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Motivation

● Various applications for camera systems with non-overlapping views

● Omnidirectional imaging systems

● See-through Augmented Reality devices

● Advanced Driver Assistance Systems

● Computer vision benefits from large combined field of view

● Extrinsic calibration is complicated!

Point Grey Ladybug 5 Augmented Reality Binocular Vehicle-mounted cameras
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Outline

● Motivation

● Multi-Camera Structure from Motion

● Enforcing Rigid Motion Constraints

● Tests and Evaluation

● Conclusion
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Structure from Motion

Relative Pose
R1, t1

Absolute Pose
RN, tN

Bundle Adjustment
R2,...,N, t2,...,N
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Structure from Motion
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Calibration of Non-overlapping Cameras

master camera second camera

relative pose

ΔR, Δt

● Use large calibration object to find ΔR, Δt 
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Calibration of Non-overlapping Cameras

master camera second camera

relative pose

ΔR, Δt

● Use large calibration object to find ΔR, Δt 

● Use local calibration object and mirrors

[Kumar, Ilie, Frahm & Pollefeys, 2008], [Hesch, Mourikis & Roumeliotis, 2009]
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Calibration of Non-overlapping Cameras

master camera second camera

relative pose

ΔR, Δt

● Use large calibration object to find ΔR, Δt 

● Use local calibration object and mirrors

● Track objects between visual gaps

[Makris, Ellis & Black, 2004], [Jaynes, 2004], [Rahimi & Darrell, 2006]
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Calibration of Non-overlapping Cameras

master camera second camera

relative pose

ΔR, Δt

● Use large calibration object to find ΔR, Δt 

● Use local calibration object and mirrors

● Track objects between visual gaps

● Knowledge about scene and motion needed!
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Eye-to-Eye Calibration

mTM

image pair for 
second camera

TSimage pair for 
master camera

master camera second camera

eye-to-eye 
transformation

relative
poses

ΔT

ΔT

Rigid coupling equation: TM ΔT = ΔT TS

ΔT contains ΔR ∊ SO(3), Δt ∊ ℝ3 and Δs ∊ ℝ
Rotation part: RM ΔR = ΔR RS

Translation part: RM Δt + tM = ΔsΔR tS + Δt
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Structure from Motion
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Rigid motion constraints
are ignored!
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Outline

● Motivation

● Multi-Camera Structure from Motion

● Enforcing Rigid Motion Constraints (“RMCE”)

● Tests and Evaluation

● Conclusion
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r

Rigid Motion Constraints

α

p

● Chasles' theorem for rigid motion representation

● Rotation by angle α around 3d line with direction r (”screw axis”)

● Translation of length p along r (“pitch”)
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r

α

Rigid Motion Constraints

● Local motion of rigidly coupled camera

● Local rotation by angle α around axis with direction ΔRTr 

● Local translation of length p along ΔRTr

Angle and pitch is fixed
for rigidly coupled motions!

ΔR, Δt
p
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Dual Quaternions

● Formal description of screw motions by dual quaternions:

Quadratic constraints

● 3D transformation is quadratic in parameters:

q̌ = q + εq ' = q + ε 1
2

t⋅q

q = (q , q) = (sin (α
2
)r ,cos(α

2
))

q ' = (q ' , q ' ) = 1
2
(cos(α

2
) t + sin(α

2
) t×r ,−sin (α

2
) tT r⏟

p

)

∥q∥= 1, qT q ' = 0

R (q) = I + 2q [q ]× + 2 [q]×
2

t (q ,q ') = 2(q q ' − q ' q + q×q ')

R X + t = q̌⋅X⋅q̌ * = q⋅X⋅q * + 2q '⋅q *

fixed for rigidly coupled motions
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Parallel Structure from Motion
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ΔT

ΔT   

master camera
initial frame second camera

initial frame

RM
RStM

tS

y

x

Relative Pose Estimation

E(q , t ) = R (q)T [ t ]×

min ∑
(x , y ) ∈ C M

f ((qM , q), t M ; x , y)
2

+ ∑
(x , y) ∈ CS

f ((qS , q) , tS; x , y)
2

s.t. qM
T qM = qS

T qS = 1−q2 and tM
T tM = tS

T tS = 1

yT E x = 0

f (q , t ; x , y) = d ( y ,E(q , t )x)

E ∼ RT [t ]×
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ΔT

ΔT   

master camera
initial frame second camera

initial frame

RM
RStM

tS

y

x

Relative Scale Estimation

E(q , t ) = R (q)T [ t ]×

yT E x = 0

E ∼ RT [t ]×

● Translations tM, tS are known up to (different!) scale

● Rescale tS with respect to the equal pitch constraint:

tS ← Δs tS with Δs = (tM
TrM) / (tS

TtS)

● For absolute scale, measurement in master camera is needed!
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Rigidly Coupled Structure from Motion
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ΔT  

TM TS

X

x

Absolute Pose Estimation

x ∼ RT(X−t)

min ∑
(x , X ) ∈ C M

f ((qM , q) ,(q 'M , q '); x , X )
2

+ ∑
(x , X ) ∈ CS

f ((qS , q) ,(q 'S , q ' ); x , X )
2

s.t. qM
T qM = qS

T qS = 1−q2 and qM
T q 'M = qS

T q 'S =−qq '

f (q ,q ' ; x , X) = d (x , R (q)T(X−t (q ,q ')))
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Rigidly Coupled Structure from Motion
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Outline

● Motivation

● Multi-Camera Structure from Motion

● Enforcing Rigid Motion Constraints

● Tests and Evaluation

● Conclusion
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Evaluation with Synthetic Data

● Camera setup: 10 cm distance, rotated by 30 to 120 degree

● Motion: 25 cm translation, 30 degree rotation

● 2D error: σ2d = 1 pixel (640 x 480 image), 3D error: σ3d = 0.5 cm

w/o RMCE
with RMCE

Relative pose from 2d-2d Absolute pose from 2d-3d

w/o RMCE
with RMCE
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Evaluation with Synthetic Data

● Compute absolute poses from 20 correspondences per camera

● 2D error: σ2d = 1 pixel (640 x 480 image), 3D error: σ3d = 0.5 cm

● Compute eye-to-eye calibration following [Strobl & Hirzinger, 2006]

w/o RMCE
with RMCE
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Test with Rendered Video Sequence

● Image size is 640 x 480 pixels, 140 images in sequence

● Virtual cameras are 25 cm apart, rotated by 15 degree

● Camera motion spans 1.5 meter translation, 60 degree rotation

● View overlap is not used in Structure from Motion!

left camera right camera 3D model
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Test with Rendered Video Sequence

● Evaluate absolute pose estimation error for each camera and image

● Error typically accumulates over time (“drift”)

● RMCE reduces drift effect

right cameraleft camera

w/o RMCE
with RMCE
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Test with Rendered Video Sequence

● Error of final eye-to-eye calibration:

● w/o RMCE: 1.21 degree orientation, 1.9 cm position

● with RMCE: 0.49 degree orientation, 1.27 cm position

merged reconstruction
w/o rigid motion constraints

merged reconstruction
with rigid motion constraints

■ left camera
■ right camera
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Test with Real Video Sequence

● Image size is 640 x 480 pixels, 120 images in sequence

● Cameras are approx. 24.5 cm apart, rotated by 17.2 degree

● Compute stereo calibration to compare with eye-to-eye calibration

left camera right camera
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Test with Real Video Sequence

● Difference between eye-to-eye calibration and stereo calibration:

● w/o RMCE: 0.71 degree orientation, 4.1 cm position

● with RMCE: 0.54 degree orientation, 2.5 cm position

Violation of rigid motion constraints without RMCE
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Outline
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Conclusion

Results

● Rigid motion constraint enforcement (RMCE) can be easily integrated 
into the Structure from Motion pipeline

● Robustness of egomotion estimation is increased

● Eye-to-eye calibration from local egomotion is significantly improved

Future Work

● Consider degenerate motion cases (e.g. planar motion)

● Investigate analytical solution of rigidly coupled pose estimation
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Thank you for your attention!

Questions?
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Error Approximation for Relative Scale

● Relative scale is computed from initial motion pitchs Δs = pM / pS

● Approximate relative position error ε resulting from relative scale error:

1 + ε < (1 + εM) pM / (1 – εS) pS

where εM, εS are relative position errors of initial camera poses.

● For given upper bound E on ε, errors εM, εS are bounded by E':

E' = ((1 + E) pS – pM) / ((1 + E) pS + pM)

● For pM ≈ pS the upper bound is E' ≈ E / (2 + E) ≈ E / 2
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Runtime Evaluation

Rigidly Coupled Relative Pose Estimation

● Runtime is exponential in number of cameras

● Runtime is basically not effected by number of matches (up to ~200)

● Implementation can still be optimized


