An ER-based Framework for
Declarative Web Programming"

Michael Hanus Sven Koschnicke

Institut fur Informatik, CAU Kiel, D-24098 Kiel, Germany
mh@informatik.uni-kiel.de sven@koschnicke.de

October 29, 2009

Abstract. This paper describes a framework to support the implementat
of web-based systems to manipulate data stored in relatitaiabases. Since
the conceptual model of a relational database is often fpechs an entity-
relationship (ER) model, we propose to use the ER model tergém a complete
implementation in the declarative programming languageyCiihis implemen-
tation contains operations to create and manipulate estif the data model,
supports authentication, authorization, session hagdéind the composition of
individual operations to user processes. Furthermordntplementation ensures
the consistency of the database w.r.t. the data dependespieified in the ER
model, i.e., updates initiated by the user cannot lead to@mnsistent state of the
database. In order to generate a high-level declarativieimgntation that can be
easily adapted to individual customer requirements, theéwork exploits pre-
vious works on declarative database programming and wabintegface con-
struction in Curry.

1 Introduction

Many web applications are in essence interfaces on top ntlatd web browsers to
manipulate data stored in databases. For instance, ctiantshow or manipulate ex-
isting data as well as insert new data. The use of standardoveetsers demands for
access control, e.g., users must be authenticated, therdigttion must the stored in
a session across various web pages, the access to varidasoptre data must be
authorized, etc. These requirements makes the implenmmntaitsuch applications a
non-trivial and often error-prone task [11]. In order to pog the programmer in the
design and implementation of such web-based applicati@gusweb frameworks
had been developed for different implementation languages instance, the popu-
lar Ruby on Rails frameworksupports the implementation of web applications in the
object-oriented language Ruby. An interesting idea of trasnework to enable the
quick construction of an initial system, which can be steggwnodified or extended, is
scaffoldingi.e., the code of an initial implementation is generatedfthe data model.

* This work was partially supported by the German Researcm@b(DFG) under grant Ha
2457/5-2.
Y http://www.rubyonrails.org/

This initial code gives the programmer a good idea how tocsitine and organize the
code of the system under development.

This paper is based on a similar idea but exploits declaati@gramming to obtain
a compact implementation that can be easily adapted andtesoreliability in various
aspects (type safety, database consistency, etc). Fopuhi®se, we use the declara-
tive multi-paradigm language Curry [5, 10] as an implemgatelanguage and exploit
previous works on declarative database programming [2]d&uthrative construction
of web user interfaces [7, 9]. Although some features of Zsuich as logic variables
or narrowing, are not directly used here, we remark thatelieatures are essential in
the previous works to enable high-level interfaces for ldase and web programming
that are used here. Our framework and tool, called “Spicsypports the following
features:

— The framework is based on a specification of the data modelnasndity-
relationship (ER) model. Thus, the complete source codendhigial system is
generated from an ER model.

— The generated system is web-based, i.e., all data can beufaed (i.e., created,
shown, modified, deleted) via standard web browsers. Thialisiystem provides
operations to insert new entities, show entities, modifglelete existing entities as
specified in the ER model. Relations between entities arépukated together with
the corresponding entities. For instance, if there is atoA@any relation between
E andFE’, an instance of’ can be created only if a corresponding instancg’ s
selected.

— The implementation is typed, i.e., the source code is siitityped so that many
programming errors are detected at compile time (in cortinaspplications imple-
mented in Perl, PHP, Ruby, etc). Moreover, the data typesfexin the ER model
are also respected, i.e., it is not possible to submit wetm$arontaining ill-typed
data so that the integrity of the stored data might be desttoy

— Since HTTP is a stateless protocol, our framework providesssion concept so
that any kind of data (e.g., the contents of a virtual shogpiasket) can be stored
in a user session. Sessions are also used to store logimation or navigate the
user through a sequence of interactions.

— The generated application contains an initial structureafghentication, i.e., lo-
gin/logout operations. Since the concrete authenticatiethods usually depend
on the application (e.g., kind of login names, passwort# initial structure must
be extended by the programmer.

— The generated application has methods for authorizatien,dach controller that
is responsible for showing or modifying data is authorizefobe execution. A
central authorization module is generated where the pnogyer can easily specify
authorization rules based on login or similar information.

— Individual operations provided by the framework can be cossg to user pro-
cesses that can be selected to initiate longer interaotignesices. For instance, if
it is necessary to create various entities in a databas@dhedual “create” oper-
ations can be connected to a complex user process. Suclspesae specified as
graphs using functional logic programming techniques.

— As often found in complex web-based systems, the routes(iRLs to call some
functionality of the system) are decoupled from the physitacture of the source

code. This enables simple URLs and bookmarking of URLs thedigt restructur-
ings of the implementation. Therefore, our framework gates applications that
contain a specification of a mapping from URLSs into contrslief the application.

In the remainder of the paper, we present the ideas of ourefreork and show how
declarative programming is useful to get a compact and miaiable implementation
of web-based applications. In the next section, we brieftyesuCurry and its features
for web programming as required in this paper. Section 3evesithe use of entity-
relationship models for database programming in Curry. géeeration of the basic
structure of a web application from an ER model is discuss&eiction 4. The remain-
ing sections discuss the implementation of sessions, atith&on, authorization, and
user processes before we conclude in Section 8 with a discuskrelated work.

2 Web Programming with Curry

We briefly survey the basic concepts of Curry and their ushifg-level web program-
ming as required to understand the main part of this papereMetails of Curry can
be found in a recent survey on functional logic programmBiggnd in the definition
of Curry [10].

The design of the declarative multi-paradigm languageyCigran attempt to inte-
grate the most important features of functional and logigileaages in a seamless way
in order to provide a variety of programming concepts to ttegpammer. From a con-
ceptual point of view, Curry combines demand-driven evénaparametric polymor-
phism, and higher-order functions from functional prognaimg with logic program-
ming features like computing with partial information (logariables), unification, and
non-deterministic search for solutions. As shown in presiaorks on database pro-
gramming [2, 4] or web programming [6, 7, 9], this combinatenables better abstrac-
tions in application programs. Curry has a Haskell-liketayh[14] extended by the
possible inclusion of free (logic) variables in conditiarsd right-hand sides of defin-
ing rules. The operational semantics of Curry, describeteiail in [5, 10], is based on
an optimal evaluation strategy [1] which is a conservatitersion of lazy functional
programming and (concurrent) logic programming. Currp aiffers standard features
of functional languages, like modules or monadic I/O (whikdentical to Haskell’s
I/0 concept [16]). Thus,T'0 «” denotes the type of an I/O action that returns values of
typea.

The following Curry program defines a tygem1Exp to represent HTML structures
and a functiortext0f that extracts the textual contents of an HTML structure:

data HtmlExp = HtmlText String
| HtmlStruct String [(String,String)] [HtmlExp]

textOf :: HtmlExp -> String
text0f (HtmlText s) = s

2 variables and function names usually start with lowercasers and the names of type and
data constructors start with an uppercase letter. Theagtigh of f to e is denoted by juxta-
position (“f e”).

text0f (HtmlStruct t as hs) = concat (map textOf hs)

Thus, an HTML expression is either a plain string or a strectwnsisting of a tag (e.g.,
b,em,h1,h2,...), a list of attributes (name/value pairs), and a lisH®ML expressions

contained in this structure. Since it is tedious to write HTfbcuments in this form,

we define various functions as useful abbreviations, like

htxt s HtmlText (htmlQuote s)
par hexps = HtmlStruct "p" [] hexps
italic hexps = HtmlStruct "i" [] hexps

Then we can write HTML expressions like
par [htxt "This is an ", italic [htxt "example"]]

A dynamic web pags an HTML document (with header information) that is congalit
by a program at the time when the page is requested by a client & web browser).
Dynamic web pages usually process user inputs, placediouginput elements (e.g.,
text fields, text areas, check boxes) of an HTML form, in ortegenerate a user-
specific result. For this purpose, the HTML library of CurB] provides an abstract
programming model that can be characterizegragramming with call-back functions
A web page with user input and buttons for submitting the tripua web server is
modeled by attaching aevent handleto each submit button that is responsible for
computing the answer document. For instance, the HTML fibdefines an operation
to represent submit buttons in an HTML page:

button :: String -> HtmlHandler -> HtmlExp

In order to access the user input, the event handler (ofiypeHandler) has an envi-
ronment containing the actual user input as a parameter@ngutes a new web page.
We omit further details here (they can be found in [6]) sinae foamework is mainly
based on a more abstract layer to constweth user interface@VUIs) [7]. Such WUIs
are constructed in a type-oriented manner, i.e., for eguhitythe application program
one can construct a WUI that is an implementation of a weledagerface to manip-
ulate values of this type. Thus, the (tedious) code for cimgcthe validity of values
in the input fields and providing appropriate error messag@sitomatically derived
from the WUI specification. For instance, the corresponiifigl library [7] contains
predefined WUIs to manipulate stringss¢ring) or to select a valueselect) from

a given list of values (where the first argument shows a vaestring):

wString :: WuiSpec String
wSelect :: (a -> String) -> [a] -> WuiSpec a

Here,WuiSpec a denotes the type of a WUI to modify values of typeTo construct
WUIs for complex data types, there adJI combinatorghat are mappings from sim-
pler WUIs to WUIs for structured types. For instance, thera family of WUI combi-
nators for tuple types:

wPair :: WuiSpec a -> WuiSpec b -> WuiSpec (a,b)
wlriple :: WuiSpec a -> WuiSpec b -> WuiSpec c

-> WuiSpec (a,b,c)
w4Tuple :: WuiSpec a -> WuiSpec b -> WuiSpec ¢ ->
WuiSpec d -> WuiSpec (a,b,c,d)

Hence, WPair wString (wSelect show [1..100])” defines a WUI to manipu-
late a pair of a string and a number between 1 and 100. An impbi¢ature of WUIs
is their easy adaptation to specific requirements. For mestathere is an operator
withCondition that combines a WUI and a predicate on values so that thetiresul
WUI accepts only values satisfying the predicate. Thus,

wRequiredString = wString ‘withCondition‘ (not . null)

defines a WUI that accepts only non-empty strings. Simildinigre are combinators to
change the default rendering of WUlsi¢hRendering) or to change the default error
messages. This allows a compact and declarative descrgftammplex user interfaces.
We want to remark that the functional as well as logic feat@feCurry are exploited
to implement this high-level abstraction: event handlegenvironments are functions
attached to data structures representing HTML documemdspgut elements in a doc-
ument have logic variables as references. Moreover, $yg@cchecking is exploited to
ensure type-safe web forms.

3 Entity-Relationship Models and Database Programming

The entity-relationship model [3] is an established framdwto specify the structure
and specific constraints of data stored in a database. Ités ofsed with a graphical
notation, called entity-relationship diagrams (ERDs)jitualize the conceptual model.
The ER framework proposes to model the part of the world thatteresting for the
application by entities that have attributes and relatigmsbetween the entities. The
relationships have cardinality constraints that must kisfged in each valid state of the
database, e.g., after each transaction.

BraRel et al. [2] developed a technique to generate highl-bawd safe database op-
erations (i.e., the cardinality constraints of the ER mdud®tl after database updates)
from a given ERD. In order to be largely independent of a dmeER modeling tool,
[2] defines a representation of ERDs in Curry so that graphicaleling tools can be
connected by implementing a translator from the tool formstt the Curry represen-
tation. Since this representation is also the startingtpfiour framework, we briefly
describe it in the following.

If the structure of possible ERDs is fixed (unfortunatelgrthis no standard defini-
tion of ERDs), the representation of ERDs as data types inyGsistraightforward. An
ERD consists of a name (that is later used as the module namteiming the generated
database operations) and lists of entities and relatipsshi

data ERD = ERD String [Entity] [Relationship]

Instead of showing the detailed definition of all ER data s/pghich can be found in
[2]), we show the ER specification of an example which we usesuighout this paper: a
web log. The structure of our “blog” is visualized as an ERIFig. 1. A blog consists

Comment

Entry .
Title 77-I:c7(3r7nirp7ent50n +|sCommentedBi¥/ Text
Text (1,1) Commenting (0 n) Author
Author ——__ +tags Date
Date | (O,n)
Tagging \\‘“‘~~—~1\-g—:cagged
—~— I\-Irag
(O,n) ame

Fig. 1. An ER diagram of a web log

of Entry articles having title, text, author, and date as attripuadComments to each
entry. Furthermore, there are a numberTags to classifyEntry articles. One can
generate from the ERD the following data term which specifiesdetails of the blog
structure:

ERD "Blog"
[Entity "Entry"
[Attribute "Title" (StringDom Nothing) Unique False,
Attribute "Text" (StringDom Nothing) NoKey False,
Attribute "Author" (StringDom Nothing) NoKey False,
Attribute "Date" (DateDom Nothing) NoKey False],
Entity "Comment"
[Attribute "Text" (StringDom Nothing) NoKey False,
Attribute "Author" (StringDom Nothing) NoKey False,
Attribute "Date" (DateDom Nothing) NoKey False],
Entity "Tag"
[Attribute "Name" (StringDom Nothing) Unique False]]
[Relationship "Commenting"
[REnd "Entry" "commentsOn" (Exactly 1),
REnd "Comment" "isCommentedBy" (Range O Nothing)],
Relationship "Tagging"
[REnd "Entry" "tags" (Range O Nothing),
REnd "Tag" "tagged" (Range O Nothing)]]

Each attribute specification consists of the attribute nahme domain type of the at-
tribute values together with a possible default value, gratiications of the key and
null value property. For instance, tliét1e attribute of the entitEntry is a string that
is unique in each valid state of the database. Furthernfoereenting is a one-to-
many relationship betwed@ntry andComment entities, i.e., eachntry article has an
arbitrary number of comments and ea®imment belongs to exactly onEntry, and
Tagging is a many-to-many relationship betwertry andTag entities.

" form - lceweasel
File Edit Wiew History Bookmarks Tools Help

@ - ~ \é‘:l :LI‘L !_(:1__l__t_E_[_x:Mucalhust]'-mhfb\ug]splcsy.cg\?lngm +[] :@_" |4 |
= a
Spicey Application

Logged in as: mh

Processes new Entry listEntry new Comment list Comment new Tag list Tag logout N | W
Entry list
ATitle AText Anuthor Date
DP Lecture Declarative programming taught, mh April 16, 2009 show edit delete
Spicey authentication Login buttons are added. Comments? mh Mareh 31, 2003 show edit delete
Spicey installed The first version of spicey is running, sven March 21, 2003 show edit delete

I Done

Fig. 2. The web interface of an application generated by Spicey

powered by \) Frameweork
&

As mentioned above, [2] proposed a method to generate dataparations from an
ERD specification that ensures the integrity of the datafase. the constraints present
in the ERD) after performing update operations. For ingtatitere is an operation of
type

newEntry :: String -> String -> String -> CalendarTime
-> Transaction Entry

that takes values of thentry attributes and inserts a neBatry entity into the
database. The return type is a transaction (see [2]) hieinsertion might fail (without
changing the database state but returning some informetiee message) if the value
of the title attribute is not unique. Similarly, there is angeated operation of type

newCommentWithEntryCommentingKey
: String -> String -> CalendarTime -> EntryKey
-> Transaction Comment

that takes values of the attributes of a newnment entry and a key of an existing
Entry entity since each comment is related to a uniguery entity, as specified by
theCommenting relation

In the following sections, we describe the generation of b egplication that im-
plements a user-friendly interface to these database tiqpesa

4 Scaffolding

In this section, we present the basic scaffolding of Spitey, the generation of an
initial executable system that provides access to the datstandard web browsers.

As an example, consider the ER description of the blog pteden the previous
section. From this description, Spicey automatically gates the Curry source code
of an application that implements the interface shown in BigAs one can see, the
interface has buttons to create new entities and list egsines, as well as buttons to
show, edit, or delete any existing entity.

However, generating a standard interface is not sufficamgal applications since
there are many requirements that are not present in the ERigtésn. For instance,
one might want to choose a different table layout or show ¢mdyfirst 30 characters
of the Text attribute in the list of entries. One could extend the ER dpsons to add
specifications of these requirements, but there are so nfahgse requirements in real
applications so that this leads to a complex specificaticucstre that is difficult to
manage. As an alternative, we propose to use the high atistréevel of declarative
programming for this purpose. Instead of putting any pdssibstomer requirementin
the specification language of the data model, we generakeléng| declarative code
from the ER descriptions. Thanks to the works on high-leaghdase programming and
web user interface construction sketched above, the gedesaurce code is compact
and comprehensible so that it can be easily adapted to ¢hgiVicustomer require-
ments, as demonstrated below.

An important issue in the design and development of a comgyestem is the
distribution of the functionality in an appropriate modgkeucture. The model-view-
controller (MVC) paradigm [12] provides a well-establighgtructure for interactive
systems. Therefore, Spicey’s scaffolding uses the samnetste for the generated
source code, i.e., if we execute Spicey to generate a welicappph from an ER de-
scription, the following directories are created:

models/ This directory contains the implementation of the data rhage, it contains
the Curry module implementing the access to the databasehvane generated
from the ER description as sketched in Section 3 and destiibdetail in [2].
For instance, if one wants to add more complex integrity traitgés on update
operations, one could extend the Curry code in this module.

controllers/ This directory contains the implementation of the varioastmllers
that are responsible to react on user interactions. Sorhesgtcontrollers can be
directly called, e.g., from the main menu shown at the topiof &, whereas other
controllers (e.g., for editing or deleting entities) ardledhas continuations from
particular views.

views/ This directory contains the implementation of the viewshs different enti-
ties. These views are called from the corresponding cdatsolFor instance, there
are views to show, insert, or edit an entity, as well as a vielist all entities.

config/ This directory contains modules to configure the overaleasdo the func-
tionality provided by the system. For instance, it contaifsrmation about the
routes, i.e., the URLs supported by the system and their mgp@individual con-
trollers, and the definition of available user processes.

Furthermore, there are directories containing global nesdior session management,
authentication etcsfystem/), scripts to compile and install the systesefipts/), and
collections of images and style files used by the systewbYic/). In the following,

T form - Iceweasel

Ele Edit View History Bookmarks TIools Help

G- - @ {3 D hepylocahosti~ mhblogjspicey cgilistComment [-[o] (G =00
i -
Spicey Application

Processes new Entry list Entry new Comment list Comment new Tag list Tag logout.

edit Comment
AText Spicey is a great system
Apghor b
Date [2275] 3 - 2008 =]

7Entry Spicey installed =l

change cancel

powersd by L'fg' (0 Framework

Done

Fig. 3. An edit form for blog comments generated by Spicey

we explain some parts of the generated source code in maié(@édiere we omit some
minor aspects compared to the concrete code in order toifjrti discussion).

In order to obtain a compact and maintainable source codeji¢kvsto create or
update entities exploit WUIs (see Section 2) to implemepetgafe web forms in a
high-level declarative manner. Thus, Spicey generatesgohn entity a WUI specifica-
tion of a web form to manipulate the attributes of this enfityg., see Fig. 3). However,
the internal primary database keys of an entity should natlaaged and, thus, they
are not part of the WUI specification. Moreover, if an ent#yrélated to other enti-
ties, this relation should be modifiable in the web form. Fatance, each comment
in our blog example is related to a unigietry entity. Hence, a singléntry entity
must be selected in the form to insert or change a commenti{selewer selection
box in Fig. 3). As a consequence, we have to pass relatedesniit the web form
in order to enable their selection. In the generated codedavaot pass all associ-
ated entities (e.g., it is not reasonable to select the @sdccomments when editing
anEntry entity) but only the uniquely related entities from onentany relationships
and “one side” of many-to-many relationships. More prdgjsé E is an entity with
attributesAy, ..., A,, (E1, E),...,(Ey, E) are all one-to-many relationships (o)
and(E, EY), ..., (E, E}) are all many-to-many relationships (withas the first com-
ponent), then the form generated to edit/rentity contains input fields for editing
Aq, ..., A, and selection fields foE;, ..., Ex, Ef, ..., E] (where the lattef fields
are multiple selection fields). Thus, one could select intbog example antry en-
tity in a form to edit aComment (due to the one-to-many relationstiipmmenting) and
a set ofTag entities in a form to edit aBntry (due to the many-to-many relationship

Tagging).

Due to these considerations, Spicey generates frorBthg ERD the following
WUI specification folComment entities:

wComment :: [Entry] -> WuiSpec (String,String,CalendarTime,Entry)
wComment entries =
(w4Tuple wRequiredString wRequiredString wDateType
(wSelect entryToShortView entries))
‘withRendering‘ (renderLabels commentLabellList)

Thus,wComment takes a list of available entries and returns a web form toipudate
the three attributes of @omment entity together with the uniquely associatesicry
entity. The available entries are shown in a selection k8xIect) where each entry
is shown as a short string by the transformation functienryToShortView. As a
default, the first unique attribute is used for this purpdfprésent), i.e., in case of an
Entry entity, the title of the corresponding entry is shown.

We want to remark that this and other defaults used in thelatarweb form created
by this WUI specification (see Fig. 3) can be easily adaptedianging this declara-
tion. For instance, one can use another interface for méatipg dates by replacing
wDateType by another WUI for dates, or if the name of the author is nouiresgl
(i.e., if comments are accepted with an empihor string), one can replace the sec-
ondwRequiredString by wString. Moreover, the complete default rendering can be
changed by using another rendering function tlranderLabels (see [7] for more
details about the rendering).

The WUI operationiComment is used to implement the views to insert or update a
Comment entity. For instance, for editing comments, Spicey gemsrah operation

editCommentView
: Comment -> Entry -> [Entry] -> (Comment -> IO [HtmlExp])
-> [HtmlExp]

that takes the current comment, tAetry entity related to this comment, a list of
availableEntry entities, and an I/O operation (a controller) to update tloglifired
comment in the database (note that dvament data type contains the foreign key
of the associatedntry entity so that it need not be explicitly passed to the update
operation, see also [2]).

The main view to browse and manipulate entities is the listnés shown in Fig 2.
Since the list view contains buttons (show/edit/deletepaimted to individual entities,
the controllers implementing the functionality of thesd¢tbns are passed as arguments
to the view. For instance, the implementation of the geeeréist view for Comment
entities is quite simple by the use of tHeML library:

listCommentView :: [Comment]
-> (Comment -> I0 [HtmlExp])
-> (Comment -> I0 [HtmlExp])
-> (Comment -> I0 [HtmlExp]) -> [HtmlExp]
listCommentView comments showctrl editctrl deletectrl =
[h1 [htxt "Comment list"],
table ([take 3 commentLabelList] ++

10

map listComment (sort leqComment comments))]
where listComment cmt = commentToListView cmt ++
[[button "show" (nextController (showctrl cmt)),
button "edit" (nextController (editctrl cmt)),
button "delete" (nextController (deletectrl cmt))]]

The list view has the list of comments and the necessary @iers (showctrl,
editctrl, deletectrl) as arguments and create a table of comments and buttons
having the controllers as continuationextController is a global operation which
wraps the output of a controller with the standard layouthef application. The com-
ments are sorted w.r.t. the orderilgqComment, an operation generated by Spicey.
Thus, the generated default ordering (a lexicographicrargen the attributes of the
entity) can be easily changed.

To influence the information shown in the list view, one hasdapt the defini-
tion of the generated operatiammentToListView which maps &omment entity
into a row of the table. The initial definition is simply thextef all attributes. Spicey
generates the definition of the various entity represemtatused in the application,
like short views, list views, or views containing all detailn single module (named
BlogEntitiesToHtml). Thus, one needs to adapt only this module to change the de-
fault layout of the entities. This module also contains teéridtion of the labels corre-
sponding to the attribute names, like the constaminentLabellist used in the list
view and the edit form.

Following the MVC paradigmcontrollersare responsible to react on user requests
and call the corresponding views supplied with data coetiin the model. For in-
stance, the list controller for comments retrieves all canta from the model (i.e.,
the database) and calls the operatiastCommentView with these comments and the
controllers to process individual comments:

listCommentController :: [String] -> IO [HtmlExp]
listCommentController args = do
comments <- runQ (queryAll (\c->let key free in comment key c))
return (listCommentView comments showCommentController
editCommentController deleteCommentController)

The argumendrgs contains the possible parameters passed with the URL. maldles
the implementation of listing a restricted set of commentoading to the parameters.

The other controllers are similarly defined. However, nbi tontrollers to cre-
ate or modify entities require a second controller, passedhé view (e.g., see
editCommentViewabove), thatis responsible to perform the actual modibeoati the
model. All controllers for an entity generated by Spiceypuéinto a module, e.g., the
moduleCommentController contains the various controllers associate@dament
entities.

As shown in Fig. 2, some controllers (likew or 1ist) can be directly called by
specific URLs in the application. In order to decouple thacttire of URLs from the
structure of the implementation (which is reasonable te litisl details), Spicey gener-
ates an initial module containing the names of the availebigrollers and their URLS.
An indirection in this generation is necessary due to p@ényclic module depen-

11

dencies which are not allowed in Curry. Controller modulepe&hd on view modules
since controllers call view operations. If one wants to pigdme view also URL refer-
ences to controllers, we obtain a cyclic dependency. ThezeEpicey generates a data
type that enumerates all “top-level” controllers, i.e.ntrollers that can be activated by
URLs:

data ControllerFunctionReference =
NewEntryController | ListEntryController |

The mapping of these controller references to the actudta@ier operations is defined
in a top-level module that is only used by the main module ef application (this
avoids the cyclic dependency).

The routing, i.e., association of URLs and controllers,é$ired by an operation
getRoutes that is initially defined as follows (we omit the processed &gin con-
trollers since they are later discussed):

getRoutes = return
[("new Entry", Exact "newEntry", NewEntryController),
("list Entry",Exact "listEntry",ListEntryController),

("default", Always, ListEntryController)]

The first argument of each route element is the name as shothie top menu of the
application (see Fig. 2), the second argument specifies #tehing of a route name as
used in the URL (wherg&xzact defines an exact matchinglways defines an always
successful matching, and there is also an option to defingasbmatching functions),
and the third argument is the controller reference assxtiatthe matched URL. In the
default configuration, the top-level menu of the applicati® dynamically generated
from theExact matchings defined igetRoutes.

Altogether, a Spicey application performs a request for la page as follows. First,
the path component of the URL is extracted. Then, a dispatetetches this path
against the list of alternatives defined gytRoutes and the controller reference of
the first matching alternative (or an error message coetrdiithere is no matching
alternative) is returned. Finally, the top-level moduleextes the code associated to
this controller reference and decorates the computed HTdfitemts with the standard
layout of the application.

Note thatgetRoutes is an /O operation rather a constant. This allows a dynamic
routing depending on some state of the system. For instémeayailable routes can be
restricted for users that are not logged in, or differenteéeean be supported depending
on the login status. The implementation of these featurgsimes the management of
sessions which is discussed in the next section.

5 Sessions

In a web-based application, one needs a concepse$sionn order to pass information

between different web pages. For instance, the login namaeusgr or the contents of
a virtual shopping basket should be stored across sevebgpages. Therefore, Spicey
supports a general concept to store arbitrary informatianuser session.

12

Typically, sessions are implemented in web-based syst@awekies stored in the
client’s browser. For security and performance reasorsgtbookies should not contain
the information stored in the session but only a unique sasdentifier that is passed to
the web server in any interaction. Therefore, a Spicey aptin implements sessions
by managing aession identifieof the abstract typBessionID in each web page. If a
session identifier does not exist (i.e., the browser did entisa corresponding cookie),
a fresh session identifier is created and stored in a cooktensth any subsequent web
page. This access to the current session identifier is ingriéed in an operation

getSessionld :: I0 SessionId

However, the application programmer has not to use thigrinteoperation to store
session information. Instead, Spicey provides the folhgydperations to manipulate
session information (where the type variabldenotes the type of the session informa-
tion):

getSessionData :: Global (SessionStore a) -> I0 (Maybe a)
putSessionData :: a -> Global (SessionStore a) -> I0 ()
removeSessionData :: Global (SessionStore a) -> I0 ()

getSessionData retrieves information of the current session (and retéitnhing if
there is no information storeddutSessionData stores information in the current ses-
sion, andremoveSessionData removes such informationSéssionStore a” is an
abstract type to represent session information contaitétg of typea. This interface
is based on the concept of “globals” (available through thengZlibrary G1obal®) that
implements objects having a globally declared name in sowgute of the program.
The values associated to the name can be modified by 10 acttassalso possible
to declare global entities as persistent so that their gadne kept across different pro-
gram executions, but this is not required here since thevaésprocess on the server
side serving all requests of a user session.

For instance, consider the implementation of “page messdlgat are shown in the
next page (e.g., error messages, status informationtfi&k&.ogged in as” message
shown in Fig. 2. In order to enable the setting of such messiaggny part of a Spicey
application, we define the page message as session datafblldiéng definition of a
global entity:

pageMessage :: Global (SessionStore String)
pageMessage = global emptySessionStore Temporary

“global v Temporary” denotes a global entity with initial value that is not per-
sistently stored. The valuenptySessionStore denotes a session store that does not
contain any information.

Using the session operations above, we can define an opet@aget the page mes-
sage in any part of a Spicey application:

setPageMessage :: String -> I0 (O
setPageMessage msg = putSessionData msg pageMessage

®http://www.informatik.uni-kiel.de/ pakcs/1ib/CDOC/Global.html

13

The current page message is retrieved and then removed bllthveing operation:

getPageMessage :: I0 String
getPageMessage = do
msg <- getSessionData pageMessage
removeSessionData pageMessage
return (maybe "" id msg)

This operation can be used by the main operation that wrapevaautput with the
standard layout containing the page message, global menu et

As one can see, the management of sessions using cookiesssiohsidentifiers
is completely hidden for the application programmer. Thplamentation of the oper-
ations to manipulate session data is quite easy using sadsiotifiers and appropriate
data structures. For instance, the t@e@sionStore is implemented as a list

data SessionStore a = SStore [(SessionId, ClockTime, a)]

where each element consists of a session identifier, a dlmekvalue (used to clean
up the store from old data), and the associated sessionTdea, the implementation
of the operationgetSessionData amounts to a lookup of the information associated
to the current session identifier in the global session stwrigitSessionData simply
adds or updates this information.

Due to this general session concept, one can easily attgchusmnber of informa-
tion entities to a session. For instance, one can store $erhiof selected controllers
(to implement a history list or a “back” button) or the logiame in order to support
authentication, which is discussed next.

6 Authentication and Authorization

The basic support for user authentication is quite simpfee €an define some session
data to store a login name:

sessionLogin :: Global (SessionStore String)
sessionlogin = global emptySessionStore Temporary

and use the session data operations to set, retrieve, de @elegin name. These op-
erations can be used in specific web pages to login or loganuteSuthentication is
required in almost any web-based system keeping some dateyJrovides an ini-
tial implementation (compare Fig. 2) that is intended faeesion during the adaption
of the system. Although the initial authentication systsnmicomplete (since it is not
specified where to store passwords, login names etc), ittieimgntation provides a
reasonable structure that can be extended by the appligatagrammer. Moreover,
the generated Spicey application also contains some usgduations to generate ran-
dom passwords, compute hash strings for passwords and iagies (note that, for
security reasons, one should not hash passwords alone¢id.])

An equally important aspect of web-based systems is autition, i.e., the check-
ing whether a user is allowed to call a distinct functiornyalike showing or updating
particular entities. In our framework, this check can bdqrened before starting a con-
troller. In order to avoid the distribution of these checksiathe entire implementation

14

and keep the authorization rules at a centralized placeegpiecorates the generated
code of each controller with a call to some authorizationecdebr this purpose, there
is a data type

data AccessResult = AccessGranted | AccessDenied String
and an operation
checkAuthorization :: IO AccessResult -> I0 [HtmlExp] -> I0 [HtmlExp]

which takes an IO operation for authorization checkingufireing anAccessResult)
and a controller as arguments. If the authorization retlrressGranted, the con-
troller is executed, otherwise an error message is disgldgeorder to define concrete
authorization rules for the various controllers, Spicepayates a data type to classify
the controllers:

data AccessType a = NewEntity | ListEntities | ShowEntity a
| UpdateEntity a | DeleteEntity a

Now, the execution of each controller is protected by addingauthorization check
to the controller’s code. For instance, the generated cdédkeocontroller to list all
Comment entities (see Section 4) is extended as follows:

listCommentController args =
checkAuthorization (commentOperationAllowed ListEntities) $ do
comments <- runQ ...

Thus, the actual authorization rules are collected in alsingpdule containing the
definition of all operations used in the calls ¢aeckAuthorization. For instance,
the default definition ot ommentOperationAllowed is

commentOperationAllowed :: AccessType Comment -> IO AccessResult
commentOperationAllowed _ = return AccessGranted

authorizing allComment operations. By refining this definition, one can specifyniest
tions on the controllers depending on the various operstigpecific entities, or login
information of the user. For instance, a generic policy thsallows delete operations
can be expressed as follows:

disallowDelete at = case at of
DeleteEntity _ -> return (AccessDenied "Delete not allowed!")
-> return AccessGranted

Note that the logic programming features of Curry can beequéteful here to specify
authorization policies in a rule-oriented manner.

7 Processes

A web-based application generated by Spicey supportsithdiV interactions to in-
sert, show, and change any entity. If the data model is cotgid consists of many
entity types, it might be necessary to combine single ictéyas to longer interaction
sequences. For instance, if one wants to insert new dateevdifégrent entities are in-

15

volved, it is reasonable to define an interaction sequenegarhe controllers to insert
the various new entities are sequentially activated. Thos,wants to offeuser pro-
cessegwhich can be also considered as parts of complex businesggses) that are
structured compositions of elementary interactions.

In order to support the implementation of processes, a g @pelication has an
infrastructure to define and execute such processes. Frabsiract point of view, a
process is a sequence of calls to controllers. Therefooeggses can be weaved into
the default structure of controllers. For this purposeheamntroller which terminates
an individual interaction has a “continuation” controlteat is called in the next step.
For instance, a controller responsible for creating a neityesalls the list controller of
the same entity type, as in the controller which adds a egentity:

createTagController name = runT (newTag name) >>=
either (_ -> nextInProcessOr listTagController Nothing)
(\error -> displayError ...)

Thus, the executionr@nT) of the transactionnewTag name), that should insert a
newTag hame into the database, calls, if successfulltwtTagController, or dis-
plays an error message if the transaction fails (e.g., shcaew name already exists).
However, the next controller is not directly called but irgditly through the operation
nextInProcessOr. This operation checks whether the system executes a gtdtes
process is active, the given controller is called, otheawli® controller specified in the
next process state is executed. In order to make the selauftithe next process state
dependent on some information provided by the previousrobet (this is useful to
implement loops or branches in processes), the second argufihextInProcess0Or
might contain such information. Thus, the application pamgmer can replace the de-
fault valueNothing by some information available in the previous controller.

The concrete structure of processes is defined in a disshgdi module
UserProcesses as data of the following type:

data Processes st = ProcSpec [(String,st)]
(st -> ControllerFunctionReference)
(st -> Maybe ControllerResult -> st)

The type parametest is the type of the states of a process, which could be a number
or some more informative enumeration type. Hence, a praspeessfication consists of

a list of start states together with a textual descriptibege start states can be selected
in the process menu), a mapping of each state into a corrdspgpoontroller to be
executed in this state, and a state transition functionrttegis a state into a new state
depending on some optional result provided by the previongaller (the type of these
results iControllerResult, which is identical t®&tring in the default case).

We can use all features available in Curry to define proceBsesnstance, one can
compute the next state in a process based on solving cortstrar.t. the data in the
model. In general, the state transition function is partial, if a process state has no
successor, the process will be terminated. If a state has than one successor, the
first one is selected (multiple successor states can ocdituiations like the insertion
of several entities in an arbitrary order).

16

As a concrete example, consider a simple process to insewaday followed by
the creation of a nesintry entity and terminated with showing the list of all tags. If
we use numbers as state identifiers, we can specify this gg@ssfollows:

let controller0f 0 = NewTagController

controller0f 1 = NewEntryController
controller0f 2 = ListTagController
next 0 _ =1
next 1 _ = 2

in ProcSpec [("Insert new tag and entry",0)] controllerOf next

If this specification is contained in the moduleerProcesses, the process can be
selected and stepwise executed in the web application.

8 Conclusions and Related Work

We have presented the tool Spicey to generate web apphedtio data models that are
specified as entity-relationship models. This enablesénexation of a fully functional
system from an ER description in a few seconds. This inifiatesm is not only good
for the evaluation of the feasibility of the data model, buias also a reasonable and
compact structure that can be extended and adapted to specfomer requirements.
This has been achieved by the use of previous works on déetadatabase and web
programming that supports a compact executable deseriptiweb interfaces. Further-
more, the generated system has an infrastructure for maegsselated to web-based
systems, like transactions that are safe w.r.t. the ER @in#d, sessions, authentication,
authorization, user-oriented processes, or routing.

In contrast to other systems implemented in scripting laggs like Perl, PHP, or
Ruby, our implementation is statically typed so that marogpamming errors that eas-
ily occur in such complex systems are detected at compile.tbompared to Ruby on
Rails, a framework with similar objectives, Spicey can besidered as an approach to
show that declarative programming allows the compact coasbn of web-based sys-
tems with static type checking (thus, supporting prograngsiafety) without the need
for (unreliable) dynamic meta-programming techniqueriter to obtain this result,
some design difficulties had to be solved, like avoiding raltanodule dependencies
by passing continuation controllers to views, routing, etc

To get an idea of the size of the generated source code that regnspected by
the application programmer to adapt the initial system, atented the lines of code of
the application generated for tB@og data model shown in Section 3. The generated
views contain 280 lines of code, the generated controllerdain 180 lines of code,
and the configuration files (e.g., routing, default authation) contain 55 lines of code.
Of course, the complete executable has much more codeybkens libraries, specific
Spicey libraries, generated database code etc. Howeigrdbe is usually irrelevant
when adapting the system to specific layout requirementushsl in current web-
based systems, many layout details are specified in a glofialsheet file so that the
views generate only the basic structure of each web page.

17

Although Spicey is the first web programming framework foealdrative language
based on ER models and with support for typical requiremientise area (e.g., safe
transactions, sessions, authentication, authorizgtimtesses), there are many related
approaches. The relation of Spicey to some of them are disdun the following (the
relation to Ruby on Rails has already been discussed above).

The Web Application Makér(WAM) is a framework with similar goals as Spicey.
The WAM generates a web interface from the meta-data of iorkd database and has
opportunities to adapt the interface to specific user requénts. In contrast to WAM,
Spicey uses ER models, which usually contain more strudnframation, to generate
the database scheraadthe corresponding web interface.

The iData toolkit [15] is a framework, implemented with gao@rogramming tech-
niques in the functional language Clean, to construct gafe-web interfaces to data
that can be persistently stored. In contrast to our framkythe construction of an ap-
plication is done by the programmer who defines the varioasd@lements, where we
generate the necessary code from an ER description. Hamegrity constraints ex-
pressed in the ER description are automatically checkedrtrast to the iData toolkit.

Turbinadd is a web framework for Haskell. It is based on similar ideaRkaby
on Rails but exploits static type checking for more religimegramming, similarly to
Spicey. In contrast to our framework, Turbinado supporéfetding only to implement
an object-relational mapping of the models, and it is noeddas an ER specification
to ensure integrity constraints in the application.

Seam [17] is a complex framework for developing enterpriggieations in Java.
It integrates many other projects to support a wide rangeadfriologies. The database
abstraction is provided by an Enterprise Java Beans 3.Gcmmahtation, Hibernate by
default, which enables the programmer to generate the asgadrhema directly from
the model classes. In contrast to the ERD library used byeSpibere is no graphical
way to create the models of the application. Another disathge of Seam is the ab-
sence of a single place to define consistency rules for dataeTare three places where
consistency and validation rules may be defined. The firsetmedahe code of the mod-
els and the generated database schema. Some, but noteaiwhith are defined in the
models through annotations are put into the database schwernaften the program-
mer has to assure database consistency by himself. Seawrsuhe definition of the
standard relationship types one-to-one, one-to-manyysone and many-to-many
but provides no good way to enforce ranges for the multigliof those relationships
as Spicey does. For example, a one-to-one relationshipradesisure that there is al-
ways an entity on the other side of the relation but that thesg be an entity or null.
As a consequence, a programmer in Seam has to check for thenpeeof an entity
by himself. Hibernate provides an annotation for that, big not fully integrated into
Seam yet. The third place to define validation rules are tewsi for which Seam uses
Java Server Faces. Rules defined in the model are not autathateflected in the
views, simple validation rules like required fields have éodefined again in the view,
which leads to inconsistency if those rules for a model afinee differently in differ-

4http://www.declarativa.com/wam/
Shttp://www.turbinado.org/

18

ent views. Seam integrates the jBProject for modeling business processes. jBPM
defines the process in XML format where a graphical editastexSimilarly to Spicey,
the coupling of the process with the code is achieved by attimgecontroller methods
with the process. For authorization another tool may be us&kam, namely JBoss
Ruled, which provides a logical language for defining authormatiules. This aspect
is directly integrated into Spicey by the logic programmiegtures of Curry.

The web framework Seasitiés based on the object-oriented language Smalltalk.
Seaside is one of the few frameworks that useTitansform-Viewpattern for views.
This enables the compiler to check the integrity of the vibesause they are defined as
program code instead of HTML templates. Spicey uses the sapr®ach but provides
for stronger code checks due to the static type system of/Caeaside supports process
modeling by providing a stateful environment over multipbejuests and enable the
programmer to span a controller method over more than one jragontrast to Spicey,
processes are not decoupled from the controller logic dathagh abstraction level of
processes as in Spicey is not obtained.

Djang@ is a popular web framework for the language Python which basufes
very similar to Ruby on Rails. The implementation of routes $picey was inspired
by the way Django handles routes. While Django offers ongyutar expressions for
matching URLs, Spicey generalizes this concept and suppohitrary computable
functions for determining the controllers associated td 6IR

Spicey is completely implemented in Curry. The impleméatats freely avail-
ablel® Apart from some example applications, it has also been us@davide web-
based interfaces to existing databases by the definitioprbpriate ER descriptions.
For future work, it would be interesting to develop a condeptmigration, i.e., to sup-
port changes in the ER model that might entail changes in ¢énemgted and possibly
adapted application code. Furthermore, it would be usefihplement a tool that al-
lows to mix Curry code with HTML code fragments (e.g., as shawth the Haskell
Server Pages [13]) in order to allow an easier integratidayafuts developed by HTML
designers into the application programs.

References

1. S. Antoy, R. Echahed, and M. Hanus. A Needed Narrowing&yaJournal of the ACM
Vol. 47, No. 4, pp. 776-822, 2000.

2. B. Brafel, M. Hanus, and M. Miller. High-Level Databasedfamming in Curry. In
Proc. of the Tenth International Symposium on Practicaleksp of Declarative Languages
(PADL’08), pp. 316—332. Springer LNCS 4902, 2008.

3. P.P.-S. Chen. The Entity-Relationship Model—Toward #ielh View of Data.ACM Trans-
actions on Database Systemsl. 1, No. 1, pp. 9-36, 1976.

S http://www. jboss.com/products/jbpm/
"http://www. jboss.com/products/rules/
8 http://www.seaside.st/
9http://www.djangoproject.com/
P http://www.informatik.uni-kiel.de/ pakcs/spicey/

19

10.

11.
12.

13.

14.

15.

16.

17.

. S. Fischer. A Functional Logic Database Library. Aroc. of the ACM SIGPLAN 2005
Workshop on Curry and Functional Logic Programming (WCFLI®R), pp. 54-59. ACM
Press, 2005.

. M. Hanus. A Unified Computation Model for Functional andjimProgramming. IiProc.
of the 24th ACM Symposium on Principles of Programming Lagga (Paris) pp. 80-93,
1997.

. M. Hanus. High-Level Server Side Web Scripting in Curryi Proc. of the Third Inter-
national Symposium on Practical Aspects of DeclarativedLeyes (PADL'01)pp. 76-92.
Springer LNCS 1990, 2001.

. M. Hanus. Type-Oriented Construction of Web User Int&éa InProceedings of the 8th
ACM SIGPLAN International Conference on Principles and d®ie of Declarative Pro-
gramming (PPDP’06)pp. 27-38. ACM Press, 2006.

. M. Hanus. Multi-paradigm Declarative Languages. Pimceedings of the International
Conference on Logic Programming (ICLP 200p@p. 45-75. Springer LNCS 4670, 2007.

. M. Hanus. Putting Declarative Programming into the Wetnslating Curry to JavaScript.

In Proceedings of the 9th ACM SIGPLAN International Confegeme Principles and Prac-

tice of Declarative Programming (PPDP’0Dp. 155-166. ACM Press, 2007.

M. Hanus (ed.). Curry: An Integrated Functional Logiaigaage (Vers. 0.8.2). Available at

http://ww. curry-| anguage. or g, 2006.

S.H. Husebyinnocent Code: A Security Wake-Up Call for Web Programm€fisey, 2003.

G. Krasner and S. Pope. A Cookbook for using the Modelw\@®ntroller User Interface

in Smalltalk-80.Journal of Object-Oriented Programmingol. 1, No. 3, pp. 26—49, 1988.

E. Meijer and D. van Velzen. Haskell Server Pages: FanatiProgramming and the Battle

for the Middle Tier. InProc. ACM SIGPLAN Haskell Workshadontreal, 2000.

S. Peyton Jones, editoHaskell 98 Language and Libraries—The Revised RepGam-

bridge University Press, 2003.

R. Plasmeijer and P. Achten. iData for the World Wide Webogramming Interconnected

Web Forms. IrProc. of the 8th International Symposium on Functional andit Program-

ming (FLOPS 2006)pp. 242—258. Springer LNCS 3945, 2006.

P. Wadler. How to Declare an ImperativACM Computing Surveya/ol. 29, No. 3, pp.

240-263, 1997.

M.J. Yuan, J. Orshalick, and T. Heuteeam Framework: Experience the Evolution of Java

EE. Prentice Hall, 2nd edition, 2009.

20

