
A Short Tour
Examples

Clock Consistency
Arrays and Recursive Nodes

Synchronous Languages—Lecture 16

Prof. Dr. Reinhard von Hanxleden

Christian-Albrechts Universität Kiel
Department of Computer Science

Real-Time Systems and Embedded Systems Group

23 June 2020
Last compiled: June 30, 2020, 10:57 hrs

Lustre

Synchronous Languages Lecture 16 Slide 1

A Short Tour
Examples

Clock Consistency
Arrays and Recursive Nodes

The 5-Minute Review Session

1. In sequential constructiveness, what is the iur-protocol?

2. When are threads statically concurrent?

3. What is a characteristic of the causality handling and
compilation in the Blech language?

4. In addition to event-triggered execution, which other
execution models do you know?

5. What is the idea of dynamic ticks?

Synchronous Languages Lecture 16 Slide 2

1. For run-time concurrent variable accesses, for each variable,
must first initialize (confluent absolute writes), then update
(confluent relative writes), then read

2. Threads are statically concurrent when they are descendants
of distinct threads sharing a common fork node (the
least-common-ancestor fork, or lca fork). Alternatively: if
their least common ancestor in thread tree is a fork node.

3. In Blech, causality issues are handled locally. Sub programs
are black boxes, can be compiled separately.

4. Time-triggered, time-event-triggered, eager.

5. The tick function computes when—at the latest—the next
call to the tick function should occur.



A Short Tour
Examples

Clock Consistency
Arrays and Recursive Nodes

Overview

A Short Tour

Examples

Clock Consistency

Arrays and Recursive Nodes

Synchronous Languages Lecture 16 Slide 3

Part of this lecture is based on material kindly provided by Klaus
Schneider,
http://rsg.informatik.uni-kl.de/people/schneider/

A Short Tour
Examples

Clock Consistency
Arrays and Recursive Nodes

Lustre
Data Streams
Node Expansion
Clock Operators

Lustre

I A synchronous data flow language

I Developed since 1984 at IMAG, Grenoble [HCRP91]

I Also graphical design entry available (SAGA)

I Moreover, the basis for SCADE, a tool used in software
development for avionics and automotive industries

; Translatable to FSMs with finitely many control states

I Same advantages as Esterel for hardware and software design

Synchronous Languages Lecture 16 Slide 4

A Short Tour
Examples

Clock Consistency
Arrays and Recursive Nodes

Lustre
Data Streams
Node Expansion
Clock Operators

Lustre Modules

General form:

node f(x1:α1, . . ., xn:αn) returns (y1:β1,. . .,ym : βm)

var z1:γ1,. . .,zk:γk;

let

z1 = τ1; . . .; zk = τk;

y1 = π1; . . .; ym = πk;

assert ϕ1; . . .; assert ϕ`;

tel

where

I f is the name of the module

I Inputs xi , outputs yi , and local variables zj
I Assertions ϕi (boolean expressions)

Synchronous Languages Lecture 16 Slide 5



A Short Tour
Examples

Clock Consistency
Arrays and Recursive Nodes

Lustre
Data Streams
Node Expansion
Clock Operators

Lustre Programs

I Lustre programs are a list of modules that are called nodes

I All nodes work synchronously, i. e. at the same speed

I Nodes communicate only via inputs and outputs

I No broadcasting of signals, no side effects

I Equations zi = τi and yi = πi are not assignments

I Equations must have solutions in the mathematical sense

Synchronous Languages Lecture 16 Slide 6

A Short Tour
Examples

Clock Consistency
Arrays and Recursive Nodes

Lustre
Data Streams
Node Expansion
Clock Operators

Lustre Programs

I As zi = τi and yi = πi are equations, we have the Substitution
Principle:
The definitions zi = τi and yi = πi of a Lustre node allow one
to replace zi by τi and yi by πi .

I Behavior of zi and yi completely given by equations zi = τi
and yi = πi

Synchronous Languages Lecture 16 Slide 7

A Short Tour
Examples

Clock Consistency
Arrays and Recursive Nodes

Lustre
Data Streams
Node Expansion
Clock Operators

Assertions

I Assertions assert ϕ do not influence the behavior of the
system

I assert ϕ means that during execution, ϕ must invariantly
hold

I Equation X = E equivalent to assertion assert(X = E)

I Assertions can be used to optimize the code generation

I Assertions can be used for simulation and verification

Synchronous Languages Lecture 16 Slide 8

A Short Tour
Examples

Clock Consistency
Arrays and Recursive Nodes

Lustre
Data Streams
Node Expansion
Clock Operators

Data Streams

I All variables, constants, and all expressions are streams, i. e.,
sequences of values of a certain type

I Streams can be composed to new streams

I Example: given x = (0, 1, 2, 3, 4, . . .) and
y = (0, 2, 4, 6, 8, . . .), then x + y is the stream
(0, 3, 6, 9, 12, . . .)

I However, streams may refer to different clocks

; Each stream has a corresponding clock, which filters out
elements whenever the clock is false

I Per default, streams run on the base clock, which is always
true

Synchronous Languages Lecture 16 Slide 9



A Short Tour
Examples

Clock Consistency
Arrays and Recursive Nodes

Lustre
Data Streams
Node Expansion
Clock Operators

Data Types

I Primitive data types: bool, int, real
I Semantics is clear?

I Imported data types: type α
I Similar to Esterel
I Data type is implemented in host language

I Tuples of types: α1 × . . .× αn is a type
I Semantics is Cartesian product

Synchronous Languages Lecture 16 Slide 10

A Short Tour
Examples

Clock Consistency
Arrays and Recursive Nodes

Lustre
Data Streams
Node Expansion
Clock Operators

Expressions (Streams)

I Every declared variable x is an expression
I Boolean expressions:

I τ1 and τ2, τ1 or τ2, not τ1
I Numeric expressions:

I τ1 + τ2 and τ1 − τ2, τ1 ∗ τ2 and τ1/τ2, τ1 div τ2 and τ1 mod τ2
I Relational expressions:

I τ1 = τ2, τ1 < τ2, τ1 ≤ τ2, τ1 > τ2, τ1 ≥ τ2
I Conditional expressions:

I if b then τ1 else τ2 for all types

Synchronous Languages Lecture 16 Slide 11

A Short Tour
Examples

Clock Consistency
Arrays and Recursive Nodes

Lustre
Data Streams
Node Expansion
Clock Operators

Node Expansion

I Assume implementation of a node f with inputs x1 : α1, . . . ,
xn : αn and outputs y1 : β1, . . . , ym : βm

I Then, f can be used to create new stream expressions, e. g.,
f (τ1, . . . , τn) is an expression
I Of type β1 × . . .× βm
I If (τ1, . . . , τn) has type α1 × . . .× αn

Synchronous Languages Lecture 16 Slide 12

A Short Tour
Examples

Clock Consistency
Arrays and Recursive Nodes

Lustre
Data Streams
Node Expansion
Clock Operators

Vector Notation of Nodes

By using tuple types for inputs, outputs, and local streams, we
may consider just nodes like

node f(x:α) returns (y:β)

var z:γ;

let

z = τ;

y = π;

assert ϕ;

tel

Synchronous Languages Lecture 16 Slide 13



A Short Tour
Examples

Clock Consistency
Arrays and Recursive Nodes

Lustre
Data Streams
Node Expansion
Clock Operators

Clock-Operators

I All expressions are streams

I Clock-operators modify the temporal arrangement of streams

I Again, their results are streams
I The following clock operators are available:

I pre τ for every stream τ
I τ1 -> τ2, (initialization) where τ1 and τ2 have the same type
I τ1 when τ2 where τ2 has boolean type (downsampling)
I current τ (upsampling)

Synchronous Languages Lecture 16 Slide 14

A Short Tour
Examples

Clock Consistency
Arrays and Recursive Nodes

Lustre
Data Streams
Node Expansion
Clock Operators

Clock-Hierarchy

I As already mentioned, streams may refer to different clocks

I We associate with every expression a list of clocks

I A clock is thereby a stream ϕ of boolean type

Synchronous Languages Lecture 16 Slide 15

A Short Tour
Examples

Clock Consistency
Arrays and Recursive Nodes

Lustre
Data Streams
Node Expansion
Clock Operators

Clock-Hierarchy

I clocks(τ) := [] for expressions without clock operators

I clocks(pre(τ)) := clocks(τ)

I clocks(τ1 -> τ2) := clocks(τ1),
where clocks(τ1) = clocks(τ2) is required

I clocks(τ when ϕ) := [ϕ, c1, . . . , cn],
where clocks(ϕ) = clocks(τ) = [c1, . . . , cn]

I clocks(current(τ)) := [c2, . . . , cn],
where clocks(τ) = [c1, . . . , cn]

Synchronous Languages Lecture 16 Slide 16

A Short Tour
Examples

Clock Consistency
Arrays and Recursive Nodes

Lustre
Data Streams
Node Expansion
Clock Operators

Semantics of Clock-Operators

I Jpre(τ)K := (⊥, τ0, τ1, . . .), provided that JτK = (τ0, τ1, . . .)

I Jτ -> πK := (τ0, π1, π2, . . .),
provided that JτK = (τ0, τ1, . . .) and JπK = (π0, π1, . . .)

I Jτ when ϕK = (τt0 , τt1 , τt2 , . . .), provided that
I JτK = (τ0, τ1, . . .)
I {t0, t1, . . .} is the set of points in time where JϕK holds

I Jcurrent(τ)K = (⊥, . . . ,⊥, τ0, . . . , τ0, τ1, . . . , τ1, τ2, . . .),
provided that
I JτK = (τ0, τ1, . . .)
I Stream holds value of τ from last tick of clock of clock of τ

Synchronous Languages Lecture 16 Slide 17



A Short Tour
Examples

Clock Consistency
Arrays and Recursive Nodes

Lustre
Data Streams
Node Expansion
Clock Operators

Example for Semantics of Clock-Operators

ϕ 0 1 0 1 0 0 1
τ τ0 τ1 τ2 τ3 τ4 τ5 τ6

pre(τ) ⊥ τ0 τ1 τ2 τ3 τ4 τ5
τ -> pre(τ) τ0 τ0 τ1 τ2 τ3 τ4 τ5
τ when ϕ τ1 τ3 τ6

current(τ when ϕ) ⊥ τ1 τ1 τ3 τ3 τ3 τ6

I Note: Jτ when ϕK = (τ1, τ3, τ6, . . .), i. e., gaps are not
filled!

I This is done by current(τ when ϕ)

Synchronous Languages Lecture 16 Slide 18

When inputs run on different clocks than the basic clock of the
node, these clocks must be explicit inputs. Outputs of a node may
only run on different clocks, when these clocks are known at the
outside.
Therefore, all externally visible variables must run on the basic
clock, i. e., they must be masked using current.

A Short Tour
Examples

Clock Consistency
Arrays and Recursive Nodes

Example: Clock Expressions
Example: Counter
Example: ABRO

Example for Semantics of Clock-Operators

0 0 0 0 0 0 0 . . .
1 1 1 1 1 1 1 . . .

n = (0 -> pre(n)+1) 0 1 2 3 4 5 . . .
e = (1 -> not pre(e)) 1 0 1 0 1 0 . . .

n when e 0 2 4 . . .
current(n when e) 0 0 2 2 4 4 . . .

current (n when e) div 2 0 0 1 1 2 2 . . .

Synchronous Languages Lecture 16 Slide 19

A Short Tour
Examples

Clock Consistency
Arrays and Recursive Nodes

Example: Clock Expressions
Example: Counter
Example: ABRO

Example for Semantics of Clock-Operators

n = 0 -> pre(n)+1 0 1 2 3 4 5 6 7 8 9 10 11
d2 = (n div 2)*2 = n 1 0 1 0 1 0 1 0 1 0 1 0

n2 = n when d2 0 2 4 6 8 10
d3 = (n div 3)*3 = n 1 0 0 1 0 0 1 0 0 1 0 0

n3 = n when d3 0 3 6 9
d3’ = d3 when d2 1 0 0 1 0 0
n6 = n2 when d3’ 0 6

c3 = current(n2 when d3’) 0 0 0 6 6 6

Synchronous Languages Lecture 16 Slide 20



A Short Tour
Examples

Clock Consistency
Arrays and Recursive Nodes

Example: Clock Expressions
Example: Counter
Example: ABRO

Example: Counter

node Counter(x0, d:int; r:bool) returns (n:int)

let

n = x0 → if r then x0 else pre(n) + d

tel

I Initial value of n is x0

I If no reset r then increment by d

I If reset by r , then initialize with x0
I Counter can be used in other equations, e.g.

I ex1 = Counter(0, 2, 0) yields the even numbers
I ex2 = Counter(0, 1, pre(ex2) = 4) yields numbers mod 5

Synchronous Languages Lecture 16 Slide 21

A Short Tour
Examples

Clock Consistency
Arrays and Recursive Nodes

Example: Clock Expressions
Example: Counter
Example: ABRO

ABRO in Lustre

node EDGE(X:bool) returns (Y:bool);

let

Y = false → X and not pre(X);

tel

node ABRO (A,B,R:bool) returns (O: bool);

var seenA, seenB : bool;

let

O = EDGE(seenA and seenB);

seenA = false → not R and (A or pre(seenA));

seenB = false → not R and (B or pre(seenB));

tel

Synchronous Languages Lecture 16 Slide 22

A Short Tour
Examples

Clock Consistency
Arrays and Recursive Nodes

Causality
Clock Consistency

Causality Problems in Lustre

I Synchronous languages have causality problems

I They arise if preconditions of actions are influenced by the
actions

I Therefore they require to solve fixpoint equations

I Such equations may have none, one, or more than one
solutions

; Analogous to Esterel, one may consider reactive,
deterministic, logically correct, and constructive programs

Synchronous Languages Lecture 16 Slide 23

A Short Tour
Examples

Clock Consistency
Arrays and Recursive Nodes

Causality
Clock Consistency

Causality Problems in Lustre

I x = τ is acyclic, if x does not occur in τ or does only occur as
subterm pre(x) in τ

I Examples:
I a = a and pre(a) is cyclic
I a = b and pre(a) is acyclic

I Acyclic equations have a unique solution!

I Analyze cyclic equations to determine causality?

I But: Lustre only allows acyclic equation systems

I Sufficient for signal processing

Synchronous Languages Lecture 16 Slide 24



A Short Tour
Examples

Clock Consistency
Arrays and Recursive Nodes

Causality
Clock Consistency

Malik’s Example

I However, some interesting examples are cyclic

y = if c then y_f else y_g;

y_f = f(x_f);

y_g = g(x_g);

x_f = if c then y_g else x;

x_g = if c then x else y_f;

I Implements if c then f(g(x)) else g(f(x)) with only
one instance of f and g

I Impossible without cycles

Sharad Malik.
Analysis of cyclic combinatorial circuits.

in IEEE Transactions on Computer-Aided Design, 1994

Synchronous Languages Lecture 16 Slide 25

A Short Tour
Examples

Clock Consistency
Arrays and Recursive Nodes

Causality
Clock Consistency

Clock Consistency

Consider the following equations:

b = 0→not pre(b);

y = x + (x when b)

I We obtain the following:

x x0 x1 x2 x3 x4 . . .
b 0 1 0 1 0 . . .

x when b x1 x3 . . .
x + (x when b) x0 + x1 x1 + x3 x2 + x5 x3 + x7 x4 + x9 . . .

I To compute yi := xi + x2i+1, we have to store xi , . . . , x2i+1

I Problem: not possible with finite memory

Synchronous Languages Lecture 16 Slide 26

A Short Tour
Examples

Clock Consistency
Arrays and Recursive Nodes

Causality
Clock Consistency

Clock Consistency

I Expressions like x + (x when b) are not allowed

I Only streams at the same clock can be combined

I What is the ‘same’ clock?

I Undecidable to prove this semantically

I Check syntactically

Synchronous Languages Lecture 16 Slide 27

A Short Tour
Examples

Clock Consistency
Arrays and Recursive Nodes

Causality
Clock Consistency

Clock Consistency

I Two streams have the same clock if their clock can be
syntactically unified

I Example:
x = a when (y > z);
y = b + c ;
u = d when (b + c > z);
v = e when (z < y);

I x and u have the same clock

I x and v do not have the same clock

Synchronous Languages Lecture 16 Slide 28



A Short Tour
Examples

Clock Consistency
Arrays and Recursive Nodes

Arrays
Static Recursion

Arrays

I Given type α, αn defines an array with n entries of type α

I Example: x: booln

I The bounds of an array must be known at compile time, the
compiler simply transforms an array of n values into n
different variables.

I The i-th element of an array X is accessed by X [i ].

I X [i ..j ] with i ≤ j denotes the array made of elements i to j of
X .

I Beside being syntactical sugar, arrays allow to combine
variables for better hardware implementation.

Synchronous Languages Lecture 16 Slide 29

A Short Tour
Examples

Clock Consistency
Arrays and Recursive Nodes

Arrays
Static Recursion

Example for Arrays
node DELAY (const d: int; X: bool) returns (Y: bool);

var A: bool^(d+1);

let

A[0] = X;

A[1..d] = (false^(d))→ pre(A[0..d--1]);

Y = A[d];

tel

I false(d) denotes the boolean array of length d , which entries
are all false

I Observe that pre and -> can take arrays as parameters

I Since d must be known at compile time, this node cannot be
compiled in isolation

I The node outputs each input delayed by d steps.

I So Yn = Xn−d with Yn = false for n < d

Synchronous Languages Lecture 16 Slide 30

A Short Tour
Examples

Clock Consistency
Arrays and Recursive Nodes

Arrays
Static Recursion

Static Recursion

I Functional languages usually make use of recursively defined
functions

I Problem: termination of recursion in general undecidable

; Primitive recursive functions guarantee termination

I Problem: still with primitive recursive functions, the reaction
time depends heavily on the input data

; Static recursion: recursion only at compile time

I Observe: If the recursion is not bounded, the compilation will
not stop.

Synchronous Languages Lecture 16 Slide 31

A Short Tour
Examples

Clock Consistency
Arrays and Recursive Nodes

Arrays
Static Recursion

Example for Static Recursion

I Disjunction of boolean array

node BigOr(const n:int; x: bool^n) returns (y:bool)

let

y = with n=1 then x[0]

else x[0] or BigOr(n--1,x[1..n--1]);

tel

I Constant n must be known at compile time

I Node is unrolled before further compilation

Synchronous Languages Lecture 16 Slide 32



A Short Tour
Examples

Clock Consistency
Arrays and Recursive Nodes

Arrays
Static Recursion

Example for Maximum Computation

Static recursion allows logarithmic circuits:

node Max(const n:int; x:int^n) returns (y:int)

var y_1,y_2: int;

let

y_1 = with n=1 then x[0]

else Max(n div 2,x[0..(n div 2)--1]);

y_2 = with n=1 then x[0]

else Max((n+1) div 2, x[(n div 2)..n--1]);

y = if y_1 >= y_2 then y_1 else y_2;

tel

Synchronous Languages Lecture 16 Slide 33

A Short Tour
Examples

Clock Consistency
Arrays and Recursive Nodes

Arrays
Static Recursion

Delay node with recursion

node REC_DELAY (const d: int; X: bool) returns (Y: bool);

let

Y = with d=0 then X

else false → pre(REC_DELAY(d--1, X));

tel

A call REC DELAY(3, X) is compiled into something like:

Y = false → pre(Y2)

Y2 = false → pre(Y1)

Y1 = false → pre(Y0)

Y0 = X;

Synchronous Languages Lecture 16 Slide 34

A Short Tour
Examples

Clock Consistency
Arrays and Recursive Nodes

Arrays
Static Recursion

Summary

I Lustre is a synchronous dataflow language.

I The core Lustre language are boolean equations and clock
operators pre, ->, when, and current.

I Additional datatypes for real and integer numbers are also
implemented.

I User types can be defined as in Esterel.

I Lustre only allows acyclic programs.

I Clock consistency is checked syntactically.

I Lustre offers arrays and recursion, but both array-size and
number of recursive calls must be known at compile time.

Synchronous Languages Lecture 16 Slide 35

A Short Tour
Examples

Clock Consistency
Arrays and Recursive Nodes

Arrays
Static Recursion

To Go Further

I Nicolas Halbwachs and Pascal Raymond, A Tutorial of Lustre,
2002 http://www-verimag.imag.fr/~halbwach/

lustre-tutorial.html

I Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel
Pilaud,The Synchronous Data-Flow Programming Language
Lustre, In Proceedings of the IEEE, 79:9, September 1991,
http://www-verimag.imag.fr/~halbwach/lustre:

ieee.html

Synchronous Languages Lecture 16 Slide 36


