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Milestones of λ-calculus machine development

> 1974/75 proposal by Klaus Berkling at GMD in St.Au-

gustin/Germany of a string reduction machine with full

support of an applied λ-calculus;

> 1979 completion of the design of a hardware prototype

of this machine at GMD in St.Augustin/Germany > the

first reduction machine worldwide;

> 1983 successfull implementation at the U of Bonn/Ger-

many of a system of cooperating reduction machines for

divide-and-conquer computations based on Berkling’s orig-

inal λ-calculus machine concept;

> 1990 completion of an interpreting graph reducer for a

full-fledged λ-calculus that faithfully performs high-level

program transformations;

> 1994 completion of a compiling graph reducer for a

full-fledged λ-calculus with competitive runtime perfor-

mance;

> 1996/2000 distributed implementation of the compil-

ing graph reducer on an ncube multiprocessor system,

also supporting speculative evaluation.
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The cause of the problem

→ all functional / function-based languages are based

on a weakly normalizing λ-calculus

→ weak (head) normal form

; a top level abstraction which may have redices in

its body

; a top level application of an n-ary abstraction to

fewer than n operands that are in weak normal form

→ weak normalization rules out naming conflicts

; requires only a naive β-reduction (substitution)

→ full normal form contains no β-redices

→ full normalization requires full-fledged β-reductions,

including the resolution of naming conflicts

→ considered too complex, not necessary ... more ex-

cuses


