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Abstract:

This work describes a novel approach to estimate the relative poses of
multiple cameras fixed inside a rig. In contrast to existing methods for
stereo and multi-camera rig calibration, overlapping views of the individ-
ual cameras are not required.
The proposed approach estimates the rig parameters, i.e. relative position
and orientation of the fixed cameras with respect to each other, using time-
corresponding poses for each camera during an arbitrary motion of the
rig. This estimation can be done by solving systems of linear equations.
The corresponding poses are previously obtained using pose estimation
techniques from a sequence of time-corresponding images for each cam-
era individually. Afterwards the rig parameter estimates are refined by a
non-linear optimization.
It is shown that the presented calibration method is comparable in ac-
curacy and efficiency to common rig calibration techniques that require
overlapping views.



Diplomarbeit

Kalibrierung von starr gekoppelten Mehrkamerasystemen

mit nicht-überlappenden Sichtbereichen

Sandro Esquivel Olmos

Kiel, 17. September 2007

Zusammenfassung:

Die vorliegende Arbeit beschreibt eine neue Methode, um die relativen Po-
sen von Kameras in einem starr gekoppelten Mehrkamerasystem (Rig) aus
Kamerabildern zu schätzen. Im Gegensatz zu bestehenden Verfahren zur
Kalibrierung von Stereo- und Mehrkamerasystemen setzt der vorgestellte
Ansatz keine gemeinsamen Bildbereiche der einzelnen Kameras voraus.
Dabei werden die Rig-Parameter, also relative Lage und Orientierung der
gekoppelten Kameras zueinander, aus zeitlich korrespondierenden Posen
der einzelnen Kameras während einer beliebigen Bewegung des Kame-
rasystems geschätzt. Diese Schätzung benötigt lediglich das Lösen linea-
rer Gleichungssysteme. Die korrespondierenden Posen werden dabei aus
einem vorangehenden Poseschätzverfahren aus einer Sequenz von zeit-
lich korrespondierenden Bilder für jede Kamera separat ermittelt. Danach
wird die Schätzung durch weitere nichtlineare Optimierung verbessert.
Es wird gezeigt, dass der vorgestellte Ansatz bezüglich Genauigkeit und
Effizienz vergleichbar gute Ergebnisse wie gängige Verfahren zur Kali-
brierung von Mehrkamerasystemen mit gemeinsamen Sichtbereichen lie-
fert.
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Abbreviations and Symbols

J Image with widthwJ and heighthJ in pixels
R2, P2 Euclidean/projective 2d space
R3, P3 Euclidean/projective 3d space

m̃ = (u, v)T 2d image point in pixels
m = (x, y[, w])T 2d image point (Euclidean/projective)

M = (X, Y, Z[, W ])T 3d space point (Euclidean/projective)
ṁ = (ϕ, r) Polar coordinates of 2d image point

Ṁ = (Φ, Θ, R) Polar coordinates of 3d space point
K Camera calibration matrix or function (intrinsic parameters)
A General linear transformation matrix

Aj, ai j-th row ori-th column vector of matrixA
A(j,i) Lower right submatrix ofA beginning atj-th row andi-th column

aji Entry atj-th row andi-th column of matrixA
T = [A | b] General affine transformation

T = [λA | b] General similarity transformation
C Euclidean coordinates of camera center

[R | C] Euclidean transformation with translationC and rotationR, or
camera pose with positionC and orientationR (extrinsic parameters)

P = K(RT − RTC) Camera projection matrix or function
F Fundamental matrix
E Essential matrix

Rr,α Rotation around axisr by angleα
Rq Rotation corresponding to unit quaternionq

q = 〈q, q〉 Quaternion with scalar partq and vector partq = (x, y, z)T

Tq, T∗
q Left and right multiplication matrix of quaternionq

i = 0, . . . , N Index of camera in rig (0: master camera,1 to N : slave cameras)
k = 0, . . . , K Index of time step or image frame (0: initial frame)

[Rk
i | Ck

i ] Pose transformation of camerai at time stepk
[∆λi∆Ri | ∆Ci] Rig parameters of slave camerai (internal pose transformation)
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1. Introduction

Motivation

There is a variety of applications for rigidly coupled cameras with non-overlapping
fields of view: Robots mounted with antipodal wide-angle cameras are used for sewer
inspection. In the automotive industry information from non-overlapping front and
rear view cameras is utilized for environment analysis. Multi-camera rigs encompass-
ing a combined field of view of almost360◦ are of rising interest in tasks varying from
video surveillance and monitoring systems to 3d reconstruction of urban architecture.
A well-known example for a multi-camera rig used for scene reconstruction is e.g. the
Point Grey Ladybugr1. The main advantage of such devices with respect to conven-
tional imaging systems is that visual information from a large field of view can be
assembled without requiring expensive omni-directional cameras. Camera rigs have
also considerably higher resolution than available omni-directional cameras. Further-
more, it has been shown that 3d scene reconstruction can be done very efficiently using
a rig with a large field of view [FKK04, Boe07].
Applications using multiple camera rigs demand for an accurate calibration of the de-
vice which includes intrinsic parameter measurement and identification of the relative
poses of the coupled camera with respect to each other. While there are numerous
established solutions for pose calibration of multi-camera rigs with overlapping cam-
era views, especially for stereo rigs, there are few such solutions present for rigidly
coupled cameraswithoutoverlapping views. The main issue of this work is to investi-
gate the pose calibration problem for multi-camera rigs without assuming overlapping
fields of view based on computer vision techniques.

Our Approach

For this diploma thesis we developed a novel method to calibrate a multi-camera rig
from imageswithout overlapping views - from theoretical design to implementation,

1See Point Grey Research website athttp://www.ptgrey.comfor further details.
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1. Introduction 2

practical application, and evaluation. Our approach uses methods from the field of
hand-eye calibration and estimates the rig parameters using time-corresponding poses
of all cameras each in their respective local coordinate frame. The estimation ap-
proach does not depend on point correspondences between different cameras. Time-
corresponding poses are provided by an image-based pose estimation method from
synchronously captured camera image sequences.

Structure of this Work

This work is structured as follows. InChapter 2 we will at first refer to previous work
done in the field of this topic and motivate our approach.
Chapter 3 describes the theoretical background needed to understand the issue. First,
basic topics such as coordinate systems and rigid transformations, projections and
camera models, and multiple view geometry are described. Then methods for in-
trinsic camera calibration and the pose estimation framework used to provide time-
corresponding poses for practical applications are described. Finally, an overview over
the main numerical approaches and algorithms that are performed in order to solve the
arising problems is given.
The main topic of this work, i.e. estimation of the internal poses of each camera inside
the rig from time-corresponding poses, is covered inChapter 4. We will specify the
main problem in an accurate way according to the models presented in the previous
chapter, examine the condition of our problem formulation, and present a framework
for solving the calibration task considering different settings.
In Chapter 5 we will refer to our implementation, present its results in test cases and
real applications and evaluate its stability and performance.
The results of this work will be resumed and concluded inChapter 6.
Appendix I deepens mathematical and theoretical topics that are mentioned during the
work which exceed the limitations of the main part of the diploma thesis.
In Appendix II a short reference to our implementation is given for practical applica-
tions.

2



1. Introduction 3

Motivation

Im Umfeld der Computergrafik haben sich in den letzten Jahren zahlreiche Anwen-
dungsbereiche für starr gekoppelte Mehrkamerasysteme ohne überlappende Sichtbe-
reiche etabliert: Im Bereich der Kanalinspektionssysteme werden bereits Inspektions-
fahrzeuge eingesetzt, die mit einander gegenüberliegenden Weitwinkelkameras be-
stückt sind. In der Automobilindustrie werden nicht-überlappende Front- und Heck-
kameras zur Umgebungsanalyse verwendet. Mehrkamerasysteme, die ein kombinier-
tes Sichtfeld von bis zu360◦ abdecken, sind darüberhinaus von wachsendem Interesse
für verschiedene Aufgaben, von Videoüberwachung und Kontrollsystemen bis hin zur
3D-Rekonstruktion von Stadtszenen. Ein Beispiel für ein am Markt etabliertes Mehr-
kamerasystem ist etwa der Ladybugr von Point Grey2. Der Vorteil solcher Systeme
gegenüber herkömmlichen Kamerasystemen liegt in der Bereitstellung von visuellen
Informationen über einen großen Sichtbereich, wobei Mehrkamerasysteme im allge-
meinen günstiger sind als spezielle omnidirektionale Kameras.
Für Anwendungen mit starr gekoppelten Mehrkamerasystemen ist eine präzise Ka-
librierung notwendig, die neben der Bestimmung der intrinsischen Kameraparameter
das Ermitteln der relativen Posen der gekoppelten Kameras relativ zueinander umfasst.
Während für die Kalibrierung von Mehrkamerasystemen mit gemeinsamen Sichtbe-
reichen zahlreiche Verfahren vorliegen, insbesondere für Stereosysteme, liegen nur
wenige Arbeiten vor, die sich mit Kamerasystemenohneüberlappende Sichtbereiche
befassen. Die Problemstellung der vorliegenden Diplomarbeit besteht darin, ein Ver-
fahren zur Kalibrierung eines starr gekoppelten Mehrkamerasystems zu formulieren,
welches keine gemeinsamen Sichtbereiche der einzelnen Kameras voraussetzt. Das zu
entwickelnde Verfahren soll dabei auf gängige Methoden aus dem Bereich der Com-
putergrafik und Bildverarbeitung zurückgreifen.

Eigener Ansatz

In dieser Diplomarbeit wird ein neues Verfahren zur Rig-Kalibrierung aus nicht-über-
lappenden Kamerabildern erarbeitet - theoretisch entworfen, implementiert und prak-
tisch getestet. Dieses Verfahren greift auf Methoden der Hand-Eye-Kalibrierung zu-
rück und schätzt die Rig-Parameter aus zeitkorrespondierenden Posen aller Kameras
in ihrem jeweils lokalen Koordinatenbezugssystem. Zeitkorrespondierende Posen wer-
den hierbei durch ein bildbasiertes Poseschätzverfahren aus synchron aufgenommenen
Bildsequenzen der Kameras zur Verfügung gestellt.

2Für weitere Details siehe Internetpräsenz von Point Grey Research unterhttp://www.ptgrey.com.
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1. Introduction 4

Gliederung der Arbeit

In Kapitel 2 soll zunächst ein Überblick über bisherige Arbeiten und Ergebnisse im
Umfeld des behandelten Themas gegeben werden und unser Ansatz motiviert werden.
In Kapitel 3 wird der theoretische Hintergrund erläutert, der zum Verständnis der vor-
liegenden Arbeit notwendig ist, und die verwendetene Notationen eingeführt. Als er-
stes werden Grundlagenelemente der Computergrafik vorgestellt, einschließlich Ko-
ordinatensystemen und starren Transformationen, Projektionen und Kameramodellen,
sowie die Geometrie multipler Kamerasichten. Danach werden die in den praktischen
Problemstellungen eingesetzten Verfahren zur intrinsischen Kamerakalibrierung und
Poseschätzung zur Bereitstellung zeitlich korrespondierender Posen aus Kamerabil-
dern erläutert. Abschließend wird ein Überblick über die numerischen Methoden und
Algorithmen gegeben, die zur praktischen Lösung der vorliegenden Probleme verwen-
det werden.
Das Hauptthema wird inKapitel 4 bearbeitet. Zunächst wird das vorliegende Problem
in Hinsicht auf die im vorigen Kapitel vorgestellten Modelle spezifiziert, die Kondition
des formulierten Problems untersucht und ein Framework zum praktischen Lösen der
Kalibrierungsaufgabe unter verschiedenen Voraussetzungen vorgestellt.
In Kapitel 5 wird die Implementierung des Lösungsansatzes ausgewertet und hinsicht-
lich Performanz und Stabilität in theoretischen Testfällen und praktischen Anwendun-
gen untersucht.
Die Ergebnisse der Arbeit werden inKapitel 6 zusammengefasst und bewertet.
Anhang I vertieft theoretische und mathematische Themen, die im Laufe der Arbeit
angesprochen werden, deren tieferes Verständnis aber über den Rahmen des für die
vorliegende Arbeit Notwendigen hinausgeht.
Anhang II stellt eine kurze Referenz zur Implementierung für die praktische Umset-
zung dar.
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2. Previous Work

The calibration of multi-camera rigs, especially stereo systems, is an extensively re-
searched problem in computer vision, e.g. to use the rig to recover metric structure
from corresponding images. For this task both the intrinsics parameters of each cam-
era and the relative poses - position and orientation - of each camera inside the rig
have to be known. Traditional approaches assume that the cameras have spatial over-
lap between their fields of view and use the overlapping image parts to register the
internal cameras with each other as suggested e.g. in the seminal work byZhang et al.
on perspective stereo rig calibration [ZLF96]. These approaches have in common that
certain points must be visible for all cameras at the same time and internal poses of the
rig cameras are estimated from the corresponding epipolar geometry

For the case of rig calibration from non-overlapping views there have been proposed
few approaches which impose additional restrictions. Important contributions to this
issue have been made byCaspi and Irani who proposed a technique to register images
from a multi-camera rig without overlapping views with each other [CI01] but subject
to the constraint that either all cameras share approximately the same center of view or
the joint translation of the cameras is negligible relative to the distance of the scene.

To approach general configurations it appears more appropriate to relate the problem
of rig calibration to the problem ofhand-eye calibration:
Whenever a sensor is mounted onto a movable device - such as e.g. a camera mounted
onto a robot hand or a camera with a gyroscope attached - and measurements from the
sensor are to be mapped into the device’s workspace frame, the relationship between
sensor and device needs to be known. The problem of determining this relationship -
most commonly described by a rigid 3d transformationX - from corresponding trans-
formationsA of the sensor andB of the device is referred to ashand-eye calibration.
Figure2.1 illustrates a typical hand-eye calibration setup. The cameras of the rig can
be thought of as different sensors (“eyes” and “hands”) in the hand-eye calibration
model as illustrated in fig.2.2, while the device workspace frame corresponds to the
local coordinate frame of the rig.

There has been extensive research in the field of hand-eye calibration especially for the
particular case of the sensor being a camera. Almost all proposed solutions demand for
the solution of a homogeneous matrix equation of the formAX = XB whereA andB

5



2. Previous Work 6

Figure 2.1.:Common hand-eye calibration problem for a cameraE mounted with a
robot handH. A denotes pose transformations of the eye,B of the hand,
andX is the relative pose transformation between hand and eye. Here, rel-
ative pose transformations of the hand are measured by a fixed observation
systemO, and relative pose transformations of the eye are measured with
respect to a fixed calibration objectC.

are related with time-corresponding pose transformations of sensor and device while
X is related to the relative pose of the sensor with respect to the device which is fixed
over time. Pose transformationsA andB are thereby provided by methods specific to
the sensors used.
Early solutions regard the rotational part of this equation decoupled from the transla-
tional part resulting in simple, linear formulations. Such approaches were proposed
first by Shiu and Ahmad [SA89] (who performed a least squares estimation first of
rotation first, then of translation, using the angle-axis representation for orientations)
andTsai and Lenz [TL89] (similar to [SA89] using a closed-form solution) for sensors
mounted onto robots.Wang compared both methods resulting in a slight advantage for
the latter [Wan92]. Similar approaches using different pose representations where pro-
posed byChen using screw motion representation [Che91] (the first approach that does
not decouple the rotational and translational equations parts) andChou and Kamel us-
ing quaternions for orientation representation [CK91] that make use of the singular
value decomposition (SVD) for solution.
While all these approaches consider linear optimization techniques,Horaud and Dor-
naika proposed a non-linear optimization for the rotational and translational parts one-
to-one [HD95] yielding more robustness with respect to sensor noise and measurement
errors.

Our approach interprets the problem of rig calibration in a similar way as the problem
of hand-eye calibration which will be modeled inChapter 4. As we will point out, the

6



2. Previous Work 7

Figure 2.2.:Stereo-rig calibration interpreted as hand-eye calibration problem.

considered problem of rig calibration differs from the hand-eye calibration problem by
the fact that additional unknown scale parameters have to be introduced. We will use
linear estimation and non-linear refinement methods similar to [CK91] and [HD95] to
approach the problem. Based on the theoretical solution strategies we will develop a
framework for rig calibration and evaluate an implementation inChapter 5.
At first, Chapter 3 presents the theoretical background for addressing the problem
in detail, starting with the basic topics of geometry, coordinate systems, and transfor-
mations in order to understand camera models, multiview geometry, and finally pose
estimation techniques.

7



3. Theoretical Background

3.1. Geometry, Coordinate Systems and
Transformation

To measure geometric entities and to describe geometric properties, the image plane or
space is identified with an appropriate vector space provided with a coordinate system
which is chosen specifically to the given problem. Transformations of entities describ-
ing processes such as rigid motions, projections, or changes of the coordinate system,
can thereby be expressed in terms of linear algebra. In this section Euclidean and pro-
jective geometry are introduced which provide a proper geometric and algebraic model
for computer vision, and common transformations are defined. Then we will describe
coordinate systems and changes of reference coordinate frame appropriately for the
task of rig calibration in the sense of hand-eye calibration.

3.1.1. Projective Geometry and Transformations

In this section we will introduce projective geometry and transformations that are
needed to describe the projections of perspective cameras. We will begin with pro-
jective geometry for the planar space and lead over to the 3d space.

Projective geometry defines an extension of Euclidean geometry. While in Euclidean
geometry of the 2d image plane the parallel axiom holds, i.e. from a geometrical view
there are lines which do not intersect, projective geometry is altered such that all lines
intersect. This is performed by addingpoints at infinitysuch that parallel lines intersect
each in a point at infinity which corresponds to their direction. The set of all points at
infinity forms theline at infinity.

The projective plane: To describe points and lines in the perspective plane, theho-
mogeneousnotation for points and lines in the plane is introduced. Each point of the

8



3. Theoretical Background 9

Euclidean plane may be represented by a pair of coordinatesm = (x, y)T ∈ R2 while
lines are represented by a tripletl = (a, b, c)T ∈ R3 such that all points(x, y)T ∈ R2

satisfyingax + by + c = 0 lie on the line. Since for a fixed(a, b, c)T ∈ R3, all triplets
k(a, b, c)T represent the same line for any non-zerok ∈ R, vectors(a, b, c)T ∈ R2

which are related by a non-zero scale are considered as equivalent. Each equivalence
class of vectors due to this relationship is denotes as a homogeneous vector. The set
of all equivalence classes form the projective spaceP2 which can be identified with
R3 \ (0, 0, 0)T.
A point (x, y)T in R2 is represented inP2 by the homogeneous coordinatesk(x, y, 1)
for any non-zerok ∈ R. Given a homogeneous vector̄m = (x, y, w), w 6= 0,
the Euclidean representative can be obtained fromm = (x/w, y/w). Homogeneous
points m̄ = (x, y, w)T with w 6= 0 correspond to finite points which can be found
in the Euclidean plane while homogeneous points withw = 0 define the points at
infinity. Equivalently the line at infinity is represented by the homogeneous vector
l∞ = (0, 0, 1)T.
InterpretingP2 asR3 for clearness, each point in the Euclidean planeR2 equals a ray
through the origin inP2 and vice versa, while lines inR2 correspond to planes inP2,
and the Euclidean plane is embedded intoP2 atw = 1.
Note that equality is definedup to scalefor homogeneous vectors sincēm equalskm̄
for anyk 6= 0. This will be emphasized in this work by the use of the similarity sym-
bol ∼ instead of the equality symbol=. Euclidean and homogeneous representation
will be used interchangeably for finite points since the Euclidean representation can be
obtained by normalizationm = 1

w
m̄ for w 6= 0.

Transformations of the projective plane: In this paragraph we will describe com-
mon transformations of the projective plane that can be described by linear transfor-
mations on homogeneous 3-vectors, represented by3× 3 matrices.

A planar Euclidean transformation or isometryis a transformation of inhomoge-
neous points that preserves Euclidean distance. It is given by the matrix representationx′

y′

1

 =

(
R C
0T 1

) x
y
1

 (3.1)

or, in short,m̄′ = [R | C]m̄ whereR is a2× 2 rotation matrixR =

(
cos α − sin α
sin α cos α

)
for an angleα ∈ [0, 2π) andC ∈ R2 is a Euclidean 2-vector. Euclidean transfor-
mations model rigid motions of an object in the Euclidean plane, decomposed into a
rotationR and additional translation byC. Hence a planar Euclidean transformation
has3 degrees of freedom and can be computed from two point correspondences.

9



3. Theoretical Background 10

The Euclidean transformation is generalized by thesimilarity transformation or sim-
ilarity which does not preserve distance but shape. It is given byx′

y′

1

 =

(
λR C
0T 1

) x
y
1

 (3.2)

or, in brief, m̄′ = [λR | C]m̄ whereλ ∈ R represents an isotropic scaling. Similarity
transformations model rigid motion and isotropic scaling and will be used to describe
the change of coordinate systems. A planar similarity transformation has4 degrees of
freedom and can be computed from two point correspondences.

The most general transformation is theplanar projective transformation which is
also referred to ashomography, defined on homogeneous points byx′

y′

w′

 =

h1,1 h1,2 h1,3

h2,1 h2,2 h2,3

h3,1 h3,2 h3,3

 x
y
w

 (3.3)

abbreviated as̄m′ = Hm̄. Note thatH can be scaled by any non-zero scale factor with-
out altering the projective transformation, i.e. such that eq. (3.3) holds for projective
equality∼. Hence a planar projective transformation has8 degrees of freedom and
can be computed up to scale from4 point correspondences. Projective transformations
leave only projective properties invariant, i.e. points are mapped to points, and lines
are mapped to lines. Projective transformations are used to describe perspective pro-
jections of rays to an image plane as needed for common camera models as will be
described in section3.2.

The projective 3d space: The projective 3d space is created straightforward from
the projective plane. The projective 3d spaceP3 consists of Euclidean 3d space ex-
tended by a set of points, lines, and the plane at infinity. The latter is equivalent to the
line at infinity for the projective plane. In the context of this work we will only address
points in the projective 3d space.
Each Euclidean pointM = (X, Y, Z)T ∈ R3 is represented by a homogeneous vec-
tor M̄ = (X,Y, Z, 1)T. A homogeneous vector̄M = (X,Y, Z, W )T with W 6= 0
corresponds to the Euclidean point(X/W, Y/W, Z/W )T. Homogeneous points with
W = 0 represent points at infinity.

Transformations of the projective 3d space: Transformations of the projective 3d
space are related directly to the transformation of the projective plane and may be de-
scribed by linear functions on homogeneous vectors, represented by4× 4 matrices.

10



3. Theoretical Background 11

A 3d Euclidean transformation on inhomogeneous pointsM = (x, y, z)T, M′ =
(x′, y′, z′)T is given by 

x′

y′

z′

1

 =

(
R C
0T 1

) 
x
y
z
1

 (3.4)

or, in short,M̄′ = [R | C]M̄ whereR is a 3 × 3 rotation matrix andC ∈ R3 is a
Euclidean 3-vector. A Euclidean transformation models a rigid motion in 3d space
consisting of rotation byR and translation byC, preserving distances and volumes.
Since a 3d rotation has3 degrees of freedom, a Euclidean transformation has6 degrees
of freedom and can be computed from2 point correspondences.

A 3d similarity transformation is given by
x′

y′

z′

1

 =

(
λR C
0T 1

) 
x
y
z
1

 (3.5)

or, in brief, M̄′ = [λR | C]M̄ whereλ ∈ R defines the isotropic scale. A similarity
transformation has hence7 degrees of freedom and can be computed from3 point
correspondences.

Finally, a 3dprojective transformation or homography is defined on homogeneous
points by 

x′

y′

z′

w′

 =

h1,1 h1,2 h1,3 h1,4

h2,1 h2,2 h2,3 h2,4

h3,1 h3,2 h3,3 h3,4h4,1 h4,2 h4,3 h4,4




x
y
z
w

 (3.6)

or, more briefly,M̄′ = HM̄. Due to the mentioned scale ambiguity considering pro-
jective equality∼, a projective 3d transformation ofP3 has15 degrees of freedom and
requires5 point correspondences to be computed.

3.1.2. Coordinate Systems

Coordinate systemsare used to describe the positions of points in space. In ann-
dimensional vector space the position of a pointm is identified uniquely by then-tuple
(x1, . . . , xn) of its coordinateswithin the given coordinate system.

11



3. Theoretical Background 12

In computer vision it is appropriate to useaffine coordinate systemsto describe geo-
metric objects in 2d and 3d. A real affine coordinate system is defined by an orthogonal
baseB = {b1, . . . , bn} of ann-dimensional real vector spaceV , and an origin vector
O ∈ V . It describes a mappingΦB,O of elements ofV to n-tuples such that the inverse
mapping is given by

Φ−1
B,O : Rn → V, x 7→

n∑
i=1

xibi + O (3.7)

The canonical coordinate system is given by the canonical baseB0 = {e1, . . . , en}
and zero originO0 = (0, . . . , 0)T.

Geometrically interpreted, an affine coordinate system with an arbitrary orthogonal
baseB and originO can be interpreted as ascaled, translated, androtatedinstance of
the regarding canonical coordinate system. Moreover, given two affine coordinate sys-
tem with orthogonal basesB1, B2 and originsO1, O2, the latter arises from the former
by scaling, translating, and rotating, i.e. by a similarity transformation. This applies,
because a rotation inV is defined by an orthonormal linear mapping which preserves
length and orthogonality of vectorsv ∈ V . Hence for two basesB1, B2 there exist
a rotation matrixR and a diagonal scaling matrixΛ such thatB2 = {ΛRb|b ∈ B1}.
The intermediate translationt is given byO2 = O1 + t.

Throughout this work affine coordinate systems defined by an arbitrary base and origin
will be denoted ascoordinate frames. We will regard only coordinate frames that are
scaled isometrically along all axes, i.e. there is aλ ∈ R such thatΛ = λI. The
canonical affine coordinate frame is considered as theworld coordinate frameCworld.
Hence an affine coordinate frameB, O can also be uniquely parametrized by a rotation
of the canonical base vectors defined byR, a translation of the zero origin denoted by
C in world coordinates, and an isometrical scaling of the canonical base by a scaleλ,
holding:

C = Φworld(O) and bi = λRei, for eachi = 1, . . . , n (3.8)

Rotation, translation, and scale of a coordinate frame with respect to the world coordi-
nate frame are referred to asabsolute parametersof the coordinate frame.
By fixing any reference coordinate frameCref , described by the absolute parameters
Rref , Cref , andλref , any affine coordinate frameB, O can be furthermore uniquely
parametrized with respect toCref by ∆R, ∆C, and∆λ such that:

∆C = Φref (O−Oref ) and bi = ∆λ∆Rbref
i , for eachi = 1, . . . , n (3.9)

∆R, ∆C, and∆λ are referred to asrelative parametersof the coordinate frame with
respect to its reference frame.

12



3. Theoretical Background 13

3.1.3. Rigid Transformations between Coordinate Frames

In the last section we pointed out how to parametrize general coordinate frames by the
geometric terms rotation, translation, and isometric scale with respect to a reference
coordinate frame or the world coordinate frame. Using this model for the projective
3d space it is easy to consider multiply nested coordinate frames, and to interpret
coordinate frames geometrically as poses of cameras in the rig within the scene as
described in the following section. Each coordinate frame can be characterized by
its origin C, its orientationR and its isometric scaleλ measured within the wrapping
coordinate frame.

The change between two Cartesian coordinate frames of the Euclidean 3d space is
described by a similarity transformation on inhomogeneous points. As defined in eq.
(3.5), the similarity transformation is of the form

T =

(
λR C
0T 1

)
(3.10)

abbreviated asT = [λR | C] whereλ ∈ R accounts for the isometric scaling between
the coordinate systems,R is a3× 3 rotation matrix describing the relative orientation
of the reference frames to each other, andC ∈ R3 describes the translation between
the two reference frames or in other words: The origin of the transformed coordinate
frame inside the untransformed coordinate frame (see fig.3.1). Equivalently, each co-
ordinate frame is identified with respect to a fixed reference frame by such a similarity
transform.

When the scaleλ is equal to1, T is described by a Euclidean transformation as defined
in eq. (3.4), abbreviated asT = [R | C]:

T =

(
R C
0T 1

)
(3.11)

This accounts geometrically for a rigidmotionof a coordinate frame within its refer-
ence frame without change of scale.

The concatenation of two subsequent changes of reference framesT1 andT2 can then
be computed by a simple matrix multiplication

T = T2T1 (3.12)

13



3. Theoretical Background 14

Figure 3.1.:Similarity transformation between coordinate frames

3.2. Camera Models

In general it is an essential issue of computer vision to use an appropriate mathematical
model for the process of image formation. In this section we will describe the process
of image generation with a monocular camera using the idealpinhole camera model
for perspective cameras. Also, thespherical camera modelaccording toScaramuzza
et al. [SMS06] will be described to model wide-angle cameras. Aberrations from the
ideal models that occur with real cameras due to lens distortion are compensated by
distortion models. The issue of estimating the actual intrinsic camera parameters and
distortion will be addressed in section3.4. For a deeper insight into this topic we refer
to [HZ00].

3.2.1. Perspective Camera Model

First, there are two basic types of camera projection models: theperspective projection
model and theorthographic projectionmodel. Perspective projection, also referred to
ascentral projection, corresponds to the model of thepinhole camerawhere the visible
scene is projected to the image via central projection with respect to a given projection
center, thecamera center(see fig.3.2(a)).
Orthographic projection on the other hand is given by a special case of central projec-
tion where the projection center is infinitely distant from the scene (see fig.3.2(b)).
The visible scene is hence projected to the image plane neglecting depth differences
in the scene. While perspective projection is a good model of the actual geometry
of image formation with general cameras, orthographic projection yields more simple
mathematics than perspective projection and is often used to approximate perspective
projection. Seminal approaches using orthographic images for pose estimation have
been proposed by e.g.Tomasi and Kanade [TK92]. Nevertheless, since its applicabil-
ity is limited, we will focus on the perspective camera model in this work.

Without assuming radial distortion, an idealpinhole cameraprovides an appropriate

14



3. Theoretical Background 15

Figure 3.2.:Camera projection models (a) Perspective projection with central pointC
(b) Orthographic projection with infinitely distant projection center

model for a general CCD camera. The pinhole camera as shown in fig.3.3 basically
describes the central projection of points in 3d space onto a plane1. The image di-
mensions are given by widthw and heighth. The distance between central point and
image plane is denoted as thefocal lengthf . The line perpendicular to the image plane
passing through the central point is denoted as theoptical axis. Its intersection with
the image plane is referred to as theprincipal pointp of the camera image. Note that
the projection center is referred to as thecamera centerC which defines the position
of the camera in 3d space while the optical axis and image plane fix the orientation
of the camera’s coordinate frame: The image plane is by definition parallel to thex-y
plane of the camera-local coordinate frame and located by convention atz = 1.

Figure 3.3.:The illustration shows the projection model of a perspective camera. 3d
pointsM are projected to the image plane by means of central projection
with respect to the camera centerC. p denotes the principle point. The
Euclidean transformation between camera reference frame and world co-
ordinate frame is given byTcam.

1This notion refers to the originalcamera obscurawhere light rays from the visible scene pass through
a very small pinhole into a dark box to form an image inside on the back wall where a light-sensitive
film could be applied.
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3. Theoretical Background 16

Using the pinhole camera model, the coordinates of a 3d pointM = (X, Y, Z)T in the
world camera system and its 2d pixel coordinates in the camera imagem̃ = (u, v)T

are related by

u
v
1

 ∼ P


X
Y
Z
1

 (3.13)

whereP is a real3× 4 matrix referred to as the perspectivecamera projection matrix
and∼ indicates equality up to scale.
Denoting the homogeneous vector ofm̃ asm̄ = (u, v, 1)T and ofM asM̄ = (X, Y, Z, 1)T

eq. (3.13) can be written briefly as̄m ∼ PM̄.

The camera projection matrixP can be decomposed as

P = K(RT − RTC) (3.14)

whereK ∈ R3×3 defines thecamera calibration matrix

K =

fku s pu

0 fkv pv

0 0 1

 (3.15)

which is related to theintrinsic parametersof the camera, i.e.:

• Thefocal lengthf of the camera.

• Horizontal and verticalpixel scale factorsku, kv whose inverses define the size
of each image pixel in the world coordinate unit. Common cameras are assumed
to have square pixels, i.e.ku = kv.

• Pixel skewvalues which accounts for non-orthogonality of the pixel grid. Pixels
are customary considered to be rectangular, i.e.s = 0.

• The pixel coordinatespu, pv of the camera’s principal point in the image, i.e.
the intersection of the optical axis with the image plane measured in the image
coordinate system.

16



3. Theoretical Background 17

Hence the calibration has five degrees of freedom given byfku, fkv, s, pu, andpv.
Under the assumptionsku = kv ands = 0 - denoted as thereduced camera model
which holds for the most currently manufactured cameras - the number of degrees of
freedom is reduced to3. Note thatK is an upper triangle matrix and its inverseK−1 is
defined.
OnceK−1 is known, an image pixel̃m = (u, v)T can be back-projected into 3d space
by:

(x, y, w)T ∼ K−1(u, v, 1)T (3.16)

These coordinates, commonly either scaled to length1 (“normalized”) or w = 1
(“homogenized”), will be referred to throughout this work asnormalized coordinates
m̄norm of m̃. m̄norm can be visualized as the ray emitting from the camera center
through an image point within the camera-local coordinate frame.

The3× 4 matrix (−RT − RTC) accounts for the absoluteposeof the camera within
the world coordinate system and is related to as theextrinsic parametersof the camera,
orientationR andpositionC. The3 × 3 rotation matrixR is related to the physical
orientation of the cameras andC to its position, i.e. the camera center, within the
world coordinate system. This corresponds to the Euclidean transformation[R | C]
transforming the camera-local coordinate frame into the world coordinate frame, or to
the inverse transformation[RT | −RTC] respectively. Note that the pose has6 degrees
of freedom,3 accounting each for rotation and position.

Summing up, the projection matrix of a general projective camera has11 degrees of
freedom:6 from the pose matrix,5 from the calibration matrix. Since the overall scale
of the perspective projection matrix can be ignored for projective reconstruction, the
number of degrees of freedom can be reduced to10. For the reduced camera model
the number of degrees of freedom is further reduced to8.

Throughout this work we assume that the pinhole camera model is an accurate model
for the image formation process. In practice using real camera with light-focusing
lenses, deviations from the linear model will occur. The most important deviation is
in general a radial distortion which will be modeled as proposed in [HZ00, 7.4] by
the radial distortion center(cu, cv)

T and a fourth-order polynomialL with coefficients
1, κ1, . . . , κ4 such that distorted image coordinatesm̂ = (û, v̂) are mapped to ideal
coordinates̃m = (u, v) by anundistortion functionτ defined by:

τ(û, v̂) = (u, v) u = cu + L(r)(û− cu) v = cv + L(r)(v̂ − cv) (3.17)

wherer =
√

(û− cu)2 + (v̂ − cv)2 is the distance of distorted image pixels from the
distortion center. The number of intrinsic parameters is hence increased by6 and the
mapping from normalized space points to image points is described by a non-linear
mappingK instead of a linear mappingK.

17



3. Theoretical Background 18

3.2.2. Spherical Camera Model

To describe wide-angle or hemispherical cameras, or more specific: cameras with fish-
eye lenses, we use the omni-directional camera model proposed byScaramuzza et al.
[SMS06]. In this model the image formation process can be thought of as projecting
the visible scene onto the unit hemisphere around the camera center instead of the
plane atw = 1, and addressing image pixels by means of their polar coordinates. This
projection is commonly referred to asangular fisheye projection. It is illustrated in fig.
3.4.

Using the fisheye camera model, the coordinates of a 3d pointM̄ = (X, Y, Z, 1)T in the
world camera system and its 2d pixel coordinates in the camera imagem̄ = (u, v, 1)T

are related by a non-linear projection functionm̄ = P(M̄) which can be decomposed
as:

u
v
1

 = K(

x
y
z

),

x
y
z

 = (RT − RTC)


X
Y
Z
1

 (3.18)

whereK denotes a non-linear mapping of normalized coordinates(x, y, z)T first to
spherical coordinates(Φ, Θ, 1)T of the corresponding unit vector, then to Cartesian
pixel coordinates(u, v, 1)T with respect to the image center by:

K(

x
y
z

) =

kr 0 pu

0 kr pv

0 0 1

 Θ cos Φ
Θ sin Φ

1

 (3.19)

K is denoted with respect to the camera calibration matrix as thecamera calibration
function. (RT − RTC) denotes the transformation of points in the world coordinate
frame to camera-local points as in the perspective camera model.

Note that the distance of a pixel from the center of the image, given by
r =

√
(u− pu)2 + (v − pv)2 = krΘ, is proportional to the angle from the camera

view directionΘ. Hence points seen under the same angle form circles on the image
plane as shown in fig.3.4. In particular, in an angular fisheye image the resolution
is approximately equal across the whole image. Moreover, the linear mapping of the
distance of image pixels to the image center to angles can be described by a single
scalekr if distortion is neglected.

18
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In comparison with perspective cameras, theintrinsic parametersof an ideal fisheye
camera are given by:

• Thepixel/radius ratiokr, i.e. the radius of the1◦ equiangular circle in the camera
image in pixels.

• The pixel coordinatespu, pv of the camera’s principal point in the image, i.e. the
image point corresponding to the polar coordinates(0, 0, 1)T in the camera-local
coordinate system.

Notice that the inverse mapping from image pointsm̃ to normalized points̄mnorm is
given by:

K−1(

u
v
1

) =

 sin Θ
r

(u− pu)
sin Θ

r
(v − pv)
cos Θ

 ∼

u− pu

v − pv

r cot Θ

 (3.20)

wherer =
√

(u− pu)2 + (v − pv)2 denotes the pixel distance from the image center,
andΘ = r

kr
.

Figure 3.4.:Projection model of a spherical camera using angular fisheye projection.
Illustration of a hemispherical camera with an aperture angle of180◦ (left).
The plotted lines in the circular image (center) denote the equiangular
circles for fixed viewing angles ofΘ = j

4
· 90◦ with j = 0, . . . , 4 (right).

Distortion is modeled as a deviation of the viewing angleΘ and distance from image
centerr from being linearly correlated. [SMS06] suggests to describe the relationship
between both parameters by a fourth-order polynomialΘ = ρ(r) with parameters
0, κ1, . . . , κ4 instead ofΘ = r/kr.

Note that in applications where only normalized image points are considered we will
not have to pay regard to the specific camera model being a perspective camera or a
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3. Theoretical Background 20

spherical camera or to the distortion model, once the mappingK from camera-local
coordinates to image pixels (and vice versaK−1 from image pixels to normalized co-
ordinates) is known and fixed for a camera.

3.3. Epipolar Geometry and the Essential Matrix

Theepipolar geometrydefines the intrinsic projective geometry between two camera
images depending only on the cameras’ intrinsic parameters and relative pose. Epipo-
lar geometry is exploited for a variety of problems such as depth estimation by trian-
gulation, image point matching, and pose reconstruction from calibrated cameras. We
will introduce epipolar geometry, the notion of the Essential matrix and address basic
problem solved by computing the epipolar geometry.

3.3.1. The Essential Matrix

Given two calibrated cameras with calibration matricesK, K′ and poses[I | 0] and
[R | C], and a 3d pointM that is visible in both cameras as illustrated in fig.3.5,
we can relate the coordinates ofM to its projection into both camera images bym̃ =
K(I 0)M = KM̄ andm̃′ = K′(RT −RTC)M. The normalized coordinates correspond-
ing to the projection of the point into both images are given in the calibrated setting
by projective points̄mnorm = K−1m̃, andm̄′

norm = K−1m̃′. The relationship between
projectionsm̄norm, m̄′

norm and the corresponding 3d pointM has to be explored to
solve basic problems in stereo reconstruction:

• Estimating the position of̄m′
norm given m̄norm and pose[R | C] without know-

ing the actual position of the corresponding 3d point refers topoint matching
between camera images.

• Determinating the corresponding 3d point from given projectionsm̄norm, m̄′
norm

and pose[R | C] is referred to astriangulation.

• Reconstructing the inter-camera pose fromm̄norm, m̄′
norm is performed by com-

puting the Essential matrix which will be explored in the following.

As illustrated in fig.3.5, the camera centers0, C, projected points̄mnorm, m̄′
norm and

3d pointM are coplanar forming the so-calledepipolar plane. Theepipoledenotes the
point of intersection of the line joining the camera centers, referred to as thebaseline,
with the image plane. The epipole defines therefore the projection of the camera center
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3. Theoretical Background 21

of each camera into each other’s image plane. The intersection of the epipolar plane
with each image plane is denoted as theepipolar line.

From the Euclidean relationship between the camera coordinate systems we obtain

m̄norm = Rm̄′
norm + C

With the cross productC× Rm̄′
norm being perpendicular toC andRm̄′

norm we get

m̄(C× Rm̄′) = 0

which accounts for the fact that the vectors between projections and the camera centers,
−−−−−→
0, m̄norm,

−−−−−−−−−−→
C, Rm̄′

norm + C, and the baseline vector
−−→
0, C are coplanar as shown in fig.

3.5. Using the skew-symmetric matrix representation[·]× of the cross product

C× C′ =

CyC
′
z − CzC

′
y

CzC
′
x − CxC

′
z

CxC
′
y − CyC

′
x

 =

 0 −Cz Cy

Cz 0 −Cx

−Cy Cx 0

 C′
x

C′
y

C′
z

 = [C]×C′ (3.21)

this can be reformulated as:

m̄
′T
normEm̄norm = 0

where
E = [C]×R (3.22)

E defines theEssential matrixwhich is the algebraic representation of epipolar ge-
ometry for known camera calibration. It relates corresponding image points in differ-
ent camera views with each other. The Essential matrix as defined by the constraint
m̄

′T
normEm̄norm = 0 has only five degrees of freedom: Each translationC and rotation

R has3 degrees of freedom but there is an overall scale ambiguity since eq. (3.22) is
defined on homogeneous coordinates.

3.3.2. Estimation of the Essential Matrix

Given two images of a camera with known intrinsic parameters, the Essential matrix
is computed from corresponding normalized image pointsm̄, m̄′ such that the dis-
crepancy from the epipolar constraint eq. (3.22) in terms of sum of squared distances
between points and their corresponding epipolar lines is minimized.

To normalize corresponding pixel positionsm̃ in both images, the camera calibration
matrix is applied:m̄norm = K−1m̃.
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Figure 3.5.:Two cameras with epipolar plane

Once the Essential matrixE has been estimated, the normalized camera matrix[R|C]
containing the camera pose can be extracted fromE up to scale and with a four-fold
ambiguity where the different solutions represent the cases illustrated in fig.3.6. This
ambiguity is encountered as follows:

• The length of the position vectorC of each solution is set to‖C‖ = 1 to define
the indeterminate scale provided by the equationm̄

′T
normEm̄norm = 0.

• For each of the four solutions, the 3d pointsM corresponding to each 2d point
pair(m̄norm, m̄′

norm) are computed via triangulation as described in section3.3.3.

• The solution with the most 3d points beingin front of both camerasis selected
(see fig.3.6(a)).

(a) (b) (c) (d)

Figure 3.6.:The four possible solutions for pose reconstruction from the Essential ma-
trix. Only in (a) the 3d point is actually visible in both camera.

For practical applications we use a RANSAC approach ([FB81], see also app.A.6) for
robustness. We use the five-point algorithm proposed byNistér [Nis03] to estimate an
Essential matrix from5 corresponding image point pairs. Image point correspondences

22



3. Theoretical Background 23

are established via the KLT feature tracking method proposed byKanade, Lucas and
Tomasi [TK91]. This issue will be explained in detail in section3.5 regarding pose
estimation.

3.3.3. Triangulation

Once the inter-camera pose is known, depth information can be recovered from point
matches. Given a calibrated environment with inter-camera pose[R | C], the 3d point
M̄ corresponding to normalized projectionsm̄norm, m̄′

norm can be computed from the
intersection of the rays through the camera centers and projected points2 −−−−−→0, m̄norm and−−−−−−−−−−→
C, Rm̄′

norm + C as shown below in fig.3.7. Note that a scaling of the baseline lengths
results in an equal isotropic scaling of the reconstructed 3d point space. Since the
baseline length is set arbitrarily for poses recovered from Essential matrix estimation,
3d structure can only be reconstructed up to scale by this technique.

Figure 3.7.:Principle of depth measurement of image points by triangulation. The
epipolar geometry has to be known to compute the 3d points from the
intersection of the projection rays into the camera images.

3.4. Calibration of Intrinsic Parameters

In the last sections we assumed the intrinsic parameters of the camera to be known.
The intrinsic parametersK can be estimated from corresponding 3d space and image
entities using standard techniques as described in general in [HZ00]. Referring to the
camera models described in section3.2, the intrinsic parameters consist of focal length,
principal point, skew, and lens distortion parameters for the perspective camera model,

2Since the rays from camera centers toM̄ and the baseline form a triangle, this technique for depth
measurement is denoted as “triangulation”.
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or principal point, radius scale, and distortion parameters for the spherical camera
model.

In practice, the calibration for both camera models involves a planar checkerboard-
type pattern with accurately known metrics which is referred to ascalibration grid in
the following. Given is a set of imagesJ1, . . . ,JK of the calibration grid captured
from different unknown posesRk, Ck of the camera (k = 1, . . . , K) where the intrin-
sic parameters are assumed to be fixed over time. The corners of the grid are detected
in the images byHarris’ corner detector [HS88] and identified with the corresponding
accurately known 3d points lying on the grid plane within the time-fixed coordinate
frame of the gridCgrid. Cgrid is interpreted as the world coordinate frame for calibra-
tion.
From corresponding 3d points̄Mk

j and 2d pixel positions̃mk
j in eachk-th image, the

extrinsic and intrinsic parameters of the camera are estimated subject to minimizing
the reprojection error - also denoted asgeometric error- of 3d points into the images.
The reprojection error is given by the squared error function:

φ2
rp(K, R1, C1, . . . , RK , CK) =

K∑
k=1

∑
j

‖m̃k
j −K(RkT | − RkTCk)M̄k

j‖2 (3.23)

The estimation can in general be decomposed into the following steps:

1. First, find an initial solution to the intrinsic and extrinsic parameters. This is
most commonly done by linear closed-form solutions computing the projection
matrix from the linear equations provided by eq. (3.13) m̃k

j ∼ PM̄k
j for the

perspective camera model. The projection matrix is decomposed into calibration
matrix K and pose matrix(RkT − RkTCk). Distortion is usually ignored to
simplify this task.
For the spherical camera model a linear approximation of the projection function
P is used to determine an initial solution for the camera calibration functionK
from eq. (3.18).

2. Then the initial estimate is used as a starting point for minimizing the repro-
jection error with an iterative algorithm for non-linear optimization such as
Levenberg-Marquardt.

The direct linear methods used for initialization is in general computionally fast be-
cause there are no iterations required. Nevertheless, its solution may not fulfill the
parameter constraints in the presence of noise. Additional, lens distortion is modeled
as a non-linear function and can generally only be approached by an iterative non-
linear method.
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For practical applications we useBouguet’s Camera Calibration Toolbox for Matlabr

[Bou07] for intrinsic calibration of perspective cameras and stereo rigs, and an adap-
tion of the Omnidirectional Camera Calibration Toolbox for Matlabr developed by
Scaramuzza et al. [SMS06] to calibrate spherical cameras such as wide-angle fisheye-
lens cameras. Both approaches are described in detail in the following sections.

Figure 3.8.:Images for intrinsic camera calibration from corners of a calibration grid.
Top: Example views of the grid with a perspective camera forBouguet’s
Camera Calibration toolbox with different camera poses.
Bottom: Example views of the grid with a fisheye-lens camera for the
Omnidirectional Camera Calibration toolbox with different camera poses.

3.4.1. Calibration of Perspective Cameras

Calibration of intrinsic parameters withBouguet’s toolbox uses an intrinsic camera
model equivalent to the one described in section3.2.1which approximates distortion
as a fourth-order polynomial3. First, the extrinsic and intrinsic parameters apart from
the distortion coefficients are estimated with a closed-form solution which examines

3Bouguet uses the “Plumb Bob” distortion model introduced byBrown which accounts for radial
distortion and thin prism distortions, quod videD. C. Brown: “Decentering Distortion of Lenses”,
in: “Photogrammetric Engineering, Vol. 32 (3)”, p.444–462, 1966.
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planar homographies between the images of the calibration grid as originally proposed
by [Zha99].

The distortion function is estimated separately by minimizing a cost based on the de-
viation of edges on the calibration grid from fitting a linear model. The solution is
afterwards refined iteratively by a non-linear optimization method regarding the dis-
tortion parameters subject to minimizing the geometric error as in eq. (3.23).

3.4.2. Calibration of Spherical Cameras

The Omnidirectional Camera Calibration toolbox for spherical cameras uses a similar
camera model as described in3.2.2. Scaramuzza et al. suggest to model distortion
by describing the termr cot Θ denoting thez-coordinate of the normalized term in
eq. (3.20) by a fourth-order polynomialz = τ(r) instead of considering the viewing
angle/pixel radius relationshipΘ = ρ(r) as non-linear. First, the extrinsic parameters
are estimated fromK−1(m̃k

j ) ∼ (RkT | − RkTCk)M̄k
j arising from 2d-3d correspon-

dencesm̃k
j , M̄

k
j for each imagek = 1, . . . , K. Using this constraint with eq. (3.20),

the extrinsic parametersRk, Ck for each imagek are estimated from:

K−1(m̃k
j )× (RkT | − RkTCk)M̄k

j =

uk
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j − pv
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j
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 = 0

⇔
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(3.24)

wherer =
√

(uk
j − pu) + (vk

j − pv)2 andτ(r) = κ0 + rκ1 + · · ·+ r4κ4.

Note that eq. (3.24) yields one equation for each 2d-3d correspondencem̃k
j , M̄

k
j that is

linear inRkT andtk := −RkTCk but lacks rowRkT
3 andtk

3.
First, the principal point is obtained by estimating the center of the view field circle.
The extrinsic parameters are then estimated from the equations from eq. (3.24) be-
ing linear inRkT andtk except fortk

3 (note that rowRT
3 can be computed fromRT

1

andRT
2 sinceRT is orthonormal). Afterwards the estimated extrinsic parameters are

substituted in eq. (3.24) resulting in an overdetermined system of equations linear in
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κ0, . . . , κ4 andt1
3, . . . , t

K
3 . This system of equations is solved as the previous by a lin-

ear least squares estimator utilizing singular value decomposition.
To maintain consistency with the distortion model proposed in section3.2.2, the pa-
rameters ofρ can be estimated fromτ by interpolatingΘi = π

2
− arctan(τri, ri) for

several equidistant radiiri.

For deeper insight into the issue of intrinsic camera calibration from planar calibration
grids considering distortion models refer to the seminal work done byTsai [Tsa87]
andZhang [Zha99]. See [SMS06] for a detailed description of the spherical camera
calibration method used.

3.5. Pose Estimation and Structure from Motion

To perform the rig calibration as motivated it is essential to have time-corresponding
poses of each camera in the rig each within its local reference frame. In this section
we will describe how to obtain poses by thestructure from motionapproach for a
single camera as proposed by e.g. [WHA93]. This approach is very generic and does
not imply knowledge about the scene geometry or the presence of certain markers or
calibration patterns.

Given is a camera with known intrinsic parametersK from a previously performed
intrinsic camera calibration as described in section3.4, andK imagesJ1, . . . ,JK

captured during an arbitrary motion of the camera through an initially unknown scene.
The task at hand is to estimate the poses[Rk | Ck] of the camera for each time step
k = 1, . . . , K with respect to the initial pose[R0 | C0] = [I | 0]. All poses are described
by Euclidean transformations of the camera-local coordinate frame with respect to
the reference frame at time step0. The task of pose estimation from images can be
separated into the following subtasks:

Feature detection and tracking Interesting image points are extracted from the
sequence of images and 2d-2d correspondences between subsequent images are
computed. In order to simplify this task several image preprocessing steps are
performed and motion between subsequent image is assumed to be small or
motion preknowledge must be available.

Pose estimation initialization From 2d-2d correspondences an initial camera pose
is computed by exploiting the Essential geometry, and sparse 3d structure is ob-
tained up to scale. The absolute scale of the structure is defined arbitrarily.

Pose tracking By further tracing of corresponding image points, the following cam-
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era poses for each image are computed from 2d-3d correspondences and the
structure is updated consistently to the initially chosen scale.

3.5.1. Feature Detection and Tracking

In order to establish correspondences between image points in different images, a fea-
ture point detection and tracking approach is used.
Given an imageJ , an image point̃m ∈ J is considered as interesting for detection
and matching if it can be distinguished sufficiently good from points in its vicinity.
This applies to e.g. corners or fragments of texture. Such locally specific points are
denominated asfeature points. Next to the problem of determining certain points as
feature points, referred to asfeature detection, the issue of comparing and identifying
images of the same feature point in different camera views arises in order to keep track
of feature points over subsequential images from a moving camera. This is denoted as
feature matchingor tracking. There are different methods how to approach and iden-
tify feature points. Within the context of this work a KLT feature tracker is used for
feature detection and matching as proposed and implemented byKanade, Lucas and
Tomasi [TK91] while Harris’ corner detector [HS88] is used during intrinsic camera
calibration to identify corners of the calibration grid. Briefly, the KLT method locates
good feature points by examining the minimum eigenvalue of the structure tensor of
image pixels within a small search window, and features are tracked by minimizing the
difference between windows in subsequent images. Hence tracks of interesting image
points over the image sequence are gained.
As stated in [TK91] the KLT feature tracker is theoretically robust against noise, image
distortion, and change of lighting4. Feature points are located with sub-pixel accuracy
resulting in smaller displacement errors. Also, tracking over Gaussian image pyramids
with multiple resolution allows relatively large displacements between subsequent im-
ages even for small search windows.

3.5.2. Pose Estimation Initialization

Given image point correspondences, the pose estimation is initialized by estimating
the Essential geometry between the first two images and setting up an initial sparse 3d
structure. This will be referred to aspose estimation initialization(or in terms of the
software used “init phase”).

4In fact, in our practical applications we use a simple KLT implementation which is not robust against
lighting changes since no image normalization is used. Nevertheless, it is appropriate for the ren-
dered and real image sequences used for evaluation.
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First, the Essential matrixE0,1 between the first two imagesJ0, J1 is estimated from
n0,1 corresponding pairs of normalized 2d feature point positions extracted from the
images(m̄0

1, m̄
1
1), . . . , (m̄

0
n0,1

, m̄1
n0,1

), using a RANSAC (vide app.A.6) for stability:
Each sample solutionE0,1 is computed via the five-point-algorithm proposed byNistér
[Nis03] from 5 corresponding point pairs as motivated in sec.3.3.2. Correspondences
(m̄0

i , m̄
1
i ) are considered as outliers in the RANSAC framework if the residuum of

m̄1T
i E0,1m̄

0
i is larger than a fixed threshold for a sample solutionE0,1.

The first camera defines the reference frame with initial pose[I | 0]. The pose of the
second camera with respect to the reference frame is computed from the estimated
Essential matrixE0,1 as [R1 | C1] with E0,1 = [C1]×R1. As discussed in sec.3.3.2,
the Essential matrix can only be estimated up to scale hence the scale of the camera
coordinate frame computed fromE0,1 has an arbirary scale. This problem is addressed
by scaling the first pose arbitrarily such that‖C1‖ = 1, fixing the scale of the cam-
era reference frame. From the poses[R0 | C0] and [R1 | C1] the 3d coordinatesMi

corresponding to each feature point pair(m̄0
i , m̄

1
i ) are estimated by triangulation (see

section3.3.3).

3.5.3. Pose Tracking

Given correspondences between image points and 3d points from the initialization
phase, following poses are reconstructed maintaining consistency with the given 3d
structure. This phase will be denoted aspose tracking(or in terms of the software used
“tracking phase”). The notion behind the approach that is outlined below is to register
the pose of the camera at each time step such that the reprojection error between 3d
points and known corresponding image points becomes minimal.

After initializing we have not only the first two poses of the camera given in the camera
reference frame but also correspondences between feature points and sparse 3d struc-
ture given within the reference frame. By further tracking of the feature points into
the actual image, correspondences between normalizes image pointsm̄k

j and 3d points
M̄j in the reference coordinate frame are obtained for each imageJk. Recalling the
projective relation̄mk

j ∼ (RkT − RkTCk)M̄j from eq. (3.13), the camera poseRk, Ck

of each imageJk with respect to the reference frame can be estimated by minimizing
the reprojection error as defined in eq. (3.23), i.e. findRk, Ck such that:

φ2
rp(R

k, Ck) =
K∑

k=1

∑
j

‖m̄k
j − (RkT | − RkTCk)M̄k

j‖2 (3.25)

becomes minimal. Equation (3.25) is solved using a RANSAC for robustness. Each
sample solutionRk, Ck is computed from4 2d-3d correspondences by the POSIT
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method proposed byde Menthon and David [MD95]. 2d-3d correspondences̄mk
i ,

Mi are considered as outliers in the RANSAC framework if the reprojection error
φ2

rp(R
k, Ck) from eq. (3.25) is too large for a sample solutionRk, Ck.

To ensure that the algorithm does not lose track of the sparse 3d structure, new 3d
points must be created during the pose tracking. For this purpose new feature points are
detected and tracked as old feature points are lost. The 3d coordinates of new feature
points are computed by triangulation as before. The algorithm tries to retrieve lost
feature points in the actual image by predicting their position inJk with the estimated
pose.

Figure 3.9.:Flowchart for pose estimation algorithm as described in section3.5.
Init: 2d features from the initial image are tracked until the Essential ma-
trix between the actual and the first image can be successfully estimated.
The pose is computed from the Essential matrix, and 3d points are com-
puted by triangulation.
Tracking: Poses are estimated from 2d-3d correspondences for each image
and the 3d structure is extended by further tracked points.
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The complete pose estimation algorithm is summarized in fig.3.9. For robustness, all
RANSAC estimations, i.e. Essential matrix estimation using the five-point-algorithm
and pose estimation using the POSIT algorithm, are followed by a maximum-likelihood
refinement. Also the reconstructed sparse 3d structure is updated during pose tracking
by applying a Kalman filter. After the estimation has finished an additional bundle
adjustment is performed using 2d-3d correspondences of all images to refine the com-
puted poses and 3d structure. To explain these refinement techniques in detail would
exceed the limitations of this work. For a detailed explanation of the refinement meth-
ods refer to [HZ00, WHA93]. A detailed description of the numerical methods for
Essential matrix estimation and pose estimation can be found in [MD95, Nis03].

It is mentionable that during pose tracking the estimated poses and updated 3d struc-
ture are consistent with the scale fixed at initialization hence reconstructions of the
same scene from different cameras differ by an overall scale factor modeled by dif-
ferent isometric scales of their respective reference coordinate systems. Nevertheless,
although the pose error between subsequent frames is kept low, accumulating estima-
tion errors can results in bias of the estimated poses and hence in a time-dependent
error of the reconstruction scale. This problem will be covered inChapter 5 along
with stability analysis of our approach.

3.6. Linear And Non-Linear Optimization

In order to approach real world problems arising from metrological applications in an
analytical way, a mathematical model is developed which describes the relationship
between measurements and the actual state of the observed system in terms of func-
tional constraints between observation values and an appropriate parametrization of
the system state.
In this chapter we will describe linear and non-linear models as well as analytical and
numerical approaches to solve them for the system parameters given a certain set of
observations.

3.6.1. Solving Systems of Linear Equations

A simple yet commonly used mathematical model is given by a system of linear equa-
tions(L) which is defined by a set ofm linear equations inn real variables:

Ax = b
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or
Ajx = bj for eachj = 1, . . . , k (3.26)

whereA is a realm×n matrix consisting ofm row vectorsAT
1 , · · · , AT

m ∈ Rn, b ∈ Rm

is a column vector of observations andx ∈ Rn is a column vector of unknowns.x
accounts for the a priori unknown system parameters in general.

While accurate equation systems with full rank can be solved easily, metrological ap-
plications have to deal with noise-afflicted and erroneous data. Hence it is mandatory
to use analytical or numerical optimization methods to compensate for the input errors
and obtain a valid solution.

Error model for systems of linear equations: Given a linear equationAx = b,
describing the model behavior, and a measurementb̂ afflicted with unknown measure-
ment errors, a common error model is

b̂ = b + e (3.27)

wheree accounts for the error between measured and “real” observations which is in
general unknown.
We are looking for the parameter vectorx̂ satisfyingAx̂ + ê = b̂ that minimizes the
residual vector‖ê‖ 5.

3.6.2. Solving Linear Least Squares Problems

In most cases we have more observations than constraints on system parameters. Ob-
servations are afflicted with an unknown error resulting from measurement inaccura-
cies, numeric limitations or previous estimation errors. These errors are thought of as
noiseon the input data for solution algorithms. Consider an over-determined noisy
system of linear equations(L) with n unknownsx ∈ Rn andm ≥ n linear equations
Ajx = bj with AT

j ∈ Rn, bj ∈ R for eachj = 1, . . . ,m.

Assuming that the noise is Gaussian distributed with zero mean, the most likely solu-
tion for the equation system with respect to the linear error model stated in eq. (3.27)

5Notice the difference between residuals and measurement error:ê describes the error between ob-
servations expected from theestimatedparameters and measured observations whilee describes the
error between observations expected from thereal parameters and measured observations.
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can be found by solving thelinear least squares problemimposed by(L) of minimiz-
ing the residuals|Ajx − bj| for eachj = 1, . . . ,m, i.e. to minimize the squared error
function:

φ2(x) = ‖Ax− b‖2 =
m∑

j=1

(Ajx− bj)
2 (3.28)

To solve the linear least squares problem one takes advantage of the fact thatφ2 reaches
its minimum atx∗ when its partial derivatives with respect to the parametersx1, . . . , xn

reach zero:

∂

∂x
φ2(x∗) = 0 (3.29)

From this constraint one obtains thenormal equationsof (L) which provide the solu-
tion x∗ for (L):

∂
∂x

φ2(x∗) = 2ATAx∗ − 2ATb = 0
⇔ ATAx∗ = ATb

(3.30)

If A has full column rank, the square matrixATA can be inverted andx∗ is obtained
by applying thepseudoinverseA† = (ATA)−1AT of A to b:

x∗ = (ATA)−1ATb (3.31)

There are several efficient numerical approaches to solve linear least squares problems
such as byQR or LQ factorization, by complete orthogonal decomposition or by sin-
gular value decomposition [WR71]. We use thesingular value decomposition(SVD)
because in the presence of noise we do not know the rank ofA and cannot assure
thatA is not rank-deficient. The SVD offers a high numerical accuracy and stability
even for ill-conditioned matrices and can find solutions when other methods fail. It is,
however, computationally expensive. Another criterion for using the SVD for solving
linear least squares problems is that is dispenses with inverting the symmetric form
ATA explicitly which avoids one source of numerical instability.
Briefly, the SVD computes a factorization of a rectangular matrixA that allows to ex-
press inter alia the pseudoinverseA† by which the linear least squares problem can be
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solved using eq. (3.31). For a detailed description of the SVD and applications to dif-
ferent problems such as solving systems of linear equations, eigenvalue determination,
and computation of the pseudoinverse refer to appendixA.1 or [WR71].

Error propagation

Consider a linear least squares problem corresponding toAx = b with squared error
function φ2(x) = ‖Ax − b̂‖2 for A ∈ Rm×n, b̂ ∈ Rm and unknownsx ∈ Rn. As
stated above the linear least square estimator yieldsx̂ = A†b̂, involving the pseudoin-
verseA† = (ATA)−1AT. Using the error model for linear equations defined in eq.
(3.27) we consider that̂b is afflicted with an errore. Relating the linear least squares
estimate with the “real” solutionx we havêx = A†b̂ = A†(b + e) = x + A†e, hence
the error propagated from the measurementsb̂ to the parameter solution̂x is linearly
transformed byA†.
Assuming the measurement errorse to be Gaussian distributed with zero mean,ej ∼
N (0, σj) for eachj = 1, . . . ,m, the errorε propagated tôx is also Gaussian distributed
with εi ∼ N (0, A†

iσ) for eachi = 1, . . . , n whereA†
i denotes thei-th row ofA†.

Assuming thatA is also depending on measurements and hence afflicted with mea-
surement errors, the error model for linear equations defined in eq. (3.27) cannot be
applied. The model can be augmented by denoting the erroneous matrix byÂ and the
measurement error of each componentÂi,j by the matrixE while A refers to the “real”
matrix. The linear least squares estimator yieldsx̂ = Â†b̂ = Â†(b + e) = x + Â†e,
hence the propagated error is(AE)†e. Error propagation for such cases is in gen-
eral intractable to analyze analytically and is usually replaced by numeric evaluation
techniques such as computing the output error for a large number of input instances
afflicted with error. Such techniques are commonly referred to asMonte Carlo tech-
niques.

3.6.3. Solving Non-Linear Least Squares Problems

For linear least squares problems the components of the error vector are linear func-
tions of the unknownsx hence linear algebra tools can be used to find a solution. Now
consider that the error vector consists of non-linear functions ofx. The general form
of a non-linear least squares error function is given by

f(x) = ‖g(x)‖2 =
m∑

j=1

gj(x)2 (3.32)
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whereg : Rn → Rm, x 7→ (gj(x))j=1,...,m defines a non-linear vector function and
eachgj : Rn → R, j = 1, . . . ,m is a non-linear function over the unknownsx.

As the linear least squares method can be used to estimate solutions of disturbed linear
equation systems, non-linear equation systemsy = h(x) can be modeled as a non-
linear least squares problem by minimizing the error functionf(x) = ‖g(x)‖2 with
g(x) = h(x) − y. To enforce non-linear implicit constraintshj(x, y) = 0 between
system parametersx and observationsy one may solve the non-linear least squares
problem with error function componentsgj(x) = hj(x, y).

There are several optimization methods designed specially for solving non-linear least
squares problems. For a detailed overview of numerical approaches associated with
this problem refer to [MNT04]. The most commonly used methods for solving non-
linear least squares problems areNewton’s approachand its variations, e.g. theLeven-
berg-Marquardt method. An implementation of the Levenberg-Marquardt method as
described in [PFTW88] will be used in this work for practical applications.

Newton’s approach: Newton’s approach starts with an initial parameter solution
x0 and refines this vector iteratively based on the assumption thatg is locally
linear by evaluating a first order approximationg at x0 with a small step∆x:
g(x0 +∆x) ≈ g(x0)+∇g(x0)∆x where∇g(x0) is the Jacobian ofg evaluated at
x0. Hopefully, the algorithm converges to the desired globally minimal solution
but it is also possible that it ends up in a local minimum or does not converge at
all.

Levenberg-Marquardt method: The Levenberg-Marquardt method is basically a
damped version of Newton’s approach. While Newton’s method uses fixed steps
∆x, in each Levenberg-Marquardt iteration step∆x is adapted according to its
influence on the error. However, the result depends also largely on the initial
solutionx0. Such an approach is in general only efficiently appliable ifx0 is
sufficiently close to an optimal solution.
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4. Multi-Camera Rig Calibration

In this main chapter we explore the task ofrig calibration of a fixed multi-camera
rig where “fixed” denotes that their internal parameters and relative positions of each
camera do not change over time.

There are several calibration approaches present for stereo-rigs with overlapping field
of view. Most approaches separate this problem into calibration of the intrinsic param-
eters of each camera and determination of the relative poses of the camera inside the
rig, the latter denoted here asrig parameters. The first issue can be most efficiently
solved using calibration patterns with known metrics ([Tsa87, Bou07, SMS06]). For
the second task different approaches are conceivable, ranging from using calibration
objects to automatic calibration from a sequence of time-corresponding images of all
cameras during an unknown movement of the rig through an arbitrary setting.

This problem is originally based on applications of stereography. However, in gen-
eral one assumes that the coupled cameras have overlapping view fields. Under this
condition, points that have been visible in multiple cameras can be used to apply stere-
ographic methods in order to obtain the relative poses of the cameras pairwise, e.g.
from the epipolar constraints between the cameras.

In contrast to this, for the proposed problem it shouldnot be assumed that the cou-
pled cameras have overlapping fields of view. Hence we cannot utilize methods that
rely on points seen by multiple cameras from the beginning. On the contrary, we will
utilize results from the field ofhand-eye calibration: We use constraints between the
local poses of each slave camera in the rig and the local poses of the master camera
during a movement of the rig to estimate the rig parameters without assuming over-
lapping views. Local poses will be delivered by image-based pose estimation. Once
a sufficient good estimate for the rig parameters has been found structure of the scene
can be recovered from the combined views of all cameras as proposed in [FKK04] or
[Boe07].

First we will define a model of the problem of multi-camera rig calibration and intro-
duce the notations used. Then we will design a framework for an algorithm to solve
this task under certain assumptions.
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4.1. Definition of the Multi-Camera Rig

A so called (fixed)multi-camera rigis defined by a rigid coupling of multiple cameras
such that motions of the whole rig leave the poses of the rig cameras relative to each
other unchanged. Figure4.1and fig.4.2show configurations of multi-camera rigs that
are used in practical applications. In this section we will give a precise description of
the rig model that will be used in this work.

Figure 4.1.:Stereo-camera rig consisting of two perspective cameras with non-
overlapping views.

Figure 4.2.:Typical multi-camera rig for 3d scene reconstruction consisting ofN + 1
perspective cameras with non-overlapping views.

Given areN +1 cameras modeled e.g. by the perspective or spherical camera model as
described in section3.2. The cameras describe a rigidly coupled multi-camera-system
called amulti-camera rigif their poses are fixed inside the rig’s internal coordinate
frameCrig. In other words, the position and orientation of the coordinate framesCi

of each camerai with respect toCrig is constant over time. Although the origin and
orientation of the rig’s coordinate frameCrig could be chosen arbitrarily, we will, for
convenience, designate the camera with index0 asmaster camerawhich defines the
rig’s coordinate frame, while the other cameras with indices1, . . . , N will be referred
to asslave cameras. Their fixed poses inside the rig with respect to the master camera’s
pose will be referred to asinternal posesin the following.

Precisely, the fixed relative pose of each slave camerai = 1, . . . , N with respect to
master camera0 is given by itsinternal position∆Ci = (∆xi, ∆yi, ∆zi)

T and itsin-
ternal orientation∆Ri within the rig coordinate frameCrig. Furthermore, each slave
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camera is associated with aninternal scalefactor∆λi which relates the size of its co-
ordinate frameCi to the rig coordinate frameCrig. This parameter is mandatory since
the corresponding poses from which the system will be calibrated do not necessar-
ily have to be measured in coordinate frames of equal scale. Obviously, because we
identify the rig coordinate frame with the master camera coordinate frame, the master
camera has internal position∆C0 = 0, internal orientation∆R0 = I and internal scale
∆λ0 = 1. Optionally, a scale relating the rig coordinate frame with the metrics of a
wrapping world coordinate frame can be defined by∆λworld, given e.g. in millimeters
per rig coordinate frame unit.

The rotation parameters may be expressed in various ways, e.g. by rotation axis∆ri

and rotation angle∆αi, by its Euler angles∆αi, ∆βi, ∆γi, or by a unit quaternion∆qi

[FW04]. The best representation for rotation will be discussed later in section4.3.1. A
more detailed discussion of this topic is presented in appendixA.2.

Internal positions, orientations, and scales for each slave camera will be referred to as
therig parametersin the following.

As introduced in3.1.2the similarity transformation between the local coordinate frames
of slave camerai and master camera0 is given by the4× 4 matrix:

∆Ti =

(
∆λi∆Ri ∆Ci

0T 1

)

or for short∆Ti = [∆λi∆Ri | ∆Ci].

The inverse transformation is given by the4× 4 matrix

∆T−1
i =

(
1

∆λi
∆RT

i −∆RT
i ∆Ci

0T 1

)

or for short∆T−1
i = [ 1

∆λi
∆RT

i | −∆RT
i ∆Ci].

Connection to hand-eye estimation: The subject of hand-eye estimation is basi-
cally given by a rigid coupling of devices, commonly a camera (“eye”) and a kind of
gripper (“hand”) as illustrated inSection 2, fig. 2.1. Such devices are described in
an equivalent way as a multi-camera rig by the internal poses of hand and eye with
respect to each other. Since the rig model proposed above is a straightforward general-
ization of the hand-eye model, it will be used for both throughout this work. However,
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most hand-eye calibration approaches imply that all measurements are taken within
the same metric framework.

It is an essential property of the proposed rig model that relations between coordinate
frame of cameras are considered by similarity transformations rather than by Euclidean
transformations. Thus, the model is generic and is not restricted to the condition that
observations in each camera frame are measured with respect to the same metric scale.
Later, we will discuss a further generalization of the rig model allowing for the scale
of the camera reference frames to change over time.

In general, estimation of intrinsic parameters and rig parameters is done separately.
First, intrinsic camera calibration depending on the appropriate camera model is per-
formed for each camerai = 0, . . . , N in the rig individually as described in section
3.4. Note that once the camera calibration functionsKi are known, we will not depend
on the specific camera model of the rig cameras for the rest of this chapter.
The second calibration task consists of computing the rig parameters∆Ri, ∆Ci, and
∆λi. In the next section we will explore constraints between corresponding poses of
the coupled cameras in order to address this issue.

4.2. Pose Constraints of the Moving Rig

In this section we will describe the relationship between the rig parameters, i.e. the
internal poses of each camera in the rig with respect to the master camera, and pose
transformations in the camera-local coordinate frames observed during a motion of the
rig in a similar way as for the hand-eye calibration problem.

We consider that the rig is moving over time, precisely: For each time stepk =
0, . . . , K we have different external posesRk

rig, Ck
rig within in the world coordinate

frameCworld. First we will explore the relationship between camera poses and rig pa-
rameters considering different settings for the individual camera poses. We will denote
these aspose models:

Global reference poses Assume that the poses ofall cameras0, . . . , N at each
time stepk = 0, . . . , K are given with respect to the world coordinate frame as
reference frame as illustrated in fig.4.3. The pose for camerai at time stepk
is defined by a Euclidean transformationTk

i = [Rk
i | Ck

i ] with respect toCworld.
Such poses are received e.g. from pose estimation with a reference object visible
in all cameras at the same time which defines the world coordinate frame. Then
the relationship between master and slave camera poses and rig parameters are
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Figure 4.3.:Rig parameters vs. camera poses in global reference frame

Figure 4.4.:Rig parameters vs. camera poses in individual reference frames

given by a Euclidean transformation∆Ti for which holdsTk
0∆Ti = Tk

i , or
more explicitly:

[Rk
0 | Ck

0][∆Ri | ∆Ci] = [Rk
i | Ck

i ]

This pose model yields a very simple constraint on the rig parameters and allows
to compute them by solving the linear equation∆Ti = (Tk

0)
−1Tk

i considering
Euclidean transformations only. This method can be used for stereo rig calibra-
tion e.g. withBouguet’s toolbox [Bou07] from images with large overlapping
views. Nevertheless, this pose model is not feasible for the assumption of non-
overlapping views because it is very difficult to apply a reference object with
accurately known metrics such that it is visible in all cameras at the same time
in general.
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Figure 4.5.:Rig parameters vs. camera poses in camera-local reference frames

Individual reference poses Assume that the pose of each camerai = 0, . . . , N
at each time stepk = 0, . . . , K is given by a Euclidean transformationTk

i with
respect to acamera-specificreference frameCi as illustrated in fig.4.4. Such
poses are received e.g. from pose estimation where for each camera in the rig an
individual reference object is visible at all time steps which defines the respec-
tive camera reference frame. The relationship between master and slave camera
poses and rig parameters is then given by a Euclidean transformation∆Ti for
which holds(T0

0)
−1Tk

0∆Ti = ∆Ti(T
0
i )
−1Tk

i , or more explicitly:

[R0T
0 | −R0T

0 C0
0][R

k
0 | Ck

0][∆Ri |∆Ci] = [∆Ri |∆Ci][R
0T
i | −R0T

i C0
i ][R

k
i | Ck

i ]

for each slave camerai at time stepk.

Although this approach can be applied to multi-camera rigs without overlapping
fields of view it is difficult to realize since the rig motion is very limited due to
the fact that the respective calibration objects have to be visible in all images.
We will refer to this method later to evaluate our approach for non-overlapping
views.

Camera-local poses The most appropriate pose model for our approach is the one
commonly used for hand-eye estimation as depicted in fig.4.5: The reference
frame for each camerai is defined by the initial pose of the camera and following
poses are given with respect to the initial camera pose. Such poses are received
e.g. from pose estimation without certain reference objects as described in sec.
3.5and resemble the local poses referred to in hand-eye calibration approaches
1. As motivated above, the rig coordinate frame is identified with the reference
frame of the master camera,Crig = C0.

1In hand-eye calibration, the local poses of the “hand” are commonly obtained from an observing
camera while local poses of the “eye” camera are computed by image processing methods equal to
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As stated above, we identify the reference frame for each camera with its initial co-
ordinate frame and relate local pose transformation of the cameras with each other
for simplicity, as commonly done in hand-eye calibration approaches. The following
considerations are meant to be generic and do not depend on the concrete technique of
pose acquisition.

The reference frame for each camera inside the rig shall be defined throughout this
work by its initial position at time stepk = 0 scaled isometrically by an arbitrary
scale factor. The reference frame for each camerai = 0, . . . , N is denoted asCi. For
each time stepk = 0, . . . , K the pose of camerai with respect to its reference frame
is denoted asRk

i , Ck
i . By the definition of the reference frame we haveR0

i = I and
Ck

i = 0 for each camerai.

Considering that each moving camera changes its pose over time but not the scale of its
camera-local coordinate frame with respect to its reference frame, the relation between
the coordinate frame of each camerai = 0, . . . , N at time stepk = 1, . . . , K and its
reference frame is given by the Euclidean transformation

Tk
i =

(
Rk

i Ck
i

0T 1

)

or, in short, byTk
i = [Rk

i | Ck
i ].

In section4.1 we identified the similarity transformation∆Ti relating the coordinate
frames of slave camerai and master camera0. Because this relation is fixed over time,
we can relate the coordinate frames of cameras at each point of time via∆Ti as visible
in fig. 4.5.

Hence, we get for each time stepk = 1, . . . , K and each slave camerai = 1, . . . , N
the following equality constraint:

Tk
0∆Ti = ∆TiT

k
i

which can be expressed as:

(
R0

i C0
i

0T 1

) (
∆λi∆Rk

i Ck
i

0T 1

)
=

(
∆λi∆Rk

i Ck
i

0T 1

) (
Rk

i Ck
i

0T 1

)
(4.1)

the one used for our approach. Hence, a multi-camera rig is colloquially interpreted as a hand-eye
device consisting of “eyes” only.
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From eq. (4.1) we get the following constraints for the rig parameters:

Rk
0∆Ri = ∆RiR

k
i (4.2)

Rk
0∆Ci + Ck

0 = ∆λi∆RiC
k
i + ∆Ci (4.3)

Apart from the scales∆λi, this is identical to the equations that have to be solved in
hand-eye calibration approaches as in [HD95].

4.2.1. Motion Models

Throughout this work we will distinguish applications where the rig motion is purely
translational without notable rotation from applications where general motion contain-
ing rotation and translation is performed. As it will be pointed out, the rig calibration
problem has to be treated differently depending on the type of motion. We define two
different motion models as follows:

General Motion Model Assuming general motion we haveRk
i 6= I at each time

stepk = 1, . . . , K for each camerai = 0, . . . , N .

Purely Translational Motion Model A purely translating rig is modeled by as-
sumingRk

i = I for each time stepk = 1, . . . , K and camerai = 0, . . . , N .

We develop different calibration approaches for both models. For practical applica-
tions the appropriate model has to be chosen. In section5.2 the performance of both
motion models will be evaluated under different amounts of rig rotation, and a method
for model selection will be given.

4.2.2. Scale Models

As mentioned in section3.5, due to error accumulation during pose estimation the
reconstructed poses are afflicted with a time-dependent scale error. In the general rig
parameters model we assume the scale∆λi between the reference coordinate frame of
each slave camerai and the master camera reference coordinate frame to be constant.
Another setting where time-dependent scales occur is given when the pose estimation
method is reinitialized at certain steps of time, e.g. if the pose estimation lost track of
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all 3d points. To consider strong scale deviations over time or redefinition of the scale
at certain time steps we will distinguish two different scale models:

Time-Fixed Scale Model The general scale model assumes the scale∆λi to be
constant over time. The transformation of the camera frame of slave camerai at
time stepk to the master camera frame is given by a time-independent similarity
transformation[∆λi∆Ri | ∆Ci].

Time-Dependent Scale Model To model conditions where the scale is known to
change significantly over time we assume the scale to be locally constant during
n intervals of time. We define atime setgiven by a partition of{1, . . . , K}
into subsetsK(1), . . . ,K(n). At each time stepk ∈ K(ν), ν = 1, . . . , n, the
transformation of the camera frame of slave camerai to the master camera frame
is given by a similarity transformation[∆λ

(ν)
i ∆Ri | ∆Ci]. Hence the number of

rig parameters is increased byn− 1 with respect to the time-fixed scale model.
The time-fixed model can be interpreted as a special case of the time-dependent
scale model withn = 1 andK(1) = {1, . . . , K}. The worst case scenario is
given byn = K andK(ν) = {ν} for eachν = 1, . . . , n where the internal scale
is considered to be arbitrary for any framek.

For any given practical application the appropriate model has to be chosen. In section
5.3 the performance of time-fixed and time-dependent scale model will be evaluated
under different scale deviations over time, and a method for model selection will be
given.

4.3. Calibration of Rig Parameters

The general rig calibration algorithm proceeds as shown in fig.4.6. First the intrin-
sic parameters of each camera are calibrated individually by common techniques as
described in section3.4. The remaining task ofrig calibration is now defined by com-
puting the parameters of the rigid coupling, i.e. the relative poses∆Ci, ∆Ri, and
scales∆λi of each slave camera with respect to the master camera, using a set of
time-corresponding poses of all cameras from the moving rig. While we outlined the
generic pose constraints in the previous section we will now specify the model for
practical purposes.

To acquire time-corresponding poses of the cameras according to the camera-local
pose model described above we use a sequence ofK images of each camera captured
synchronouslyduring an arbitrary motion of the rig. We use tracking methods based
on feature points to receive estimates for the posesRk

i , Ck
i of each camerai = 0, . . . , N
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with respect to its initial pose at time step0 for each time stepk = 1, . . . , K as
described in section3.5.

Resulting from the pose estimation method used we receive for each camerai =
0, . . . , N for each time stepk = 0, . . . , K an estimated orientationRk

i and position
Ck

i with initial poseR0
i = I, C0

i = 0 and‖C0
i ‖ = 1. We will continue to use an upper

index to denote time and a lower index to denote the camera index where0 refers to
the master camera.

Figure 4.6.:Flowchart of the general rig calibration algorithm. First, each camera’s in-
trinsic parameters are calibrated separately. Second, time-corresponding
poses are computed for each camera. Third, decoupled linear rig calibra-
tion is performed (internal rotations first, then internal positions). Finally,
combined non-linear refinement of all parameters is performed.

To register the coordinate frames of the slave cameras with the master camera we need
to solve eq. (4.1) for all given time steps. As stated above, eq. (4.1) decomposes into
two different sets of equations, resembling the main equation for hand-eye calibration
[HD95]: Equation (4.2) regarding only orientations and eq. (4.3) combining orienta-
tions, positions, and scales. For the case ofK time steps to solve two different sets of
K equations for each slave camera.
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According toHoraud [HD95], two different approaches are possible to estimate the
parameters for each slave camerai = 1 . . . , N :

Decoupled estimation approach Estimate both constraints subsequently:

1. First the linear constraints (4.2) are solved for the optimal internal orienta-
tion ∆Ri.

2. Afterwards the equations (4.3) are solved for internal position∆Ci and
scale∆λi using the results of the previous estimation for∆Ri.

This way, after solving the first constraint for rotations, the second constraint
(4.3) becomes linear in position and scale. The advantage of this approach is the
fact that there are only linear problems to solve.

Combined estimation approach Orientation∆Ri, position∆Ci and scale∆λi

are estimated simultaneously by combining both constraints. Note that the con-
straints (4.3) are non-linear in contrast to the first approach.

In the following part of this section we describe the decoupled estimation approach,
which leads to linear least squares problems similar to the ones treated byHoraud et
al. for hand-eye calibration [HD95]. Both the time-fixed and the time-dependent scale
model will be considered.
In section4.4we describe the non-linear combined estimation approach which will be
used to refine the solution of the linear least squares approach - it will be pointed out
that combined estimation leads to better results than decoupled estimated as noticed
by Horaud [HD95].
In section4.5 we will modify the linear least squares method to handle also the ill-
conditioned case of purely translating rig motions.
In section4.6 the developed methods are summarized and different applications are
considered.

4.3.1. Estimation of Internal Rotations

First we will consider the decoupled estimation of the internal orientation and deter-
mine the best numerical representation for orientations in this context. For a detailed
discussion of different rotation representations refer to appendixA.2.
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Estimation of rotations using rotation matrices

Considering orientation as3×3 rotation matrices, the internal orientation∆Ri for each
slave camerai = 1, . . . , N can be estimated from eq. (4.2) by solving the following
linear constraint:

Rk
0∆Ri = ∆RiR

k
i (4.4)

With (Rk
0∆Ri)µ,ν =

3∑̀
=1

(Rk
0)µ,`(∆Ri)`,ν and (∆RiR

k
i )µ,ν =

3∑̀
=1

(∆Ri)µ,`(R
k
i )`,ν for

each matrix indexµ, ν = 1, . . . , 3 we get a linear equation system consisting of9N
unknowns and9NK single equations:

3∑
`=1

(Rk
0)µ,`(∆Ri)`,ν −

3∑
`=1

(Rk
i )`,ν(∆Ri)µ,` = 0 (4.5)

for eachµ, ν = 1, . . . , 3 andk = 1, . . . , K, i = 1, . . . , N .

In the literature regarding rotation estimation it appears as a well-known fact that rep-
resenting rotations by3×3 rotation matrices leads to numerically instable solutions in
the presence of noise. Furthermore, rotation matrices are highly redundant containing
9 parameters while each rotation in 3d space has only3 degrees of freedom i.e. for ex-
ample its Euler angles describing the amount of 3d rotation around the axes of a fixed
coordinate system. We will investigate a more appropriate representation for rotations
in the following paragraph.

Estimation of rotations using quaternions

There has been extensive work on solving orientation equations of the given form.
Early solutions represent rotations by3×3-rotation matrices, or alternatively9-vectors,
resulting in the linear problem formulation as in eq. (4.2). These approaches tend to
be error-prone and, moreover, suffer from ensuring the orthogonality of the resulting
matrices. The normalization needed to produce a numerically correct rotation matrix
by orthogonalization methods such as Gram-Schmidt is computionally very expensive
and introduces unnecessary opportunities for errors to propagate as stated e.g. byHorn
in [Hor87]. Seminal contributions such as [CK91] or [HD95] represent rotations by
unit quaternions which can be expressed as4-vectors of unit length in terms of linear
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algebra. In these approaches the number of parameters is reduces from9 to 4 and the
unit length constraint is far more simple to maintain than the assurance of orthonor-
mality of rotation matrices.
In order to reduce the number of parameters for estimation of internal rotation, and to
increase the stability of the estimation it has hence proved most appropriate to use unit
quaternions as a representation for rotations instead of rotation matrices. For a detailed
description of quaternions representing rotations see appendixA.3 or [FW04].
In the following, a solution to the rotation estimation problem is given using quater-
nions. It is similar to the method described byHoraud and Dornaika [HD95], which
estimates the rotation between corresponding rotation axes using the solution for ab-
solute orientation proposed byHorn [Hor87], but our approach considers the rotation
amount also, as proposed byTsai and Lenz [TL89], to enhance stability:

We will represent the orientation of master camera0 and slave camerai at each time
stepk by unit quaternionsqk

0,q
k
i and the internal rotation of slave camerai by a unit

quaternion∆qi instead of using rotation matricesRk
0, R

k
i , ∆Ri.

Equation (4.2) is reformulated as an equality of quaternion products:

qk
0 ·∆qi = ∆qi · qk

i (4.6)

Interpreting quaternions in terms of linear algebra, eq. (4.6) gives the following linear
equations for eachk = 1, . . . , K:

(Tqk
0
−T∗

qk
i
)∆qi = 0 (4.7)

whereTq, T∗
q define the left and right quaternion multiplication withq = (q, x, y, z)T

defined within linear algebra by the matrices:

Tq =


q −x −y −z
x q −z y
y z q −x
z −y x q

 and T∗
q =


q −x −y −z
x q z −y
y −z q x
z y −x q

 (4.8)

Hence, we get from eq. (4.7) the following system of linear equations for each∆qi =
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(∆qi, ∆xi, ∆yi, ∆zi)
T at each time stepk = 1, . . . , K, subject to‖∆qi‖ = 1:


qk
0 − qk

i −xk
0 + xk

i −yk
0 + yk

i −zk
0 + zk

i

xk
0 − xk

i qk
0 − qk

i −zk
0 − zk

i yk
0 + yk

i

yk
0 − yk

i zk
0 + zk

i qk
0 − qk

i −xk
0 − xk

i

zk
0 − zk

i −yk
0 − yk

i xk
0 + xk

i qk
0 − qk

i


︸ ︷︷ ︸


∆qi

∆xi

∆yi

∆zi

 =


0
0
0
0


=: Ak

i

(4.9)

The equation system consists of4 equations per pose correspondence and slave cam-
era and4 unknowns for each slave camera resulting in4NK equations versus4N
unknowns. Apparently one pair of corresponding poses for each camera already suf-
fices to estimate the internal rotation parameters by solving the arising linear equations
systems (4.9) assuming that there is no noise present on the input data. From the re-
sulting quaternions∆qi one can compute the corresponding rotation matrices∆Ri as
described in appendixA.3. Note that this method considers the vector parts of the
input quaternionsqk

0,q
k
i which correspond to the rotation axes of the rig motion, as

well as the scalar quaternion part which corresponds to the amount of rotation whereas
similar methods such asHorn’s approach consider only the rotation axes.

Condition of rotation equations

In real applications, the input rotations are afflicted with noise including e.g. errors
from the feature detector, matching errors and pose estimation errors. In the pres-
ence of noise,A generally has full rank even if the actual problem instance is ill-
conditioned.
We will consider the condition of the problem first by analyzing the impact of errors
on the input data to the solution. Assuming that the measured corresponding rotations
q̂k

0, q̂k
1 are related to the true rotations by a certain error in orientation, the solution∆q̂i

of the noise-afflicted equation system shall be expressed by distorting the true solution
∆qi by an error rotation∆e such that∆q̂i = ∆e · ∆qi. Equation (4.6) can then be
formulated as:

∆e∗ · q̂k
0 ·∆e = ∆qi · q̂k

i ·∆q∗i

which can be reformulated using quaternion properties from appendixA.3 as:

RT
∆er̂0 = R∆qi

r̂i

wherêr0, r̂i are the rotation axes of the measured rotations andR∆e, R∆qi
are rotation

matrices corresponding to the unit quaternions∆e, ∆qi. It appears that∆e is related
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to the amount of rotation between the distorted rotation axes. Since for rotationsqk
0,

qk
1 close to zero-rotation the rotation axes can be distorted almost arbitrarily even by

small orientation errors, the problem must be considered as ill-posed when the rig
motion does not include sufficient orientation change.

From a closer examination of eq. (4.9) we see thatAk
i tends to degenerate for small

rig rotation amounts. Consider that the rig is purely translating at one time stepk, i.e.
we haveRk

0 = Rk
i = I or alternativelyqk

0 = qk
i = (1, 0, 0, 0)T. In this case, we have

Ak
i = 0 and eq. (4.9) cannot be solved. In the presence of noise we find that small

rig rotations within the scale of the orientation error will also lead to degenerated
linear equation systems. A detailed investigation of the degenerate case of purely
translating motion is presented in section4.5. For the case of general motion we will
reject motions where the rotationsRk

0 or Rk
i have a rotation amount below a certain

thresholdαthreshold depending on the expected errors of the input rotations. This will
also be explored in section4.5, where we will compare the general motion and purely
translational motion model.

Solving rotation equations

In the following, a potentially closed-form solution for the internal rotation constraints
in the least squares sense will be developed, and instructions for practical solution
using a singular value decomposition will be given.

In the presence of noise on the input data the system of linear equations (4.9) will
not hold in general. Instead of solving the linear equations directly, the linear least
squares problem corresponding to eq. (4.7) as described in section3.6.2is solved for
a number ofK > 1 corresponding input poses, i.e. we have to minimize the squared
error function:

φ2
rot(∆qi) =

K∑
k=1

‖Ak
i ∆qi‖2

=
K∑

k=1

(Ak
i ∆qi)

T(Ak
i ∆qi)

=
K∑

k=1

∆qT
i Ak

i
T
Ak

i ∆qi

= ∆qT
i (

K∑
k=1

Ak
i

T
Ak

i︸ ︷︷ ︸
=:Ai

)∆qi

(4.10)
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subject to‖qi‖ = 1 for each slave camerai = 1, . . . , N where eachAi is a symmetric
4 × 4 matrix. To assure unit length of solutions∆qi there is an additional constraint
∆qT

i ∆qi = 1 for eachi = 1, . . . , N .

We can solve thisconstrained minimization problemusing Lagrangian multipliers as
e.g. done byWeng et al. [WHA93, p.70] (see appendixA.5 for a detailed explanation).
This leads to introducing an unknown scalarλ 6= 0, theLagrangian multiplier, and
determining the constrained minimum ofφ2

rot as the minimum of the error function:

φ2∗
rot(∆qi) = ∆qT

i Ai∆qi + λ(1−∆qT
i ∆qi)

with respect to∆qi. Hence, for the constrained minimum∆qi of φ∗rot holds:

∂φ2∗
rot

∂∆qi

(∆q) = 2Ai∆qi − 2λ∆qi = 0

and the solution can be obtained in closed form as a unit eigenvector ofA associated
with the smallest eigenvalue:

Ai∆qi = λ∆qi (4.11)

Therefore, each solution∆qi can be obtained from eq. (4.11) by computing a unit
eigenvector ofAi associated with the smallest positive eigenvalue. There are closed-
form solutions for computing the eigenvalues and eigenvectors of a4×4-matrix which
demand to solve a fourth-order polynomial equation arising from the eigenvalue prob-
lem, such as the quartic identity originally developed byFerrari in the 16th century2.
Nevertheless, while formally a closed-form solution, it is numerical instable and far too
complex to allow an analysis of error propagation. Hence, most implementors prefer
iterative eigenvector decomposition methods over the solution in purely closed-form
[MB99]. In our implementation a singular value decomposition of eachAi is used to
compute the eigenvectors∆qi as described in appendixA.1.

Absolute orientation approach for rotation estimation

In this section we will briefly address the approach for rotation estimation proposed by
Horaud and Dornaika [HD95] by which our approach was inspired. Their approach

2Published by the famous Italian polymathGirolamo Cardano along with his seminal closed-form
solution for solving general third-order polynomials in his work“Ars Magna” (1545) as cited in
[Hor87].
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reduces the rotation estimation problem to anabsolute orientation problemregarding
only rotation. This problem is defined according toHaralick and Shapiro by finding
“the rotation by which one or more camera reference frames can be made to corre-
spond to a world reference frame, computed on the basis of corresponding 3d points”
[HS93]. More simple, the problem is to find the rotation that relates two sets of rays
measured in different camera coordinate frames to each other. The de facto standard
approach to solve the absolute orientation problem has been proposed byHorn in
closed form [Hor87].
First we will reformulate the problem such that an absolute orientation problem is
obtained, thenHorn’s solution will be outlined briefly.

It is a well-known fact from work on hand-eye calibration (q.v. [HD95]) that eq. (4.4)
is equivalent to a constraint depending only on the rotation axes of the rig motion:

rk
0 = ∆Rir

k
i (4.12)

whererk
0 andrk

i are the rotation axes of unit length corresponding to the rig rotations
Rk

0 andRk
i .

Proof: We can transform eq. (4.4) into eq. (4.12) as follows: We know that a rotation
matrixR possesses the eigenvalue1 with the rotation axisr being the unique unit length
eigenvector corresponding to1, i.e.: r = Rr. Hence we get from eq. (4.4):

Rk
0∆Ri = ∆RiR

k
i

⇔ Rk
0∆Rir

k
i = ∆RiR

k
i r

k
i

⇔ Rk
0(∆Rir

k
i ) = ∆Rir

k
i

⇔ rk
0 = ∆Rir

k
i

The last row follows because∆Rir
k
i appears as a unit length eigenvector ofRk

0 related
to the eigenvalue1 which is uniquely defined by its rotation axisrk

0.

�

Representing the rotations∆Ri by quaternions∆qi as motivated above, we have the
following constraints for slave camerai:

rk
0 = ∆qi · rk

i ∆q∗i (4.13)

for each time stepk = 1, . . . , K.
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Hence, the problem of estimating the internal orientation of each slave camera reduces
to finding the best fitting rotation between a set of corresponding vectors. This can
be done efficiently byHorn’s closed-form solution [Hor87], which leads to solving an
eigenvalue problem of a4×4 matrix very similar to the one encountered in eq. (4.11).
A detailed description of this method can be found in appendixA.4.
Nevertheless, reducing the rotation estimation problem to an absolute orientation prob-
lem yields the disadvantage that only the rotation axes are considered while the rota-
tion amounts are ignored. AsWang et al. noticed in [Wan92] an additional constraint
on the rotation angle yields a slight advancement of the estimation in the presence of
measurement errors on the rotation amount. Therefore, rotation is estimated by our
approach described in the previous section whileHorn’s method will be revisited later
for rotation estimation in the case of a purely translating rig.

4.3.2. Estimation of Internal Positions

In the previous section we presented a linear method for estimating the internal rota-
tions in the decoupled approach. Now we use the estimated internal rotations to give
a system of linear equations that can be solved for internal positions and scales. First,
we consider the general time-fixed scale model for convenience.

Once the internal orientations∆Ri are known3, the internal positions∆Ci and scales
∆λi of each slave camerai = 1, . . . , N in the rig can be computed from eq. (4.3)
giving the linear constraints:

Rk
0∆Ci + Ck

0 = ∆λi∆RiC
k
i + ∆Ci

⇔ (I− Rk
0)∆Ci + ∆RiC

k
i ∆λi = Ck

0

(4.14)

for each time stepk = 1, . . . , K.

From eq. (4.14) we get the following system of linear equations:

(
I− Rk

0 ∆RiC
k
i

)︸ ︷︷ ︸
(

∆Ci

∆λi

)
= Ck

0

=: Bk
i

(4.15)

for each time stepk = 1, . . . , K.

3Throughout this section the rotation matrix and quaternion representations for rotations will be used
interchangeably. See app.A.3 for the conversion between both representations.
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The equation system (4.14) consists of3 equations per pose correspondence and slave
camera and4 unknowns for each slave camera resulting in3NK equations versus4N
unknowns. Hence at leastK = 2 corresponding pose pairs for each slave camera are
necessary for a unique solution, which requires two independent motions of the rig.

Note that the estimated position is measured within the master camera reference frame.
In order to achieve metric calibration consistent with the real world’s metric one has to
determine the scaleλworld between the world coordinate frame and the master camera
reference frame also.
To do so, it is unavoidable to use a calibration object of known geometry and size
for the image sequence recorded by the master camera. If we are able to determine
the length of some vectors in views of the master camera with sufficient accuracy
according to the world’s metric, we are able to deduce the scaleλworld.

Condition of position equations

First note that the system of linear equations (4.15) is degenerate when there is no
significant rotationRk

0 of the rig present for some time stepk or if there is no translation
Ck

i of the slave camera. The latter occurs only when there has been no motion at all
or if the rig has been rotated around the slave camera center. This case will not be
investigated. The first case is referred to aspurely translational motion. We will
consider it in section4.5. For the case of an arbitrarily moving rig we will reject
motions where the rotation amountαk

0 is below a certain thresholdαthreshold as stated
for rotation estimation.
Second, since rotation estimation is performed separately, estimation errors of∆Ri are
transferred to position and scale estimation.
Finally, solving the equation system for position and scale by a linear least squares
approach in the presence of measurement errors on the input poses does not impose
bounds on∆Ci and∆λi explicitly. Strategies for further constraining∆λi to counter
deviations of the estimates are given in the next section.
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Solving position equations

In the presence of noise we consider the linear least squares problem corresponding to
eq. (4.7) as described in section3.6.2, i.e. we minimize the squared error function

φ2
pos(∆Ci, ∆λi) =

K∑
k=1

(Bk
i

(
∆Ci

∆λi

)
−Ck

0)
2 = ‖

B1
i

...
BK

i

 (
∆Ci

∆λi

)
−

C1
0

...
CK

0

 ‖2 (4.16)

for each slave camerai = 1, . . . , N using singular value decomposition as described
in appendixA.1.

Estimation with time-dependent scales

Finally, the linear least squares estimation of internal positions and scales is extended
from the time-fixed to the time-dependent scale model, i.e. we assume that for each
i-th cameran individual internal scales∆λ

(ν)
i with ν = 1, . . . , n are defined, each

valid for a subset of equations (4.14) with k ∈ K(ν) whereK(1), . . . ,K(n) is a partition
of time steps{1, . . . , K} as defined in section4.2.2.

Hence, the equation system stated above is generalized to:

(I− Rk
0)∆Ci + ∆RiC

k
i ∆λ

(ν)
i = Ck

0 (4.17)

whereν denotes the respective time set withk ∈ K(ν) for eachk = 1, . . . , K. Note
that we have3+n unknowns for each slave camera resulting in3NK equations versus
(3 + n)N unknowns. Sincen ≤ K even for the worst case of maximal number of un-
knowns,K = 2 single movements of the rig suffice to yield an non-underconstrained
equation system.

4.3.3. Separate Estimation of Internal Scales

As we have seen, eq. (4.3) provides constraints on the internal positions∆Ci and
scales∆λi of each camera in the rig after estimating the internal orientations∆Ri.

55



4. Multi-Camera Rig Calibration 56

In the previous section we solved the resulting linear equations system eq. (4.15) for
internal positions and scales simultaneously. As stated in eq. (4.15), internal positions
and scales are theoretically unbounded, leading to potentially severe estimation errors
in the presence of noise on the measured corresponding poses. Nevertheless, there
are further constraints on the internal scale, depending only on the measured poses,
that have to be investigated in order to constrain the internal scale appropriately. The
following constraint holds for each slave camerai = 1, . . . , N at each time stepk =
1, . . . , K:

∆λiC
k
i

T
rk
i = Ck

0

T
rk
0 (4.18)

whereCk
0, Ck

i are the positions of the master and slave camera measured in their re-
spective local coordinate frameCi, andrk

0, rk
i are the rotation axes of master and slave

rotationsRk
0, Rk

i .

Proof: Assume that the positionsC0, Ci and orientationsR0, Ri of master and slave
camera measured in their respective local coordinate frames are given for a certain
point of time. We will omit the superscriptk for the sake of legibility. The rig pa-
rameters for the slave camera are given by∆Ci, ∆Ri and scale∆λi. Equation (4.3)
provides the following constraint:

(R0 − I)∆Ci + C0 = ∆λi∆Ri∆Ci (4.19)

From eq. (4.12) we obtain the following constraint for the rotation axesr0, r1 of master
and slave rotationsR0, R1:

r0 = ∆Rir1 (4.20)

Also, it can be verified easily that the vector(R0 − I)∆Ci is perpendicular to the
rotation axisr0 of the master camera:

(R0 − I)∆CT
i r0 = R0∆CT

i r0 −∆CT
i r0

= ∆CT
i R0r0︸︷︷︸

=r0

−∆CT
i r0 = 0 (4.21)
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Therefore, we now have:

∆λiCi
Tri = ∆λiCi

T(∆RT
i ∆Ri)ri

= ( ∆λi∆RiCi︸ ︷︷ ︸
=(R0−I)∆Ci+C0

)T(∆Riri︸ ︷︷ ︸
=r0

)

(4.19,4.20)
= ((R0 − I)∆Ci + C0)

Tr0

= (R0 − I)∆CT
i r0︸ ︷︷ ︸

=0

+CT
0 r0

(4.21)
= CT

0 r0

(4.22)

�

Given measured poses at time stepk, the scale∆λk
i computed from eq. (4.18) by

∆λk
i =

Ck
0

T
rk
0

Ck
i

T
rk
i

is a property of measurements only; hence, each such∆λk
i can be in-

terpreted as ameasurement for internal scaleat time stepk. To distinguish measured
scales from estimated scales the former will be denoted simply byλk

i in the follow-
ing.

Condition of scale equations

Equation (4.18) degenerates for motionsk whereCk
i
T
rk
i approaches zero. This situ-

ation occurs for motions where a slave camera translates mainly perpendicular to its
rotation axis, or if there is either no significant translation or rotation of the respective
slave camera noticeable. To prevent degeneracy, such motions have to be rejected for
scale estimation. IfCk

i
T
rk
i evaluates below a certain thresholdδthreshold, a motion is

considered as degenerate. We will find that a good threshold isδthreshold = 3ε, where
ε denotes the absolute error expected on either scalar productCk

0
T
rk
0, C

k
i
T
rk
i .

Remark: Denote both scalar products ass0 = Ck
0
T
rk
0, si = Ck

i
T
rk
i for simplicity.

Suppose that boths0 andsi have an error of magnitudeε > 0. The worst-case absolute
error for λ̂k

i = ŝ0

ŝi
is given byελ = λ̂k

i − λk
i = s0+e

si−e
− s0

si
. By determining a relative

error factorL > 0 such that the absolute error onλ̂k
i is bounded byLλk

i we get the
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following constraint:

ελ = s0+ε
si−ε

− s0

s0
< L s0

s0

⇔ s0+ε
si−ε

< (L + 1) s0

si

⇔ s0si + siε < (L + 1)(s0si − s0ε)

⇔ si > L+1+si/s0

L
ε > L+1

L
ε

(4.23)

With L = 0.5, we haveδthreshold = 3ε, whereε is appropriately considered to be
within the range of10−3.

�

The measured scaleλk
i is in general very sensitive to noise on the measured poses since

it is computed as a ratio of measurements afflicted with independent errors.
In the time-fixed scale model a linear least squares approach can be used over all
measured scalesλ1

i , . . . , λ
K
i , since the rig scale∆λi is assumed to be constant. For

the time-dependent scale model we assumen different scales for different subsets of
{1, . . . , K}. As for the time-fixed scale model the rig scale∆λ

(ν)
i for each time setK(ν)

can be estimated by a linear squares approach with respect to the measured scales from
K(ν). In the worst case, namelyn = K, each∆λ

(k)
i is identified with the measured

scaleλk
i without potential optimization.

Solving scale equations

Given K noise-afflicted motions of the rig,∆λi is estimated for each slave camera
i = 1, . . . , N in the time-fixed scale model from eq. (4.18) by minimizing the error
between∆λiC

k
i
T
rk
i andCk

0
T
rk
0 in the least squares sense, which leads to minimizing

the squared error function:

φ2
scale(∆λi) =

K∑
k=1

(Ck
i

T
rk
i ∆λi − Ck

0

T
rk
0)

2 = (aT∆λi − b)2 (4.24)

for each slave camerai, wherea, b ∈ RK are given byak := Ck
i
T
rk
i andbk := Ck

0
T
rk
0

for eachk = 1, . . . , K. The linear least squares estimator as defined in3.6.2is given
in closed form by:

∆λ̂i =
aTb

aTa
(4.25)

To estimate each internal scale∆λ
(ν)
i for theν-th time setK(ν) ⊆ {1, . . . , K}, the least

squares estimator regards measurements fork ∈ K(ν) only. For time sets of size1, no
optimization is possible.
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Recapitulating, we have proposed a solution for the internal scales depending on the
measured camera poses both for the time-dependent and time-fixed scale mode. So-
lutions from this approach are considered as measurements of the internal scale and
will be integrated into the following non-linear refinement of all rig parameters as a
constraint on the respective parameters.

4.4. Non-Linear Refinement of Rig Parameters

In the previous section the estimation was performed by solving systems of linear
equations first for internal rotation and afterwards for internal position and scale. It
is obvious that errors in the estimation of internal rotation will impact the estimation
of the internal translation and scale. Moreover, we pointed out that there is additional
knowledge about measurements of the internal scales accessible which can be used to
impose further constraints on the rig parameters.
Horaud suggests in [HD95] on the topic of hand-eye calibration that all parameters
should be estimated simultaneously from eq. (4.6) and eq. (4.14) by combining the
error functionals eq. (4.10) (rotation) and eq. (4.16) (position and scale) while noticing
that there has been found no closed-form solution of this non-linear problem yet.
While for the decoupled linear rotation estimation the unit length constraint‖∆qi‖ =
1 for each internal rotation quaternion is maintained implicitly, it has to be added
explicitly for non-linear refinement. A common technique to add such constraints is to
add a penalty term for‖∆qi‖ deviating from1 to the error functional.

The non-linear error functional reads therefore:

φ2
NL(∆qi, ∆Ci, ∆λi) = φ2

rot(∆qi) + φ2
pos(∆qi, ∆Ci, ∆λi) + ξ1(‖∆qi‖ − 1)2

=
K∑

k=1

‖qk
0 ·∆qi −∆qi · qk

i ‖2 +

K∑
k=1

‖(Rk
0 − I)∆Ci + ∆λi∆qi · Ck

i ·∆q∗i − Cκ
0‖2 +

ξ1(∆qT
i ∆qi − 1)2

(4.26)

whereξ1 defines a considerably large weight on the penalty term enforcing unit length
for each internal rotation quaternion. It is set toξ1 = 2 ·106 as suggested in [HD95].

This error functional has the form of a sum of squares of non-linear functions and is
considered as a classical non-linear least squares problem (see section3.6.3). In our
implementation the problem is solved using a Levenberg-Marquardt non-linear opti-
mization method as described in [PFTW88]. The optimization method starts with the
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solutions∆q0
i , ∆C0

i , ∆λ0
i obtained from the linear least squares method, refining the

solution iteratively. Note that the estimated rotation may be inferior than solutions
from decoupled rotation estimation since it is additionally afflicted with position mea-
surement errors. Nevertheless, since the error functional depends on all rig parameters
at the same time, it is suggested that in general the minimization converges to a better
solution. We will evaluate the performance of the refinement in section5.1.

Additional scale measurement constraints

In section4.3.3we derived further properties of the internal scales∆λi. The solutions
λi of the linear least squares problem (4.24) can be interpreted as measurements of
the internal scales arising from the measured poses. Uncertainty proportions of the

measurements are given by their standard deviationsσ2
i =

K∑
k=1

(λi − λk
i ) whereλk

i =

Ck
0rk

0

Ck
i rk

i
for eachk = 1, . . . , K.

The error functional (4.26) is modified in order to constrain the solution to fit the
measured scales considering their respective uncertainties by applying a penalty term
for the additional implicit constraint∆λi − λi = 0 weighted each with1/σ2

i .

The modified non-linear error functional is then given by:

φ∗2NL(∆qi, ∆Ci, ∆λi) = φ2
NL(∆qi, ∆Ci, ∆λi) +

(∆λi − λi)
2

σ2
i

(4.27)

This approach is extended straightforwardly for the time-dependent scale model by
adding a term for each internal scale∆λ

(ν)
i with respect to the measurementλ

(nu)
i of

time setK(ν).

4.5. Estimation with a Purely Translating Rig

As stated in sections4.3.1and4.3.2, the systems of linear equations for decoupled
estimation of rotation (eq. (4.7)) and position and scale (eq. (4.15)) tend to degenerate
in the absence of significant rotation of the rig. More precisely: When the rig motion
is purely translational, the relative orientationsqk

0 andqk
i in eq. (4.6) are both given

by the quaternion representing zero rotation(1, 0, 0, 0)T and the matrixAk
i in eq. (4.7)

becomes zero. Even when the rotation of the rig is very small,Ak
i is close to zero

and the equation system eq. (4.7) becomes ill-conditioned in the presence of noise.
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This is also visible in eq. (4.15) whereBk
i grows ill-conditioned when the rotationRk

0

observed by the master camera is close toI.

To consider such motions we introduced the purely translational motion model (PTM)
in section4.2.1. To decide if the given motion fits the PTM we are looking at the input
pose orientationsRk

i . Given that all pose orientations are below a certain minimal
rotation thresholdαmaxrot we consider the rig to be purely translating. This case has
been referred to aspurely translation motion modelin opposition to thegeneral motion
modelwhere sufficient rotation is present for each frame. For the general motion model
poses with orientation belowαmaxrot are excluded from estimation. An appropriate
threshold is determined in section5.2.

Obviously the estimation of the∆Ci is not possible for the case of a purely or almost
entirely translating rig, since pure translation yields no constraints on the relative po-
sitions of the coupled cameras. Motion measured within the camera-local coordinate
frames appears equally for a purely translational motion regardless of where the frames
are located within the world coordinate frame. However, internal orientation and scale
can still be estimated.

Estimation of internal rotations: Assuming that the input rotationsRk
i are each

equal toI, eq. (4.14) turns into:

∆Ri∆λiC
k
i = Ck

0 (4.28)

Hence, the problem of estimating the internal orientation of each slave camera reduces
to finding the best fitting rotation between a set of corresponding vectors, i.e. by
solving anabsolute orientation problemregarding only rotation as defined in section
4.3.1: “Absolute orientation approach for rotation estimation”. Denoting the directions
of the position vectors asck

i = Ck
i /‖Ck

i ‖, eq. (4.28) can be reduced to estimate∆Ri

without knowledge about∆λi:
∆Ric

k
i = ck

0 (4.29)

In the presence of normally distributed noise, an optimal solution is found by mini-
mizing the squared error function:

φ2
rot(∆Ri) =

K∑
k=1

‖∆Ric
k
i − ck

0‖2 (4.30)

This can be solved efficiently according toHorn’s closed-form solution for absolute
orientation [Hor87] which was discussed above (see appendixA.4 for further de-
tails).
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Estimation of internal scales: As noted in section4.3.3, the scale estimation from
input poses also fails for a purely or almost entirely translating rig. However, since a
rotation does not change the length of a vector, the scale∆λi can be estimated directly
from eq. (4.28) without knowledge about∆Ri. For each time stepk holds:

∆λi‖∆RiC
k
i ‖ = ‖Ck

0‖ ⇔ ‖Ck
i ‖∆λi = ‖Ck

0‖ (4.31)

Equation (4.31) provides measurementsλk
i =

‖Ck
0‖

‖Ck
i ‖

of the internal scale for each time
stepk. Similar to scale estimation for the general motion model, the linear least square
estimator for each∆λi in the time-fixed scale model minimizes the squared error func-
tion:

φ2
scale(∆λi) =

K∑
k=1

(‖Ck
i ‖∆λi − ‖Ck

0‖)2 = (aT∆λi − b)2 (4.32)

and is given in closed-form by∆λ̂i = aTb
aTa

for each slave camerai wherea, b ∈ RK are
given byak := ‖Ck

i ‖ andbk := ‖Ck
0‖ for eachk = 1, . . . , K. The linear least squares

estimation is generalized to the time-dependent case the same way as suggested for the
general motion model by estimating a solution for each time set respectively.

This gives us a strategy to estimate internal rotations and scales from measured cor-
responding camera poses for the purely translational motion model. We will compare
this approach with the general motion model approach in section5.2 for rig motions
with small amounts of rotation and give a method to select the preferable model.

4.6. Closure

In this chapter we have developed a framework for rig calibration from time-correspond-
ing poses of the coupled cameras. Intrinsic parameters and internal pose parameters
are calibrated separately where standard techniques depending on the specific camera
model are used for the former task. We presented two approaches for internal pose
estimation: A linear approach which estimates rotation and position decoupled, and a
non-linear approach where all parameters are estimated at simultaneously. Non-linear
estimation of internal scales between the rig camera reference frames is further con-
strained by scale estimates computed from corresponding poses.
We stated analytically that both approaches cannot be applied for the purely trans-
lational motion model (PTM), i.e. for rig motions without significant rotation with
respect to the reference pose. A modification of the internal pose calibration approach
for the PTM was given where internal rotations and scales can be recovered while in-
ternal positions are not accessible.
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Finally, modifications of position estimation for general rig motions assuming a time-
dependent scale model (TDS) were given, i.e. considering that the scales between the
rig camera reference frames are not equal for all corresponding poses.
Figure4.7 shows an overview of the internal pose estimation variants for all motion
and scale models. In the next section, an implementation of the approaches will be
evaluated in practical tests considering first synthetic data for stability analysis, then
real applications.

Figure 4.7.:Overview of different versions of our rig estimation approach for dedi-
cated problems. The appropriate method instance depends on the selection
of general rig motion model vs. purely translational rig motion model, and
on the proposition of time-fixed internal scales∆λi vs. time-dependent in-
ternal scales∆λ

(ν)
i .

Input are corresponding poses of master0 and each slave camerai at cer-
tain time stepsk = 1, . . . , K. The leafs correspond to the output values
of the estimation algorithm i.e. internal rotation∆Ri, positions∆Ci and
time-fixed scale∆λi or alternatively time-dependent scales∆λ

(ν)
i for each

slave camerai. The non-linear estimation method requires an initial so-
lution which can be computed by the linear least squares method for the
general motion model.
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5. Applications and Results

In this chapter our approach is evaluated in practice using different test cases.

In the following section we will first evaluate the stability of the implementation us-
ing synthetic data. For this purpose, appropriate error models for pose estimation and
rig calibration are introduced. Then we will present different real applications, eval-
uate the quality of the estimated rig parameters, and demonstrate how the proposed
calibration approaches can be applied practically.

5.1. Stability Analysis

In this section the stability of the implemented rig calibration methods against noise on
the input data is evaluated. We use a large sample set of synthetically generated pose
correspondences afflicted with different amounts of error in order to determine the
robustness of the linear least squares calibration method and the non-linear calibration
method with respect to the number of input poses and input error amount. The special
case of purely translational rig motion as described in section4.5will also be evaluated
by comparing the rig calibration methods for both motion models using synthetic pose
correspondences where the rig is only rotated by very small amounts.

5.1.1. Error Model

To measure the error of the estimated rig parameters∆R̂i, ∆Ĉi for each slave camera
i = 1, . . . , N with respect to the real parameters, the following descriptive error model
is used as suggested in [HD95]: Errors of orientations are measured by the rotation
between expected and measured orientation. For positions, both the orientation error of
the position direction vector and the length error of the position vector are considered
respectively.
The same error model is used to describe the error of time-depending input posesR̂k

i ,
Ĉk

i , e.g. provided by pose estimation, with respect to the true posesRk
i , Ck

i for each
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camerai = 0, . . . , N at time stepk = 1, . . . , K.
The error model is extended by the internal rig scale∆λi and pose-corresponding
scalesλk

i (i.e. “measured scales”).

Rotation orientation error Therotation orientation errorεR measures the error of
an estimated rotation̂R. It is defined by the amount of rotation that remains from
a rotation byR and subsequent back-rotation byR̂T. Representing rotations by
unit quaternions, the amount of error rotation is given byεR = 2 arccos(εq)
where(εq, εx, εy, εz)

T = q̂∗ · q (see appendixA.3).

Position orientation error Theposition orientation errorεC measures the error of
the direction of an estimated position vectorĈ. It is defined by the angle between
C andĈ which can be computed byεC = arccos( CTĈ

‖C‖‖Ĉ‖).

Distance error Thedistance errorε‖C‖ measures the error of the length of an esti-

mated position vector̂C. It is given relative to the real length byε‖C‖ = |‖C‖−‖Ĉ‖‖C‖ |
in percentage of‖C‖.

Scale error The scale errorελ of an estimated scalar̂λ is given relative to the real
scaleλ by ελ = |λ−λ̂

λ
| in percentage ofλ.

To evaluate the quality of corresponding poses from pose estimation for rig param-
eter estimation we also consider the amount by which the poses violate the rig con-
straints eq. (4.2) and eq. (4.3) regarding the real rig parameters. Given estimated time-
corresponding poseŝRk

0, Ĉk
0 andR̂k

i , Ĉk
i the expected slave pose is computed from the

estimated master pose using the real rig parameters∆Ri, ∆Ci, ∆λi as stated below.
The deviations of eq. (4.2) and eq. (4.3) from equality, i.e. theconstraint residua, are
used to assess the validity of the estimated corresponding poses with respect to their
value for rig parameter estimation.

Rotation constraint residuum Given estimated corresponding rotationsR̂k
0 and

R̂k
i the rotation constraint orientation residuumof eq. (4.2) is given by the

orientation error on both sides of eq. (4.2) between̂Rk
0∆Ri and∆RiR̂

k
i for each

time stepk = 1, . . . , K.

Position constraint residuum Given estimated corresponding posesR̂k
0, Ĉk

0 and
R̂k

i , Ĉk
0 theposition constraint orientation residuumis given by the orientation

error between both hands of eq. (4.3), i.e. between vectorŝRk
0∆Ci + Ĉk

0 and
∆λi∆RiĈ

k
i + ∆Ci.

The absolute position constraint residuumis given by the absolute difference
between both equation hands‖(R̂k

0 − I)∆Ci + Ĉk
0 −∆λi∆RiĈ

k
i ‖.
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Scale constraint residuum Given estimated corresponding posesR̂k
0, Ĉk

0 andR̂k
i ,

Ĉk
0 the scale constraint erroris given by the scale error of “measured scales”

λ̂k
i computed by eq. (4.18) with respect to the real scales∆λk

i between both
camera reference frames at time stepk = 1, . . . , K (remember that for the time-
fixed scale model∆λk

i is assumed to be constant for allk, denoted by∆λi), i.e.

|∆λk
i −λ̂k

i

∆λk
i
|.

5.1.2. Stability Depending on Pose Error

In the first test case we analyze and compare the stability of the estimation methods
proposed inChapter 4. We do so by applying the methods to a large number of
randomly generated input pose correspondences corrupted by artificial noise. This
procedure is applicable because each single estimation can be performed with very
low time effort.

First, we create random rig parameters∆Ri, ∆Ci, ∆λi for each slave camerai =
1, . . . , N , i.e. the internal poses and scales of each slave camera with respect to the
master camera.

• Each∆Ci is uniform randomly chosen from the subspace[−10, 10]3.

• For each rotation∆Ri a unit vectorr is uniform randomly chosen from the unit
sphere and an angleα is uniform randomly selected from the interval[−π, π].
The rotation is composed from axisr and angleα.

• Each scale∆λi is uniform randomly chosen from the interval[0.01, 1].

Next, we synthetically generate poses from a random motion of the rig overK frames.

• At first, random posesRk
0, Ck

0 are generated for the master camera0 for each
time stepk = 1, . . . , K.

• Afterwards, the corresponding pose parametersRk
i , Ck

i for each slave camera
i = 1, . . . , N are computed by applying the rig parameters∆Ri, ∆Ci, ∆λi to
the master camera poses. The computation of slave poses from master poses and
rig parameters can be derived from eq. (4.2) and eq. (4.3):

Rk
i = ∆RT

i Rk
0∆Ri (5.1)
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and:

Ck
i =

1

∆λi

∆RT
i ((Rk

0 − I)∆Ci + Ck
0) (5.2)

for each time stepk = 1, . . . , K.

In order to simulate the uncertainty of the master and slave poses obtained by previous
pose estimation techniques, all input poses are disturbed by a certain error amount. In
real applications, errors of the input poses occur in errors of orientation and length of
the translation vector, and errors in rotation orientation. We want to analyze the effects
of orientation errors of the input poses on the estimation methods. Therefore errors are
emulated by the following scheme:

For orientation error analysis anorientation error levelε > 0 is given which defines
the amount of rotation and position orientation error of the poses. RotationsRk

i and
positionsCk

i of each camera at each step of time are disturbed by a random rotation
with an amount ofε:

R̂k
i = Rrk

i ,εR
k
i

and
Ĉk

i = Rck
i ,εC

k
i

whereRr,ε defines a rotation around axisr by angleε andrk
i , ck

i are uniform randomly
chosen rotation axes.
The orientation error levelε will be specified in degree in all studies.

We observe the average of the resulting errors for105 random samples consisting of
K = 4 corresponding poses each with an error level ofε ranging from0◦ to 3◦ in
steps of0.1◦. From the results we can deduce the stability of both calibration method
against noise on the orientations of the input poses. In fig.5.1the results for the linear
least squares approach are shown. Figure5.2 shows the average estimation error for
additional non-linear refinement of the LLS results.

Apparently, for frame-independent, unbiased orientation errors on the input poses the
error of the results is in the same order of size as the input noise and evolves linearly
with the input error. As expected from the theoretical design, the decoupled estimation
method (i.e. the linear least squares estimation) yields a greater estimation error for the
internal positions because the rotation estimation errors are transferred to position es-
timation. The combined non-linear estimation method yields better results for position
and scale estimation while rotation estimation is not significantly improved.
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Figure 5.1.:Output error for linear least squares estimation from synthetically gener-
ated corresponding poses for2 cameras and4 images, depending on orien-
tation error of the input poses. The output error is measured as (a) rotation
orientation error between estimated rotation∆R̂i and real rotation∆Ri,
(b) position orientation error between estimated position∆Ĉi and ground
truth position∆Ci, and (c) distance error of estimated internal position
‖∆Ĉi‖ in percent of‖∆Ci‖.

Figure 5.2.:Output error for non-linear refinement of linear least squares estimates
from synthetically generated corresponding poses for2 cameras and4 im-
ages depending on orientation error of the input poses. The initial solution
is computed by the linear least squares method. The output error is mea-
sured as in fig.5.1.
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5.1.3. Stability Depending on Number of Poses

In the previous section the performance of the proposed estimation methods was inves-
tigated for fixed a number ofK = 4 input pose correspondences. Although a solution
for internal rotation and position can be computed from a minimal set withK = 2
pose correspondences without noise, in the presence of measurement errors a larger
set is favorable to suppress noise. In this section it will be shown how the perfor-
mance improves in the test case described above when a larger number of input poses
is used.

Test data is generated the same way as described in the previous section. Here the
error level is fixed atε = 1◦ and the number of corresponding input poses from which
the rig parameters are estimated increases fromK = 4 to K = 24. The errors of
the estimation results is estimated as the average from105 random samples for each
K = 4, . . . , 24 and plotted in fig.5.3 for the linear least squares method and in fig.
5.4 for additional non-linear refinement. For both methods the average rotation and
position orientation error is significantly decreasing with increasing number of poses
used for estimation. ForK greater than about20 there is no significant improvement
notable for the estimation results.

We have shown that the rig calibration error decreases with increasing number of input
pose correspondences for both the linear and the non-linear calibration method. For
sufficiently large numbers of pose correspondences, the error of the linear least squares
method approaches zero, assuming that the input error is Gaussian distributed. Hence
for large input sets, the linear approach is supposed to deliver results of equal accu-
racy as the non-linear approach. Nevertheless, the non-linear method is preferable for
practical applications, in particular if fewer corresponding poses are available.
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Figure 5.3.:Output error for linear least squares estimation for a stereo rig from syn-
thetically generated corresponding poses with fixed error level (ε = 1◦)
depending on the number of input poses ranging from4 to 24. The output
error is measured as in fig.5.1.

Figure 5.4.:Output error for non-linear refinement of linear least squares estimates
from synthetically generated corresponding poses with fixed error level
(ε = 1◦) depending on the number of input poses. The initial solution is
generated by the linear least squares method. The output error is measured
as in fig.5.1.
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5.2. Comparison of General Motion Model and Purely
Translational Motion Model

In order to compare estimation performance for the purely translational motion model
(PTM) and general motion model as defined in section4.2.1, both approaches are
tested for a large set of synthetically generated corresponding poses as in the previous
test case. Poses are generated with an rotation and postition orientation error ofε,
ranging from0◦ to 3◦ in steps of1◦. To model mostly translational motion, the maxi-
mal rotationαmax of the input poses is fixed, ranging from0◦ to 25◦ in steps of1◦. For
each pose estimationK = 4 input pose pairs were used. Eachk-th pose has a rotation
amount of k

K
αmax degree around a randomly chosen axis. The linear least squares

solution of both the general motion and purely translational motion approaches were
computed for105 random problem instance for eachαmax andε. Figure5.5compares
the errors of both motion models and illustrates the equal error boundary for both al-
gorithms.
The orientation errors of the estimated internal rotation are shown in fig.5.5(top) with
respect to input orientation errorε and maximal rig rotationαmax. One notices that the
general motion model fails if orientation noise on the input poses is sufficiently large
with respect to absolute rig rotation.
Figure5.5(bottom) shows a surface plot of the estimation errors for both models de-
pending on input accuracy and maximal absolute rotation. The line of equal error
for both algorithms indicates a method for model selection. In conditions above the
equal error boundary, the general motion model yields more accurate results than the
PTM. Expecting an orientation error of about1◦ on input poses we will fix a maximal
absolute rig orientation ofαmaxrot = 10◦ to consider a rig as purely translational.
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Figure 5.5.:Comparison of linear least squares estimation with general motion model
and purely translational motion model. Top: Output orientation error for
both motion models depending on rig rotation amount and input orienta-
tion accuracy. Bottom: Equal error boundary for general motion model
(lower error above boundary) and purely translational model (lower error
below boundary).
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5.3. Comparison of Time-Fixed Scale Model and
Time-Dependent Scale Model

In the previous sections we assumed that the error on the input data is constant over
time. Nevertheless, in practical applications where the input poses are obtained by
pose estimation techniques as described in sec.3.5, the error is often observed to be
biased such that the scale between camera coordinate frame at time stepk and refer-
ence frame at time step0 is varying significantly. To consider general time-dependent
internal scales we defined the time-dependent scale model (TDS) in contrast to the
time-fixed scale model in section4.2.2. In order to evaluate both approaches a simi-
lar test as for motion model comparison was prepared. Synthetically generated input
poses were distorted both by an isotropic scaling and by adding an orientation errorε
ranging from0◦ to 3◦ in steps of1◦. The maximal scale errorεmaxscale with respect to
the first pose was chosen to increase from0% to 100% in steps of5%. For each pose
estimationK = 4 input pose pairs were used. The scale error for eachk-th position
was set tok

K
εmaxscale percent. The linear least squares solutions of both the time-fixed

scale and time-depending scale approaches were computed for105 random problem
instances for eachεmaxscale andε. Figure5.6compares the errors of both scale models
and illustrates the equal error boundary for both algorithms.
The orientation errors of the estimated internal position are shown in fig.5.6(top) with
respect to input orientation errorε and maximal scale errorεmaxscale. The time-fixed
scale model fails for sufficiently large scale deviations of the input positions.
Figure5.6(bottom) shows a surface plot with marked equal error boundary. In con-
ditions above the equal error boundary, the time-dependent scale model yields more
accurate results than the time-fixed scale model and should be preferred. To assess
internal scale deviation for model selection the scale measurements computed from
input poses as described in section4.3.3can be analyzed.
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Figure 5.6.:Comparison of linear least squares estimation with time-fixed scale model
and time-dependent scale model. Top: Orientation error of estimated po-
sition for both scale models depending on time-dependent error on input
scales and input orientation accuracy. Bottom: Equal error boundary for
time-dependent scale model (lower error above boundary) and time-fixed
scale model (lower error below boundary).
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5.4. Virtual Scene with Perspective Camera Rig

In the previous test synthetically generated poses were used to evaluate the stability of
our approach. In the following we will apply the calibration method to poses computed
from input images by pose estimation techniques as described in section3.5. We start
with an application using rendered images of a virtual scene. We use a VRML model
of a scene with an OpenGL based rendering framework for image creation.

The performance of our approach should be tested with input poses that are computed
from synthetic image input sequences using the pose estimation technique discussed
in section3.5. The estimated rig parameters will be compared against available ground
truth data, i.e. information about the true camera poses for each image. This test case
gives a good approximation of the performance of the rig calibration technique and
provides absolute information about input poses and rig parameters against which the
solutions from pose estimation and rig parameter estimation can be evaluated.

Figure 5.7.:Virtual scene application (left: rig model, right: image of virtual scene
model).

We use a virtual 3d scene with an architectural model and create synthetic image se-
quences from a moving rig by rendering techniques. An image of the scene is shown
in fig. 5.7(right). The rig model used consists of2 perspective cameras each with an
aperture angle of60◦ as shown in fig.5.7(left). The internal rig poses are given by
internal position∆C1 = (−1, 1, 3)T and internal orientation∆q1 = (

√
2

2
, 0,

√
2

2
, 0), i.e.

the slave camera is rotated around the master camera’sy-axis by an amount of90◦. The
length of the virtual rig joint, theinternal rig distance, is given by‖∆C1‖ ≈ 3.3166.
A general motion of the rig through the scene is performed and sequences consist-
ing of K = 468 images are captured synchronously for each camera hence we have
time-corresponding imagesJ 0,...,K

0 andJ 0,...,K
1 . The motion trails of both cameras
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through the virtual scene are visualized in fig.5.8. For each imageJ k
i the pose of

camerai with respect to world coordinate system is known. It will be denoted as
Tk

i world = [Rk
i world|Ck

i world] in the following. From camera poses in the world coordi-
nate system, ground truth poses in the camera-local coordinate frame with respect to
the initial positionT0

i world can be computed asTk
i = (T0

i world)
−1Tk

i world. This was
illustrated by the global reference pose model in section4.2.

Figure 5.8.:Top-down view of a 3d plot of measured master camera motion (left solid
line), expected slave camera motion (right dashed line) and measured slave
camera motion (right solid line) within the master camera reference frame.

The pose estimation method described in section3.5 is first applied to each image
sequence individually. The estimated poses of each camerai ∈ {0, 1} in each image
J k

i are denoted aŝTk
i = [R̂k

i | Ĉk
i ]. The reference system for each camera is chosen

such that the initial pose iŝT0
i = [I | 0]. As mentioned above, the estimated poses

are scaled for each reconstruction such that the baseline between the first two poses
is given by‖C1

i − C0
i ‖ = 1 resulting in the discussed scale difference∆λ1 between

master and slave camera reference frames. The ground truth internal scale∆λ1 is
therefore given by the ratio of the baseline lengths:

∆λ1 =

‖C1
1world−C0

1world‖
‖C1

1−C0
1‖

‖C1
0world−C0

0world‖
‖C1

0−C0
0‖

=
‖C1

1world − C0
1world‖

‖C1
0world − C0

0world‖
(5.3)

Note also that the scale between the world coordinate frame and the reconstructed
master coordinate frame is given by∆λworld =

‖C1
0−C0

0‖
‖C1

0world
−C0

0world
‖ , i.e. ∆λworld =

1/‖C1
0world − C0

0world‖.

First, we analyze the quality of the pose estimation results regarding the error model

76



5. Applications and Results 77

introduced in section5.1.1. In fig. 5.9 and fig. 5.10, the rotation orientation errors
(left column), position orientation errors (middle column), and distance errors (right
column) of individual pose estimation for each camera are plotted for the image se-
quence. Figure5.9 shows the errors for the master camera while fig.5.10shows the
slave camera estimation errors. The upper row of each figure shows the pose error
between subsequent frames which is mostly constant throughout the sequences. The
lower row shows the accumulated pose estimation errors with respect to the reference
frame. It appears that although errors between subsequent frames are small, the total
pose errors are increasing over time due to error accumulation. The scale of the recon-
struction with respect to the reference frame of each camera is also mainly increasing
over time.

Figure 5.9.:Error analysis of pose estimation results for the master camera. The upper
row shows rotation orientation error (left), position orientation error (cen-
ter), and scale error (right) between subsequent image frames. The lower
row shows the accumulated errors with respect to the initial image frame.

Furthermore, the impact of individual pose estimation errors on the rig constraints de-
scribed in the main chapter should be investigated. Figure5.11shows the residua of
the rotation, position, and scale constraints of the rig with respect to the corresponding
estimated poses for each image framek. In the left column, the rotation constraint
residuum is shown, i.e. the orientation error between expected and measured slave
pose with respect to the measured master pose and ground truth rig parameters. The
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Figure 5.10.:Error analysis of pose estimation results for the slave camera. The up-
per row shows rotation orientation error (left), position orientation error
(center), and scale error (right) between subsequent image frames. The
lower row shows the accumulated errors w.r.t. the initial image frame.

middle column shows the position orientation constraint residuum, i.e. the orientation
error between expected and measured slave position. The residua of both constraints
are increasing significantly over time due to error accumulation of the respective cor-
responding poses. Note that the rig constraint residua correlate with the errors of the
respective individual input poses.

To analyze how the lengths of estimated position vectors of each camera deviate with
respect to each other over time, the ratios between measured master and slave position
length are compared to the ground truth translation ratios for eachk. The absolute
difference between both ratios is shown in the right column of fig.5.11as:

‖Ck
1world−C0

1world‖
‖Ck

1−C0
1‖

‖Ck
0world−C0

0world‖
‖Ck

0−C0
0‖

−∆λ1 / ∆λ1 (5.4)

For the first time stepk = 1, the measured ratio equals the ground truth ratio by
definition but it diverges over time.

At last, the scale measurementsλk
i directly computed from the estimated correspond-
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Figure 5.11.:Error analysis of rig constraints between estimated master and slave
poses with respect to ground truth rig parameters. Shows the rotation
constraint residuum as orientation (left), the position constraint residuum
as orientation (center) and the difference between corresponding position
vector lengths (right) for each image frame.

ing poses as described in section4.3.3are investigated: Figure5.12(left) shows the
measured scales for each image related to the ground truth internal scale∆λ1. As
expected, the measured scales degenerate at certain points of time, i.e. where rig trans-
lation is mostly perpendicular to the rotation axis. In section4.3.3 we suggested to
invalidate measured scales for motions whereCk

1
T
rk
1 is below a determined threshold

δthreshold. By choosingδthreshold = 3 · 10−3 as motivated in eq. (4.23) the most de-
generate motions, marked with a dashed line in fig.5.12(left), are rejected. Figure
5.12(right) shows the respective scalar productsCk

0
T
rk
0 andCk

1
T
rk
1 for both cameras at

each time step. The validity threshold is indicated by the dashed line.

The calibration results are compared with ground truth data in tab.5.1. Using all
corresponding poses for rig-calibration according to the general motion model and
time-fixed scale model we get an internal rotation of89.8253◦ around axis(−0.0017,
0.9999, 0.0038)T and internal position vector(−0.994, 1.028, 3.048)T for the linear
least squares approach, and an internal rotation of89.8703◦ around axis(−0.0014,
0.9999, 0.0033)T and internal position vector(−0.987, 1.019, 3.021)T for the non-
linear approach using the LLS result as start value. The rotation orientation error with
respect to ground truth internal rotation is given by0.3803◦ for the LLS solution (LLS)
and0.3171◦ for the non-linear solution (NL). The position orientation error is0.4297◦

(LLS) and0.3889◦ (NL) while the distance error is1.5269% (LLS) and0.6488% (NL)
as percentage of the ground truth distance. Another way to access the accuracy of our
calibration results is to consider the residual errors associated with the non-linear error
functionalφ2

NL from eq. (4.26). The total residual error of solution∆R̂1, ∆Ĉ1, ∆λ̂1

for all K image frames is computed to beφ2
NL(∆R̂1, ∆Ĉ1, ∆λ̂1) = 0.0975595 which

is quite low.
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Figure 5.12.:Analysis of measured scales computed from corresponding estimated
master and slave poses. The left image shows the scales for each image
frame, i.e. the ratio between scalar products of rotation axis and position
vector of master and slave camera. The right image shows the respective
scalar products for each camera. Scales computed from scalar products
belowδthreshold are rejected as indicated by dashed lines. The horizontal
line denotes the average of valid values.

∆q1 ∆C1 ‖∆C1‖
GT (0.7071, 0, 0.7071, 0) (−1, 1, 3) 3.3166
LLS (−0.706, 0.001,−0.708,−0.003) (−0.994, 1.028, 3.048) 3.3673
NL (−0.706, 0.001,−0.707,−0.002) (−0.987, 1.019, 3.021) 3.3381

LLS err. 0.3803◦ 0.4297◦ 1.5269%
NL err. 0.3171◦ 0.3889◦ 0.6488%

Table 5.1.:Comparison of calibration results using our linear least squares method
(LLS) and non-linear refinement (NL) vs. ground truth data (GT).

The estimation results are in accord with the accuracy predicted by the synthetical
experiments in section5.1.2with respect to the noticed accuracy of the input poses
provided by image-based pose estimation. Note that the non-linear estimation method
shows a slight advantage with respect to the linear least squares method. Concluding
we notice that the results are appropriate to use the calibrated rig for structure from
motion approaches [FKK04, Boe07].
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5.5. Calibration of Stereo Rig from Overlapping
Views

In the following test case the performance of our approach is compared against stan-
dard techniques for stereo rig calibration from overlapping views. We use a stereo rig
as shown in fig.5.13. The physical setup consists of two CCD cameras mounted onto
a movable stand at a distance of approximately15 cm with a relative yaw angle of
about15◦.

Figure 5.13.:Illustration of stereo rig calibration. The stereo rig model consists of two
perspective cameras with overlapping fields of view.

The rig calibration is computed using (i)Bouguet’s camera calibration toolbox from
[Bou07] and (ii) by our approach. A description of (i) is given and both calibration
results will be presented in the following.

First the rig is calibrated usingBouguet’s camera calibration toolbox fromK∗ = 24
image pairs showing a calibration pattern with known geometry from different posi-
tions. This approach is similar to the intrinsic camera calibration approach described in
section3.4.1. The corners of the calibration pattern are extracted from the images us-
ing Harris’ corner detector [HS88] and identified with corresponding 3d points within
the same calibration reference frameCcal. Both the intrinsic camera parameters and
corresponding external pose transformationsT∗k

i for each image framek = 1, . . . , K∗

of each camerai ∈ {0, 1} with respect toCcal are computed by a linear least squares
approach and refined using non-linear optimization as described in3.4.1. The inter-
mediate rig transformation∆T∗

1 between master and slave camera is then computed as
the average from(T∗k

0 )−1T∗k
1 over all framesk as motivated for the global reference

pose model in section4.2. Figure5.14(left) shows different images of master and slave
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camera during the rig motion performed for calibration.

Figure 5.14.:Images from a sequence used for stereo rig calibration. The left column
shows master and slave camera images forBouguet’s calibration using
a calibration pattern. The right column shows master and slave camera
images from a motion of the rig through a scene used for our approach.

Second, the rig parameters are estimated using the suggested rig calibration algorithm
without utilizing special calibration patterns. We use the non-linear estimation method
for the general motion model. The initial solution is provides from the linear least
squares approach for the general motion model. Time-corresponding poses are esti-
mated for an image sequence consisting of alsoK = 250 images by the feature point
based pose estimation technique proposed in section3.5. Figure5.14(right) shows two
images of master and slave camera during the rig motion performed for calibration.
During the sequence, the rig is translated and rotated significantly with respect to the
scene. All poses are given with respect to the respective initial camera reference frame
as motivated for the camera-local pose model in section4.2. To relate the estimated
internal position to world metrics, an object of known size, i.e. a planar checkerboard
pattern with4.18× 4.18 cm tiles, is visible in some images of the master camera. The
scale of the master camera reference system is computed by relating the average dis-
tance between the reconstructed 3d points of adjacent checkerboard pattern corners to
4.18 cm.

In section4.2.2we motivated the use for the time-dependent scale model when the
scale between corresponding estimated poses diverges largely over time. In order to
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Figure 5.15.:Analysis of measured scales computed from corresponding estimated
master and slave poses. The right image shows scalar products of ro-
tation axis and translation vector for each image frame (here: approxi-
mately identical for master and slave poses). The left image shows mea-
sure scales, i.e. the ratio between the scalar products for each image
frame (approximately1). Scales computed from scalar products below
δthreshold are rejected. Rejected values are indicated by dashed lines in
the right plot. The horizontal line denotes the average of valid values.

select the appropriate scale model, the scales computed from corresponding poses for
each image frame as defined in eq. (4.18) are analyzed. In fig.5.15(left) the computed
scales are plotted using a threshold ofδthreshold = 5 · 10−3 as motivated in the previous
test case. Mean and deviation of valid measured scales according to eq. (4.18) are
computed as1.0813 ± 0.0295. Since the scale deviation is below3% we can assume
that the time-fixed scale model holds for this application.

∆q1 ∆C1 ‖∆C1‖
ref. (0.993,−0.054− 0.098− 0.012) (15.303, 1.048,−2.19) 15.494
LLS (0.993,−0.053,−0.096,−0.016) (15.13, 0.506,−1.77) 15.242
NL (0.994,−0.049,−0.093,−0.015) (15.158, 1.325,−2.371) 15.29

LLS diff. 0.5026◦ 2.4652◦ 1.6281%
NL diff. 0.8846◦ 1.2952◦ 0.6086%

Table 5.2.:Comparison of calibration results for stereo rig from overlapping views
usingBouguet’s calibration toolbox as reference (ref.) and our approach
(LLS: linear least squares method, NL: non-linear method). Result differ-
ences are given with respect to the reference calibration.

The calibration results of both approaches are compared in tab.5.2. FromBouguet’s
approach we get an internal rotation of12.9483◦±0.23◦ around axis(−0.477,−0.872,

83



5. Applications and Results 84

−0.107)T and an internal position vector(15.303, 1.048,−2.19)T ± (0.1940, 0.3086,
0.0654)T giving a distance of15.4942 ± 0.2 cm between the centers of the rig cam-
eras.

The linear least squares solution yields an internal rotation of12.7644◦ around axis
(−0.484,−0.863,−0.142)T and internal position(15.13, 0.506,−1.77)T with length
15.2419 cm. After additional non-linear refinement we have an internal rotation of
12.2175◦ around axis(−0.466,−0.873,−0.145)T and internal position(15.158, 1.325,
−2.371)T with length15.29 cm. One notices that the non-linear solution has an ad-
vantage in estimation the internal position vector while internal rotation is estimated
more accordingly to the reference calibration by the linear least squares method. We
remind that the LLS method decouples rotation estimation from position estimation.
Hence position measurement errors do not affect internal rotation estimation which
may results in more accurate rotation estimation for a relatively small number of input
poses.

The orientation difference between the results from (i) and (ii) is estimated to be ap-
proximately0.9◦. The direction difference of the two resulting translation vectors is
estimated to be approximately1.3◦ orientation and0.2 cm length. Apparently the rig
calibration results from (ii) are in the same order of magnitude as the results from the
marker based approach (i). The total residual error of the solution of our approach for
all K = 250 image frames is computed to beφ2

NL(∆R̂1, ∆Ĉ1, ∆λ̂1) = 3.644.

Concluding, the accuracy of our approach is within the range appropriate for general
3d reconstruction tasks using the calibrated rig according to [FKK04, Boe07].
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5.6. Calibration of a Sewer Inspection System

Another test case was designed to evaluate our approach for calibrating a sewer inspec-
tion camera system. Common commercial systems such as IBAK PANORAMOr1

depicted in fig.5.16(right) consist of high-resolution digital cameras with wide-angle
lenses attached at front and rear of a remote-controlled sledge. For theoretical evalua-
tion a virtual scene model is used and results are compared against ground truth data
as in test case5.4.

Figure 5.16.:Illustration of sewer inspection application. Left: Rig model consisting
of two hemispherical cameras with non-overlapping fields of view.
Right: IBAK PANARAMOr sewer inspection system consisting of two
fisheye-lens cameras. By courtesy of IBAK Helmut Hunger GmbH &
Co. KG.

We use a virtual rig model similar to IBAK PANORAMOr. The rig model consists
of two hemispherical camera as described in section3.2.2each with an aperture angle
of 186◦ which are rotated by180◦ with respect to each other and translated along their
optical axis by35 cm as shown in fig.5.16(left).

The image sequence used for calibration is created by rendering a motion of the vir-
tual rig through a sewer pipe model with a diameter of60 cm. The model is provided
with a 2D texture created from real sewer images as shown in fig.5.17. The motion
is mainly translational along the optical axis of the rig with rig rotation below10◦ as
shown in fig.5.18. K = 30 image pairs are captured during the motion of the rig each
for an intermediate distance of5 cm. To find corresponding feature points between
subsequent images, the hemispherical images are first rectified by mapping them onto
a virtual cylinder with a diameter of60 cm stretched along the camera’s optimal axis
as shown in fig.5.17for a front view image. Feature points are detected and matched
in the rectified images using the KLT tracking method [TK91]. This method is appli-
cable since the geometry of the sewer pipe can be approximated by a cylinder with

1See IBAK website athttp://www.ibak.defor further details.
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Figure 5.17.:Two rendered images from the sequence for sewer inspection system cal-
ibration (left: front camera, right: rear camera, far right: Rectified front
camera image).

Figure 5.18.:Motion of the virtual rig during the sequence for sewer inspection system
calibration (left: motion plot for front and rear camera, right: absolute
rotation of front camera during rig motion).

fixed diameter and only small deviations from the translational motion of the rig along
the cylinder axis are expected. Assuming an intermediate motion of5 cm along the
optical axis between subsequent images, the position of feature points can be predicted
with sufficient accuracy. Hence the KLT tracker suffices a relatively small search win-
dow for feature matching. Poses of both cameras with respect to their respective initial
reference frame are estimated from corresponding feature points using the pose esti-
mation method described in section3.5. Figure5.19(left) and fig. 5.19(center) show
the rotation orientation error of the estimated poses for front (master) and rear (slave)
camera with respect to their reference frames.
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Figure 5.19.:Error analysis of pose estimation results for the sewer inspection system.
The figure shows the rotation orientation error of estimated poses for
front (left) and rear camera (center), and the rotation constraint error of
the estimated solution (right).

Since rig rotation is expected to be minor, the purely translational motion model (PTM)
is used for rig calibration. Hence we will only estimate the internal rotation∆R1 be-
tween both cameras. The solution∆R̂1 is computed by the linear least squares method
only. Table5.3 shows the calibration results compared to ground truth data. Figure
5.19(right) shows the rotation constraint error of solution∆R̂1, indicating the residual
error of eq. (4.30), for each image frame. We notice that the rotation orientation error
between estimated∆R̂1 and ground truth∆R1 is computed as about0.258◦.

∆q1 ∆C1 ‖∆C1‖
GT (0, 0,−1, 0) - -
LLS (−0.0003, 0.002− 0.999, 0.001) - -

LLS err. 0.258◦ - -

Table 5.3.:Comparison of ground truth data (GT) and calibration results using out
linear least squares approach (LLS) for sewer inspection system.

We showed that internal rotation can be recovered for the synthetic sewer inspection
model with a fair accuracy using the PTM approach if the rig motion is almost trans-
lational.

87



5. Applications and Results 88

5.7. Calibration of a Spherical Camera

The third test case considers an implementation of a spherical camera realized by a rig
of wide-angle cameras as proposed in [Koc07]. Spherical cameras, i.e. camera systems
that cover a full360◦ field of view, are of great interest e.g. for video surveillance
applications.Koch proposes an implementation of a spherical camera which consists
of two rigidly coupled fisheye-lens cameras each with an aperture angle of186◦ which
are mounted onto a pan/tilt unit. Both cameras are rotated by approximately180◦

with respect to each other as shown in fig.5.20. The translational offset between
the cameras is preferably small in order to approximate a single effective projection
center. Nevertheless it is bounded by the physical dimensions of the cameras. Once the
internal camera poses with respect to each other are known, both hemispherical images
can be assembled into an approximation of a full spherical image. This is performed
by mapping both images onto a sphere with fixed radius positioned at the centroid of
both image hemispheres as depicted in fig.5.20.

Figure 5.20.:Illustration of spherical camera application. The rig model consists of
two hemispherical cameras with virtually non-overlapping fields of view
mounted close to each other. The rig implements a spherical camera by
mapping both hemisphere images onto a combined sphere image.

Our calibration approach for general motion and time-fixed scales is used to esti-
mate internal position and orientation of the rig from a sequence ofK = 60 time-
corresponding images during a motion of the camera system. The motion consists of
translation and rotation provided by a translation of the entire rig with concurrent pan
and tilt motion of the camera supporting pan/tilt unit.

The calibration results of our approach (linear least squares and additional non-linear
refinement using the general motion model and time-fixed scale model) are compared
against results from an alternate calibration corresponding to a variant of the common
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Figure 5.21.:Illustration of alternate spherical camera calibration from multiple cali-
bration patterns. The pose transformation between both calibration pat-
terns has to be estimated first. The respective calibration pattern must be
visible in each image of the calibration sequence for each camera.

stereo-rig calibration method applied in section5.4 usingBouguet’s camera calibra-
tion toolbox. The general procedure of this calibration method is described in the
following. We use a calibration object consisting of two planar checkerboard calibra-
tion patterns fixed at an edge such that one pattern is visible for each camera of the
rig at the same time. The Euclidean transformationTA,B = [RA,BCA,B] linking the
coordinate framesCA, CB of both calibration patterns is estimated from4 camera im-
ages showing both patterns at the same time by estimating the homography between
both patterns. From8 time-corresponding images of the rig each showing one cali-
bration pattern, corresponding posesTCA

0 , TCB

1 of both cameras within the respective
calibration coordinate frame are computed usingBouguet’s toolbox. An estimate for
the relative pose∆T of slave camera1 with respect to master camera0 is then com-
puted from corresponding poses as∆T = TCA

0 Trel(T
CB

)−1. Refer to fig.5.21for an
illustration of this calibration method.

We use this approach to calibrate the rig from8 images resulting in an internal rotation
of approximately178.21◦ ± 1.24◦ around the y-axis and an internal position vector
(−5.31, 0.6, 6.27)T ± (−0.75, 0.32, 0.18)T with length8.2446± 0.6645 cm.

The results of both calibration methods are compared in tab.5.4. We observe that our
results are differing more notably from the reference results than in the previous test
case. Note that the reference data obtained from the proposed approach is inaccurate
due to the difficult estimation of the relative positions of the calibration patterns with
respect to each other. On the other hand, the resulting calibration meets the expectation
by qualitative evaluation.
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∆q1 ∆C1 ‖∆C1‖
ref. (0.015, 0.144, 0.974,−0.174) (−5.31, 0.6, 6.27) 8.2446
LLS (0.017, 0.147, 0.977,−0.173) (−4.81, 0.212, 5.32) 7.1752
NL (0.017, 0.145, 0.975,−0.169)T (−4.927, 0.82, 5.89) 7.7227

LLS diff. 0.4525◦ 3.099◦ 12.91%
NL diff. 0.6439◦ 1.95◦ 6.26%

Table 5.4.:Comparison of calibration results of an approach usingBouguet’s toolbox
as reference (ref.) vs. our linear least squares method (LLS) and non-linear
refinement (NL) for spherical camera rig. Result differences are given with
respect to the reference calibration.
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6. Conclusion

Within the scope of this work we developed and tested a novel approach for calibrating
the internal poses of a multi-camera rig using time-corresponding poses provided by an
image-based pose estimation method. The method was inspired by hand-eye calibra-
tion approaches and was designed inter alia for the purpose of 3d scene reconstruction
using the calibrated rig. The advantage of our approach is the fact that no overlapping
images are needed to calibrate the rig as most reference approaches demand. Both a
linear and a non-linear method were proposed and compared.

Ill-conditioned situations, namely purely translational motion of the rig, were pointed
out and an alternate method for this case limited to the estimation of internal rotation
was proposed.

Providing the time-corresponding input poses by an image-based pose estimation method,
we encountered the problem that the related coordinate frames of the cameras differ
each by certain scale factors. Such scale factors are in general not considered in hand-
eye estimation. These parameters result from the scale ambiguity that appears at the
initialization of the pose estimation method and must be estimated along with the inter-
nal pose parameters. Our analysis showed that the quality of the estimated internal po-
sition depends largely on the accuracy of the estimated scales. Additional constraints
on the scales were used to stabilize the estimation.

The proposed method was evaluated against established methods for stereo rig calibra-
tion and proved to be comparable in accuracy. Furthermore, we showed that it is suited
for several practical applications where a calibrated rig with almost non-overlapping
camera views is sufficient. However, we were confronted with the problem of obtain-
ing reference data for the case of non-overlapping views since there are no general rig
calibration methods present that do not depend on overlapping views.

Although we use a pose-estimation approach based on structure from motion to pro-
vide time-corresponding poses, our approach decouples rig calibration in general from
3d reconstruction. Hence deliberate motions can be performed for accurate rig cali-
bration. In addition, the calibration can also be achieved in a non-overlapping setup
where no marker calibration is possible. Of course the accuracy is dependent on the
results of the algorithm by which time-corresponding poses are provided.
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Future Work

Future work based on the proposed approach could investigate the benefit of direct
integration of the calibration process into the structure from motion algorithm. Other
methods circumventing the dependency of the calibration on structure from motion
results could be found and investigated likewise, i.e. by adding sensors to the rig setup.
Furthermore, an extension of our approach to synchronous estimation of intrinsic and
extrinsic parameters could be researched.
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A. Appendix I: Theoretical Topics

A.1. Singular Value Decomposition

Thesingular value decomposition(SVD) provides a factorization of a rectangular ma-
trix A which can be applied to solve several numerical problems such as e.g. matrix
inversion or eigenvalue problems. For a detailed theoretical and practical description
of the SVD refer to [WR71].
The general theorem of the SVD for real matrices states that for every matrixA ∈
Rm×n there is a factorization - called the singular value decomposition ofA - of the
form:

A = UΣVT (A.1)

whereU ∈ Rm×n is a column-orthogonal matrix,V ∈ Rn×n is an orthogonal matrix,
and Σ ∈ Rn×n is a positive definite diagonal matrix of the formdiag(σ1, . . . , σn)
consisting of the so-calledsingular valuesσ1, . . . σn which are in fact the non-negative
roots of theeigenvaluesof ATA. Typically, the singular values are sorted asσ1 ≥ · · · ≥
σn which makesΣ unique thoughU andV are not necessarily uniquely determined.

Computation of the pseudoinverse: Given a singular value decompositionUΣVT

of a rectangular matrixA, the pseudoinverse ofA is then represented by:

A† = VΣ+UT (A.2)

whereΣ+ is the transpose ofΣ with every non-zero entry replaced by its reciprocal
such thatΣ+Σ = ΣΣ+ = I. Apparently for regular square matricesA the pseudoin-
verseA† coincides with the inverseA−1.
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Solution of linear least squares problems: A linear least squares problem(L) with
squared error functionφ2(x) = ‖Ax − b‖2 can be solved by a SVD ofA even ifA
has not full rank and is ill-conditioned. From the factorizationA = UΣVT the pseu-
doinverseA† = VΣ+UT is obtained. Thus, the solutionx∗ for (L) can be calculated
as:

x∗ = VΣ+UTb (A.3)

Computation of eigenvalues: Given a singular value decompositionUΣVT of a
rectangular matrixA, the eigenvalue/eigenvector decomposition of the symmetric square
matrixATA into an orthogonaln×n matrixW = (w1 . . . wn) consisting of the eigen-
vectorsw1, . . . , wn and a diagonaln×n matrixΛ consisting of the eigenvalues can be
computed by:

ATA = WΛWT = VΣTUTUΣVT = VΣTΣVT

hence:
W = V Λ = ΣTΣ = diag(

√
σ1, . . . ,

√
σn) (A.4)

Numerical stability of SVD: As stated above the decomposition can always be per-
formed even ifA is singular. Numerical instabilities can arise when the condition
number ofA - i.e. the ratio between the largest and the smallest non-zero singular
value - becomes too large. This is the case when there are very small but non-zero sin-
gular values present due to noise. In the implementation of the SVD used, this problem
is circumvented bytruncation, i.e. singular values below a certain threshold are set to
zero ignoring them, when the condition number ofA is considered too large.
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A.2. Representations of Rotation

Rotation matrices Each rotation in Euclidean 3d space is defined uniquely by an
orthonormal3 × 3 matrix R, i.e. a matrix for which holdsRTR = RRT =
I. Rotation matrices have been the most common representation for rotations
in practical applications because they can be applied fast by computing linear
matrix-vector products. On the downside, rotation matrices are highly over-
parametrized, comprising9 parameters vs.3 degrees of freedom1. Moreover,
the orthonormality constraint is rather difficult to maintain for estimations.

Angle and axis Each 3d rotation can be described uniquely by a rotation ofα degree
around a rotation axisr ∈ R3 with ‖r‖ = 1. The angle-axis representation
is formalized by a single vectort = αr such thatr = t

‖t‖ andα = ‖t‖. A
similar representation is theRodrigues vectortan(α

2
)r. Rotation of a vectorv

is performed byRodrigues’ rotation formula

Rtv = Rr,αv = (I + sin α[r]× + (1− cos α)[r]2×)v (A.5)

where[r]× denotes the skew-symmetric cross product matrix ofr. By eq. (A.5)
the angle-axis representationαr can be transformed into the rotation matrix rep-
resentation given byRr,α. Vice versa, given any rotation matrixR, the respective
rotation axisr is the eigenvector ofR with respect to the unit eigenvalue. It can
be found by solving(R− I) = r. Rotation angleα can be obtained fromR by

2 cos α = trace(R)− 1, 2 sin α = (R3,2 − R2,3, R1,3 − R3,1, R2,1 − R1,2)
Tr

and
α = arctan(sin α, cos α) (A.6)

using a two-argumentarctan function such asatan2 in C (as pointed out in
[HZ00, A4.3], applying eitherarcsin or arccos is numerically inaccurate and
fails for α = π). Note that this representation suffers from an ambiguity of the
axis forα = 0.

Euler angles Euler angles describe a 3d rotation by3 subsequent rotations with re-
spect to afixedworld coordinate system.α denotes the rotation around the fixed
x-axis,β around the fixed y-axis andγ around the fixed z-axis. By convention
the rotations are performed in order x-axis first, then y-axis, and z-axis last. This
rotation can also be interpreted as a sequence of rotations around therotated
axes in the opposite order z-axis first, then y-axis, and x-axis last. The rotation
matrixRα,β,γ corresponding to the Euler anglesα, β, γ is composed from:

Rα,β,γ = Rbz ,γRby ,βRbx,α (A.7)

1In fact, a general rotation in 3d space possesses3 degrees of freedom.
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wherebx, by, bz is the base defining the world coordinate system. The opposite
transformation yields ambiguities and is potentially instable. While the Euler
angle representation provides a minimal representation with3 parameters and is
rather intuitive, it suffers from ambiguities due to the rotation order, and allows
the loss of one degree of freedom under certain conditions which is referred to
in literature as theGimbal lock[FW04].

While rotations represented by axisr and angleα can be easily visualized, this rep-
resentation is not necessary for computational purposes. The same accounts for the
representation by the Euler angles. Furthermore these representations suffer from the
need to evaluate trigonometric terms. Rotation matrices on the other hand can be ap-
plied easily by means of linear algebra but are highly over-parametrized.
Today the most common representation for rotations in computer vision is theunit
quaternion[FW04]. In fact, rotations expressed by quaternions can be applied by
performing linear computations with few single operations than needed for rotation
matrices. Moreover, in most applications quaternions provide a both numerically and
notionally far more compact representation for rotations than using rotations matrices
or Euler angles. Quaternions in general and unit quaternions for rotation representation
will be discussed in the following section.

A.3. Quaternions

The mathematical construct of thequaternionwas originally developed byWilliam
R. Hamilton in 1866. Quaternions build an algebraH which can be thought of as
an extension of the real algebraR similar to the complex algebraC. A quaternion
q = 〈q, q〉 consists of a scalar partq and a vector partq = (x, y, z)T. For convenience
we will identify a quaternionq = 〈0, v〉 with zero scalar part simply with its vector
partv.
Quaternion addition is defined componentwise. The multiplicationp = q · q′ of two
quaternionsq = 〈q, q〉 andq′ = 〈q′, q′〉 is defined as:

p = qq′ − qTq′

and
p = q′q + qq′ + q× q′ (A.8)

It is a useful fact that quaternions can be equivalently expressed as4-vectorsq ≡
(q, x, y, z)T in terms of linear algebra. This representation is useful for direct calcula-
tions within the framework of linear algebra and is commonly used in computer vision.
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Using this representation, the quaternion multiplicationp = q · q′ can be written as a
matrix-vector productp = Tqq

′ with the4 × 4-matrixTq induced by the4-vectorq
(left quaternion multiplication matrix)

Tq =


q −x −y −z
x q −z y
y z q −x
z −y x q

 (A.9)

or equivalently as a matrix-vector productp = T∗
q′q with the4×4-matrixT∗

q′ induced
by the4-vectorq′ (right quaternion multiplication matrix)

T∗
q′ =


q′ −x′ −y′ −z′

x′ q′ z′ −y′

y′ −z′ q′ x′

z′ y′ −x′ q′

 (A.10)

Note that quaternion multiplication is in generalnot commutative.

The inverse element ofq with respect to multiplication is defined by:

q−1 = q∗/‖q‖2 (A.11)

with the conjugated quaternion:

q∗ = 〈q,−q〉 ≡ (q,−x,−y,−z)T (A.12)

and the quadratic norm:

‖q‖2 = q2 + qTq ≡ qTq = q2 + x2 + y2 + z2 (A.13)

Unit quaternionsq have the norm‖q‖ = 1. It can easily be verified that the following
equations hold for unit quaternions:

q−1 = q∗
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and:

Tq−1 = T−1
q Tq∗ = TT

q

Representing rotations by unit quaternions

Unit quaternionsq allow the representation of rotations in 3d space. Given a unit
quaternionq = 〈cos α

2
, sin α

2
· r〉 for a unit vectorr and an angleα ∈ [0, 2π), the term

q · v · q∗ rotates the vector partv of v around axisr by an angle ofα [FW04].

The rotation of a Euclidean 3d vectorv ∈ R3 according toq can hence be performed
by:

(
0

Rqv

)
= q · v · q∗ = TqT

∗
q∗

(
0
v

)
(A.14)

whereRq = (TqT
∗
q∗)(2,2) denotes thequaternion-vector rotation matrix.

Proof: Givenq = 〈cos α
2
, sin α

2
· r〉 with unit vectorr = (u, v, w)T and0 ≤ α < 2π,

we receive from eq. (A.9) and eq. (A.10) and the addition theorems for sine and
cosine:

(
1 0
0 Rq

)
= TqT

∗
q∗

=


1 0 0 0
0 c2 − s2 + 2s2u2 2s2uv − 2scw 2s2uw + 2scv
0 2s2uv + 2scw c2 − s2 + 2s2v2 2s2vw − 2scu
0 2s2uw − 2scv 2s2vw + 2scu c2 − s2 + 2s2w2


=


1 0 0 0
0 c2 + (1− c2)u

2 (1− c2)uv − s2w (1− c2)uw + s2v
0 (1− c2)uv + s2w c2 + (1− c2)v

2 (1− c2)vw − s2u
0 (1− c2)uw − s2v (1− c2)vw + s2u c2 + (1− c2)w

2


=

(
1 0
0 Rr,α

)
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wheres := sin α
2
, c := cos α

2
and s2 := sin α, c2 := cos α. This provides trans-

formations between quaternion, rotation matrix, and angle-axis representations for 3d
rotations.

�

Straightforward, the concatenation of rotations corresponding toq, p is given by:

Rp·q = RpRq (A.15)

and the inverse rotation is given by the conjugate quaternion:

R−1
q = Rq∗ = RT

q (A.16)

Note that for each unit quaternionq, bothq and−q define the same rotation. But
the quaternion representation for rotation is the only one which, except for the sign
ambiguity, is unique and shows no singularities [FW04].

For analytical purposes we want to give the partial derivations of quaternion multipli-
cation and quaternion-vector rotation.

Because all quaternion multiplications can be expressed as matrix multiplications in-
terpreting them in terms of linear algebra, their analytical derivatives can be instantly
given. E.g. for left quaternion multiplicationp(q) = r · q = Trq, the partial deriva-
tions with respect toq are given by∇qf(q) = Tr.

Quaternion-vector multiplication as defined in eq. (A.14) can be expressed using sub-
sequent matrix multiplications asu(q, v) = Rqv = (TqT

∗
q∗)(2,2)v = (T∗

q∗T
∗
v)(2,1)q.

For convenience we defineR′
q,v = (T∗

q∗T
∗
v)(2,1). Then the partial derivations with re-

spect toq andv are given by∇qu(q, v) = 2R′
q,v and∇vu(q, v) = Rq respectively.
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A.4. Closed-Form Solution for Absolute Orientation

In this section we will describe the closed-form solution for estimating absolute orien-
tation using unit quaternions as proposed byHorn [Hor87] for finding the best rotation
between two sets of 3d features. We will only need the simple case that both feature
sets are located at the unit sphere.

Given are unit length vectors, or “rays”,rk = (xk, yk, zk)
T, r′k = (x′k, y

′
k, z

′
k)

T for
k = 1, . . . , K where the ray setr′1, ..., r

′
K arises fromr1, . . . , rK by a certain rotation

and Gaussian noise addition.

We now search for a rotationR which describes the transformation of the ray set
r1, . . . , rK into r′1, . . . , r

′
K the best, i.e. which minimizes the squared error function:

φ2(R) =
K∑

k=1

‖r′k − Rrk‖2 (A.17)

Horn proposes an easy to calculate yet robust linear approach to solve this least squares
problem by representing the rotationR by a unit quaternionq and considering the dual

problem of maximizing
K∑

k=1

r′k
T(q·rk ·q∗) instead. Throughout this section, quaternions

will be represented as4-vectors in terms of linear algebra as described in sectionA.3.

The algorithm performs as follows. First, the3× 3-matrixM is computed by:

M =
K∑

k=1

rkr
′
k
T

=

Mxx Mxy Mxz

Myx Myy Myz

Mzx Mzy Mzz

 (A.18)

such thatMµν =
K∑

k=1

µkν
′
k for eachµ, ν ∈ {x, y, z}.

Then, the symmetric4 × 4-matrix N is computed by linear combinations of the com-
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ponents ofM:

N =
Mxx + Myy + Mzz Myz −Mzy Mzx −Mxz Mxy −Myx

Myz −Mzy Mxx −Myy −Mzz Mxy + Myx Mzx + Mxz

Mzx −Mxz Mxy + Myx −Mxx + Myy −Mzz Myz + Mzy

Mxy −Myx Mzx + Mxz Myz + Mzy −Mxx −Myy + Mzz


(A.19)

Now the best fitting rotationRopt corresponds to the unit quaternion vectorqopt which
maximizesqTNq. This will be proved further below. Now the unit eigenvector cor-
responding to the largest eigenvalueλmax of N maximizesqTNq (note thatN is sym-
metric):

Given the maximum ofqTNq is λmax, there is a unit vectorqmax for which holds
qT

maxNqmax = λmax ≥ qTNq for all unit vectorsq. Hence we haveNqmax =
λmaxqmax, i.e. qmax is the unit eigenvector ofN corresponding to the eigenvalue
λmax, and there are noλ, q with Nq = λq andλ > λmax. So we can identifyqopt

with the eigenvector corresponding to the most positive eigenvalueλmax of N. Note
that the unit length constraint forqopt is maintained naturally.

�

Hence the problem of finding the best rotation is reduced to solving an eigenvalue
problemdet(N− λI) = 0. In our implementation, instead of the intricate closed-form
solution proposed byHorn in [Hor87, 4.C] usingFerrari’s quartic identity, we use a
singular value decomposition to determine the eigenvalues and eigenvectors ofN (see
app.A.1).

Proof: First, φ2(R) =
K∑

k=1

‖r′k − Rrk‖2 becomes minimal iff
K∑

k=1

r′k
TRrk becomes

maximal.
This can be easily seen, because for eachk = 1, . . . , K holds:

‖r′k − Rrk‖2 = (r′k − Rrk)
T(r′k − Rrk)

= r′k
Tr′k + (Rrk)

T(Rrk)− 2(r′k
TRrk)

= ‖r′k‖2 + ‖Rrk‖2 − 2(r′k
TRrk)

= 1 + 1− 2(r′k
TRrk)

= 2(1− r′k
TRrk)

(A.20)
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Therefore, representing the demanded rotation by a unit quaternionsq instead of a
rotation matrixR we have to maximize:

K∑
k=1

r′k
T(q · rk · q∗) =

K∑
k=1

(q∗ · r′k)T(q∗ · q · rk · q∗)

=
K∑

k=1

(q∗ · r′k)T(rk · q∗)

=
K∑

k=1

(T∗
r′k
q∗)T(Trk

q∗)

=
K∑

k=1

(T∗T
r′k

q)T(TT
rk
q)

=
K∑

k=1

qTT∗
r′k
TT

rk
q

= qT(
K∑

k=1

T∗
r′k
TT

rk
)q

(A.21)

where according to the quaternion algebra (seeA.3) the left and right multiplication
of vectorsrk, r′k with the unit quaternionq is defined by the following4× 4-matrices
using the framework of linear algebra:

Trk
=


0 −xk −yk −zk

xk 0 −zk yk

yk zk 0 −xk

zk −yk xk 0

 and T∗
r′k

=


0 −x′k −y′k −z′k
x′k 0 z′k −y′k
y′k −z′k 0 x′k
z′k y′k −x′k 0


By denoting the componentwise products asMk

µν := µkν
′
k, for eachk = 1, . . . , K and

µ, ν ∈ {x, y, z} as above, we receive:

T∗
r′k

TT
rk

=
Mk

xx + Mk
yy + Mk

zz Mk
yz −Mk

zy Mk
zx −Mk

xz Mk
xy −Mk

yx

Mk
yz −Mk

zy Mk
xx −Mk

yy −Mk
zz Mk

xy + Mk
yx Mk

zx + Mk
xz

Mk
zx −Mk

xz Mk
xy + Mk

yx −Mk
xx + Mk

yy −Mk
zz Mk

yz + Mk
zy

Mk
xy −Mk

yx Mk
zx + Mk

xz Mk
yz + Mk

zy −Mk
xx −Mk

yy + Mk
zz



Now defineNk = T∗
r′k
TT

rk
for eachk = 1, . . . , K andN =

K∑
k=1

Nk and eq. (A.21) turns

into qTNq. Using this notation, a rotationR minimizes the squared error functionφ2

iff its corresponding unit quaternionq maximizesqTNq.
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By explicitly calculating the elements ofN from Mk
µν as implied above one can see

thatN is in fact identical with the matrix calculated above from the3× 3-matrixM.

Summarizing the proof given, we have shown that the unit quaternionq which maxi-
mizes the termqTNq minimizes the squared error functionφ2 and hence describes the
rotation that fits the data setrk, r′k, k = 1, . . . , K the best.

�

A.5. Method of Lagrangian Multipliers

In mathematical optimization theory, themethod of Lagrangian multipliers2 is a com-
mon technique to give analytical solutions for optimization problem subject to addi-
tional constraints. We will give a short description of the use of Lagrangian multipliers
as far as needed for the presented work. For a detailed description of this method we
refer to [Arf85].

Consider that we want to maximize the functionf(x) subject toK constraints of the
form gk(x) = 0, k = 1, . . . , K. The Lagrangian multiplier method arises from the fol-
lowing geometric interpretation of constrained stationary points, which include con-
strained extrema off . Such points must be found on the intersection of the con-
tours of gk given by gk(x) = 0 with the image off where the contour lines for
gk(x) = 0 touch contour lines off tangentially. Computionally,f is normal to the
constraintsg1, . . . , gK in these points, i.e.x∗ is a constrained stationary point iff there

areα1, . . . , αk 6= 0 such that∇xf(x∗) =
K∑

k=1

αk∇xg(x∗).

Now consider functionsf : Rn → R, g : Rn → RK to be given, and we seek for the
maximum off subject to the constraintsgk(x) = 0 for eachk = 1, . . . , K. Define the
Lagrangian functionΛ with additional unknownsλ ∈ RK , theLagrangian multipliers,
as:

Λ(x, λ) = f(x) +
k∑

k=1

λkgk(x)

Now f has a constrained optimum inx∗ subject tog(x∗) = 0 iff there is aλ∗ ∈ RK

such that(x∗, λ∗) is a stationary point ofΛ.

2The term refers to the 18th century mathematicianJoseph Louis Lagrange who stated the general
principle for maximizing a function ofn variables subject to additional equations between the vari-
ables in his work“Théorie des Fonctions Analytiques”(1797).

103



A. Appendix I: Theoretical Topics 104

Proof: For a stationary point(x∗, λ∗) of Λ the gradient∇Λ evaluates to0, i.e.:

∇xΛ(x∗, λ∗) = 0 ⇔ ∇xf(x∗) = −
k∑

k=1

λ∗k∇xgk(x
∗)

and
∇λΛ(x∗, λ∗) = 0 ⇔ g(x∗) = 0

The first equation denotesf to be to be normal to the constraints inx∗, i.e. x∗ to be
a constrained stationary point off . The second equation yields thatx∗ is valid with
respect to the constraints.

�

A.6. Random Sample Consensus

Random sample consensus- abbreviated as RANSAC - as developed byFischler and
Bolles [FB81] has become the most common hypothesize-and-test method for robust
estimation in presence of outliers arising from incorrect observations. In the RANSAC
framework, hypotheses - orsample solutions- are generated from a minimal set of ob-
servations which is randomly chosen and scored by their fit to the entire set of obser-
vations. After the maximal number of iterations has been performed (or for a greedy
RANSAC: when a predetermined minimal number of inliers has been reached), the
best hypothesis up to date, i.e. the hypothesis that fits the most observations due to
some predefined criterion, is taken while the misfit observations are labeled as outliers
and are rejected. The RANSAC is considered as “failed” if the best solution does not
provide a given minimal number of inliers.

Formally, given a model relating system parametersx to observationsy by the implicit
constrainth(x; y) = 0, a RANSAC can be described by a sample solution genera-
tor x̂ = f(y1, . . . , yN) which creates a possible solutionx̂ from the observation set
{y1, . . . , yN}, and an outlier testb(x, y) ∈ {0, 1} which decides if an observationy is
feasible assuming the system parametersx. When we refer to a RANSAC in practical
applications we will declare it by defining a sample solution generatorf and an out-
lier testb. The RANSAC used in our implementation is further parametrized by the
maximal number of iterations and the minimal number of inliers needed for success.
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All implementations used for practical applications have been done using theBasic
Image AlgorithmS C++ Library(BIAS). BIAS has been released by the Multimedia
Information Processing group at the Christian-Albrechts-University of Kiel [BIAS]
for research and software development of computer vision, motion estimation, and
3d reconstruction algorithms. Additionally, for intrinsic camera calibration existing
state-of-the-art software was used. This appendix gives a short overview over aspects
of software used for intrinsic camera calibration and rig calibration. Our own work
includes mainly the generic rig calibration tool documented in the last section.

Intrinsic Camera Calibration

For intrinsic camera calibration existing software solutions written in Matlabr were
used which are regarded as state-of-the-art in common work on the topic.
For intrinsic calibration of perspective cameras and stereo rig calibration in test case
5.5the Camera Calibration Toolbox developed byBouguet [Bou07] has been used.
For intrinsic calibration of fisheye cameras in test case5.7 an adaption of the Om-
nidirectional Camera Calibration Toolbox, originally developed byScaramuzza et al.
[SMS06], to the BIAS framework was used.

Pose Estimation Framework

Automatic pose estimation from images is performed by a modular software written in
C++ based on the BIAS library referred to as “Tracking Framework”. The theoretical
background for pose estimation as implemented in the Tracking Framework is covered
in section3.5. The Tracking Framework supports different feature point detection
and matching methods. For this work an implementation of the KLT feature tracking
method as described in [TK91] has been used.
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Generic Rig Calibration Tool

To perform rig calibration as theoretically outlined inChapter 4, a tool was written
in C++ based on the BIAS library. The tool is denoted as “Generic Rig Calibration
Tool”. The tool operates on lists of time-corresponding projection files or image files
containing poses in their meta data as delivered from the Tracking Framework. For
output, a rig projection file (described in the XML format used in the BIAS frame-
work) containing the estimated internal poses is created which can be used directly
in the Tracking Framework for evaluation. The estimation method can be selected as
linear least squares only or linear least squares with additional non-linear refinement.
Motion model and scale model are set up manually. Pose correspondences that are
determined as misfits to the selected models are removed automatically before estima-
tion as described in sections4.2.1and4.2.2with heuristics outlined in sections5.2and
5.3. The tool is actually available as a command line tool.

Regarding implementational design, we developed a generic class concept that regards
our rig parameter estimation methods, i.e. linear least squares approach and non-linear
optimization, as realizations of an abstract class of general rig calibration from time-
corresponding poses. Although covariances are not considered in our approaches, the
interface is designed such that future methods considering covariances can be inte-
grated. Different scale and motion models are considered in the respective classes.
The interface of the generic rig calibration class is shown in tab.B.1.

Depending on the motion model, eitherCompute (general motion model) orCompute-
WithoutRotation (purely translational motion model) are called to estimate the
internal poses of the rig. Poses are represented by instances of classBIAS::Pose-
Parametrization containing inter alia rotation (represented by a unit quaternion),
position and covariances of rotation and position. Time-corresponding input poses
Rk

i , C
k
i for each time stepk = 1, . . . , K and camerai = 0, . . . , N are given via pa-

rameterposes containingK vectors ofN poses each. Initial solutions for∆Ri, ∆Ci

which are considered e.g. by the non-linear estimation method are given via param-
eterguess containingN − 1 poses. Calibration results∆Ri, ∆Ci are returned in
parameterresult . Internal scales∆λk

i estimated for each time stepk are returned
in parameterscales . The interpretation of∆λk

i depends on the scale model used
as described in section4.2.2. The number of internal scales per camera for the time-
dependent scale model is set bySetScalesPerCamera(n) assuming that the par-
tition of time steps1, . . . , K into n subsetsK(1), . . . ,K(n) is equable, i.e.|K(ν)| = dK

n
e

for eachν < n. SetScalesPerCamera(1) defines the time-fixed scale model.
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Figure B.1.:Generic rig calibration classes. ClassBIAS::Pose-
Parametrization from BIAS is used to represent internal and
external poses.

RigParameterEstimationBase
int Compute(
in map<BIAS::PoseParametrization> poses ,

out vector<BIAS::PoseParametrization> result ,
in vector<BIAS::PoseParametrization> guess ,
out map<double> scales )

int ComputeWithoutRotation(
in map<BIAS::PoseParametrization> poses ,

out vector<BIAS::PoseParametrization> result ,
in vector<BIAS::PoseParametrization> guess ,
out map<double> scales )

void SetScalesPerCamera( in int numScales )

Table B.1.:Class interface for generic rig calibration classes.Compute per-
forms rig calibration from corresponding poses for the general motion
model, ComputeWithoutRotation for the purely translational mo-
tion model. SetScalesPerCamera sets the number of internal scales
for each camera, switching between the time-fixed and time-dependent
scale model.
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