Synchronous Languages-Lecture 16

Prof. Dr. Reinhard von Hanxleden

Christian-Albrechts Universität Kiel
Department of Computer Science
Real-Time Systems and Embedded Systems Group
23 June 2020
Last compiled: June 30, 2020, 10:56 hrs

Lustre

The 5-Minute Review Session

1. In sequential constructiveness, what is the iur-protocol?

The 5-Minute Review Session

1. In sequential constructiveness, what is the iur-protocol?
2. When are threads statically concurrent?

The 5-Minute Review Session

1. In sequential constructiveness, what is the iur-protocol?
2. When are threads statically concurrent?
3. What is a characteristic of the causality handling and compilation in the Blech language?

The 5-Minute Review Session

1. In sequential constructiveness, what is the iur-protocol?
2. When are threads statically concurrent?
3. What is a characteristic of the causality handling and compilation in the Blech language?
4. In addition to event-triggered execution, which other execution models do you know?

The 5-Minute Review Session

1. In sequential constructiveness, what is the iur-protocol?
2. When are threads statically concurrent?
3. What is a characteristic of the causality handling and compilation in the Blech language?
4. In addition to event-triggered execution, which other execution models do you know?
5. What is the idea of dynamic ticks?

Overview

A Short Tour

Examples

Clock Consistency

Arrays and Recursive Nodes

Lustre

- A synchronous data flow language
- Developed since 1984 at IMAG, Grenoble [HCRP91]
- Also graphical design entry available (SAGA)
- Moreover, the basis for SCADE, a tool used in software development for avionics and automotive industries
\sim Translatable to FSMs with finitely many control states
- Same advantages as Esterel for hardware and software design

Lustre Modules

General form:

```
node f( }\mp@subsup{x}{1}{}:\mp@subsup{\alpha}{1}{},\ldots,\mp@subsup{x}{n}{}:\mp@subsup{\alpha}{n}{})\mathrm{ returns ( }\mp@subsup{y}{1}{}:\mp@subsup{\beta}{1}{},\ldots,\mp@subsup{y}{m}{}:\mp@subsup{\beta}{m}{}
var }\mp@subsup{z}{1}{}:\mp@subsup{\gamma}{1}{},\ldots,\mp@subsup{z}{k}{}:\mp@subsup{\gamma}{k}{}
let
    z
    y1}=\mp@subsup{\pi}{1}{\prime;}...;ym=\mp@subsup{y}{m}{}=\mp@subsup{\pi}{k}{\prime
    assert \varphi }\mp@subsup{\varphi}{1}{\prime}...; assert \varphi\ell
tel
```

where

- f is the name of the module
- Inputs x_{i}, outputs y_{i}, and local variables z_{j}
- Assertions φ_{i} (boolean expressions)

Lustre Programs

- Lustre programs are a list of modules that are called nodes
- All nodes work synchronously, i.e. at the same speed
- Nodes communicate only via inputs and outputs
- No broadcasting of signals, no side effects
- Equations $z_{i}=\tau_{i}$ and $y_{i}=\pi_{i}$ are not assignments
- Equations must have solutions in the mathematical sense

Lustre Programs

- As $z_{i}=\tau_{i}$ and $y_{i}=\pi_{i}$ are equations, we have the Substitution Principle:
The definitions $z_{i}=\tau_{i}$ and $y_{i}=\pi_{i}$ of a Lustre node allow one to replace z_{i} by τ_{i} and y_{i} by π_{i}.
- Behavior of z_{i} and y_{i} completely given by equations $z_{i}=\tau_{i}$ and $y_{i}=\pi_{i}$

Assertions

- Assertions assert φ do not influence the behavior of the system
- assert φ means that during execution, φ must invariantly hold
- Equation $\mathrm{X}=\mathrm{E}$ equivalent to assertion assert ($\mathrm{X}=\mathrm{E}$)
- Assertions can be used to optimize the code generation
- Assertions can be used for simulation and verification

Data Streams

- All variables, constants, and all expressions are streams, i.e., sequences of values of a certain type
- Streams can be composed to new streams
- Example: given $x=(0,1,2,3,4, \ldots)$ and $y=(0,2,4,6,8, \ldots)$, then $x+y$ is the stream $(0,3,6,9,12, \ldots)$
- However, streams may refer to different clocks
\leadsto Each stream has a corresponding clock, which filters out elements whenever the clock is false
- Per default, streams run on the base clock, which is always true

Data Types

- Primitive data types: bool, int, real
- Semantics is clear?
- Imported data types: type α
- Similar to Esterel
- Data type is implemented in host language
- Tuples of types: $\alpha_{1} \times \ldots \times \alpha_{n}$ is a type
- Semantics is Cartesian product

Expressions (Streams)

- Every declared variable x is an expression
- Boolean expressions:
$>\tau_{1}$ and τ_{2}, τ_{1} or τ_{2}, not τ_{1}
- Numeric expressions:
$>\tau_{1}+\tau_{2}$ and $\tau_{1}-\tau_{2}, \tau_{1} * \tau_{2}$ and $\tau_{1} / \tau_{2}, \tau_{1} \operatorname{div} \tau_{2}$ and $\tau_{1} \bmod \tau_{2}$
- Relational expressions:
$>\tau_{1}=\tau_{2}, \tau_{1}<\tau_{2}, \tau_{1} \leq \tau_{2}, \tau_{1}>\tau_{2}, \tau_{1} \geq \tau_{2}$
- Conditional expressions:
- if b then τ_{1} else τ_{2} for all types

Node Expansion

- Assume implementation of a node f with inputs $x_{1}: \alpha_{1}, \ldots$, $x_{n}: \alpha_{n}$ and outputs $y_{1}: \beta_{1}, \ldots, y_{m}: \beta_{m}$
- Then, f can be used to create new stream expressions, e.g., $f\left(\tau_{1}, \ldots, \tau_{n}\right)$ is an expression
- Of type $\beta_{1} \times \ldots \times \beta_{m}$
- If $\left(\tau_{1}, \ldots, \tau_{n}\right)$ has type $\alpha_{1} \times \ldots \times \alpha_{n}$

Vector Notation of Nodes

By using tuple types for inputs, outputs, and local streams, we may consider just nodes like

```
node f(x:\alpha) returns (y:\beta)
var z:\gamma;
let
        z = \tau;
        y = \pi;
        assert \varphi;
    tel
```


Clock-Operators

- All expressions are streams
- Clock-operators modify the temporal arrangement of streams
- Again, their results are streams
- The following clock operators are available:
- pre τ for every stream τ
- $\tau_{1}->\tau_{2}$, (initialization) where τ_{1} and τ_{2} have the same type
- τ_{1} when τ_{2} where τ_{2} has boolean type (downsampling)
- current τ (upsampling)

Clock-Hierarchy

- As already mentioned, streams may refer to different clocks
- We associate with every expression a list of clocks
- A clock is thereby a stream φ of boolean type

Clock-Hierarchy

- $\operatorname{clocks}(\tau):=[]$ for expressions without clock operators

Clock-Hierarchy

- $\operatorname{clocks}(\tau):=[]$ for expressions without clock operators
- $\operatorname{clocks}(\operatorname{pre}(\tau)):=\operatorname{clocks}(\tau)$

Clock-Hierarchy

- $\operatorname{clocks}(\tau):=[]$ for expressions without clock operators
- $\operatorname{clocks}(\operatorname{pre}(\tau)):=\operatorname{clocks}(\tau)$
- $\operatorname{clocks}\left(\tau_{1}->\tau_{2}\right):=\operatorname{clocks}\left(\tau_{1}\right)$, where $\operatorname{clocks}\left(\tau_{1}\right)=\operatorname{clocks}\left(\tau_{2}\right)$ is required

Clock-Hierarchy

- $\operatorname{clocks}(\tau):=[]$ for expressions without clock operators
- $\operatorname{clocks}(\operatorname{pre}(\tau)):=\operatorname{clocks}(\tau)$
- $\operatorname{clocks}\left(\tau_{1}->\tau_{2}\right):=\operatorname{clocks}\left(\tau_{1}\right)$, where $\operatorname{clocks}\left(\tau_{1}\right)=\operatorname{clocks}\left(\tau_{2}\right)$ is required
- $\operatorname{clocks}(\tau$ when $\varphi):=\left[\varphi, c_{1}, \ldots, c_{n}\right]$, where $\operatorname{clocks}(\varphi)=\operatorname{clocks}(\tau)=\left[c_{1}, \ldots, c_{n}\right]$

Clock-Hierarchy

- $\operatorname{clocks}(\tau):=[]$ for expressions without clock operators
- $\operatorname{clocks}(\operatorname{pre}(\tau)):=\operatorname{clocks}(\tau)$
- $\operatorname{clocks}\left(\tau_{1}->\tau_{2}\right):=\operatorname{clocks}\left(\tau_{1}\right)$, where $\operatorname{clocks}\left(\tau_{1}\right)=\operatorname{clocks}\left(\tau_{2}\right)$ is required
- $\operatorname{clocks}(\tau$ when $\varphi):=\left[\varphi, c_{1}, \ldots, c_{n}\right]$, where $\operatorname{clocks}(\varphi)=\operatorname{clocks}(\tau)=\left[c_{1}, \ldots, c_{n}\right]$
- clocks(current $(\tau)):=\left[c_{2}, \ldots, c_{n}\right]$, where $\operatorname{clocks}(\tau)=\left[c_{1}, \ldots, c_{n}\right]$

Semantics of Clock-Operators

- $\llbracket \operatorname{pre}(\tau) \rrbracket:=\left(\perp, \tau_{0}, \tau_{1}, \ldots\right)$, provided that $\llbracket \tau \rrbracket=\left(\tau_{0}, \tau_{1}, \ldots\right)$

Semantics of Clock-Operators

- $\llbracket \operatorname{pre}(\tau) \rrbracket:=\left(\perp, \tau_{0}, \tau_{1}, \ldots\right)$, provided that $\llbracket \tau \rrbracket=\left(\tau_{0}, \tau_{1}, \ldots\right)$
- $\llbracket \tau ~->\pi \rrbracket:=\left(\tau_{0}, \pi_{1}, \pi_{2}, \ldots\right)$,
provided that $\llbracket \tau \rrbracket=\left(\tau_{0}, \tau_{1}, \ldots\right)$ and $\llbracket \pi \rrbracket=\left(\pi_{0}, \pi_{1}, \ldots\right)$

Semantics of Clock-Operators

- $\llbracket \operatorname{pre}(\tau) \rrbracket:=\left(\perp, \tau_{0}, \tau_{1}, \ldots\right)$, provided that $\llbracket \tau \rrbracket=\left(\tau_{0}, \tau_{1}, \ldots\right)$
- $\llbracket \tau$-> $\pi \rrbracket:=\left(\tau_{0}, \pi_{1}, \pi_{2}, \ldots\right)$,
provided that $\llbracket \tau \rrbracket=\left(\tau_{0}, \tau_{1}, \ldots\right)$ and $\llbracket \pi \rrbracket=\left(\pi_{0}, \pi_{1}, \ldots\right)$
$-\llbracket \tau$ when $\varphi \rrbracket=\left(\tau_{t_{0}}, \tau_{t_{1}}, \tau_{t_{2}}, \ldots\right)$, provided that
- $\llbracket \tau \rrbracket=\left(\tau_{0}, \tau_{1}, \ldots\right)$
- $\left\{t_{0}, t_{1}, \ldots\right\}$ is the set of points in time where $\llbracket \varphi \rrbracket$ holds

Semantics of Clock-Operators

- $\llbracket \operatorname{pre}(\tau) \rrbracket:=\left(\perp, \tau_{0}, \tau_{1}, \ldots\right)$, provided that $\llbracket \tau \rrbracket=\left(\tau_{0}, \tau_{1}, \ldots\right)$
- $\llbracket \tau$-> $\pi \rrbracket:=\left(\tau_{0}, \pi_{1}, \pi_{2}, \ldots\right)$,
provided that $\llbracket \tau \rrbracket=\left(\tau_{0}, \tau_{1}, \ldots\right)$ and $\llbracket \pi \rrbracket=\left(\pi_{0}, \pi_{1}, \ldots\right)$
$-\llbracket \tau$ when $\varphi \rrbracket=\left(\tau_{t_{0}}, \tau_{t_{1}}, \tau_{t_{2}}, \ldots\right)$, provided that
- $\llbracket \tau \rrbracket=\left(\tau_{0}, \tau_{1}, \ldots\right)$
- $\left\{t_{0}, t_{1}, \ldots\right\}$ is the set of points in time where $\llbracket \varphi \rrbracket$ holds
$-\llbracket \operatorname{current}(\tau) \rrbracket=\left(\perp, \ldots, \perp, \tau_{0}, \ldots, \tau_{0}, \tau_{1}, \ldots, \tau_{1}, \tau_{2}, \ldots\right)$, provided that
- $\llbracket \tau \rrbracket=\left(\tau_{0}, \tau_{1}, \ldots\right)$
- Stream holds value of τ from last tick of clock of clock of τ

Example for Semantics of Clock-Operators

φ	0	1	0	1	0	0	1
τ	τ_{0}	τ_{1}	τ_{2}	τ_{3}	τ_{4}	τ_{5}	τ_{6}
$\operatorname{pre}(\tau)$							

Example for Semantics of Clock-Operators

φ	0	1	0	1	0	0	1
τ	τ_{0}	τ_{1}	τ_{2}	τ_{3}	τ_{4}	τ_{5}	τ_{6}
$\operatorname{pre}(\tau)$	\perp						

Example for Semantics of Clock-Operators

φ	0	1	0	1	0	0	1
τ	τ_{0}	τ_{1}	τ_{2}	τ_{3}	τ_{4}	τ_{5}	τ_{6}
$\operatorname{pre}(\tau)$	\perp	τ_{0}					

Example for Semantics of Clock-Operators

φ	0	1	0	1	0	0	1
τ	τ_{0}	τ_{1}	τ_{2}	τ_{3}	τ_{4}	τ_{5}	τ_{6}
$\operatorname{pre}(\tau)$	\perp	τ_{0}	τ_{1}	τ_{2}	τ_{3}	τ_{4}	τ_{5}

Example for Semantics of Clock-Operators

φ	0	1	0	1	0	0	1
τ	τ_{0}	τ_{1}	τ_{2}	τ_{3}	τ_{4}	τ_{5}	τ_{6}
$\operatorname{pre}(\tau)$	\perp	τ_{0}	τ_{1}	τ_{2}	τ_{3}	τ_{4}	τ_{5}

Example for Semantics of Clock-Operators

φ	0	1	0	1	0	0	1
τ	τ_{0}	τ_{1}	τ_{2}	τ_{3}	τ_{4}	τ_{5}	τ_{6}
$\operatorname{pre}(\tau)$	\perp	τ_{0}	τ_{1}	τ_{2}	τ_{3}	τ_{4}	τ_{5}

Example for Semantics of Clock-Operators

φ	0	1	0	1	0	0	1
τ	τ_{0}	τ_{1}	τ_{2}	τ_{3}	τ_{4}	τ_{5}	τ_{6}
$\operatorname{pre}(\tau)$	\perp	τ_{0}	τ_{1}	τ_{2}	τ_{3}	τ_{4}	τ_{5}
$\tau \rightarrow \operatorname{pre}(\tau)$	τ_{0}	τ_{0}	τ_{1}	τ_{2}	τ_{3}	τ_{4}	τ_{5}

Example for Semantics of Clock-Operators

φ	0	1	0	1	0	0	1
τ	τ_{0}	τ_{1}	τ_{2}	τ_{3}	τ_{4}	τ_{5}	τ_{6}
$\operatorname{pre}(\tau)$	\perp	τ_{0}	τ_{1}	τ_{2}	τ_{3}	τ_{4}	τ_{5}
$\tau \rightarrow \operatorname{pre}(\tau)$	τ_{0}	τ_{0}	τ_{1}	τ_{2}	τ_{3}	τ_{4}	τ_{5}

Example for Semantics of Clock-Operators

φ	0	1	0	1	0	0	1
τ	τ_{0}	τ_{1}	τ_{2}	τ_{3}	τ_{4}	τ_{5}	τ_{6}
$\operatorname{pre}(\tau)$	\perp	τ_{0}	τ_{1}	τ_{2}	τ_{3}	τ_{4}	τ_{5}
$\tau \rightarrow \operatorname{pre}(\tau)$	τ_{0}	τ_{0}	τ_{1}	τ_{2}	τ_{3}	τ_{4}	τ_{5}
τ when φ		τ_{1}		τ_{3}			τ_{6}

Example for Semantics of Clock-Operators

φ	0	1	0	1	0	0	1
τ	τ_{0}	τ_{1}	τ_{2}	τ_{3}	τ_{4}	τ_{5}	τ_{6}
$\operatorname{pre}(\tau)$	\perp	τ_{0}	τ_{1}	τ_{2}	τ_{3}	τ_{4}	τ_{5}
$\tau \rightarrow \operatorname{pre}(\tau)$	τ_{0}	τ_{0}	τ_{1}	τ_{2}	τ_{3}	τ_{4}	τ_{5}
τ when φ		τ_{1}		τ_{3}			τ_{6}

Example for Semantics of Clock-Operators

φ	0	1	0	1	0	0	1
τ	τ_{0}	τ_{1}	τ_{2}	τ_{3}	τ_{4}	τ_{5}	τ_{6}
$\operatorname{pre}(\tau)$	\perp	τ_{0}	τ_{1}	τ_{2}	τ_{3}	τ_{4}	τ_{5}
$\tau \rightarrow \operatorname{pre}(\tau)$	τ_{0}	τ_{0}	τ_{1}	τ_{2}	τ_{3}	τ_{4}	τ_{5}
τ when φ		τ_{1}		τ_{3}			τ_{6}

Example for Semantics of Clock-Operators

φ	0	1	0	1	0	0	1
τ	τ_{0}	τ_{1}	τ_{2}	τ_{3}	τ_{4}	τ_{5}	τ_{6}
$\operatorname{pre}(\tau)$	\perp	τ_{0}	τ_{1}	τ_{2}	τ_{3}	τ_{4}	τ_{5}
$\tau \rightarrow \operatorname{pre}(\tau)$	τ_{0}	τ_{0}	τ_{1}	τ_{2}	τ_{3}	τ_{4}	τ_{5}
τ when φ		τ_{1}		τ_{3}			τ_{6}

Example for Semantics of Clock-Operators

φ	0	1	0	1	0	0	1
τ	τ_{0}	τ_{1}	τ_{2}	τ_{3}	τ_{4}	τ_{5}	τ_{6}
$\operatorname{pre}(\tau)$	\perp	τ_{0}	τ_{1}	τ_{2}	τ_{3}	τ_{4}	τ_{5}
$\tau \rightarrow \operatorname{pre}(\tau)$	τ_{0}	τ_{0}	τ_{1}	τ_{2}	τ_{3}	τ_{4}	τ_{5}
τ when φ		τ_{1}		τ_{3}			τ_{6}
$\operatorname{current}(\tau$ when $\varphi)$	\perp	τ_{1}	τ_{1}	τ_{3}	τ_{3}	τ_{3}	τ_{6}

- Note: $\llbracket \tau$ when $\varphi \rrbracket=\left(\tau_{1}, \tau_{3}, \tau_{6}, \ldots\right)$, i. e., gaps are not filled!
- This is done by current (τ when φ)

Example for Semantics of Clock-Operators

0

Example for Semantics of Clock-Operators

Example for Semantics of Clock-Operators

$$
\begin{array}{r|rrrrrrr|}
0 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & \ldots
\end{array}
$$

Example for Semantics of Clock-Operators

$$
\begin{array}{r|lllllll|}
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & \ldots \\
1) & 0 & 1 & 2 & 3 & 4 & 5 & \ldots
\end{array}
$$

Example for Semantics of Clock-Operators

$$
\begin{array}{r|lllllll|}
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & \ldots \\
-1) & 0 & 1 & 2 & 3 & 4 & 5 & \ldots \\
e) & 1 & 0 & 1 & 0 & 1 & 0 & \ldots
\end{array}
$$

Example for Semantics of Clock-Operators

$$
\begin{array}{r|lllllll|}
0 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & \ldots \\
+1) & 0 & 1 & 2 & 3 & 4 & 5 & \ldots \\
e)) & 1 & 0 & 1 & 0 & 1 & 0 & \ldots \\
\mathrm{e} & 0 & & 2 & & 4 & & \ldots \\
\mathrm{e}) & & & & & & &
\end{array}
$$

Example for Semantics of Clock-Operators

0	0	0	0	0	0	0	\ldots
1	1	1	1	1	1	1	\ldots
$\mathrm{n}=(0 \quad->$ pre $(\mathrm{n})+1)$	0	1	2	3	4	5	\ldots
$\mathrm{e}=(1->$ not pre(e))	1	0	1	0	1	0	\ldots
n when e	0		2		4		\ldots
current(n when e)	0	0	2	2	4	4	\ldots

Example for Semantics of Clock-Operators

0	0	0	0	0	0	0	\ldots
1	1	1	1	1	1	1	\ldots
$\mathrm{n}=(0 \quad->$ pre $(\mathrm{n})+1)$	0	1	2	3	4	5	\ldots
$\mathrm{e}=(1 \quad \rightarrow$ not pre $(\mathrm{e}))$	1	0	1	0	1	0	\ldots
n when e	0		2		4		\ldots
current (n when e)	0	0	2	2	4	4	\ldots
current (n when e) div 2	0	0	1	1	2	2	\ldots

Example for Semantics of Clock-Operators

$\mathrm{n}=0 \rightarrow \operatorname{pre}(\mathrm{n})+1$

Example for Semantics of Clock-Operators

$$
\begin{aligned}
\mathrm{n}=0 & -> \\
\mathrm{d} 2 & =(\mathrm{pre}(\mathrm{n})+1 \\
\mathrm{n} \text { div } & 2) * 2=\mathrm{n}
\end{aligned} \mathrm{O}
$$

Example for Semantics of Clock-Operators

$$
\begin{array}{r}
\mathrm{n}=0->\text { pre }(\mathrm{n})+1 \\
\mathrm{~d} 2=(\mathrm{n} \text { div } 2) * 2=\mathrm{n} \\
\mathrm{n} 2=\mathrm{n} \text { when d2 }
\end{array}
$$

Example for Semantics of Clock-Operators

$\mathrm{n}=0 \quad->$	pre $(\mathrm{n})+1$	0	1	2	3	4	5	6	7	8	9	10
11												
$\mathrm{~d} 2=(\mathrm{n}$ div 2$) * 2=\mathrm{n}$	1	0	1	0	1	0	1	0	1	0	1	0
$\mathrm{n} 2=\mathrm{n}$ when d2	0		2		4		6		8		10	
$\mathrm{~d} 3=(\mathrm{n} \operatorname{div} 3) * 3=\mathrm{n}$												

Example for Semantics of Clock-Operators

$$
\begin{array}{r|llllllllllll|}
\hline \mathrm{n}=0->\text { pre }(\mathrm{n})+1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\mathrm{~d} 2=(\mathrm{n} \text { div } 2) * 2=\mathrm{n} & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
\mathrm{n} 2=\mathrm{n} \text { when d2 } & 0 & & 2 & & 4 & & 6 & & 8 & & 10 & \\
\mathrm{~d} 3=(\mathrm{n} \operatorname{div} 3) * 3=\mathrm{n} & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0
\end{array}
$$

Example for Semantics of Clock-Operators

$$
\begin{array}{r|llllllllllll}
\hline \mathrm{n}=0->\text { pre }(\mathrm{n})+1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\mathrm{~d} 2=(\mathrm{n} \text { div } 2) * 2=\mathrm{n} & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
\mathrm{n} 2=\mathrm{n} \text { when d2 } & 0 & & 2 & & 4 & & 6 & & 8 & & 10 & \\
\mathrm{~d} 3=(\mathrm{n} \text { div } 3) * 3=\mathrm{n} & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
\mathrm{n} 3=\mathrm{n} \text { when d3 } & 0 & & & 3 & & & 6 & & & 9 & &
\end{array}
$$

Example for Semantics of Clock-Operators

Example for Semantics of Clock-Operators

Example for Semantics of Clock-Operators

$\begin{array}{r} \mathrm{n}=0->\text { pre }(\mathrm{n})+1 \\ \mathrm{~d} 2=(\mathrm{n} \text { div } 2) * 2=\mathrm{n} \\ \mathrm{n} 2=\mathrm{n} \text { when d2 } \\ \mathrm{d} 3=(\mathrm{n} \text { div } 3) * 3=\mathrm{n} \\ \mathrm{n} 3=\mathrm{n} \text { when d3 } \\ \mathrm{d} 3^{\prime}=\mathrm{d} 3 \text { when d2 } \\ \mathrm{n} 6=\mathrm{n} 2 \text { when d3' } \\ \mathrm{c} 3=\text { current }\left(\mathrm{n} 2 \text { when } \mathrm{d} 3^{\prime}\right) \end{array}$	0 1 0 1 0 0	0	2 1 2 0 0	3 0 1 3	4 1 4 0 0 0	0 0	6 1 6 1 6 1 6 6	7 0 0	1 8 0 0 0	0 1	$\begin{gathered} 10 \\ 1 \\ 10 \\ 0 \\ 0 \\ 0 \\ 6 \end{gathered}$	11 0 0

Example: Counter

```
node Counter(x0, d:int; r:bool) returns (n:int)
let
    n = x0 -> if r then x0 else pre(n) + d
tel
```


Example: Counter

```
node Counter(x0, d:int; r:bool) returns (n:int)
let
    n = x0 -> if r then x0 else pre(n) + d
tel
```

- Initial value of n is $x 0$
- If no reset r then increment by d
- If reset by r, then initialize with x_{0}
- Counter can be used in other equations, e.g.
- ex1 $=\operatorname{Counter}(0,2,0)$ yields

Example: Counter

```
node Counter(x0, d:int; r:bool) returns (n:int)
let
    n = x0 -> if r then x0 else pre(n) + d
tel
```

- Initial value of n is $x 0$
- If no reset r then increment by d
- If reset by r, then initialize with x_{0}
- Counter can be used in other equations, e.g.
- ex1 $=\operatorname{Counter}(0,2,0)$ yields the even numbers
- ex2 $=\operatorname{Counter}(0,1, \operatorname{pre}(e x 2)=4)$ yields

Example: Counter

```
node Counter(x0, d:int; r:bool) returns (n:int)
let
    n = x0 -> if r then x0 else pre(n) + d
tel
```

- Initial value of n is $x 0$
- If no reset r then increment by d
- If reset by r, then initialize with x_{0}
- Counter can be used in other equations, e.g.
- ex1 $=\operatorname{Counter}(0,2,0)$ yields the even numbers
- ex2 $=\operatorname{Counter}(0,1, \operatorname{pre}(e x 2)=4)$ yields numbers mod 5

ABRO in Lustre

```
node EDGE(X:bool) returns (Y:bool);
let
    Y = false }->\textrm{X}\mathrm{ and not pre(X);
tel
node ABRO (A,B,R:bool) returns (O: bool);
    var seenA, seenB : bool;
let
    O = EDGE(seenA and seenB);
    seenA = false }->\mathrm{ not R and (A or pre(seenA));
    seenB = false }->\mathrm{ not R and (B or pre(seenB));
tel
```


Causality Problems in Lustre

- Synchronous languages have causality problems
- They arise if preconditions of actions are influenced by the actions
- Therefore they require to solve fixpoint equations
- Such equations may have none, one, or more than one solutions
$~$ Analogous to Esterel, one may consider reactive, deterministic, logically correct, and constructive programs

Causality Problems in Lustre

- $x=\tau$ is acyclic, if x does not occur in τ or does only occur as subterm pre(x) in τ
- Examples:
- $\mathrm{a}=\mathrm{a}$ and pre(a) is

Causality Problems in Lustre

- $x=\tau$ is acyclic, if x does not occur in τ or does only occur as subterm pre(x) in τ
- Examples:
- a = a and pre(a) is cyclic

Causality Problems in Lustre

- $x=\tau$ is acyclic, if x does not occur in τ or does only occur as subterm $\operatorname{pre}(x)$ in τ
- Examples:
- a = a and pre(a) is cyclic
- $\mathrm{a}=\mathrm{b}$ and pre(a) is

Causality Problems in Lustre

- $x=\tau$ is acyclic, if x does not occur in τ or does only occur as subterm $\operatorname{pre}(x)$ in τ
- Examples:
- a = a and pre(a) is cyclic
- $\mathrm{a}=\mathrm{b}$ and pre(a) is acyclic

Causality Problems in Lustre

- $x=\tau$ is acyclic, if x does not occur in τ or does only occur as subterm $\operatorname{pre}(x)$ in τ
- Examples:
- a = a and pre(a) is cyclic
- $\mathrm{a}=\mathrm{b}$ and pre(a) is acyclic
- Acyclic equations have a unique solution!
- Analyze cyclic equations to determine causality?
- But: Lustre only allows acyclic equation systems
- Sufficient for signal processing

Malik's Example

- However, some interesting examples are cyclic

```
y = if c then y_f else y_g;
y_f = f(x_f);
y_g = g(x_g);
x_f = if c then y_g else x;
x_g = if c then x else y_f;
```

- Implements if c then $f(g(x))$ else $g(f(x))$ with only one instance of f and g

- Impossible without cycles

\square Sharad Malik.
Analysis of cyclic combinatorial circuits.
in IEEE Transactions on Computer-Aided Design, 1994

Clock Consistency

Consider the following equations:

```
b = 0 mot pre(b);
y = x + (x when b)
```

- We obtain the following:

x	x_{0}	x_{1}	x_{2}	x_{3}	x_{4}	\ldots
b						

Clock Consistency

Consider the following equations:

```
b = 0 mot pre(b);
y = x + (x when b)
```

- We obtain the following:

x	x_{0}	x_{1}	x_{2}	x_{3}	x_{4}	\cdots
b	0	1	0	1	0	\cdots

Clock Consistency

Consider the following equations:

```
b}=0->\mathrm{ not pre(b);
y = x + (x when b)
```

- We obtain the following:

x	x_{0}	x_{1}	x_{2}	x_{3}	x_{4}	\ldots
b	0	1	0	1	0	\ldots
x when b		x_{1}		x_{3}		\ldots

Clock Consistency

Consider the following equations:

```
b}=0->\mathrm{ not pre(b);
y = x + (x when b)
```

- We obtain the following:

x	x_{0}	x_{1}	x_{2}	x_{3}	x_{4}	\cdots
b	0	1	0	1	0	\ldots
x when b		x_{1}		x_{3}		\ldots
$x+(x$ when $b)$	$x_{0}+x_{1}$	$x_{1}+x_{3}$	$x_{2}+x_{5}$	$x_{3}+x_{7}$	$x_{4}+x_{9}$	\ldots

Clock Consistency

Consider the following equations:

```
b}=0->\mathrm{ not pre(b);
y = x + (x when b)
```

- We obtain the following:

x	x_{0}	x_{1}	x_{2}	x_{3}	x_{4}	\ldots
b	0	1	0	1	0	\ldots
x when b		x_{1}		x_{3}		\ldots
$x+(x$ when $b)$	$x_{0}+x_{1}$	$x_{1}+x_{3}$	$x_{2}+x_{5}$	$x_{3}+x_{7}$	$x_{4}+x_{9}$	\ldots

- To compute $y_{i}:=x_{i}+x_{2 i+1}$, we have to store $x_{i}, \ldots, x_{2 i+1}$
- Problem: not possible with finite memory

Clock Consistency

- Expressions like $x+(x$ when $b)$ are not allowed
- Only streams at the same clock can be combined
- What is the 'same' clock?
- Undecidable to prove this semantically
- Check syntactically

Clock Consistency

- Two streams have the same clock if their clock can be syntactically unified
- Example:

$$
\begin{aligned}
& x=a \text { when }(y>z) \\
& y=b+c \\
& u=d \text { when }(b+c>z) \\
& v=e \text { when }(z<y)
\end{aligned}
$$

Clock Consistency

- Two streams have the same clock if their clock can be syntactically unified
- Example:

$$
\begin{aligned}
& x=a \text { when }(y>z) \\
& y=b+c ; \\
& u=d \text { when }(b+c>z) \\
& v=e \text { when }(z<y) ;
\end{aligned}
$$

- x and u have the same clock

Clock Consistency

- Two streams have the same clock if their clock can be syntactically unified
- Example:

$$
\begin{aligned}
& x=a \text { when }(y>z) \\
& y=b+c ; \\
& u=d \text { when }(b+c>z) \\
& v=e \text { when }(z<y) ;
\end{aligned}
$$

- x and u have the same clock
- x and v do not have the same clock

Arrays

- Given type α, α^{n} defines an array with n entries of type α
- Example: x: bool ${ }^{n}$
- The bounds of an array must be known at compile time, the compiler simply transforms an array of n values into n different variables.
- The i-th element of an array X is accessed by $X[i]$.
- $X[i . . j]$ with $i \leq j$ denotes the array made of elements i to j of X.
- Beside being syntactical sugar, arrays allow to combine variables for better hardware implementation.

Example for Arrays

```
node DELAY (const d: int; X: bool) returns (Y: bool);
    var A: bool^(d+1);
let
    A[0] = X;
    A[1..d] = (false^(d)) }->\mathrm{ pre(A[0..d--1]);
    Y = A[d];
tel
```

- false ${ }^{(d)}$ denotes the boolean array of length d, which entries are all false
- Observe that pre and -> can take arrays as parameters
- Since d must be known at compile time, this node cannot be compiled in isolation

Example for Arrays

```
node DELAY (const d: int; X: bool) returns (Y: bool);
    var \(A: ~ b o o 1^{\wedge}(d+1)\);
let
    \(\mathrm{A}[0]=\mathrm{X}\);
    \(A[1 . . d]=\left(f a l s e^{-}(d)\right) \rightarrow \operatorname{pre}(A[0 . . d--1])\);
    \(\mathrm{Y}=\mathrm{A}[\mathrm{d}]\);
tel
```

- false ${ }^{(d)}$ denotes the boolean array of length d, which entries are all false
- Observe that pre and -> can take arrays as parameters
- Since d must be known at compile time, this node cannot be compiled in isolation
- The node outputs each input delayed by d steps.
- So $Y_{n}=X_{n-d}$ with $Y_{n}=$ false for $n<d$

Static Recursion

- Functional languages usually make use of recursively defined functions
- Problem: termination of recursion in general undecidable
\leadsto Primitive recursive functions guarantee termination
- Problem: still with primitive recursive functions, the reaction time depends heavily on the input data
\sim Static recursion: recursion only at compile time
- Observe: If the recursion is not bounded, the compilation will not stop.

Example for Static Recursion

- Disjunction of boolean array

```
node BigOr(const n:int; x: bool^n) returns (y:bool)
let
y = with n=1 then x[0]
    else x[0] or BigOr(n--1,x[1..n--1]);
tel
```

- Constant n must be known at compile time
- Node is unrolled before further compilation

Example for Maximum Computation

Static recursion allows logarithmic circuits:

```
node Max(const n:int; x:int^n) returns (y:int)
    var y_1,y_2: int;
let
    y_1 = with n=1 then x[0]
        else Max(n div 2,x[0..(n div 2)--1]);
    y_2 = with n=1 then x[0]
            else Max((n+1) div 2, x[(n div 2)..n--1]);
    y = if y_1 >= y_2 then y_1 else y_2;
tel
```


Delay node with recursion

```
node REC_DELAY (const d: int; X: bool) returns (Y: bool);
let
        Y = with d=0 then X
        else false }->\mathrm{ pre(REC_DELAY(d--1, X));
tel
```

A call REC_DELAY (3, X) is compiled into something like:

Delay node with recursion

```
node REC_DELAY (const d: int; X: bool) returns (Y: bool);
let
        Y = with d=0 then X
        else false }->\mathrm{ pre(REC_DELAY(d--1, X));
tel
```

A call REC_DELAY (3, X) is compiled into something like:

$$
\begin{aligned}
& \mathrm{Y}=\text { false } \rightarrow \text { pre }(\mathrm{Y} 2) \\
& \mathrm{Y} 2=\text { false } \rightarrow \text { pre }(\mathrm{Y} 1) \\
& \mathrm{Y} 1=\text { false } \rightarrow \operatorname{pre}(\mathrm{YO}) \\
& \mathrm{Y} 0=\mathrm{X}
\end{aligned}
$$

Summary

- Lustre is a synchronous dataflow language.
- The core Lustre language are boolean equations and clock operators pre, ->, when, and current.
- Additional datatypes for real and integer numbers are also implemented.
- User types can be defined as in Esterel.
- Lustre only allows acyclic programs.
- Clock consistency is checked syntactically.
- Lustre offers arrays and recursion, but both array-size and number of recursive calls must be known at compile time.

To Go Further

- Nicolas Halbwachs and Pascal Raymond, A Tutorial of Lustre, 2002 http://www-verimag.imag.fr/~halbwach/ lustre-tutorial.html
- Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud,The Synchronous Data-Flow Programming Language Lustre, In Proceedings of the IEEE, 79:9, September 1991, http://www-verimag.imag.fr/~halbwach/lustre: ieee.html

