
ABSTRACT LAMBDA CALCULUS MACHINES

Werner Kluge

Dept of Computer Science

University of Kiel

D-24105 Kiel/Germany

wk@informatik.uni-kiel.de

www.informatik.uni-kiel.de/inf/Kluge/index-de.html



Milestones of λ-calculus machine development

> 1974/75 proposal by Klaus Berkling at GMD in St.Au-

gustin/Germany of a string reduction machine with full

support of an applied λ-calculus;

> 1979 completion of the design of a hardware prototype

of this machine at GMD in St.Augustin/Germany > the

first reduction machine worldwide;

> 1983 successfull implementation at the U of Bonn/Ger-

many of a system of cooperating reduction machines for

divide-and-conquer computations based on Berkling’s orig-

inal λ-calculus machine concept;

> 1990 completion of an interpreting graph reducer for a

full-fledged λ-calculus that faithfully performs high-level

program transformations;

> 1994 completion of a compiling graph reducer for a

full-fledged λ-calculus with competitive runtime perfor-

mance;

> 1996/2000 distributed implementation of the compil-

ing graph reducer on an ncube multiprocessor system,

also supporting speculative evaluation.



A small scheme program

( define twice ( lambda ( f u ) ( f ( f u ) ) ) )

( define square ( lambda ( v ) ( * v v ) ) )



A small scheme program

( define twice ( lambda ( f u ) ( f ( f u ) ) ) )

( define square ( lambda ( v ) ( * v v ) ) )

( twice square 2 ) --> 16



A small scheme program

( define twice ( lambda ( f u ) ( f ( f u ) ) ) )

( define square ( lambda ( v ) ( * v v ) ) )

( twice square 2 ) --> 16

( twice square ) --> procedure twice: expects 2 args,

given 1 : ( lambda(a1) ... )



A small scheme program

( define twice ( lambda ( f u ) ( f ( f u ) ) ) )

( define square ( lambda ( v ) ( * v v ) ) )

( twice square 2 ) --> 16

( twice square ) --> procedure twice: expects 2 args,

given 1 : ( lambda(a1) ... )

( twice twice ) --> procedure twice: expects 2 args,

given 1 : ( lambda(a1) ... )



A small scheme program

( define twice ( lambda ( f u ) ( f ( f u ) ) ) )

( define square ( lambda ( v ) ( * v v ) ) )

( twice square 2 ) --> 16

( twice square ) --> procedure twice: expects 2 args,

given 1 : ( lambda(a1) ... )

( twice twice ) --> procedure twice: expects 2 args,

given 1 : ( lambda(a1) ... )

( twice twice square )

--> procedure twice: expects 2 args,

given 1 : ( lambda(a1) ... )



Modifying twice

( define twice ( lambda ( f )

( lambda ( u ) ( f ( f u ) ) ) ) )

( define square ( lambda ( v ) ( * v v ) ) )



Modifying twice

( define twice ( lambda ( f )

( lambda ( u ) ( f ( f u ) ) ) ) )

( define square ( lambda ( v ) ( * v v ) ) )

( ( twice square ) 2 ) --> 16



Modifying twice

( define twice ( lambda ( f )

( lambda ( u ) ( f ( f u ) ) ) ) )

( define square ( lambda ( v ) ( * v v ) ) )

( ( twice square ) 2 ) --> 16

( ( ( twice twice ) square ) 2 ) --> 65536



Modifying twice

( define twice ( lambda ( f )

( lambda ( u ) ( f ( f u ) ) ) ) )

( define square ( lambda ( v ) ( * v v ) ) )

( ( twice square ) 2 ) --> 16

( ( ( twice twice ) square ) 2 ) --> 65536

( ( twice twice square ) 2 )

--> procedure twice: expects 1 arg,

given 2 : ( lambda(a1) ... )



Modifying twice

( define twice ( lambda ( f )

( lambda ( u ) ( f ( f u ) ) ) ) )

( define square ( lambda ( v ) ( * v v ) ) )

( ( twice square ) 2 ) --> 16

( ( ( twice twice ) square ) 2 ) --> 65536

( ( twice twice square ) 2 )

--> procedure twice: expects 1 arg,

given 2 : ( lambda(a1) ... )

( twice twice ) --> ( lambda (a1) ... )



Modifying twice

( define twice ( lambda ( f )

( lambda ( u ) ( f ( f u ) ) ) ) )

( define square ( lambda ( v ) ( * v v ) ) )

( ( twice square ) 2 ) --> 16

( ( ( twice twice ) square ) 2 ) --> 65536

( ( twice twice square ) 2 )

--> procedure twice: expects 1 arg,

given 2 : ( lambda(a1) ... )

( twice twice ) --> ( lambda (a1) ... )

( ( twice twice ) square ) --> ( lambda (a1) ... )



Modifying twice

( define twice ( lambda ( f )

( lambda ( u ) ( f ( f u ) ) ) ) )

( define square ( lambda ( v ) ( * v v ) ) )

( ( twice square ) 2 ) --> 16

( ( ( twice twice ) square ) 2 ) --> 65536

( ( twice twice square ) 2 )

--> procedure twice: expects 1 arg,

given 2 : ( lambda(a1) ... )

( twice twice ) --> ( lambda (a1) ... )

( ( twice twice ) square ) --> ( lambda (a1) ... )

One would wish / expect to get the following:



Modifying twice

( define twice ( lambda ( f )

( lambda ( u ) ( f ( f u ) ) ) ) )

( define square ( lambda ( v ) ( * v v ) ) )

( ( twice square ) 2 ) --> 16

( ( ( twice twice ) square ) 2 ) --> 65536

( ( twice twice square ) 2 )

--> procedure twice: expects 1 arg,

given 2 : ( lambda(a1) ... )

One would wish / expect to get the following:

( twice twice ) --> ( lambda ( u’) ( lambda ( u )

( u’( u’( u’( u’ u ) ) ) ) ) )



Modifying twice

( define twice ( lambda ( f )

( lambda ( u ) ( f ( f u ) ) ) ) )

( define square ( lambda ( v ) ( * v v ) ) )

( ( twice square ) 2 ) --> 16

( ( ( twice twice ) square ) 2 ) --> 65536

( ( twice twice square ) 2 )

--> procedure twice: expects 1 arg,

given 2 : ( lambda(a1) ... )

One would wish / expect to get the following:

( twice twice ) --> ( lambda ( u’) ( lambda ( u )

( u’( u’( u’( u’ u ) ) ) ) ) )

( ( twice twice ) square )

--> ( lambda ( u )

( * ( * ( * ( * u u ) ( * u u ) )

( * ( * u u ) ( * u u ) ) ) ( .... ) ) )



The cause of the problem

→ all functional / function-based languages are based

on a weakly normalizing λ-calculus

→ weak (head) normal form

; a top level abstraction which may have redices in

its body

; a top level application of an n-ary abstraction to

fewer than n operands that are in weak normal form

→ weak normalization rules out naming conflicts

; requires only a naive β-reduction (substitution)

→ full normal form contains no β-redices

→ full normalization requires full-fledged β-reductions,

including the resolution of naming conflicts

→ considered too complex, not necessary ... more ex-

cuses


