In general, the comparison
operation should be rigid in its arguments!

findall :: (a — Bool) — [a]

Gets all solutions via a depth-first strategy and unpack the values from the lambda-
abstractions. Similar to Prolog’s findall.

findfirst :: (a — Bool) — a

Gets the first solution via a depth-first strategy and unpack the values from the search
goals.

browse :: (a — Bool) — IO ()

109

Shows the solution of a solved constraint.
browseList :: [a — Booll — I0 O

Unpacks solutions from a list of lambda abstractions and write them to the screen.
unpack :: (a — Bool) — a

Unpacks a solution’s value from a (solved) search goal.
rewriteAll :: a — [al

Gets all values computable by term rewriting. In contrast to findall, this operation
does not wait until all ”outside” variables are bound to values, but it returns all values
computable by term rewriting and ignores all computations that requires bindings for
outside variables.

rewriteSome :: a — Maybe a

Similarly to rewriteAll but returns only some value computable by term rewriting.
Returns Nothing if there is no such value.

A.2.23 Library Float

A collection of operations on floating point numbers.

Exported functions:

pi :: Float
The number pi.

(+.) :: Float — Float — Float
Addition on floats.

(-.) :: Float — Float — Float
Subtraction on floats.

(¥.) :: Float — Float — Float
Multiplication on floats.

(/.) :: Float — Float — Float
Division on floats.

(*.) :: Float — Int — Float
The value of a ~. b is a raised to the power of b. Executes in 0(log b) steps.

i2f :: Int — Float

110

Conversion function from integers to floats.
truncate :: Float — Int

Conversion function from floats to integers. The result is the closest integer between
the argument and 0.

round :: Float — Int

Conversion function from floats to integers. The result is the nearest integer to the
argument. If the argument is equidistant between two integers, it is rounded to the
closest even integer value.

recip :: Float — Float
Reciprocal
sqrt :: Float — Float
Square root.
log :: Float — Float
Natural logarithm.
logBase :: Float — Float — Float
Logarithm to arbitrary Base.
exp :: Float — Float
Natural exponent.
sin :: Float — Float
Sine.
cos :: Float — Float
Cosine.
tan :: Float — Float
Tangent.
asin :: Float — Float
Arc sine.

acos :: Float — Float

atan :: Float — Float

111

Arc tangent.
sinh :: Float — Float
Hyperbolic sine.

cosh :: Float — Float

tanh :: Float — Float
Hyperbolic tangent.

asinh :: Float — Float
Hyperbolic Arc sine.

acosh :: Float — Float

atanh :: Float — Float

Hyperbolic Arc tangent.

A.2.24 Library Function

This module provides some utility functions for function application.

Exported functions:
fix :: (a > a) — a

fix f is the least fixed point of the function f, i.e. the least defined x such that f x =

X.
on :: (a +a—=b) > (c—>a —+c—>c—=>b

(*) ‘on¢ f = \xy -> f x * f y. Typical usage: sortBy (compare ‘on‘ fst).
first :: (@ — b) — (a,c) — (b,c)

Apply a function to the first component of a tuple.
second :: (a — b) — (c,a) — (c,b)

Apply a function to the second component of a tuple.
Gkxx) :: (@ — b) = (¢ = d) = (a,c) = (b,d)

Apply two functions to the two components of a tuple.
(&&&) :: (@ = b) =+ (@ = c) =+ a = (b,c)

Apply two functions to a value and returns a tuple of the results.
both :: (a — b) — (a,a) — (b,b)

Apply a function to both components of a tuple.

112

A.2.25 Library FunctionInversion

This module provides some utility functions for inverting functions.

Exported functions:
invfl :: (a =& b) - b — a
Inverts a unary function.
invf2 :: (a > b = ¢c) = ¢ — (a,b)
Inverts a binary function.
invf3 :: (a =4 b 2> c =2 d) — d — (a,b,c)
Inverts a ternary function.
invf4 :: (a 42 b —-¢c —>d — e) - e — (a,b,c,d)
Inverts a function of arity 4.
invf6 :: (a4 b —+c —>d e — f) - f — (a,b,c,d,e)

Inverts a function of arity 5.

A.2.26 Library GetOpt

This Module is a modified version of the Module System.Console.GetOpt by Sven Panne from the
ghc-base package it has been adapted for Curry by Bjoern Peemoeller

(c) Sven Panne 2002-2005 The Glasgow Haskell Compiler License

Copyright 2004, The University Court of the University of Glasgow. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

this list of conditions and the following disclaimer.

this list of conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

used to endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY COURT OF THE UNIVERSITY
OF GLASGOW AND THE CONTRIBUTORS ”"AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE UNIVERSITY COURT OF THE UNIVERSITY OF GLASGOW
OR THE CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFT-
WARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

113

Exported types:

data ArgOrder

Ezported constructors:

e RequirelOrder :: ArgOrder a
e Permute :: ArgOrder a
e ReturnInOrder :: (String — a) — ArgOrder a

data OptDescr

Ezxported constructors:

e Option :: String — [String] — (ArgDescr a) — String — OptDescr a

data ArgDescr

FExported constructors:
e NoArg :: a — ArgDescr a
e RegArg :: (String — a) — String — ArgDescr a

e OptArg :: (Maybe String — a) — String — ArgDescr a

Exported functions:

usageInfo :: String — [OptDescr al] — String

getOpt :: ArgOrder a — [OptDescr a] — [String] — ([al, [String], [String])

getOpt’ :: ArgOrder a — [OptDescr al] — [String] — ([al,[String], [String], [String])

114

A.2.27 Library Global

Library for handling global entities. A global entity has a name declared in the program. Its
value can be accessed and modified by 10 actions. Furthermore, global entities can be declared as
persistent so that their values are stored across different program executions.

Currently, it is still experimental so that its interface might be slightly changed in the future.

A global entity g with an initial value v of type t must be declared by:

g :: Global t
g = global v spec

Here, the type t must not contain type variables and spec specifies the storage mechanism for the
global entity (see type GlobalSpec).
Exported types:
data Global
The type of a global entity.
FExported constructors:
data GlobalSpec
The storage mechanism for the global entity.
FExported constructors:

e Temporary :: GlobalSpec
Temporary
— the global value exists only during a single execution of a program
e Persistent :: String — GlobalSpec

Persistent f

— the global value is stored persisently in file f (which is created and initialized if it does
not exists)

Exported functions:

global :: a — GlobalSpec — Global a

global is only used for the declaration of a global value and should not be used else-
where. In the future, it might become a keyword.

readGlobal :: Global a — IO a
Reads the current value of a global.
writeGlobal :: Global a — a — I0 (O

Updates the value of a global. The value is evaluated to a ground constructor term
before it is updated.

115

A.2.28 Library GlobalVariable

Library for handling global variables. A global variable has a name declared in the program. Its
value (a data term possibly containing free variables) can be accessed and modified by 10 actions.
In contast to global entities (as defined in the library Global), global variables can contain logic
variables shared with computations running in the same computation space. As a consequence,
global variables cannot be persistent, their values are not kept across different program executions.
Currently, it is still experimental so that its interface might be slightly changed in the future.

A global variable g with an initial value v of type t must be declared by:

g :: GVar t

g = gvar v

Here, the type t must not contain type variables. v is the initial value for every program run.
Note: the implementation in PAKCS is based on threading a state through the execution. Thus,
it might be the case that some updates of global variables are lost if fancy features like unsafe
operations or debugging support are used.

Exported types:

data GVar

The general type of global variables.

FExported constructors:

Exported functions:

gvar :: a — GVar a

gvar is only used for the declaration of a global variable and should not be used else-
where. In the future, it might become a keyword.

readGVar :: GVar a — I0 a
Reads the current value of a global variable.
writeGVar :: GVar a — a — I0 O

Updates the value of a global variable. The associated term is evaluated to a data term
and might contain free variables.

A.2.29 Library GUI

This library contains definitions and functions to implement graphical user interfaces for Curry
programs. It is based on Tcl/Tk and its basic ideas are described in detail in this paper

116

http://www.informatik.uni-kiel.de/~mh/papers/PADL00.html

Exported types:

data GuiPort

The port to a GUI is just the stream connection to a GUI where Tcl/Tk communication
is done.

FExported constructors:

data Widget

The type of possible widgets in a GUI.

FExported constructors:

e PlainButton :: [ConfItem] — Widget

PlainButton
— a button in a GUI whose event handler is activated if the user presses the button

e Canvas :: [ConfItem] — Widget

Canvas
— a canvas to draw pictures containing Canvasltems

e CheckButton :: [ConfItem] — Widget

CheckButton
— a check button: it has value ”0” if it is unchecked and value ”1” if it is checked

e Entry :: [Confltem] — Widget

Entry
— an entry widget for entering single lines

e Label :: [ConfItem] — Widget
Label

— a label for showing a text

e ListBox :: [ConfItem] — Widget

ListBox
— a widget containing a list of items for selection

e Message :: [ConfItem] — Widget

Message

— a message for showing simple string values

117

e MenuButton :: [ConfItem] — Widget

MenuButton
— a button with a pull-down menu

e Scale :: Int — Int — [Confltem] — Widget

Scale
— a scale widget to input values by a slider

e ScrollH :: WidgetRef — [ConfItem] — Widget
ScrollH

— a horizontal scroll bar

e ScrollV :: WidgetRef — [ConfItem] — Widget
ScrollV

— a vertical scroll bar

e TextEdit :: [Confltem] — Widget

TextEdit
— a text editor widget to show and manipulate larger text paragraphs

e Row :: [ConfCollection] — [Widget] — Widget

Row
— a horizontal alignment of widgets

e Col :: [ConfCollection] — [Widget] — Widget

Col
— a vertical alignment of widgets
e Matrix :: [ConfCollection] — [[Widget]] — Widget
Matrix

— a 2-dimensional (matrix) alignment of widgets

data ConflItem

The data type for possible configurations of a widget.

FExported constructors:

e Active :: Bool — ConflItem

Active

118

— define the active state for buttons, entries, etc.

Anchor :: String — Confltem

Anchor

— alignment of information inside a widget where the argument must be: n, ne, e, se, s,

SW, W, nw, or center

Background :: String — Confltem

Background
— the background color

Foreground :: String — ConfIltem

Foreground
— the foreground color

Handler :: Event — (GuiPort — IO [Reconfigureltem]) — Confltem

Handler

— an event handler associated to a widget. The event handler returns a list of widget
ref/configuration pairs that are applied after the handler in order to configure GUI
widgets

Height :: Int — Confltem

Height
— the height of a widget (chars for text, pixels for graphics)

CheckInit :: String — Confltem

CheckInit
— initial value for checkbuttons

CanvasItems :: [CanvasItem] — ConfItem

CanvasItems
— list of items contained in a canvas

List :: [String] — Confltem

List
— list of values shown in a listbox

Menu :: [MenuItem] — ConfItem

Menu

— the items of a menu button

119

e WRef :: WidgetRef — Confltem
WRef

— a reference to this widget

e Text :: String — Confltem

Text
— an initial text contents

e Width :: Int — ConfItem
Width

— the width of a widget (chars for text, pixels for graphics)

e Fill :: ConflItem
Fill

— fill widget in both directions

e FillX :: Confltem
FillX

— fill widget in horizontal direction

e FillY :: ConfItem
Filly

— fill widget in vertical direction

e TclOption :: String — Confltem

TclOption

— further options in Tcl syntax (unsafe!)

data Reconfigureltem

Data type for describing configurations that are applied to a widget or GUI by some
event handler.

Ezported constructors:

e WidgetConf :: WidgetRef — ConfItem — Reconfigureltem

WidgetConf wref conf

— reconfigure the widget referred by wref with configuration item conf

120

e StreamHandler :: Handle — (Handle — GuiPort — IO [Reconfigureltem]) —
Reconfigureltem

StreamHandler hdl handler
— add a new handler to the GUI that processes inputs on an input stream referred by hdl

e RemoveStreamHandler :: Handle — Reconfigureltem

RemoveStreamHandler hdl

— remove a handler for an input stream referred by hdl from the GUI (usually used to
remove handlers for closed streams)

data Event

The data type of possible events on which handlers can react. This list is still incomplete
and might be extended or restructured in future releases of this library.

Ezxported constructors:

e DefaultEvent :: Event

DefaultEvent
— the default event of the widget

e MouseButtonl :: Event

MouseButtonl
— left mouse button pressed

e MouseButton2 :: Event

MouseButton2
— middle mouse button pressed

e MouseButton3 :: Event

MouseButton3
— right mouse button pressed

e KeyPress :: Event

KeyPress
— any key is pressed

e Return :: Event

Return

— return key is pressed

121

data ConfCollection

The data type for possible configurations of widget collections (e.g., columns, rows).

FExported constructors:

e CenterAlign :: ConfCollection

CenterAlign
— centered alignment

e LeftAlign :: ConfCollection

LeftAlign
— left alignment

e RightAlign :: ConfCollection
RightAlign

— right alignment

e TopAlign :: ConfCollection
TopAlign

— top alignment

e BottomAlign :: ConfCollection

BottomAlign

— bottom alignment

data Menultem

The data type for specifying items in a menu.

Ezxported constructors:

e MButton :: (GuiPort — IO [Reconfigureltem]) — String — Menultem

MButton
— a button with an associated command and a label string

e MSeparator :: Menultem

MSeparator
— a separator between menu entries
e MMenuButton :: String — [Menultem] — Menultem

MMenuButton

122

— a submenu with a label string

data CanvasItem

The data type of items in a canvas. The last argument are further options in Tcl/Tk
(for testing).

FExported constructors:
e CLine :: [(Int,Int)] — String — CanvasItem
e CPolygon :: [(Int,Int)] — String — CanvasItem
e CRectangle :: (Int,Int) — (Int,Int) — String — CanvasItem
e COval :: (Int,Int) — (Int,Int) — String — CanvasItem

e CText :: (Int,Int) — String — String — CanvasItem

data WidgetRef

The (hidden) data type of references to a widget in a GUI window. Note that the
constructor WRefLabel will not be exported so that values can only be created inside
this module.

FExported constructors:

data Style

The data type of possible text styles.

FExported constructors:

e Bold :: Style
Bold

— text in bold font

e Ttalic :: Style

Italic
— text in italic font

e Underline :: Style

Underline
— underline text
e Fg :: Color — Style

Fg

123

— foreground color, i.e., color of the text font
Bg :: Color — Style
Bg

— background color of the text

data Color

The data type of possible colors.

FExported constructors:

Black :: Color
Blue :: Color
Brown :: Color
Cyan :: Color
Gold :: Color
Gray :: Color
Green :: Color
Magenta :: Color
Navy :: Color
Orange :: Color
Pink :: Color
Purple :: Color
Red :: Color
Tomato :: Color
Turquoise :: Color
Violet :: Color
White :: Color

Yellow :: Color

124

Exported functions:
row :: [Widget] — Widget
Horizontal alignment of widgets.
col :: [Widget] — Widget
Vertical alignment of widgets.
matrix :: [[Widget]] — Widget
Matrix alignment of widgets.
debugTcl :: Widget — I0 ()
Prints the generated Tcl commands of a main widget (useful for debugging).
runPassiveGUI :: String — Widget — IO GuiPort

IO action to show a Widget in a new GUI window in passive mode, i.e., ignore all GUI
events.

runGUI :: String — Widget — I0 O
IO action to run a Widget in a new window.
runGUIwithParams :: String — String — Widget — I0 O
IO action to run a Widget in a new window.
runInitGUI :: String — Widget — (GuiPort — IO [Reconfigureltem]) — IO (O

IO action to run a Widget in a new window. The GUI events are processed after
executing an initial action on the GUI.

runInitGUIwithParams :: String — String — Widget — (GuiPort — IO
[Reconfigureltem]) — I0 ()

IO action to run a Widget in a new window. The GUI events are processed after
executing an initial action on the GUI.

runControlledGUI :: String — (Widget,String — GuiPort — I0 ()) — Handle — I0
O

Runs a Widget in a new GUI window and process GUI events. In addition, an event
handler is provided that process messages received from an external stream identified
by a handle (third argument). This operation is useful to run a GUI that should react
on user events as well as messages written to the given handle.

runConfigControlledGUI :: String — (Widget,String — GuiPort — IO
[Reconfigureltem]) — Handle — I0 ()

125

Runs a Widget in a new GUI window and process GUI events. In addition, an event
handler is provided that process messages received from an external stream identified
by a handle (third argument). This operation is useful to run a GUI that should react
on user events as well as messages written to the given handle.

runInitControlledGUI :: String — (Widget,String — GuiPort — I0 ()) — (GuiPort
— 10 [ReconfigureIltem]) — Handle — IO ()

Runs a Widget in a new GUI window and process GUI events after executing an initial
action on the GUI window. In addition, an event handler is provided that process
messages received from an external message stream. This operation is useful to run a
GUI that should react on user events as well as messages written to the given handle.

runHandlesControlledGUI :: String — (Widget, [Handle — GuiPort — IO
[ReconfigureItem]]) — [Handle] — IO O

Runs a Widget in a new GUI window and process GUI events. In addition, a list of
event handlers is provided that process inputs received from a corresponding list of
handles to input streams. Thus, if the i-th handle has some data available, the i-th
event handler is executed with the i-th handle as a parameter. This operation is useful
to run a GUI that should react on inputs provided by other processes, e.g., via sockets.

runInitHandlesControlledGUI :: String — (Widget, [Handle — GuiPort — IO
[Reconfigureltem]]) — (GuiPort — IO [ReconfigureItem]) — [Handle] — I0 (O

Runs a Widget in a new GUI window and process GUI events after executing an initial
action on the GUI window. In addition, a list of event handlers is provided that process
inputs received from a corresponding list of handles to input streams. Thus, if the i-th
handle has some data available, the i-th event handler is executed with the i-th handle
as a parameter. This operation is useful to run a GUI that should react on inputs
provided by other processes, e.g., via sockets.

setConfig :: WidgetRef — ConfItem — GuiPort — IO ()

Changes the current configuration of a widget (deprecated operation, only included for
backward compatibility). Warning: does not work for Command options!

exitGUI :: GuiPort — I0 ()
An event handler for terminating the GUIL.
getValue :: WidgetRef — GuiPort — IO String
Gets the (String) value of a variable in a GUL
setValue :: WidgetRef — String — GuiPort — IO ()
Sets the (String) value of a variable in a GUL

updateValue :: (String — String) — WidgetRef — GuiPort — IO (O

126

Updates the (String) value of a variable w.r.t. to an update function.
appendValue :: WidgetRef — String — GuiPort — I0 ()

Appends a String value to the contents of a TextEdit widget and adjust the view to the
end of the TextEdit widget.

appendStyledValue :: WidgetRef — String — [Style] — GuiPort — I0 ()

Appends a String value with style tags to the contents of a TextEdit widget and adjust
the view to the end of the TextEdit widget. Different styles can be combined, e.g., to
get bold blue text on a red background. If Bold, Italic and Underline are combined,
currently all but one of these are ignored. This is an experimental function and might
be changed in the future.

addRegionStyle :: WidgetRef — (Int,Int) — (Int,Int) — Style — GuiPort — IO ()

Adds a style value in a region of a TextEdit widget. The region is specified a start and
end position similarly to getCursorPosition. Different styles can be combined, e.g., to
get bold blue text on a red background. If Bold, Italic and Underline are combined,
currently all but one of these are ignored. This is an experimental function and might
be changed in the future.

removeRegionStyle :: WidgetRef — (Int,Int) — (Int,Int) — Style — GuiPort — IO
O

Removes a style value in a region of a TextEdit widget. The region is specified a start
and end position similarly to getCursorPosition. This is an experimental function
and might be changed in the future.

getCursorPosition :: WidgetRef — GuiPort — IO (Int,Int)

Get the position (line,column) of the insertion cursor in a TextEdit widget. Lines are
numbered from 1 and columns are numbered from 0.

seeText :: WidgetRef — (Int,Int) — GuiPort — I0 O

Adjust the view of a TextEdit widget so that the specified line/column character is
visible. Lines are numbered from 1 and columns are numbered from 0.

focusInput :: WidgetRef — GuiPort — I0 ()

Sets the input focus of this GUI to the widget referred by the first argument. This is
useful for automatically selecting input entries in an application.

addCanvas :: WidgetRef — [CanvasItem] — GuiPort — IO ()
Adds a list of canvas items to a canvas referred by the first argument.
popupMessage :: String — I0 ()

A simple popup message.

127

Cmd :: (GuiPort — IO ()) — Confltem

A simple event handler that can be associated to a widget. The event handler takes a
GUI port as parameter in order to read or write values from/into the GUI.

Command :: (GuiPort — IO [ReconfigureIltem]) — Confltem

An event handler that can be associated to a widget. The event handler takes a GUI
port as parameter (in order to read or write values from/into the GUI) and returns a
list of widget reference/configuration pairs which is applied after the handler in order
to configure some GUI widgets.

Button :: (GuiPort — IO ()) — [ConfItem] — Widget
A button with an associated event handler which is activated if the button is pressed.
ConfigButton :: (GuiPort — IO [Reconfigureltem]) — [ConflItem] — Widget

A button with an associated event handler which is activated if the button is pressed.
The event handler is a configuration handler (see Command) that allows the configura-
tion of some widgets.

TextEditScroll :: [ConfItem] — Widget

A text edit widget with vertical and horizontal scrollbars. The argument contains the
configuration options for the text edit widget.

ListBoxScroll :: [ConfItem] — Widget

A list box widget with vertical and horizontal scrollbars. The argument contains the
configuration options for the list box widget.

CanvasScroll :: [ConfItem] — Widget

A canvas widget with vertical and horizontal scrollbars. The argument contains the
configuration options for the text edit widget.

EntryScroll :: [ConfItem] — Widget

An entry widget with a horizontal scrollbar. The argument contains the configuration
options for the entry widget.

getOpenFile :: I0 String

Pops up a GUI for selecting an existing file. The file with its full path name will be

NN

returned (or ”” if the user cancels the selection).

getOpenFileWithTypes :: [(String,String)] — I0 String

Pops up a GUI for selecting an existing file. The parameter is a list of pairs of file types
that could be selected. A file type pair consists of a name and an extension for that

9999

file type. The file with its full path name will be returned (or ”” if the user cancels the

selection).

128

getSaveFile :: I0 String

Pops up a GUI for choosing a file to save some data. If the user chooses an existing
file, she/he will asked to confirm to overwrite it. The file with its full path name will

999

be returned (or 77 if the user cancels the selection).
getSaveFileWithTypes :: [(String,String)] — IO String

Pops up a GUI for choosing a file to save some data. The parameter is a list of pairs of
file types that could be selected. A file type pair consists of a name and an extension
for that file type. If the user chooses an existing file, she/he will asked to confirm to

9999

overwrite it. The file with its full path name will be returned (or ”” if the user cancels

the selection).
chooseColor :: IO String

Pops up a GUI dialog box to select a color. The name of the color will be returned (or

7N

if the user cancels the selection).

A.2.30 Library Integer

A collection of common operations on integer numbers. Most operations make no assumption on
the precision of integers. Operation bitNot is necessarily an exception.

Exported functions:

(") :: Int — Int — Int

The value of a ~ b is a raised to the power of b. Fails if b &1t; 0. Executes in 0(log
b) steps.

pow :: Int — Int — Int

The value of pow a b is a raised to the power of b. Fails if b &1lt; 0. Executes in
0(log b) steps.

ilog :: Int — Int

The value of ilog n is the floor of the logarithm in the base 10 of n. Fails if n &1t;=
0. For positive integers, the returned value is 1 less the number of digits in the decimal
representation of n.

isqrt :: Int — Int

The value of isqrt n is the floor of the square root of n. Fails if n &1t; 0. Executes
in 0(log n) steps, but there must be a better way.

factorial :: Int — Int

The value of factorial n is the factorial of n. Fails if n &1t; O.

129

binomial :: Int — Int — Int

The value of binomial n mis n(n-1)...(n-m+1)/m(m-1)*...1 Fails if ‘m <= 0‘ or ‘n <

m'.

abs :: Int — Int

The value of abs n is the absolute value of n.
max3 :: a —+ a — a — a

Returns the maximum of the three arguments.
mind :: a -+ a — a — a

Returns the minimum of the three arguments.
maxlist :: [a] — a

Returns the maximum of a list of integer values. Fails if the list is empty.
minlist :: [a] — a

Returns the minimum of a list of integer values. Fails if the list is empty.
bitTrunc :: Int — Int — Int

The value of bitTrunc n m is the value of the n least significant bits of m.
bitAnd :: Int — Int — Int

Returns the bitwise AND of the two arguments.
bitOr :: Int — Int — Int

Returns the bitwise inclusive OR of the two arguments.
bitNot :: Int — Int

Returns the bitwise NOT of the argument. Since integers have unlimited precision, only
the 32 least significant bits are computed.

bitXor :: Int — Int — Int

Returns the bitwise exclusive OR of the two arguments.
even :: Int — Bool

Returns whether an integer is even
odd :: Int — Bool

Returns whether an integer is odd

130

A.2.31 Library 10

Library for IO operations like reading and writing files that are not already contained in the prelude.

Exported types:

data Handle

The abstract type of a handle for a stream.
FExported constructors:

data I0OMode

The modes for opening a file.

FExported constructors:
o ReadMode :: IOMode
e WriteMode :: IOMode

e AppendMode :: IOMode

data SeekMode

The modes for positioning with hSeek in a file.

Ezxported constructors:
e AbsoluteSeek :: SeekMode
e RelativeSeek :: SeekMode

o SeekFromEnd :: SeekMode

Exported functions:

stdin :: Handle
Standard input stream.
stdout :: Handle
Standard output stream.
stderr :: Handle
Standard error stream.
openFile :: String — I0OMode — IO Handle

Opens a file in specified mode and returns a handle to it.

131

hClose :: Handle — I0 (O

Closes a file handle and flushes the buffer in case of output file.
hFlush :: Handle — I0 QO

Flushes the buffer associated to handle in case of output file.
hIsEQOF :: Handle — IO Bool

Is handle at end of file?
isEOF :: IO Bool

Is standard input at end of file?
hSeek :: Handle — SeekMode — Int — I0 ()

Set the position of a handle to a seekable stream (e.g., a file). If the second argument
is AbsoluteSeek, SeekFromEnd, or RelativeSeek, the position is set relative to the
beginning of the file, to the end of the file, or to the current position, respectively.

hWaitForInput :: Handle — Int — IO Bool

Waits until input is available on the given handle. If no input is available within t
milliseconds, it returns False, otherwise it returns True.

hWaitForInputs :: [Handle] — Int — IO Int

Waits until input is available on some of the given handles. If no input is available
within t milliseconds, it returns -1, otherwise it returns the index of the corresponding
handle with the available data.

hWaitForInputOrMsg :: Handle — [a] — IO (Either Handle [a])

Waits until input is available on a given handles or a message in the message stream.
Usually, the message stream comes from an external port. Thus, this operation im-
plements a committed choice over receiving input from an IO handle or an external
port.

Note that the implementation of this operation works only with Sicstus-Prolog 3.8.5 or
higher (due to a bug in previous versions of Sicstus-Prolog).

hWaitForInputsOrMsg :: [Handle] — [a] — IO (Either Int [a])

Waits until input is available on some of the given handles or a message in the message
stream. Usually, the message stream comes from an external port. Thus, this operation
implements a committed choice over receiving input from IO handles or an external
port.

Note that the implementation of this operation works only with Sicstus-Prolog 3.8.5 or
higher (due to a bug in previous versions of Sicstus-Prolog).

132

hReady :: Handle — IO Bool
Checks whether an input is available on a given handle.
hGetChar :: Handle — IO Char

Reads a character from an input handle and returns it. Throws an error if the end of
file has been reached.

hGetLine :: Handle — IO String

Reads a line from an input handle and returns it. Throws an error if the end of file has
been reached while reading the first character. If the end of file is reached later in the
line, it ist treated as a line terminator and the (partial) line is returned.

hGetContents :: Handle — IO String

Reads the complete contents from an input handle and closes the input handle before

returning the contents.
getContents :: I0 String
Reads the complete contents from the standard input stream until EOF.
hPutChar :: Handle — Char — I0 ()
Puts a character to an output handle.
hPutStr :: Handle — String — I0 ()
Puts a string to an output handle.
hPutStrLn :: Handle — String — I0 O
Puts a string with a newline to an output handle.
hPrint :: Handle — a — I0 ()
Converts a term into a string and puts it to an output handle.
hIsReadable :: Handle — IO Bool
Is the handle readable?
hIsWritable :: Handle — IO Bool
Is the handle writable?
hIsTerminalDevice :: Handle — IO Bool

Is the handle connected to a terminal?

A.2.32 Library IOExts

Library with some useful extensions to the IO monad.

133

Exported types:

data IORef

Mutable variables containing values of some type. The values are not evaluated when
they are assigned to an IORef.

FExported constructors:

Exported functions:

execCmd :: String — IO (Handle,Handle,Handle)

Executes a command with a new default shell process. The standard I/O streams
of the new process (stdin,stdout,stderr) are returned as handles so that they can be
explicitly manipulated. They should be closed with I0.hClose since they are not closed
automatically when the process terminates.

evalCmd :: String — [String] — String — IO (Int,String,String)

Executes a command with the given arguments as a new default shell process and
provides the input via the process’ stdin input stream. The exit code of the process
and the contents written to the standard I/O streams stdout and stderr are returned.

connectToCommand :: String — I0 Handle

Executes a command with a new default shell process. The input and output streams
of the new process is returned as one handle which is both readable and writable. Thus,
writing to the handle produces input to the process and output from the process can
be retrieved by reading from this handle. The handle should be closed with I0.hClose
since they are not closed automatically when the process terminates.

readCompleteFile :: String — IO String

An action that reads the complete contents of a file and returns it. This action can be
used instead of the (lazy) readFile action if the contents of the file might be changed.

updateFile :: (String — String) — String — I0 (O
An action that updates the contents of a file.
exclusivelIO :: String — I0 a — I0 a

Forces the exclusive execution of an action via a lock file. For instance, (exclusivelO
"myaction.lock” act) ensures that the action ”act” is not executed by two processes on
the same system at the same time.

setAssoc :: String — String — I0 O

Defines a global association between two strings. Both arguments must be evaluable to
ground terms before applying this operation.

134

getAssoc :: String — I0 (Maybe String)

Gets the value associated to a string. Nothing is returned if there does not exist an
associated value.

newIORef :: a — I0 (IORef a)
Creates a new IORef with an initial values.
readIORef :: IORef a — I0 a
Reads the current value of an IORef.
writeIORef :: IORef a — a — I0 ()
Updates the value of an IORef.
modifyIORef :: IORef a — (a — a) — I0 Q)

Modify the value of an IORef.

A.2.33 Library JavaScript

A library to represent JavaScript programs.

Exported types:

data JSExp

Type of JavaScript expressions.

FExported constructors:

e JSString :: String — JSExp
JSString

— string constant

e JSInt :: Int — JSExp
JSInt

— integer constant

e JSBool :: Bool — JSExp
JSBool

— Boolean constant

e JSIVar :: Int — JSExp
JSIVar

— indexed variable

135

e JSTArrayldx :: Int — Int — JSExp
JSTIArrayldx

— array access to index array variable

e JSOp :: String — JSExp — JSExp — JSExp
JS0p

— infix operator expression

e JSFCall :: String — [JSExp] — JSExp
JSFCall

— function call

e JSApply :: JSExp — JSExp — JSExp
JSApply

— function call where the function is an expression

e JSLambda :: [Int] — [JSStat] — JSExp
JSLambda

— (anonymous) function with indexed variables as arguments

data JSStat

Type of JavaScript statements.

FExported constructors:

e JSAssign :: JSExp — JSExp — JSStat

JSAssign
— assignment

e JSIf :: JSExp — [JSStat] — [JSStat] — JSStat
JSIf

— conditional

e JSSwitch :: JSExp — [JSBranch] — JSStat
JSSwitch

— switch statement

e JSPCall :: String — [JSExp] — JSStat
JSPCall

136

— procedure call

e JSReturn :: JSExp — JSStat
JSReturn

— return statement

e JSVarDecl :: Int — JSStat
JSVarDecl

— local variable declaration

data JSBranch

Ezxported constructors:

e JSCase :: String — [JSStat] — JSBranch
JSCase

— case branch

e JSDefault :: [JSStat] — JSBranch
JSDefault

— default branch

data JSFDecl

FExported constructors:

e JSFDecl :: String — [Int] — [JSStat] — JSFDecl

Exported functions:
showJSExp :: JSExp — String

Shows a JavaScript expression as a string in JavaScript syntax.
showJSStat :: Int — JSStat — String

Shows a JavaScript statement as a string in JavaScript syntax with indenting.
showJSFDecl :: JSFDecl — String

Shows a JavaScript function declaration as a string in JavaScript syntax.
jsConsTerm :: String — [JSExp] — JSExp

Representation of constructor terms in JavaScript.

137

A.2.34 Library KeyDatabase

This module provides a general interface for databases (persistent predicates) where each entry
consists of a key and an info part. The key is an integer and the info is arbitrary. All functions are
parameterized with a dynamic predicate that takes an integer key as a first parameter.

Exported functions:

existsDBKey :: (Int — a — Dynamic) — Int — Query Bool
Exists an entry with a given key in the database?
allDBKeys :: (Int — a — Dynamic) — Query [Int]
Query that returns all keys of entries in the database.
allDBInfos :: (Int — a — Dynamic) — Query [a]
Query that returns all infos of entries in the database.
allDBKeyInfos :: (Int — a — Dynamic) — Query [(Int,a)]
Query that returns all key/info pairs of the database.
getDBInfo :: (Int — a — Dynamic) — Int — Query (Maybe a)
Gets the information about an entry in the database.
index :: a — [a] — Int
compute the position of an entry in a list fail, if given entry is not an element.
sortByIndex :: [(Int,a)] — [a]
Sorts a given list by associated index .
groupByIndex :: [(Int,a)] — [[all

Sorts a given list by associated index and group for identical index. Empty lists are
added for missing indexes

getDBInfos :: (Int — a — Dynamic) — [Int] — Query (Maybe [a])
Gets the information about a list of entries in the database.
deleteDBEntry :: (Int — a — Dynamic) — Int — Transaction ()

Deletes an entry with a given key in the database. No error is raised if the given key
does not exist.

deleteDBEntries :: (Int — a — Dynamic) — [Int] — Transaction ()

Deletes all entries with the given keys in the database. No error is raised if some of the

given keys does not exist.

138

updateDBEntry :: (Int — a — Dynamic) — Int — a — Transaction ()
Overwrites an existing entry in the database.
newDBEntry :: (Int — a — Dynamic) — a — Transaction Int
Stores a new entry in the database and return the key of the new entry.
newDBKeyEntry :: (Int — a — Dynamic) — Int — a — Tramsaction ()

Stores a new entry in the database under a given key. The transaction fails if the key
already exists.

cleanDB :: (Int — a — Dynamic) — Transaction ()

Deletes all entries in the database.

A.2.35 Library KeyDatabaseSQLite

This module provides a general interface for databases (persistent predicates) where each entry
consists of a key and an info part. The key is an integer and the info is arbitrary. All functions are
parameterized with a dynamic predicate that takes an integer key as a first parameter.

This module reimplements the interface of the module KeyDatabase based on the SQLite database
engine. In order to use it you need to have sqlite3 in your PATH environment variable or adjust
the value of the constant path<code>to</code>sqlite3.

Programs that use the KeyDatabase module can be adjusted to use this module instead by re-
placing the imports of Dynamic, Database, and KeyDatabase with this module and changing the
declarations of database predicates to use the function persistentSQLite instead of dynamic or
persistent. This module redefines the types Dynamic, Query, and Transaction and although
both implementations can be used in the same program (by importing modules qualified) they
cannot be mixed.

Compared with the interface of KeyDatabase, this module lacks definitions for index, sortByIndex,
groupByIndex, and runTNA and adds the functions deleteDBEntries and closeDBHandles.

Exported types:

type Key = Int

type KeyPred a = Int — a — Dynamic

data Query

Queries can read but not write to the database.
FExported constructors:

data Transaction

139

http://sqlite.org/

Transactions can modify the database and are executed atomically.
FExported constructors:

data Dynamic

Result type of database predicates.
FExported constructors:

data ColVal

Abstract type for value restrictions
FExported constructors:

data TError

The type of errors that might occur during a transaction.

Ezxported constructors:

e TError :: TErrorKind — String — TError

data TErrorKind

The various kinds of transaction errors.

Ezxported constructors:
e KeyNotExistsError :: TErrorKind
e NoRelationshipError :: TErrorKind
e DuplicateKeyError :: TErrorKind
e KeyRequiredError :: TErrorKind
e UniqueError :: TErrorKind
e MinError :: TErrorKind
e MaxError :: TErrorKind
e UserDefinedError :: TErrorKind

e ExecutionError :: TErrorKind

140

Exported functions:

runQ

:: Query a — I0 a

Runs a database query in the IO monad.

transformQ :: (a — b) — Query a — Query b

runT ::

Applies a function to the result of a database query.
Transaction a — I0 (Either a TError)

Runs a transaction atomically in the IO monad.

Transactions are immediate, which means that locks are acquired on all databases as
soon as the transaction is started. After one transaction is started, no other database
connection will be able to write to the database or start a transaction. Other connections
can read the database during a transaction of another process.

The choice to use immediate rather than deferred transactions is conservative. It might
also be possible to allow multiple simultaneous transactions that lock tables on the first
database access (which is the default in SQLite). However this leads to unpredictable
order in which locks are taken when multiple databases are involved. The current
implementation fixes the locking order by sorting databases by their name and locking
them in order immediately when a transaction begins.

More information on * _transaction.html”>transactions in SQLite is available online.

runJustT :: Transaction a — I0 a

Executes a possibly composed transaction on the current state of dynamic predicates
as a single transaction. Similar to runT but a run-time error is raised if the execution
of the transaction fails.

getDB :: Query a — Transaction a

Lifts a database query to the transaction type such that it can be composed with other
transactions. Run-time errors that occur during the execution of the given query are
transformed into transaction errors.

returnT :: a — Transaction a

Returns the given value in a transaction that does not access the database.

doneT :: Transaction ()

Returns the unit value in a transaction that does not access the database. Useful to
ignore results when composing transactions.

errorT :: TError — Transaction a

Aborts a transaction with an error.

"http://sqlite.org/lang

141

failT :: String — Transaction a
Aborts a transaction with a user-defined error message.
(|>>=) :: Transaction a — (a — Transaction b) — Transaction b

Combines two transactions into a single transaction that executes both in sequence.
The first transaction is executed, its result passed to the function which computes the
second transaction, which is then executed to compute the final result.

If the first transaction is aborted with an error, the second transaction is not executed.
(I>>) :: Transaction a — Transaction b — Transaction b

Combines two transactions to execute them in sequence. The result of the first trans-
action is ignored.

sequenceT :: [Transaction a] — Transaction [a]

Executes a list of transactions sequentially and computes a list of all results.
sequenceT_ :: [Transaction a] — Transaction ()

Executes a list of transactions sequentially, ignoring their results.
mapT :: (a — Transaction b) — [a] — Transaction [b]

Applies a function that yields transactions to all elements of a list, executes the trans-
action sequentially, and collects their results.

mapT_ :: (a — Transaction b) — [a] — Tramsaction ()

Applies a function that yields transactions to all elements of a list, executes the trans-
actions sequentially, and ignores their results.

persistentSQLite :: String — String — [String] — Int — a — Dynamic

This function is used instead of dynamic or persistent to declare predicates whose
facts are stored in an SQLite database.

If the provided database or the table do not exist they are created automatically when
the declared predicate is accessed for the first time.

Multiple column names can be provided if the second argument of the predicate is a
tuple with a matching arity. Other record types are not supported. If no column names
are provided a table with a single column called info is created. Columns of name
rowid are not supported and lead to a run-time error.

existsDBKey :: (Int — a — Dynamic) — Int — Query Bool
Checks whether the predicate has an entry with the given key.

allDBKeys :: (Int — a — Dynamic) — Query [Int]

142

Returns a list of all stored keys. Do not use this function unless the database is small.
allDBInfos :: (Int — a — Dynamic) — Query [al

Returns a list of all info parts of stored entries. Do not use this function unless the
database is small.

allDBKeyInfos :: (Int — a — Dynamic) — Query [(Int,a)]

Returns a list of all stored entries. Do not use this function unless the database is small.
(6=) :: Int — a — ColVal

Constructs a value restriction for the column given as first argument
someDBKeys :: (Int — a — Dynamic) — [ColVal] — Query [Int]

Returns a list of those stored keys where the corresponding info part matches the gioven
value restriction. Safe to use even on large databases if the number of results is small.

someDBInfos :: (Int — a — Dynamic) — [ColVal] — Query [a]

Returns a list of those info parts of stored entries that match the given value restrictions
for columns. Safe to use even on large databases if the number of results is small.

someDBKeyInfos :: (Int — a — Dynamic) — [ColVal] — Query [(Int,a)]

Returns a list of those entries that match the given value restrictions for columns. Safe
to use even on large databases if the number of results is small.

someDBKeyProjections :: (Int — a — Dynamic) — [Int] — [ColVal]l — Query
[(Int,b)]

Returns a list of column projections on those entries that match the given value re-
strictions for columns. Safe to use even on large databases if the number of results is
small.

getDBInfo :: (Int — a — Dynamic) — Int — Query (Maybe a)

Queries the information stored under the given key. Yields Nothing if the given key is
not present.

getDBInfos :: (Int — a — Dynamic) — [Int] — Query (Maybe [a])

Queries the information stored under the given keys. Yields Nothing if a given key is
not present.

deleteDBEntry :: (Int — a — Dynamic) — Int — Transaction ()

Deletes the information stored under the given key. If the given key does not exist this
transaction is silently ignored and no error is raised.

deleteDBEntries :: (Int — a — Dynamic) — [Int] — Transaction ()

143

Deletes the information stored under the given keys. No error is raised if (some of) the
keys do not exist.

updateDBEntry :: (Int — a — Dynamic) — Int — a — Tramsaction ()

Updates the information stored under the given key. The transaction is aborted with a
KeyNotExistsError if the given key is not present in the database.

newDBEntry :: (Int — a — Dynamic) — a — Transaction Int
Stores new information in the database and yields the newly generated key.
newDBKeyEntry :: (Int — a — Dynamic) — Int — a — Tramsaction ()

Stores a new entry in the database under a given key. The transaction fails if the key
already exists.

cleanDB :: (Int — a — Dynamic) — Tramsaction ()
Deletes all entries from the database associated with a predicate.
closeDBHandles :: I0 ()

Closes all database connections. Should be called when no more database access will
be necessary.

showTError :: TError — String

Transforms a transaction error into a string.

A.2.36 Library KeyDB

This module provides a general interface for databases (persistent predicates) where each entry
consists of a key and an info part. The key is an integer and the info is arbitrary. All functions are
parameterized with a dynamic predicate that takes an integer key as a first parameter.

Remark: This library has been revised to the library KeyDatabase. Thus, it might not be further
supported in the future.

Exported functions:

existsDBKey :: (Int — a — Dynamic) — Int — I0 Bool
Exists an entry with a given key in the database?

allDBKeys :: (Int — a — Dynamic) — IO [Int]
Returns all keys of entries in the database.

getDBInfo :: (Int — a — Dynamic) — Int — I0 a
Gets the information about an entry in the database.

index :: a — [a] — Int

144

compute the position of an entry in a list fail, if given entry is not an element.
sortByIndex :: [(Int,a)] — [al]

Sorts a given list by associated index .
groupByIndex :: [(Int,a)] — [[all

Sorts a given list by associated index and group for identical index. Empty lists are
added for missing indexes

getDBInfos :: (Int — a — Dynamic) — [Int] — I0 [a]
Gets the information about a list of entries in the database.
deleteDBEntry :: (Int — a — Dynamic) — Int — I0 O
Deletes an entry with a given key in the database.
updateDBEntry :: (Int — a — Dynamic) — Int — a — I0 ()
Overwrites an existing entry in the database.
newDBEntry :: (Int — a — Dynamic) — a — IO Int
Stores a new entry in the database and return the key of the new entry.
cleanDB :: (Int — a — Dynamic) — I0 O

Deletes all entries in the database.

A.2.37 Library List

Library with some useful operations on lists.

Exported functions:

elemIndex :: a — [a] — Maybe Int

Returns the index i of the first occurrence of an element in a list as (Just i), otherwise
Nothing is returned.

elemIndices :: a — [a] — [Int]
Returns the list of indices of occurrences of an element in a list.
find :: (a — Bool) — [a] — Maybe a

Returns the first element e of a list satisfying a predicate as (Just e), otherwise
Nothing is returned.

findIndex :: (a — Bool) — [a] — Maybe Int

145

Returns the index i of the first occurrences of a list element satisfying a predicate as
(Just i), otherwise Nothing is returned.

findIndices :: (a — Bool) — [a]l] — [Int]

Returns the list of indices of list elements satisfying a predicate.
nub :: [a] — [al

Removes all duplicates in the argument list.
nubBy :: (a — a — Bool) — [a] — [a]

Removes all duplicates in the argument list according to an equivalence relation.
delete :: a — [a] — [a]

Deletes the first occurrence of an element in a list.
deleteBy :: (a — a — Bool) — a — [a] — [al

Deletes the first occurrence of an element in a list according to an equivalence relation.
A\) :: [a] — [a] — [a]

Computes the difference of two lists.
union :: [a] — [a] — [al

Computes the union of two lists.
unionBy :: (a — a — Bool) — [a] — [a] — [al

Computes the union of two lists according to the given equivalence relation
intersect :: [a]l] — [a] — [a]

Computes the intersection of two lists.
intersectBy :: (a — a — Bool) — [a] — [a] — [a]

Computes the intersection of two lists according to the given equivalence relation
intersperse :: a — [a] — [al

Puts a separator element between all elements in a list.

Example: (intersperse 9 [1,2,3,4]) = [1,9,2,9,3,9,4]
intercalate :: [a] — [[al]l — [al

intercalate xs xssis equivalent to (concat (intersperse xs xss)). It inserts the
list xs in between the lists in xss and concatenates the result.

transpose :: [[al]l — [[all

146

Transposes the rows and columns of the argument.

Example: (transpose [[1,2,3],[4,5,6]1]1) = [[1,4],[2,5],[3,6]]
diagonal :: [[a]l]l — [a]

Diagonalization of a list of lists. Fairly merges (possibly infinite) list of (possibly infinite)
lists.

permutations :: [a] — [[all
Returns the list of all permutations of the argument.
partition :: (a — Bool) — [a]l — ([al,[al)

Partitions a list into a pair of lists where the first list contains those elements that
satisfy the predicate argument and the second list contains the remaining arguments.

Example: (partition (<4) [8,1,5,2,4,3]) = ([1,2,3],[8,5,4])
group :: [a] — [[all

Splits the list argument into a list of lists of equal adjacent elements.

Example: (group [1,2,2,3,3,3,4]) = [[1],[2,2],[3,3,3], [4]]
groupBy :: (a — a — Bool) — [a] — [[all

Splits the list argument into a list of lists of related adjacent elements.
splitOn :: [a] — [a]l — [[al]

Breaks the second list argument into pieces separated by the first list argument, con-
suming the delimiter. An empty delimiter is invalid, and will cause an error to be
raised.

split :: (a — Bool) — [a] — [[all

Splits a list into components delimited by separators, where the predicate returns True
for a separator element. The resulting components do not contain the separators. Two
adjacent separators result in an empty component in the output.

Spht (::a> ?aabbaca’ == [””,””,”bb”,”C”,””} Spht <::a) ny [7377]
inits :: [a] — [[all

Returns all initial segments of a list, starting with the shortest. Example: inits
(1,2,3] == [[],[1],[1,2],[1,2,3]]

tails :: [a] — [[all
Returns all final segments of a list, starting with the longest. Example: tails [1,2,3]

== [[1,2,3],[2,3],[3],[]]

147

replace :: a — Int — [a] — [al
Replaces an element in a list.
isPrefix0f :: [a] — [a]l — Bool
Checks whether a list is a prefix of another.
isSuffix0f :: [a] — [a]l — Bool
Checks whether a list is a suffix of another.
isInfix0f :: [a] — [a] — Bool
Checks whether a list is contained in another.
sortBy :: (a — a — Bool) — [a] — [a]
Sorts a list w.r.t. an ordering relation by the insertion method.
insertBy :: (a — a — Bool) — a — [a] — [al
Inserts an object into a list according to an ordering relation.
last :: [a] — a
Returns the last element of a non-empty list.
init :: [a] — [a]
Returns the input list with the last element removed.
sum :: [Int] — Int
Returns the sum of a list of integers.
product :: [Int] — Int
Returns the product of a list of integers.
maximum :: [a] — a
Returns the maximum of a non-empty list.
maximumBy :: (a — a — Ordering) — [a] — a
Returns the maximum of a non-empty list according to the given comparison function
minimum :: [a] — a
Returns the minimum of a non-empty list.
minimumBy :: (a — a — Ordering) — [a] — a

Returns the minimum of a non-empty list according to the given comparison function

148

scanl :: (a - b = a) - a — [b] — [a]

scanl is similar to foldl, but returns a list of successive reduced values from the left:
scanl f z [x1, x2, ...] == [z, z f x1, (z £ x1) f x2, ...]

scanll :: (a =& a — a) — [a] — [al

scanll is a variant of scanl that has no starting value argument: scanll f [x1, x2, ...]
== [x1, x1 f x2, ...]

scanr :: (a - b - b) - b — [a]l] — [b]

scanr is the right-to-left dual of scanl.
scanrl :: (a —» a — a) — [a] — [al]

scanrl is a variant of scanr that has no starting value argument.
mapAccumlL :: (a — b — (a,c)) — a — [b] — (a,[c])

The mapAccumLl function behaves like a combination of map and foldl; it applies a
function to each element of a list, passing an accumulating parameter from left to right,
and returning a final value of this accumulator together with the new list.

mapAccumR :: (a — b — (a,c)) — a — [b] — (a,l[lc])

The mapAccumR function behaves like a combination of map and foldr; it applies a
function to each element of a list, passing an accumulating parameter from right to left,
and returning a final value of this accumulator together with the new list.

cycle :: [a] — [a]
Builds an infinite list from a finite one.
unfoldr :: (a — Maybe (b,a)) — a — [b]

Builds a list from a seed value.

A.2.38 Library Maybe

Library with some useful functions on the Maybe datatype.

Exported functions:
isJust :: Maybe a — Bool

Return True iff the argument is of the form Just _.
isNothing :: Maybe a — Bool

Return True iff the argument is of the form Nothing.

fromJust :: Maybe a — a

149

Extract the argument from the Just constructor and throw an error if the argument is
Nothing.

fromMaybe :: a — Maybe a — a

Extract the argument from the Just constructor or return the provided default value
if the argument is Nothing.

listToMaybe :: [a]l] — Maybe a
Return Nothing on an empty list or Just x where x is the first list element.
maybeToList :: Maybe a — [a]
Return an empty list for Nothing or a singleton list for Just x.
catMaybes :: [Maybe al — [a]
Return the list of all Just values.
mapMaybe :: (a — Maybe b) — [a] — [b]

Apply a function which may throw out elements using the Nothing constructor to a list

of elements.
(>>-) :: Maybe a — (a — Maybe b) — Maybe b

Monadic bind for Maybe. Maybe can be interpreted as a monad where Nothing is
interpreted as the error case by this monadic binding.

sequenceMaybe :: [Maybe a] — Maybe [a]
Monadic sequence for Maybe.

mapMMaybe :: (a — Maybe b) — [a] — Maybe [b]
Monadic map for Maybe.

mplus :: Maybe a — Maybe a — Maybe a

Combine two Maybes, returning the first Just value, if any.

A.2.39 Library NamedSocket

Library to support network programming with sockets that are addressed by symbolic names. In

contrast to raw sockets (see library Socket), this library uses the Curry Port Name Server to

provide sockets that are addressed by symbolic names rather than numbers.

In standard applications, the server side uses the operations 1istenOn and socketAccept to provide

some service on a named socket, and the client side uses the operation connectToSocket to request

a service.

150

Exported types:

data Socket

Abstract type for named sockets.

Ezxported constructors:

Exported functions:
listenOn :: String — IO Socket

Creates a server side socket with a symbolic name.
socketAccept :: Socket — I0 (String,Handle)

Returns a connection of a client to a socket. The connection is returned as a pair
consisting of a string identifying the client (the format of this string is implementation-
dependent) and a handle to a stream communication with the client. The handle is
both readable and writable.

waitForSocketAccept :: Socket — Int — IO (Maybe (String,Handle))

Waits until a connection of a client to a socket is available. If no connection is available
within the time limit, it returns Nothing, otherwise the connection is returned as a pair
consisting of a string identifying the client (the format of this string is implementation-
dependent) and a handle to a stream communication with the client.

sClose :: Socket — I0 ()
Closes a server socket.
socketName :: Socket — String
Returns a the symbolic name of a named socket.
connectToSocketRepeat :: Int — I0 a — Int — String — I0 (Maybe Handle)

Waits for connection to a Unix socket with a symbolic name. In contrast to
connectToSocket, this action waits until the socket has been registered with its sym-
bolic name.

connectToSocketWait :: String — I0 Handle

Wiaits for connection to a Unix socket with a symbolic name and return the handle of
the connection. This action waits (possibly forever) until the socket with the symbolic
name is registered.

connectToSocket :: String — I0 Handle

Creates a new connection to an existing(!) Unix socket with a symbolic name. If the
symbolic name is not registered, an error is reported.

151

A.2.40 Library Parser

Library with functional logic parser combinators.

Adapted from: Rafael Caballero and Francisco J. Lopez-Fraguas: A Functional Logic Perspective
of Parsing. In Proc. FLOPS’99, Springer LNCS 1722, pp. 85-99, 1999

Exported types:

type Parser a = [a] — [a]

type ParserRep a b = a — [b] — [b]

Exported functions:
(<I>) :: ([a] = [a]) — ([a] — [a]l) — [a] — [a]
Combines two parsers without representation in an alternative manner.
(<I1>) :: (@ = [b] — [b]) —» (a —» [b] — [b]) — a — [b] — [b]
Combines two parsers with representation in an alternative manner.
(<x>) :: ([a] — [a]) — ([a] — [al) — [a] — [a]
Combines two parsers (with or without representation) in a sequential manner.
(>>>) :: ([al] = [a]) = b = b — [a] — [a]
Attaches a representation to a parser without representation.
empty :: [a] — [al
The empty parser which recognizes the empty word.
terminal :: a — [a] — [a]
A parser recognizing a particular terminal symbol.
satisfy :: (a — Bool) — a — [a] — [al
A parser (with representation) recognizing a terminal satisfying a given predicate.
star :: (a = [b] — [b]) — [a] — [b] — [b]

A star combinator for parsers. The returned parser repeats zero or more times a parser
p with representation and returns the representation of all parsers in a list.

some :: (a — [b]l] — [bl) — [al] — [b]l] — [b]
A some combinator for parsers. The returned parser repeats the argument parser (with

representation) at least once.

152

A.2.41 Library Ports

Library for distributed programming with ports. This paper® contains a description of the basic
ideas behind this library.

Exported types:

data Port

The internal constructor for the port datatype is not visible to the user.
FExported constructors:

data SP_Msg

A 7stream port” is an adaption of the port concept to model the communication with
bidirectional streams, i.e., a stream port is a port connection to a bidirectional stream
(e.g., opened by openProcessPort) where the communication is performed via the fol-

lowing stream port messages.

Ezxported constructors:

e SP_Put :: String — SP_Msg
SP_Put s

— write the argument s on the output stream

e SP_GetLine :: String — SP_Msg

SP_GetLine s
— unify the argument s with the next text line of the input stream

e SP_GetChar :: Char — SP_Msg
SP_GetChar c

— unify the argument ¢ with the next character of the input stream

e SP_EOF :: Bool — SP_Msg
SP_EOF b

— unify the argument b with True if we are at the end of the input stream, otherwise with

False

e SP_Close :: SP_Msg
SP_Close

— close the input/output streams

Shttp://www.informatik.uni-kiel.de/ mh/papers/PPDP99.html

153

Exported functions:

openPort :: Port a — [a] — Bool
Opens an internal port for communication.
send :: a — Port a — Bool
Sends a message to a port.
doSend :: a — Port a — I0 ()
I/0O action that sends a message to a port.
ping :: Int — Port a — IO (Maybe Int)
Checks whether port p is still reachable.
timeoutOnStream :: Int — [a]l] — Maybe [al
Checks for instantiation of a stream within some amount of time.
openProcessPort :: String — I0 (Port SP_Msg)
Opens a new connection to a process that executes a shell command.
openNamedPort :: String — IO [al]
Opens an external port with a symbolic name.
connectPortRepeat :: Int — I0 a — Int — String — I0 (Maybe (Port b))

Waits for connection to an external port. In contrast to connectPort, this action waits
until the external port has been registered with its symbolic name.

connectPortWait :: String — IO (Port a)

Waits for connection to an external port and return the connected port. This action
waits (possibly forever) until the external port is registered.

connectPort :: String — IO (Port a)

Connects to an external port. The external port must be already registered, otherwise
an error is reported.

choiceSPEP :: Port SP_Msg — [a] — Either String [al

This function implements a committed choice over the receiving of messages via a stream
port and an external port.

Note that the implementation of choiceSPEP works only with Sicstus-Prolog 3.8.5 or
higher (due to a bug in previous versions of Sicstus-Prolog).

newObject :: (a — [b] — Bool) — a — Port b — Bool

154

Creates a new object (of type State -> [msg] -> Bool) with an initial state and a port
to which messages for this object can be sent.

newNamedObject :: (a — [b] — Bool) — a — String — I0 ()

Creates a new object (of type State -> [msg] -> Bool) with a symbolic port name to
which messages for this object can be sent.

runNamedServer :: ([a] — IO b) — String — I0 b
Runs a new server (of type [msg] -> I0 a) on a named port to which messages can
be sent.

A.2.42 Library Pretty

This library provides pretty printing combinators. The interface is that of Daan Leijen’s library
linear-time, bounded implementation by Olaf Chitil. Note that the implementation of £ill and
fillBreak is not linear-time bounded Support of ANSI escape codes for formatting and colorisation
of documents in text terminals (see https://en.wikipedia.org/wiki/ANSIescapecode)

Exported types:

data Doc

The abstract data type Doc represents pretty documents.

FExported constructors:

Exported functions:
pPrint :: Doc — String
Standard printing with a column length of 80.
empty :: Doc
The empty document
isEmpty :: Doc — Bool
Is the document empty?
text :: String — Doc

The document (text s) contains the literal string s. The string shouldn’t contain any
newline (\n) characters. If the string contains newline characters, the function string
should be used.

linesep :: String — Doc

The document (1linesep s) advances to the next line and indents to the current nesting
level. Document (linesep s) behaves like (text s) if the line break is undone by

group.

155

<http://www.cs.uu.nl/~daan/download/pprint/pprint.html
http://www.cs.kent.ac.uk/pubs/2006/2381/index.html

hardline :: Doc

The document hardline advances to the next line and indents to the current nesting
level. hardline cannot be undone by group.

line :: Doc

The document 1line advances to the next line and indents to the current nesting level.
Document 1line behaves like (text " ") if the line break is undone by group.

linebreak :: Doc

The document linebreak advances to the next line and indents to the current nesting
level. Document linebreak behaves like (text "") if the line break is undone by

group.
softline :: Doc

The document softline behaves like space if the resulting output fits the page, oth-
erwise it behaves like 1ine. softline = group line

softbreak :: Doc

The document softbreak behaves like (text "") if the resulting output fits the page,
otherwise it behaves like 1ine. softbreak = group linebreak

group :: Doc — Doc

The combinator group is used to specify alternative layouts. The document (group x)
undoes all line breaks in document x. The resulting line is added to the current line if
that fits the page. Otherwise, the document x is rendered without any changes.

nest :: Int — Doc — Doc

The document (nest i d) renders document d with the current indentation level in-
creased by i (See also hang, align and indent).

nest 2 (text "hello" $$ text "world") $$ text "!"
outputs as:

hello
world

hang :: Int — Doc — Doc

The combinator hang implements hanging indentation. The document (hang i d)
renders document d with a nesting level set to the current column plus i. The following
example uses hanging indentation for some text:

156

test = hang 4
(fillSep
(map text
(words "the hang combinator indents these words !")))

Which lays out on a page with a width of 20 characters as:

the hang combinator
indents these
words !

The hang combinator is implemented as:
hang i x = align (nest i x)

align :: Doc — Doc
The document (align d) renders document d with the nesting level set to the
current column. It is used for example to implement hang’.

As an example, we will put a document right above another one, regardless of the
current nesting level:

x $$y
test

align (x $$ y)
text "hi" <+> (text "nice" $$ text "world")

which will be layed out as:

hi nice
world
indent :: Int — Doc — Doc

The document (indent i d) indents document d with i spaces.

test = indent 4 (fillSep (map text
(words "the indent combinator indents these words !")))

Which lays out with a page width of 20 as:
the indent
combinator

indents these
words !

157

combine :: Doc — Doc — Doc — Doc

The document (combine ¢ dl1 d2) combines document d1 and d2 with document c in
between using (<>) with identity empty. Thus, the following equations hold.

combine c di empty == dil

combine c empty d2 == d2
combine c dil d2 == dl <> ¢ <> d2 if neither dl1 nor d2 are empty
(<>) :: Doc — Doc — Doc

The document (x <> y) concatenates document x and document y. It is an associative
operation having empty as a left and right unit.

(<+>) :: Doc — Doc — Doc

The document (x <+> y) concatenates document x and y with a space in between
with identity empty.

($$) :: Doc — Doc — Doc

The document (x $$ y) concatenates document x and y with a 1ine in between with
identity empty.

(<$+$>) :: Doc — Doc — Doc

The document (x <$+$> y) concatenates document x and y with a blank line in
between with identity empty.

(</>) :: Doc — Doc — Doc

The document (x </> y) concatenates document x and y with a softline in between
with identity empty. This effectively puts x and y either next to each other (with a
space in between) or underneath each other.

(<$$>) :: Doc — Doc — Doc

The document (x <$$> y) concatenates document x and y with a linebreak in be-
tween with identity empty.

(<//>) :: Doc — Doc — Doc

The document (x <//> y) concatenates document x and y with a softbreak in be-
tween with identity empty. This effectively puts x and y either right next to each other
or underneath each other.

(<$!$>) :: Doc — Doc — Doc

The document (x <$!$> y) concatenates document x and y with a hardline in be-
tween with identity empty. This effectively puts x and y underneath each other.

158

compose :: (Doc — Doc — Doc) — [Doc] — Doc

The document (compose f xs) concatenates all documents xs with function f. Func-
tion £ should be like (<+>), ($$) and so on.

hsep :: [Doc] — Doc
The document (hsep xs) concatenates all documents xs horizontally with (<+>).
vsep :: [Doc] — Doc

The document (vsep xs) concatenates all documents xs vertically with ($$). If a
group undoes the line breaks inserted by vsep, all documents are separated with a
space.

someText = map text (words ("text to lay out"))
test

text "some" <+> vsep someText
This is layed out as:

some text
to
lay
out

The align combinator can be used to align the documents under their first element:
test = text "some" <+> align (vsep someText)
This is printed as:

some text
to
lay
out

vsepBlank :: [Doc] — Doc

The document vsep xs concatenates all documents xs vertically with (<$+$>). If a
group undoes the line breaks inserted by vsepBlank, all documents are separated with
a space.

fillSep :: [Doc] — Doc

The document (£illSep xs) concatenates documents xs horizontally with (</>) as
long as its fits the page, than inserts a 1line and continues doing that for all documents
in xs. fillSep xs = foldr (</>) empty xs

159

sep :: [Doc] — Doc

The document (sep xs) concatenates all documents xs either horizontally with (<+>),
if it fits the page, or vertically with ($$). sep xs = group (vsep xs)

hcat :: [Doc] — Doc
The document (hcat xs) concatenates all documents xs horizontally with (<>).
vcat :: [Doc] — Doc

The document (vcat xs) concatenates all documents xs vertically with (<$$>). If a
group undoes the line breaks inserted by vcat, all documents are directly concatenated.

fillCat :: [Doc] — Doc

The document (fillCat xs) concatenates documents xs horizontally with (<//>)
as long as its fits the page, than inserts a linebreak and continues doing that for all
documents in xs. fillCat xs = foldr (<//>) empty xs

cat :: [Doc] — Doc

The document (cat xs) concatenates all documents xs either horizontally with (<>),
if it fits the page, or vertically with (<$$>). cat xs = group (vcat xs)

punctuate :: Doc — [Doc] — [Doc]

(punctuate p xs) concatenates all documents xs with document p except for the last

document.

someText = map text ["words","in","a","tuple"]
test

parens (align (cat (punctuate comma someText)))
This is layed out on a page width of 20 as:
(words,in,a,tuple)
But when the page width is 15, it is layed out as:
(words,
in,
a,

tuple)

(If you want put the commas in front of their elements instead of at the end, you should

use tupled or, in general, encloseSep.)

encloseSep :: Doc — Doc — Doc — [Doc] — Doc

160

The document (encloseSep 1 r s xs) concatenates the documents xs seperated by
s and encloses the resulting document by 1 and r. The documents are rendered hori-
zontally if that fits the page. Otherwise they are aligned vertically. All seperators are
put in front of the elements.

For example, the combinator 1ist can be defined with encloseSep:

list xs
test

encloseSep lbracket rbracket comma xs
text "list" <+> (list (map int [10,200,3000]))

Which is layed out with a page width of 20 as:
list [10,200,3000]

But when the page width is 15, it is layed out as:
list [10

,200
,3000]

encloseSepSpaced :: Doc — Doc — Doc — [Doc] — Doc

The document (encloseSepSpaced 1 r s xs) concatenates the documents xs seper-
ated by s and encloses the resulting document by 1 and r. In addition, after each
occurrence of s, after 1, and before r, a space is inserted. The documents are rendered
horizontally if that fits the page. Otherwise they are aligned vertically. All seperators
are put in front of the elements.

hEncloseSep :: Doc — Doc — Doc — [Doc] — Doc

The document (hEncloseSep 1 r s xs) concatenates the documents xs seperated by
s and encloses the resulting document by 1 and r.

The documents are rendered horizontally.

fillEncloseSep :: Doc — Doc — Doc — [Doc] — Doc

The document (fillEncloseSep 1 r s xs) concatenates the documents xs seperated
by s and encloses the resulting document by 1 and r.

The documents are rendered horizontally if that fits the page. Otherwise they are
aligned vertically. All seperators are put in front of the elements.

fillEncloseSepSpaced :: Doc — Doc — Doc — [Doc] — Doc

The document (fillEncloseSepSpaced 1 r s xs) concatenates the documents xs
seperated by s and encloses the resulting document by 1 and r. In addition, after each
occurrence of s, after 1, and before r, a space is inserted.

The documents are rendered horizontally if that fits the page. Otherwise, they are
aligned vertically. All seperators are put in front of the elements.

161

list :: [Doc] — Doc

The document (list xs) comma seperates the documents xs and encloses them in
square brackets. The documents are rendered horizontally if that fits the page. Other-
wise they are aligned vertically. All comma seperators are put in front of the elements.

listSpaced :: [Doc] — Doc
Spaced version of list
set :: [Doc] — Doc

The document (set xs) comma seperates the documents xs and encloses them in
braces. The documents are rendered horizontally if that fits the page. Otherwise they
are aligned vertically. All comma seperators are put in front of the elements.

setSpaced :: [Doc] — Doc
Spaced version of set
tupled :: [Doc] — Doc

The document (tupled xs) comma seperates the documents xs and encloses them in
parenthesis. The documents are rendered horizontally if that fits the page. Otherwise
they are aligned vertically. All comma seperators are put in front of the elements.

tupledSpaced :: [Doc] — Doc
Spaced version of tupled
semiBraces :: [Doc] — Doc

The document (semiBraces xs) seperates the documents xs with semi colons and
encloses them in braces. The documents are rendered horizontally if that fits the page.
Otherwise they are aligned vertically. All semi colons are put in front of the elements.

semiBracesSpaced :: [Doc] — Doc
Spaced version of semiBraces
enclose :: Doc — Doc — Doc — Doc

The document (enclose 1 r x) encloses document x between documents 1 and r using
(<>).enclose lrx=1<>3x<>Tr

squotes :: Doc — Doc

Document (squotes x) encloses document x with single quotes "’ ".
dquotes :: Doc — Doc

Document (dquotes x) encloses document x with double quotes.

bquotes :: Doc — Doc

162

Document (bquotes x) encloses document x with back quotes "‘".
parens :: Doc — Doc

Document (parens x) encloses document x in parenthesis, " (" and ")".
parensIf :: Bool — Doc — Doc

Document (parensIf x) encloses document x in parenthesis," (" and ")", iff the con-
dition is true.

angles :: Doc — Doc
Document (angles x) encloses document x in angles, "<" and ">".
braces :: Doc — Doc
Document (braces x) encloses document x in braces, "{" and "}".
brackets :: Doc — Doc
Document (brackets x) encloses document x in square brackets, "[" and "]".
char :: Char — Doc

The document (char c) contains the literal character c. The character should not be
a newline (\n), the function line should be used for line breaks.

string :: String — Doc

The document (string s) concatenates all characters in s using line for newline
characters and char for all other characters. It is used instead of text whenever the

text contains newline characters.
int :: Int — Doc

The document (int i) shows the literal integer i using text.
float :: Float — Doc

The document (float f) shows the literal float £ using text.
lparen :: Doc

The document 1paren contains a left parenthesis, " (".
rparen :: Doc

The document rparen contains a right parenthesis, ")".
langle :: Doc

The document langle contains a left angle, "<".

rangle :: Doc

163

The document rangle contains a right angle, ">".
lbrace :: Doc
The document lbrace contains a left brace, "{".
rbrace :: Doc
The document rbrace contains a right brace, "}".
lbracket :: Doc
The document lbracket contains a left square bracket, " [".
rbracket :: Doc
The document rbracket contains a right square bracket, "1"
squote :: Doc
The document squote contains a single quote, "’ ".
dquote :: Doc
The document dquote contains a double quote.
semi :: Doc
The document semi contains a semi colon, ";".
colon :: Doc
The document colon contains a colon, ":".
comma :: Doc
The document comma contains a comma, ",".
space :: Doc

The document space contains a single space, " ".
X <+>y = x <> gpace <>y

dot :: Doc

The document dot contains a single dot, ".".
backslash :: Doc

The document backslash contains a back slash, "\".
equals :: Doc

The document equals contains an equal sign, "=".

164

larrow :: Doc

The document larrow contains a left arrow sign, "<-".
rarrow :: Doc

The document rarrow contains a right arrow sign, "->".
doubleArrow :: Doc

The document doubleArrow contains an double arrow sign, "=>".
doubleColon :: Doc

The document doubleColon contains a double colon sign, "::".
bar :: Doc

The document bar contains a vertical bar sign, "|".
at :: Doc

The document at contains an at sign, "@".
tilde :: Doc

The document tilde contains a tilde sign, "~".

fill :: Int — Doc — Doc

The document (£ill i d) renders document d. It than appends spaces until the width
is equal to i. If the width of d is already larger, nothing is appended. This combinator is
quite useful in practice to output a list of bindings. The following example demonstrates
this.

types = [("empty","Doc")
, ("nest","Int -> Doc -> Doc")

, ("linebreak", "Doc")]

ptype (name,tp)
= fill 6 (text name) <+> text "::" <+> text tp

test = text "let" <+> align (vcat (map ptype types))

Which is layed out as:

let empty :: Doc
nest :: Int -> Doc -> Doc
linebreak :: Doc

165

Note that £i11 is not guaranteed to be linear-time bounded since it has to compute the
width of a document before pretty printing it

fillBreak :: Int — Doc — Doc

The document (fillBreak i d) first renders document d. It than appends spaces
until the width is equal to i. If the width of d is already larger than i, the nesting
level is increased by i and a 1ine is appended. When we redefine ptype in the previous
example to use fillBreak, we get a useful variation of the previous output:

ptype (name,tp)
= fillBreak 6 (text name) <+> text "::" <+> text tp

The output will now be:

let empty :: Doc
nest :: Int -> Doc -> Doc
linebreak
:: Doc

Note that £i11Break is not guaranteed to be linear-time bounded since it has to com-
pute the width of a document before pretty printing it

bold :: Doc — Doc

The document (bold d) displays document d with bold text
faint :: Doc — Doc

The document (faint d) displays document d with faint text
blinkSlow :: Doc — Doc

The document (blinkSlow d) displays document d with slowly blinking text (rarely
supported)

blinkRapid :: Doc — Doc

The document (blinkRapid d) displays document d with rapidly blinking text (rarely
supported)

italic :: Doc — Doc

The document (italic d) displays document d with italicized text (rarely supported)
underline :: Doc — Doc

The document (underline d) displays document d with underlined text

crossout :: Doc — Doc

166

The document (crossout d) displays document d with crossed out text
inverse :: Doc — Doc

The document (inverse d) displays document d with inversed coloring, i.e. use text
color of d as background color and background color of d as text color

black :: Doc — Doc

The document (black d) displays document d with black text color
red :: Doc — Doc

The document (red d) displays document d with red text color
green :: Doc — Doc

The document (green d) displays document d with green text color
yellow :: Doc — Doc

The document (yellow d) displays document d with yellow text color
blue :: Doc — Doc

The document (blue d) displays document d with blue text color
magenta :: Doc — Doc

The document (magenta d) displays document d with magenta text color
cyan :: Doc — Doc

The document (cyan d) displays document d with cyan text color
white :: Doc — Doc

The document (white d) displays document d with white text color
bgBlack :: Doc — Doc

The document (bgBlack d) displays document d with black background color
bgRed :: Doc — Doc

The document (bgRed d) displays document d with red background color
bgGreen :: Doc — Doc

The document (bgGreen d) displays document d with green background color
bgYellow :: Doc — Doc

The document (bgYellow d) displays document d with yellow background color

bgBlue :: Doc — Doc

167

The document (bgBlue d) displays document d with blue background color
bgMagenta :: Doc — Doc

The document (bgMagenta d) displays document d with magenta background color
bgCyan :: Doc — Doc

The document (bgCyan d) displays document d with cyan background color
bgWhite :: Doc — Doc

The document (bgWhite d) displays document d with white background color
pretty :: Int — Doc — String

(pretty w d) pretty prints document d with a page width of w characters

A.2.43 Library Profile

Preliminary library to support profiling.

Exported types:

data ProcessInfo

The data type for representing information about the state of a Curry process.

FExported constructors:

e RunTime :: ProcessInfo

RunTime
— the run time in milliseconds

e ElapsedTime :: ProcessInfo

ElapsedTime
— the elapsed time in milliseconds

e Memory :: ProcessInfo

Memory
— the total memory in bytes

e Code :: ProcessInfo

Code
— the size of the code area in bytes
e Stack :: ProcessInfo

Stack

168

— the size of the local stack for recursive functions in bytes

e Heap :: ProcessInfo

Heap
— the size of the heap to store term structures in bytes

e Choices :: ProcessInfo

Choices
— the size of the choicepoint stack

e GarbageCollections :: ProcessInfo

GarbageCollections

— the number of garbage collections performed

Exported functions:
getProcessInfos :: I0 [(ProcessInfo,Int)]

Returns various informations about the current state of the Curry process. Note that
the returned values are very implementation dependent so that one should interpret
them with care!

garbageCollector0ff :: I0 (O

Turns off the garbage collector of the run-time system (if possible). This could be useful
to get more precise data of memory usage.

garbageCollectorOn :: I0 ()
Turns on the garbage collector of the run-time system (if possible).
garbageCollect :: I0 ()

Invoke the garbage collector (if possible). This could be useful before run-time critical
operations.

showMemInfo :: [(ProcessInfo,Int)] — String

Get a human readable version of the memory situation from the process infos.
printMemInfo :: I0 ()

Print a human readable version of the current memory situation of the Curry process.
profileTime :: I0 a — I0 a

Print the time needed to execute a given 10 action.

profileTimeNF :: a — I0 ()

169

Evaluates the argument to normal form and print the time needed for this evaluation.
profileSpace :: I0 a — I0 a

Print the time and space needed to execute a given 10 action. During the executation,
the garbage collector is turned off to get the total space usage.

profileSpaceNF :: a — I0 (O

Evaluates the argument to normal form and print the time and space needed for this
evaluation. During the evaluation, the garbage collector is turned off to get the total
space usage.

evalTime :: a — a

Evaluates the argument to normal form (and return the normal form) and print the
time needed for this evaluation on standard error. Included for backward compatibility
only, use profileTime!

evalSpace :: a — a

Evaluates the argument to normal form (and return the normal form) and print the
time and space needed for this evaluation on standard error. During the evaluation,
the garbage collector is turned off. Included for backward compatibility only, use pro-
fileSpace!

A.2.44 Library Prolog

A library defining a representation for Prolog programs together with a simple pretty printer. It
does not cover all aspects of Prolog but might be useful for applications generating Prolog programs.

Exported types:

data P1lClause

A Prolog clause is either a program clause consisting of a head and a body, or a directive
or a query without a head.

FExported constructors:
e PlClause :: String — [P1lTerm] — [P1lGoal] — P1lClause
e PlDirective :: [PlGoal] — PlClause

e P1Query :: [PlGoal] — PlClause

data PlGoal

A Prolog goal is a literal, a negated goal, or a conditional.

Ezxported constructors:

170

e P1Lit :: String — [P1lTerm] — PlGoal

e PlNeg :: [PlGoal] — PlGoal

e P1Cond :: [P1lGoal] — [P1lGoal] — [PlGoal]l] — PlGoal
data PlTerm

A Prolog term is a variable, atom, number, or structure.

FExported constructors:

e PlVar :: String — PlTerm

PlAtom :: String — PlTerm

PlInt :: Int — PlTerm

PlFloat :: Float — PlTerm

P1Struct :: String — [P1lTerm] — PlTerm

Exported functions:

plList :: [P1lTerm] — PlTerm
A Prolog list of Prolog terms.
showP1Prog :: [P1lClause] — String
Shows a Prolog program in standard Prolog syntax.

showP1Clause :: PlClause — String

showP1Goals :: [PlGoal] — String

showPlGoal :: PlGoal — String

showPlTerm :: PlTerm — String

A.2.45 Library PropertyFile

A library to read and update files containing properties in the usual equational syntax, i.e., a
property is defined by a line of the form prop=value where prop starts with a letter. All other
lines (e.g., blank lines or lines starting with # are considered as comment lines and are ignored.

171

Exported functions:
readPropertyFile :: String — I0 [(String,String)]

Reads a property file and returns the list of properties. Returns empty list if the
property file does not exist.

updatePropertyFile :: String — String — String — I0 O

Update a property in a property file or add it, if it is not already there.

A.2.46 Library Read

Library with some functions for reading special tokens.
This library is included for backward compatibility. You should use the library ReadNumeric which
provides a better interface for these functions.

Exported functions:

readNat :: String — Int

Read a natural number in a string. The string might contain leadings blanks and the
the number is read up to the first non-digit.

readInt :: String — Int

Read a (possibly negative) integer in a string. The string might contain leadings blanks
and the the integer is read up to the first non-digit.

readHex :: String — Int

Read a hexadecimal number in a string. The string might contain leadings blanks and
the the integer is read up to the first non-heaxdecimal digit.

A.2.47 Library ReadNumeric

Library with some functions for reading and converting numeric tokens.

Exported functions:

readInt :: String — Maybe (Int,String)

Read a (possibly negative) integer as a first token in a string. The string might contain
leadings blanks and the integer is read up to the first non-digit. If the string does not
start with an integer token, Nothing is returned, otherwise the result is Just (v, s),
where v is the value of the integer and s is the remaing string without the integer token.

readNat :: String — Maybe (Int,String)

172

Read a natural number as a first token in a string. The string might contain leadings
blanks and the number is read up to the first non-digit. If the string does not start
with a natural number token, Nothing is returned, otherwise the result is Just (v,
s) where v is the value of the number and s is the remaing string without the number
token.

readHex :: String — Maybe (Int,String)

Read a hexadecimal number as a first token in a string. The string might contain
leadings blanks and the number is read up to the first non-hexadecimal digit. If the
string does not start with a hexadecimal number token, Nothing is returned, otherwise
the result is Just (v, s) where v is the value of the number and s is the remaing string
without the number token.

readOct :: String — Maybe (Int,String)

Read an octal number as a first token in a string. The string might contain leadings
blanks and the number is read up to the first non-octal digit. If the string does not
start with an octal number token, Nothing is returned, otherwise the result is Just (v,
s) where v is the value of the number and s is the remaing string without the number
token.

A.2.48 Library ReadShowTerm

Library for converting ground terms to strings and vice versa.

Exported functions:
showTerm :: a — String

Transforms a ground(!) term into a string representation in standard prefix notation.
Thus, showTerm suspends until its argument is ground. This function is similar to
the prelude function show but can read the string back with readUnqualifiedTerm
(provided that the constructor names are unique without the module qualifier).

showQTerm :: a — String

Transforms a ground(!) term into a string representation in standard prefix notation.
Thus, showTerm suspends until its argument is ground. Note that this function differs
from the prelude function show since it prefixes constructors with their module name
in order to read them back with readQTerm.

readsUnqualifiedTerm :: [String] — String — [(a,String)]

Transform a string containing a term in standard prefix notation without module qual-
ifiers into the corresponding data term. The first argument is a non-empty list of
module qualifiers that are tried to prefix the constructor in the string in order to get
the qualified constructors (that must be defined in the current program!). In case of a
successful parse, the result is a one element list containing a pair of the data term and

the remaining unparsed string.

173

readUnqualifiedTerm :: [String] — String — a

Transforms a string containing a term in standard prefix notation without module
qualifiers into the corresponding data term. The first argument is a non-empty list of
module qualifiers that are tried to prefix the constructor in the string in order to get
the qualified constructors (that must be defined in the current program!).

Example: readUnqualifiedTerm ["Prelude"] "Just 3" evaluates to (Just 3)
readsTerm :: String — [(a,String)]

For backward compatibility. Should not be used since their use can be problematic in
case of constructors with identical names in different modules.

readTerm :: String — a

For backward compatibility. Should not be used since their use can be problematic in
case of constructors with identical names in different modules.

readsQTerm :: String — [(a,String)]

Transforms a string containing a term in standard prefix notation with qualified con-
structor names into the corresponding data term. In case of a successful parse, the
result is a one element list containing a pair of the data term and the remaining un-
parsed string.

readQTerm :: String — a

Transforms a string containing a term in standard prefix notation with qualified con-
structor names into the corresponding data term.

readQTermFile :: String — I0 a

Reads a file containing a string representation of a term in standard prefix notation and
returns the corresponding data term.

readQTermListFile :: String — I0 [al

Reads a file containing lines with string representations of terms of the same type and
returns the corresponding list of data terms.

writeQTermFile :: String — a — I0 O
Writes a ground term into a file in standard prefix notation.
writeQTermListFile :: String — [a] — I0 ()

Writes a list of ground terms into a file. Each term is written into a separate line which
might be useful to modify the file with a standard text editor.

174

A.2.49 Library SetFunctions

This module contains an implementation of set functions. The general idea of set functions is
described in:

S. Antoy, M. Hanus: Set Functions for Functional Logic Programming Proc. 11th Inter-
national Conference on Principles and Practice of Declarative Programming (PPDP’09),
pp- 73-82, ACM Press, 2009

Intuition: If £ is an n-ary function, then (setn f) is a set-valued function that collects all non-
determinism caused by f (but not the non-determinism caused by evaluating arguments!) in a set.
Thus, (setn £ al ... an) returns the set of all values of (f bl ... bn) where bi,...,bn are
values of the arguments al,...,an (i.e., the arguments are evaluated ”outside” this capsule so that
the non-determinism caused by evaluating these arguments is not captured in this capsule but
yields several results for (setn...). Similarly, logical variables occuring in al,...,an are not bound
inside this capsule (but causes a suspension until they are bound). The set of values returned by a
set function is represented by an abstract type Values on which several operations are defined in
this module. Actually, it is a multiset of values, i.e., duplicates are not removed.

Restrictions:

1. The set is a multiset, i.e., it might contain multiple values.

2. The multiset of values is completely evaluated when demanded. Thus, if it is infinite, its
evaluation will not terminate even if only some elements (e.g., for a containment test) are
demanded. However, for the emptiness test, at most one value will be computed

3. The arguments of a set function are strictly evaluated before the set functions itself will be
evaluated.

Since this implementation is restricted and prototypical, the interface is not stable and might
change.

Exported types:

data Values

Abstract type representing multisets of values.
Ezxported constructors:

Exported functions:

set0 :: a — Values a
Combinator to transform a 0-ary function into a corresponding set function.
setl :: (a - b) — a — Values b

Combinator to transform a unary function into a corresponding set function.

175

set2 :: (a - b =+ c) - a — b — Values ¢
Combinator to transform a binary function into a corresponding set function.
set3 :: (a 2 b —+>c —>d — a— b — c — Values d
Combinator to transform a function of arity 3 into a corresponding set function.
setd :: (a > b —>c —>d —>e) >a—>b—>c—>d— Values e
Combinator to transform a function of arity 4 into a corresponding set function.
setb :: (a 2 b —+>c—>d—>e >f) 2a—=>Db—=c—d— e — Values f
Combinator to transform a function of arity 5 into a corresponding set function.

set6 :: (a—+b +c —+d—+e +f +g) +a—+b—+c—+d—+e—f = Values
g

Combinator to transform a function of arity 6 into a corresponding set function.

set7 :: @a—+b—+c—+d—+e +f >g—>h -a—+b—>+c—+d—>e—>f g
— Values h

Combinator to transform a function of arity 7 into a corresponding set function.
isEmpty :: Values a — Bool
Is a multiset of values empty?
notEmpty :: Values a — Bool
Is a multiset of values not empty?
valueOf :: a — Values a — Bool
Is some value an element of a multiset of values?
choose :: Values a — (a,Values a)

Chooses (non-deterministically) some value in a multiset of values and returns the
chosen value and the remaining multiset of values. Thus, if we consider the operation
chooseValue by

chooseValue x = fst (choose x)

then (setl chooseValue) is the identity on value sets, i.e., (setl chooseValue s)
contains the same elements as the value set s.

chooseValue :: Values a — a

Chooses (non-deterministically) some value in a multiset of values and returns the
chosen value. Thus, (setl chooseValue) is the identity on value sets, i.e., (setl

chooseValue s) contains the same elements as the value set s.

176

select :: Values a — (a,Values a)

Selects (indeterministically) some value in a multiset of values and returns the selected
value and the remaining multiset of values. Thus, select has always at most one value.
It fails if the value set is empty.

NOTE: The usage of this operation is only safe (i.e., does not destroy completeness)
if all values in the argument set are identical.

selectValue :: Values a — a

Selects (indeterministically) some value in a multiset of values and returns the selected
value. Thus, selectValue has always at most one value. It fails if the value set is
empty.

NOTE: The usage of this operation is only safe (i.e., does not destroy completeness)
if all values in the argument set are identical. It returns a single value even for infinite

value sets (in contrast to select or choose).
mapValues :: (a — b) — Values a — Values b

Accumulates all elements of a multiset of values by applying a binary operation. This
is similarly to fold on lists, but the binary operation must be commutative so that
the result is independent of the order of applying this operation to all elements in the
multiset.

foldValues :: (a —+ a — a) — a — Values a — a

Accumulates all elements of a multiset of values by applying a binary operation. This
is similarly to fold on lists, but the binary operation must be commutative so that
the result is independent of the order of applying this operation to all elements in the
multiset.

minValue :: (a — a — Bool) — Values a — a

Returns the minimal element of a non-empty multiset of values with respect to a given
total ordering on the elements.

maxValue :: (a — a — Bool) — Values a — a

Returns the maximal element of a non-empty multiset of value with respect to a given
total ordering on the elements.

values2list :: Values a — IO [a]

Puts all elements of a multiset of values in a list. Since the order of the elements in the
list might depend on the time of the computation, this operation is an I/O action.

printValues :: Values a — I0 ()

Prints all elements of a multiset of values.

177

sortValues :: Values a — [al

Transforms a multiset of values into a list sorted by the standard term ordering. As a
consequence, the multiset of values is completely evaluated.

sortValuesBy :: (a — a — Bool) — Values a — [a]

Transforms a multiset of values into a list sorted by a given ordering on the values. As
a consequence, the multiset of values is completely evaluated. In order to ensure that
the result of this operation is independent of the evaluation order, the given ordering
must be a total order.

A.2.50 Library Socket

Library to support network programming with sockets. In standard applications, the server side
uses the operations listenOn and socketAccept to provide some service on a socket, and the client
side uses the operation connectToSocket to request a service.

Exported types:

data Socket

The abstract type of sockets.

Ezxported constructors:

Exported functions:
listenOn :: Int — IO Socket

Creates a server side socket bound to a given port number.
listenOnFresh :: I0 (Int,Socket)

Creates a server side socket bound to a free port. The port number and the socket is
returned.

socketAccept :: Socket — IO (String,Handle)

Returns a connection of a client to a socket. The connection is returned as a pair
consisting of a string identifying the client (the format of this string is implementation-
dependent) and a handle to a stream communication with the client. The handle is
both readable and writable.

waitForSocketAccept :: Socket — Int — IO (Maybe (String,Handle))

Waits until a connection of a client to a socket is available. If no connection is available
within the time limit, it returns Nothing, otherwise the connection is returned as a pair
consisting of a string identifying the client (the format of this string is implementation-
dependent) and a handle to a stream communication with the client.

178

sClose :: Socket — IO ()
Closes a server socket.
connectToSocket :: String — Int — IO Handle

Creates a new connection to a Unix socket.

A.2.51 Library System

Library to access parts of the system environment.

Exported functions:

getCPUTime :: IO Int
Returns the current cpu time of the process in milliseconds.
getElapsedTime :: I0 Int

Returns the current elapsed time of the process in milliseconds. This operation is not
supported in KiCS2 (there it always returns 0), but only included for compatibility

reasons.
getArgs :: I0 [String]

Returns the list of the program’s command line arguments. The program name is not
included.

getEnviron :: String — I0 String

Returns the value of an environment variable. The empty string is returned for unde-
fined environment variables.

setEnviron :: String — String — I0 O

Set an environment variable to a value. The new value will be passed to subsequent
shell commands (see system) and visible to subsequent calls to getEnviron (but it is
not visible in the environment of the process that started the program execution).

unsetEnviron :: String — I0 (O

Removes an environment variable that has been set by setEnviron.
getHostname :: IO String

Returns the hostname of the machine running this process.
getPID :: I0 Int

Returns the process identifier of the current Curry process.

getProgName :: IO String

179

Returns the name of the current program, i.e., the name of the main module currently
executed.

system :: String — IO Int

Executes a shell command and return with the exit code of the command. An exit
status of zero means successful execution.

exitWith :: Int — I0 a

Terminates the execution of the current Curry program and returns the exit code given
by the argument. An exit code of zero means successful execution.

sleep :: Int — I0 ()

The evaluation of the action (sleep n) puts the Curry process asleep for n seconds.
isPosix :: Bool

Is the underlying operating system a POSIX system (unix, MacOS)?
isWindows :: Bool

Is the underlying operating system a Windows system?

A.2.52 Library Time

Library for handling date and time information.

Exported types:

data ClockTime
ClockTime represents a clock time in some internal representation.

Ezxported constructors:

data CalendarTime

A calendar time is presented in the following form: (CalendarTime year month day
hour minute second timezone) where timezone is an integer representing the timezone

as a difference to UTC time in seconds.

FExported constructors:

e CalendarTime :: Int — Int — Int — Int — Int — Int — Int — CalendarTime

180

Exported functions:
ctYear :: CalendarTime — Int
The year of a calendar time.
ctMonth :: CalendarTime — Int
The month of a calendar time.
ctDay :: CalendarTime — Int
The day of a calendar time.
ctHour :: CalendarTime — Int
The hour of a calendar time.
ctMin :: CalendarTime — Int
The minute of a calendar time.
ctSec :: CalendarTime — Int
The second of a calendar time.
ctTZ :: CalendarTime — Int

The time zone of a calendar time. The value of the time zone is the difference to UTC

time in seconds.
getClockTime :: IO ClockTime
Returns the current clock time.
getLocalTime :: IO CalendarTime
Returns the local calendar time.
clockTimeToInt :: ClockTime — Int

Transforms a clock time into a unique integer. It is ensured that clock times that differs
in at least one second are mapped into different integers.

toCalendarTime :: ClockTime — I0 CalendarTime

Transforms a clock time into a calendar time according to the local time (if possible).
Since the result depends on the local environment, it is an I/O operation.

toUTCTime :: ClockTime — CalendarTime

Transforms a clock time into a standard UTC calendar time. Thus, this operationa is
independent on the local time.

toClockTime :: CalendarTime — ClockTime

181

Transforms a calendar time (interpreted as UTC time) into a clock time.
calendarTimeToString :: CalendarTime — String
Transforms a calendar time into a readable form.
toDayString :: CalendarTime — String
Transforms a calendar time into a string containing the day, e.g., ” September 23, 2006”.
toTimeString :: CalendarTime — String
Transforms a calendar time into a string containing the time.
addSeconds :: Int — ClockTime — ClockTime
Adds seconds to a given time.
addMinutes :: Int — ClockTime — ClockTime
Adds minutes to a given time.
addHours :: Int — ClockTime — ClockTime
Adds hours to a given time.
addDays :: Int — ClockTime — ClockTime
Adds days to a given time.
addMonths :: Int — ClockTime — ClockTime
Adds months to a given time.
addYears :: Int — ClockTime — ClockTime
Adds years to a given time.
daysOfMonth :: Int — Int — Int
Gets the days of a month in a year.
validDate :: Int — Int — Int — Bool
Is a date consisting of year/month/day valid?
compareDate :: CalendarTime — CalendarTime — Ordering
Compares two dates (don’t use it, just for backward compatibility!).
compareCalendarTime :: CalendarTime — CalendarTime — Ordering
Compares two calendar times.
compareClockTime :: ClockTime — ClockTime — Ordering

Compares two clock times.

182

A.2.53 Library Unsafe

Library containing unsafe operations. These operations should be carefully used (e.g., for testing
or debugging). These operations should not be used in application programs!

Exported functions:
unsafePerformIO0 :: I0 a — a
Performs and hides an I/O action in a computation (use with care!).
trace :: String — a — a
Prints the first argument as a side effect and behaves as identity on the second argument.
spawnConstraint :: Bool — a — a

Spawns a constraint and returns the second argument. This function can be consid-
ered as defined by spawnConstraint ¢ x | ¢ = x. However, the evaluation of the
constraint and the right-hand side are performed concurrently, i.e., a suspension of the
constraint does not imply a blocking of the right-hand side and the right-hand side
might be evaluated before the constraint is successfully solved. Thus, a computation
might return a result even if some of the spawned constraints are suspended (use the
PAKCS option +suspend to show such suspended goals).

isVar :: a — Bool

Tests whether the first argument evaluates to a currently unbound variable (use with
care!).

identicalVar :: a — a — Bool

Tests whether both arguments evaluate to the identical currently unbound variable
(use with care!). For instance, identicalVar (id x) (fst (x,1)) evaluates to True
whereas identicalVar x y and let x=1 in identicalVar x x evaluate to False

isGround :: a — Bool
Tests whether the argument evaluates to a ground value (use with care!).
compareAnyTerm :: a — a — Ordering

Comparison of any data terms, possibly containing variables. Data constructors are
compared in the order of their definition in the datatype declarations and recursively

in the arguments. Variables are compared in some internal order.
showAnyTerm :: a — String

Transforms the normal form of a term into a string representation in stan-
dard prefix notation. Thus, showAnyTerm evaluates its argument to normal
form. This function is similar to the function ReadShowTerm.showTerm but it also
transforms logic variables into a string representation that can be read back by
Unsafe.read(s)AnyUnqualifiedTerm. Thus, the result depends on the evaluation and
binding status of logic variables so that it should be used with care!

183

showAnyQTerm :: a — String

Transforms the normal form of a term into a string representation in standard prefix
notation. Thus, showAnyQTerm evaluates its argument to normal form. This function
is similar to the function ReadShowTerm. showQTerm but it also transforms logic variables
into a string representation that can be read back by Unsafe.read(s)AnyQTerm. Thus,
the result depends on the evaluation and binding status of logic variables so that it
should be used with care!

readsAnyUnqualifiedTerm :: [String] — String — [(a,String)]

Transform a string containing a term in standard prefix notation without module qual-
ifiers into the corresponding data term. The string might contain logical variable en-
codings produced by showAnyTerm. In case of a successful parse, the result is a one
element list containing a pair of the data term and the remaining unparsed string.

readAnyUnqualifiedTerm :: [String] — String — a

Transforms a string containing a term in standard prefix notation without module
qualifiers into the corresponding data term. The string might contain logical variable
encodings produced by showAnyTerm.

readsAnyQTerm :: String — [(a,String)]

Transforms a string containing a term in standard prefix notation with qualified con-
structor names into the corresponding data term. The string might contain logical
variable encodings produced by showAnyQTerm. In case of a successful parse, the re-
sult is a one element list containing a pair of the data term and the remaining unparsed
string.

readAny(QTerm :: String — a

Transforms a string containing a term in standard prefix notation with qualified con-
structor names into the corresponding data term. The string might contain logical
variable encodings produced by showAnyQTerm.

showAnyExpression :: a — String

Transforms any expression (even not in normal form) into a string representation in
standard prefix notation without module qualifiers. The result depends on the evalua-
tion and binding status of logic variables so that it should be used with care!

showAnyQExpression :: a — String

Transforms any expression (even not in normal form) into a string representation in
standard prefix notation with module qualifiers. The result depends on the evaluation
and binding status of logic variables so that it should be used with care!

readsAnyQExpression :: String — [(a,String)]

184

Transforms a string containing an expression in standard prefix notation with qualified
constructor names into the corresponding expression. The string might contain logical
variable and defined function encodings produced by showAnyQExpression. In case of
a successful parse, the result is a one element list containing a pair of the expression
and the remaining unparsed string.

readAny(QExpression :: String — a

Transforms a string containing an expression in standard prefix notation with qualified
constructor names into the corresponding expression. The string might contain logical
variable and defined function encodings produced by showAnyQExpression.

A.2.54 Library Test.EasyCheck

EasyCheck is a library for automated, specification-based testing of Curry programs. The ideas
behind EasyCheck are described in this paper The tool currycheck automatically executes tests
defined with this library. EasyCheck supports the definition of unit tests (also for I/O operations)
and property tests parameterized over some arguments. The latter kind of tests can only be
executed with KiCS2.

Exported types:
type Prop = [Test]
Abstract type to represent properties to be checked.
data PropIO
Abstract type to represent properties involving 10 actions.

Ezported constructors:

data Test
Abstract type to a single test for a property to be checked.
Exported constructors:
data Result
Data type to represent the result of checking a property.
FExported constructors:
e Undef :: Result
e Ok :: Result
e Falsified :: [String] — Result

e Ambigious :: [Bool] — [String] — Result

185

http://www-ps.informatik.uni-kiel.de/~sebf/pub/flops08.html

data Config

The configuration of property testing. The configuration contains

e the maximum number of tests,
e the maximum number of condition failures before giving up,
e an operation that shows the number and arguments of each test,

e a status whether it should work quietly.

Ezxported constructors:

Exported functions:

returns :: I0 a — a — ProplO

The property returns a x is satisfied if the execution of the I/O action a returns the
value x.

sameReturns :: I0 a — I0 a — PropIO

The property sameReturns al a2 is satisfied if the execution of the I/O actions a1 and
a2 return identical values.

result :: Test — Result
Extracts the result of a single test.
test :: a — ([al] — Bool) — [Testl]

Constructs a property to be tested from an arbitrary expression (first argument) and
a predicate that is applied to the list of non-deterministic values. The given predi-
cate determines whether the constructed property is satisfied or falsified for the given

expression.
(-=-) :: a —» a — [Test]

The property x -=- y is satisfied if x and y have deterministic values that are equal.
(<">) :: a = a — [Test]

The property x <~> 1y is satisfied if the sets of the values of x and y are equal.
(">) :: a —» a — [Test]

The property x > vy is satisfied if x evaluates to every value of y. Thus, the set of
values of y must be a subset of the set of values of x.

(<) :: a = a — [Test]

The property x <~ vy is satisfied if y evaluates to every value of x. Thus, the set of
values of x must be a subset of the set of values of y.

186

(<"">) :: a = a — [Test]
The property x <~~> y is satisfied if the multisets of the values of x and y are equal.
==>) :: Bool — [Test] — [Test]
A conditional property is tested if the condition evaluates to True.
solutionOf :: (a — Bool) — a

solutionOf p returns (non-deterministically) a solution of predicate p. This operation
is useful to test solutions of predicates.

is :: a — (a — Bool) — [Testl]

The property is x p is satisfied if x has a deterministic value which satisfies p.
isAlways :: a — (a — Bool) — [Test]

The property isAlways x p is satisfied if all values of x satisfy p.
isEventually :: a — (a — Bool) — [Test]

The property isEventually x p is satisfied if some value of x satisfies p.
uniquely :: Bool — [Test]

The property uniquely x is satisfied if x has a deterministic value which is true.
always :: Bool — [Test]

The property always x is satisfied if all values of x are true.
eventually :: Bool — [Test]

The property eventually x is satisfied if some value of x is true.
failing :: a — [Test]

The property failing x is satisfied if x has no value.
successful :: a — [Testl]

The property successful x is satisfied if x has at least one value.
deterministic :: a — [Test]

The property deterministic x is satisfied if x has exactly one value.
(#) :: a — Int — [Test]

The property x # n is satisfied if x has n values.
for :: a — (a — [Test]) — [Test]

The property for x p is satisfied if all values y of x satisfy property p x.

187

label :: String — [Test] — [Test]

classify :: Bool — String — [Test] — [Test]

trivial :: Bool — [Test] — [Test]

collect :: a — [Test] — [Test]

collectAs :: String — a — [Test] — [Test]

setMaxTest :: Int — Config — Config

Sets the maximum number of tests in a test configuration.
setMaxFail :: Int — Config — Config

Sets the maximum number of condition failures in a test configuration.
easyConfig :: Config

The default configuration for EasyCheck shows and deletes the number for each test.
verboseConfig :: Config

A verbose configuration which shows the arguments of every test.
quietConfig :: Config

A quiet configuration which shows nothing but failed tests.
checkO :: Config — String — [Test] — IO Bool

Checks a unit test with a given configuration (first argument) and a name for the test
(second argument). Returns a flag whether the test was successful.

checkWithValuesO :: Config — String — [Test] — IO Bool

Checks a unit test with a given configuration (first argument) and a name for the test
(second argument). Returns a flag whether the test was successful.

checkWithValuesl :: Config — String — [a] — (a — [Test]) — IO Bool

Checks a property parameterized over a single argument with a given configuration
(first argument), a name for the test (second argument), and all values given in the
third argument. Returns a flag whether the test was successful.

188

checkWithValues2 :: Config — String — [a] — [b] — (a — b — [Test]) — I0
Bool

Checks a property parameterized over two arguments with a given configuration (first
argument) a name for the test (second argument), and all values given in the third and
fourth argument. Returns a flag whether the test was successful.

checkWithValues3 :: Config — String — [a] — [b] — [c] - (a = b = ¢c —
[Test]) — I0 Bool

Checks a property parameterized over three arguments with a given configuration (first
argument) a name for the test (second argument), and all values given in the third,
fourth and fifth argument. Returns a flag whether the test was successful.

checkWithValues4 :: Config — String — [a] — [b] — [c] —» [d] - (& - b — ¢
— d — [Test]) — IO Bool

Checks a property parameterized over four arguments with a given configuration (first
argument) a name for the test (second argument), and all values given in the further
arguments. Returns a flag whether the test was successful.

checkWithValues5 :: Config — String — [a] — [b] — [c] — [d] — [e] =+ (a =+ b
— ¢ —+d — e — [Test]) — I0 Bool

Checks a property parameterized over five arguments with a given configuration (first
argument) a name for the test (second argument), and all values given in the further
arguments. Returns a flag whether the test was successful.

checkl :: Config — String — (a — [Test]) — IO Bool

Checks a property parameterized over a single argument with a given configuration
(first argument) and a name for the test (second argument). Returns a flag whether
the test was successful.

check2 :: Config — String — (a — b — [Test]) — IO Bool

Checks a property parameterized over two arguments with a given configuration (first
argument) and a name for the test (second argument). Returns a flag whether the test
was successful.

check3 :: Config — String — (a2 =& b — ¢ — [Test]) — IO Bool

Checks a property parameterized over three arguments with a given configuration (first
argument) and a name for the test (second argument). Returns a flag whether the test
was successful.

check4 :: Config — String — (a - b — ¢ — d — [Test]) — I0 Bool

Checks a property parameterized over four arguments with a given configuration (first
argument) and a name for the test (second argument). Returns a flag whether the test

was successful.

189

checkb :: Config — String -+ (a - b —- ¢ - d — e — [Test]) — I0 Bool

Checks a property parameterized over five arguments with a given configuration (first
argument) and a name for the test (second argument). Returns a flag whether the test
was successful.

easyCheckO :: String — [Test] — IO Bool

Checks a unit test according to the default configuration and a name for the test (first
argument). Returns a flag whether the test was successful.

easyCheckl :: String — (a — [Test]) — IO Bool

Checks a property parameterized over a single argument according to the default con-
figuration and a name for the test (first argument). Returns a flag whether the test was
successful.

easyCheck2 :: String — (a — b — [Test]) — IO Bool

Checks a property parameterized over two arguments according to the default config-
uration and a name for the test (first argument). Returns a flag whether the test was
successful.

easyCheck3 :: String —+ (a =& b — ¢ — [Test]) — I0 Bool

Checks a property parameterized over three arguments according to the default config-
uration and a name for the test (first argument). Returns a flag whether the test was
successful.

easyCheck4 :: String - (a =& b —+ ¢ — d — [Test]) — IO Bool

Checks a property parameterized over four arguments according to the default config-
uration and a name for the test (first argument). Returns a flag whether the test was
successful.

easyCheckb :: String — (a - b - ¢ - d — e — [Test]) — I0 Bool

Checks a property parameterized over five arguments according to the default config-
uration and a name for the test (first argument). Returns a flag whether the test was
successful.

verboseCheckO :: String — [Test] — IO Bool

Checks a unit test according to the verbose configuration and a name for the test (first
argument). Returns a flag whether the test was successful.

verboseCheckl :: String — (a — [Test]) — IO Bool

Checks a property parameterized over a single argument according to the verbose con-
figuration and a name for the test (first argument). Returns a flag whether the test was
successful.

190

verboseCheck2 :: String — (a — b — [Test]) — IO Bool

Checks a property parameterized over two arguments according to the verbose config-
uration and a name for the test (first argument). Returns a flag whether the test was
successful.

verboseCheck3 :: String — (a — b —+ ¢ — [Test]) — IO Bool

Checks a property parameterized over three arguments according to the verbose config-
uration and a name for the test (first argument). Returns a flag whether the test was
successful.

verboseCheck4 :: String -+ (a - b —+ ¢ — d — [Test]) — IO Bool

Checks a property parameterized over four arguments according to the verbose config-
uration and a name for the test (first argument). Returns a flag whether the test was
successful.

verboseCheckb :: String - (a - b -+ ¢ - d -+ e — [Test]) — IO Bool

Checks a property parameterized over five arguments according to the verbose config-
uration and a name for the test (first argument). Returns a flag whether the test was
successful.

valuesOfSearchTree :: SearchTree a — [al

Extracts values of a search tree according to a given strategy (here: randomized diago-
nalization of levels with flattening).

valuesOf :: a — [a]

Computes the list of all values of the given argument according to a given strategy
(here: randomized diagonalization of levels with flattening).

checkPropWithMsg :: String — IO Bool — IO (Maybe String)

Safely checks a property, i.e., catch all exceptions that might occur and return appro-
priate error message in case of a failed test.

checkPropIOWithMsg :: Config — String — PropI0 — I0 (Maybe String)

Safely checks an IO property, i.e., catch all exceptions that might occur and return ap-
propriate error message in case of a failed test. This operation is used by the currycheck
tool.

A.3 Data Structures and Algorithms

A.3.1 Library Array

Implementation of Arrays with Braun Trees. Conceptually, Braun trees are always infinite. Con-

sequently, there is no test on emptiness.

191

Exported types:

data Array

Ezxported constructors:

Exported functions:
emptyErrorArray :: Array a
Creates an empty array which generates errors for non-initialized indexes.
emptyDefaultArray :: (Int — a) — Array a
Creates an empty array, call given function for non-initialized indexes.
(//) :: Array a — [(Int,a)] — Array a
Inserts a list of entries into an array.
update :: Array a — Int — a — Array a
Inserts a new entry into an array.
applyAt :: Array a — Int — (a — a) — Array a
Applies a function to an element.
(1) :: Array a — Int — a
Yields the value at a given position.
listToDefaultArray :: (Int — a) — [a] — Array a
Creates a default array from a list of entries.
listToErrorArray :: [a]l] — Array a
Creates an error array from a list of entries.
combine :: (a — b — ¢) — Array a — Array b — Array c
combine two arbitrary arrays
combineSimilar :: (a — a — a) — Array a — Array a — Array a
the combination of two arrays with identical default function and a combinator which
is neutral in the default can be implemented much more efficient
A.3.2 Library Dequeue

An implementation of double-ended queues supporting access at both ends in constant amortized
time.

192

Exported types:
data Queue

The datatype of a queue.

FExported constructors:

Exported functions:
empty :: Queue a

The empty queue.
cons :: a — Queue a — Queue a

Inserts an element at the front of the queue.
snoc :: a — Queue a — Queue a

Inserts an element at the end of the queue.
isEmpty :: Queue a — Bool

Is the queue empty?
deqlength :: Queue a — Int

Returns the number of elements in the queue.
deqHead :: Queue a — a

The first element of the queue.
deqTail :: Queue a — Queue a

Removes an element at the front of the queue.
deqlast :: Queue a — a

The last element of the queue.
deqInit :: Queue a — Queue a

Removes an element at the end of the queue.
deqReverse :: Queue a — Queue a

Reverses a double ended queue.
rotate :: Queue a — Queue a

Moves the first element to the end of the queue.

matchHead :: Queue a — Maybe (a,Queue a)

193

Matches the front of a queue. matchHead q is equivalent to if isEmpty q then
Nothing else Just (deqHead q, deqTail q) but more efficient.

matchLast :: Queue a — Maybe (a,Queue a)

Matches the end of a queue. matchlLast q is equivalent to if isEmpty q then
Nothing else Just (deqlast q,deqInit q) but more efficient.

listToDeq :: [a]l] — Queue a
Transforms a list to a double ended queue.
deqTolist :: Queue a — [a]

Transforms a double ended queue to a list.

A.3.3 Library FiniteMap

A finite map is an efficient purely functional data structure to store a mapping from keys to values.
In order to store the mapping efficiently, an irreflexive(!) order predicate has to be given, i.e., the
order predicate 1le should not satisfy (1e x x) for some key x.

Example: To store a mapping from Int -> String, the finite map needs a Boolean predicate like
(<). This version was ported from a corresponding Haskell library

Exported types:

data FM

FExported constructors:

Exported functions:

emptyFM :: (a — a — Bool) — FM a b
The empty finite map.
unitFM :: (a - a — Bool) - a - b > FMab
Construct a finite map with only a single element.
listToFM :: (a — a — Bool) — [(a,b)] —- FM a b

Builts a finite map from given list of tuples (key,element). For multiple occurences of
key, the last corresponding element of the list is taken.

addToFM :: FMa b - a - b —- FM ab
Throws away any previous binding and stores the new one given.

addListToFM :: FM a b — [(a,b)] — FM a b

194

Throws away any previous bindings and stores the new ones given. The items are added
starting with the first one in the list

addToFMC :: (a -+ a —+a) - FMba—+b—a—>FMb a

Instead of throwing away the old binding, addToFM_C combines the new element with
the old one.

addListToFMC :: (a - a — a) - FM b a — [(b,a)] — FM Db a
Combine with a list of tuples (key,element), cf. addToFM_C
delFromFM :: FMab — a - FM a b

Deletes key from finite map. Deletion doesn’t complain if you try to delete something
which isn’t there

delListFromFM :: FM a b — [a] — FM a b

Deletes a list of keys from finite map. Deletion doesn’t complain if you try to delete
something which isn’t there

updFM :: FMab - a —- (b - b) - FMab
Applies a function to element bound to given key.

splitFM :: FM a b — a — Maybe (FM a b, (a,b))
Combines delFrom and lookup.

plusFM :: FMa b - FMab - FMab

Efficiently add key/element mappings of two maps into a single one. Bindings in right
argument shadow those in the left

plusFMC :: (a - a —-a) - FMba —>FMba—FMba

Efficiently combine key/element mappings of two maps into a single one, cf. addToFM_C
minusFM :: FMab - FMab — FMab

(minusFM al a2) deletes from al any bindings which are bound in a2
intersectFM :: FMab - FMab - FM ab

Filters only those keys that are bound in both of the given maps. The elements will be
taken from the second map.

intersectFMC :: (a ¥ b —+c¢) —FMda > FMdb — FMdc

Filters only those keys that are bound in both of the given maps and combines the
elements as in addToFM_C.

foldFM :: (a ¥ b > c > ¢c) > c >FMab — c

195

Folds finite map by given function.
mapFM :: (a - b - c) - FMab — FMac

Applies a given function on every element in the map.
filterFM :: (a - b — Bool) - FMab - FMab

Yields a new finite map with only those key/element pairs matching the given predicate.
sizeFM :: FM a b — Int

How many elements does given map contain?
eqgFM :: FM a b — FM a b — Bool

Do two given maps contain the same key/element pairs?
isEmptyFM :: FM a b — Bool

Is the given finite map empty?
elemFM :: a —+ FM a b — Bool

Does given map contain given key?
lookupFM :: FM a b —+ a — Maybe b

Retrieves element bound to given key
lookupWithDefaultFM :: FMab —- b -+ a — b

Retrieves element bound to given key. If the element is not contained in map, return
default value.

keyOrder :: FM a b —+ a — a — Bool
Retrieves the ordering on which the given finite map is built.
minFM :: FM a b — Maybe (a,b)

Retrieves the smallest key/element pair in the finite map according to the basic key
ordering.

maxFM :: FM a b — Maybe (a,b)

Retrieves the greatest key/element pair in the finite map according to the basic key
ordering.

fmTolList :: FM a b — [(a,b)]

Builds a list of key/element pairs. The list is ordered by the initially given irreflexive
order predicate on keys.

keysFM :: FM a b — [a]

196

Retrieves a list of keys contained in finite map. The list is ordered by the initially given
irreflexive order predicate on keys.

eltsFM :: FM a b — [b]

Retrieves a list of elements contained in finite map. The list is ordered by the initially
given irreflexive order predicate on keys.

fmToListPreOrder :: FM a b — [(a,b)]

Retrieves list of key/element pairs in preorder of the internal tree. Useful for lists that
will be retransformed into a tree or to match any elements regardless of basic order.

fmSortBy :: (a — a — Bool) — [a] — [al
Sorts a given list by inserting and retrieving from finite map. Duplicates are deleted.
showFM :: FM a b — String

Transforms a finite map into a string. For efficiency reasons, the tree structure is shown
which is valid for reading only if one uses the same ordering predicate.

readFM :: (a — a — Bool) — String — FM a b

Transforms a string representation of a finite map into a finite map. One has two
provide the same ordering predicate as used in the original finite map.

A.3.4 Library GraphlInductive

Library for inductive graphs (port of a Haskell library by Martin Erwig).

In this library, graphs are composed and decomposed in an inductive way.

The key idea is as follows:

A graph is either empty or it consists of node context and a graph ¢’ which are put together by a
constructor (:&).

This constructor (:&), however, is not a constructor in the sense of abstract data type, but
more basically a defined constructing funtion.

A context is a node together withe the edges to and from this node into the nodes in the graph g’.
For examples of how to use this library, cf. the module GraphAlgorithms.

Exported types:
type Node = Int

Nodes and edges themselves (in contrast to their labels) are coded as integers.

For both of them, there are variants as labeled, unlabelwd and quasi unlabeled (labeled

with ().
Unlabeled node

type LNode a = (Int,a)

197

type

type

type

type

type

type

type

type

type

type

type

type

type

Labeled node

UNode = (Int,())

Quasi-unlabeled node

Edge = (Int,Int)

Unlabeled edge

LEdge a = (Int,Int,a)

Labeled edge

UEdge = (Int,Int,())

Quasi-unlabeled edge

Context a b = ([(b,Int)],Int,a, [(b,Int)])

The context of a node is the node itself (along with label) and its adjacent nodes. Thus,
a context is a quadrupel, for node n it is of the form (edges to n,node n,n’s label,edges
from n)

MContext a b = Maybe ([(b,Int)],Int,a,[(b,Int)])

maybe context

Context’ a b = ([(b,Int)],a,[(b,Int)])

context with edges and node label only, without the node identifier itself
UContext = ([Int],Int, [Int])

Unlabeled context.

GDecomp a b = (([(b,Int)],Int,a,[(b,Int)]),Graph a b)

A graph decompostion is a context for a node n and the remaining graph without that
node.

Decomp a b = (Maybe ([(b,Int)],Int,a,[(b,Int)]),Graph a b)
a decomposition with a maybe context

UDecomp a = (Maybe ([Int],Int,[Int]),a)

Unlabeled decomposition.

Path = [Int]

Unlabeled path

LPath a = [(Int,a)]

198

Labeled path
type UPath = [(Int,())]

Quasi-unlabeled path
type UGr = Graph () Q)

a graph without any labels
data Graph

The type variables of Graph are nodeLabel and edgeLabel. The internal representation
of Graph is hidden.

FExported constructors:

Exported functions:
(:&) :: ([(a,Int)],Int,b,[(a,Int)]) — Graph b a — Graph b a

(:&) takes a node-context and a Graph and yields a new graph.
The according key idea is detailed at the beginning.
nl is the type of the node labels and el the edge labels.

Note that it is an error to induce a context for a node already contained in the graph.
matchAny :: Graph a b — (([(b,Int)],Int,a,[(b,Int)]),Graph a b)

decompose a graph into the Context for an arbitrarily-chosen Node and the remaining

Graph.

In order to use graphs as abstract data structures, we also need means to decompose a
graph. This decompostion should work as much like pattern matching as possible. The
normal matching is done by the function matchAny, which takes a graph and yields a

graph decompostion.

According to the main idea, matchAny . (:&) should be an identity.
empty :: Graph a b
An empty Graph.
mkGraph :: [(Int,a)] — [(Int,Int,b)] — Graph a b
Create a Graph from the list of LNodes and LEdges.
buildGr :: [([(a,Int)],Int,b,[(a,Int)])] — Graph b a
Build a Graph from a list of Contexts.
mkUGraph :: [Int] — [(Int,Int)] — Graph () O

Build a quasi-unlabeled Graph from the list of Nodes and Edges.

199

insNode :: (Int,a) — Graph a b — Graph a b
Insert a LNode into the Graph.

insEdge :: (Int,Int,a) — Graph b a — Graph b a
Insert a LEdge into the Graph.

delNode :: Int — Graph a b — Graph a b
Remove a Node from the Graph.

delEdge :: (Int,Int) — Graph a b — Graph a b
Remove an Edge from the Graph.

insNodes :: [(Int,a)] — Graph a b — Graph a b
Insert multiple LNodes into the Graph.

insEdges :: [(Int,Int,a)] — Graph b a — Graph b a
Insert multiple LEdges into the Graph.

delNodes :: [Int] — Graph a b — Graph a b
Remove multiple Nodes from the Graph.

delEdges :: [(Int,Int)] — Graph a b — Graph a b
Remove multiple Edges from the Graph.

isEmpty :: Graph a b — Bool
test if the given Graph is empty.

match :: Int — Graph a b — (Maybe ([(b,Int)],Int,a,[(b,Int)]),Graph a b)

match is the complement side of (:&), decomposing a Graph into the MContext found
for the given node and the remaining Graph.

noNodes :: Graph a b — Int
The number of Nodes in a Graph.
nodeRange :: Graph a b — (Int,Int)
The minimum and maximum Node in a Graph.
context :: Graph a b — Int — ([(b,Int)],Int,a,[(b,Int)])

Find the context for the given Node. In contrast to ”match”, ”context” causes an error
if the Node is not present in the Graph.

lab :: Graph a b — Int — Maybe a

200

Find the label for a Node.
neighbors :: Graph a b — Int — [Int]

Find the neighbors for a Node.
suc :: Graph a b — Int — [Int]

Find all Nodes that have a link from the given Node.
pre :: Graph a b — Int — [Int]

Find all Nodes that link to to the given Node.
lsuc :: Graph a b — Int — [(Int,b)]

Find all Nodes and their labels, which are linked from the given Node.
lpre :: Graph a b — Int — [(Int,b)]

Find all Nodes that link to the given Node and the label of each link.
out :: Graph a b — Int — [(Int,Int,b)]

Find all outward-bound LEdges for the given Node.
inn :: Graph a b — Int — [(Int,Int,b)]

Find all inward-bound LEdges for the given Node.
outdeg :: Graph a b — Int — Int

The outward-bound degree of the Node.
indeg :: Graph a b — Int — Int

The inward-bound degree of the Node.
deg :: Graph a b — Int — Int

The degree of the Node.
gelem :: Int — Graph a b — Bool

True if the Node is present in the Graph.
equal :: Graph a b — Graph a b — Bool

graph equality
node’ :: ([(a,Int)],Int,b,[(a,Int)]) — Int

The Node in a Context.

lab’ :: ([(a,Int)],Int,b,[(a,Int)]) — b

201

The label in a Context.
labNode’ :: ([(a,Int)],Int,b,[(a,Int)]) — (Int,b)
The LNode from a Context.
neighbors’ :: ([(a,Int)],Int,b,[(a,Int)]) — [Int]
All Nodes linked to or from in a Context.
suc’ :: ([(a,Int)],Int,b,[(a,Int)]) — [Int]
All Nodes linked to in a Context.
pre’ :: ([(a,Int)],Int,b,[(a,Int)]) — [Int]
All Nodes linked from in a Context.
lpre’ :: ([(a,Int)],Int,b,[(a,Int)]) — [(Int,a)]
All Nodes linked from in a Conte