Synchronous Languages—Lecture 13

Prof. Dr. Reinhard von Hanxleden

Christian-Albrechts Universität Kiel Department of Computer Science Real-Time Systems and Embedded Systems Group

11 June 2020 Last compiled: June 11, 2020, 11:50 hrs

Sequentially Constructive Concurrency

The 5-Minute Review Session

- 1. How do SCCharts and SyncCharts differ?
- 2. What does the initialize-update-read protocol refer to?
- 3. What is the SCG?
- 4. What are basic blocks? What are scheduling blocks?
- 5. When compiling from the SCG, what types of *low-level synthesis* do we distinguish? How do they compare?

Safety-Critical Embedded Systems

- Embedded systems often safety-critical
- Safety-critical systems must react deterministically
- Computations often exploit concurrency
- Key challenge: Concurrency must be deterministic!

Thanks to Michael Mendler (U Bamberg) for support with these slides

Implementing (Deterministic) Concurrency

C, Java, etc.:

- ③ Familiar
- © Expressive sequential paradigm
- © Concurrent threads unpredictable in functionality and timing

Synchronous Programming:

- © predictable by construction
 - \implies Constructiveness
- © Unfamiliar to most programmers
- © Restrictive in practice

Aim: Deterministic concurrency with synchronous foundations, but without synchronous restrictions.

Comparing Both Worlds

Sequential Languages

- C, Java, …
- Asynchronous schedule
 - o By default: Multiple concurrent readers/writers
 - On demand: Single assignment synchronization (locks, semaphores)
- Imperative
 - o All sequential control flow prescriptive
 - o Resolved by programmer

Synchronous Languages

- Esterel, Lustre, Signal, SCADE, SyncCharts ...
- Clocked, cyclic schedule
 - o By default: Single writer per cycle, all reads initialized
 - o On demand: Separate multiple assignments by clock barrier (pause, wait)
- Declarative
 - All micro-steps sequential control flow descriptive
 - o Resolved by scheduler

Comparing Both Worlds (Cont'd)

Sequential Languages

- Asynchronous schedule
 - No guarantees of determinism or deadlock freedom
 - © Intuitive programming paradigm

Synchronous Languages

- Clocked, cyclic schedule
 - © Deterministic concurrency and deadlock freedom
 - © Heavy restrictions by constructiveness analysis

Sequentially Constructive Model of Computation (SC MoC)

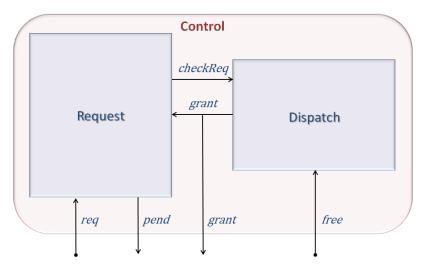
- ③ Deterministic concurrency and deadlock freedom

Implementing Deterministic Concurrency: SC MoC

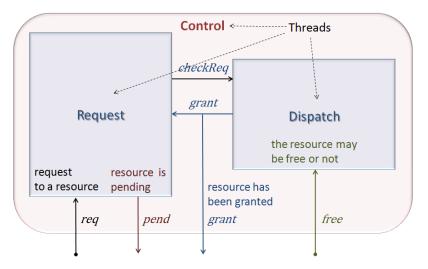
Concurrent micro-step control flow:

- Descriptive
- © Resolved by scheduler
- ${}^{\odot} \hspace{0.1 in} \Longrightarrow \hspace{0.1 in} \mathsf{Deterministic} \hspace{0.1 in} \mathsf{concurrency} \hspace{0.1 in} \mathsf{and} \hspace{0.1 in} \mathsf{deadlock} \hspace{0.1 in} \mathsf{freedom}$
- **Sequential** micro-step control flow:
 - © Prescriptive
 - © Resolved by the programmer
 - $\odot \implies$ Intuitive programming paradigm

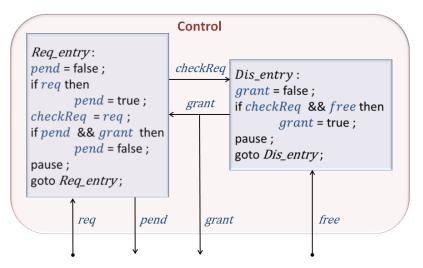
A Sequentially Constructive Program



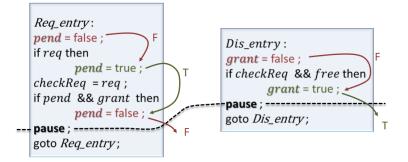
A Sequentially Constructive Program (Cont'd)



A Sequentially Constructive Program (Cont'd)



A Sequentially Constructive Program (Cont'd)



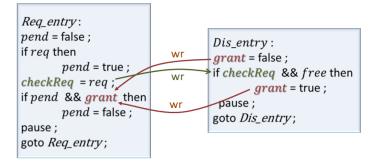
Imperative program order (sequential access to shared variables)

- "write-after-write" can change value sequentially
- Prescribed by programmer

CAU

- ③ Accepted in SC MoC
- $\ensuremath{\textcircled{}}$ Not permitted in standard synchronous MoC

A Sequentially Constructive Program (Cont'd)



Concurrency scheduling constraints (access to shared variables):

- "write-before-read" for concurrent write/reads
 - "write-before-write" (*i. e.*, conflicts!) for concurrent & non-confluent writes
- Micro-tick thread scheduling prohibits race conditions
- Implemented by the SC compiler

A Constructive Game of Schedulability

Programmer

Programmer

Compiler

Programmer

Sequential Admissibility – Basic Idea

Sequentially ordered variable accesses

- Are enforced by the programmer
- Cannot be reordered by compiler or run-time platform
- Exhibit no races

Only concurrent writes/reads to the same variable

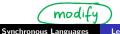
- Generate potential data races
- Must be resolved by the compiler
- Can be ordered under multi-threading and run-time

The following applies to **concurrent** variable accesses only ...

Organizing Concurrent Variable Accesses SC Concurrent Memory Access Protocol (per macro tick)

concurrent, multi-writer, multi-reader variables

concurrent, multi-writer, multi-reader variables



Goals and Challenges

The idea behind SC is simple - but getting it "right" not so!

What we are up to:

- 1. Want to be conservative wrt "Berry constructiveness"
 - An Esterel program should also be SC
- 2. Want maximal freedom without compromising determinacy
 - A determinate program should also be SC
 - An SC program must be determinate
- 3. Want to exploit sequentiality as much as possible
 - But what exactly is sequentiality?
- 4. Want to define not only the exact concept of SC, but also a practical strategy to implement it
 - In practice, this requires conservative approximations
 - Compiler must not accept Non-SC programs
 - Compiler may reject SC programs

References

Most of the material here draws from this reference [TECS]:

R. von Hanxleden, M. Mendler, J. Aguado, B. Duderstadt, I. Fuhrmann, C. Motika, S. Mercer, O. O'Brien, and P. Roop.
Sequentially Constructive Concurrency – A Conservative Extension of the Synchronous Model of Computation.
ACM Transactions on Embedded Computing Systems, Special Issue on Applications of Concurrency to System Design, July 2014, 13(4s).
https://rtsys.informatik.uni-kiel.de/~biblio/downloads/papers/tecs14.pdf

Unless otherwise noted, the numberings of definitions, sections etc. refer to this.

There is also an extended version [TR]:

R. von Hanxleden, M. Mendler, J. Aguado, B. Duderstadt, I. Fuhrmann, C. Motika, S. Mercer, O. O'Brien, and P. Roop. Sequentially Constructive Concurrency – A Conservative Extension of the Synchronous Model of Computation. Christian-Albrechts-Universität zu Kiel, Department of Computer Science, Technical Report 1308, ISSN 2192-6247, Aug. 2013, 13(4s). https://rtsys.informatik.uni-kiel.de/~biblio/downloads/papers/report-1308.pdf

Overview

Motivation

Formalizing Sequential Constructiveness (SC) The SC Language (SCL) and the SC Graph (SCG) [Sec. 2] Free Scheduling of SCGs [Sec. 3] The SC Model of Computation [Sec. 4]

Wrap-Up

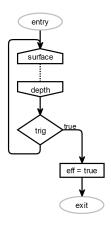
The Sequentially Constructive Language (SCL) [Sec. 2.1]

- Foundation for the SC MoC
- Minimal Language
- Adopted from C/Java and Esterel

 $s ::= x = e \mid s; s \mid if (e) \ s \ else \ s \mid l : s \mid goto \ l \mid s$ fork $s \ par \ s \ join \mid pause$

- **s** Statement
- x Variable
- e Expression
- / Program label

The SC Graph (SCG) [Sec. 2.3]



The concurrent and sequential control flow of an SCL program is given by an SC Graph (SCG) Internal representation for

- Semantic foundation
- Analysis
- Code generation

SC Graph:

- Labeled graph G = (N, E)
 - Nodes N correspond to statements of sequential program
 - Edges E reflect sequential execution control flow

Node Types in the SCG

Node $n \in N$ has statement type *n.st*

n.st ∈ {entry, exit, goto, x = ex, if (ex), fork, join, surf, depth}
x: variable, ex: expression.

Edge Types in the SCG [Def. 2.1]

Define edge types:

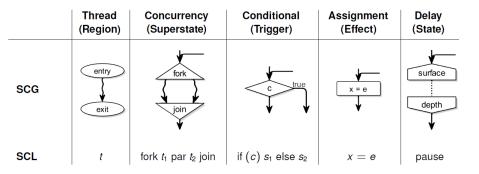
- iur-edges $\alpha_{iur} =_{def} \{ww, iu, ur, ir\}$
- instantaneous edges $\alpha_{ins} =_{def} \{seq\} \cup \alpha_{iur}$
- arbitrary edges $\alpha_a =_{def} \{tick\} \cup \alpha_{ins}$
- flow edges $\alpha_{flow} =_{def} \{seq, tick\}$

Edge Types in the SCG [Def. 2.1]

Edge $e \in E$ has edge type $e.type \in \alpha_a$

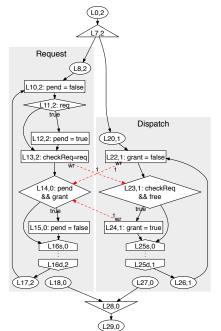
- Specifies the nature of the particular ordering constraint expressed by e
- For *e.type* = α , write *e.src* \rightarrow_{α} *e.tgt*, pronounced "*e.src* α -precedes *e.tgt*"
- ▶ $n_1 \rightarrow_{seq} n_2$: sequential successors
- ▶ $n_1 \rightarrow_{tick} n_2$: tick successors
- ▶ $n_1 \rightarrow_{seq} n_2$, $n_1 \rightarrow_{tick} n_2$: flow successors, induced directly from source program
- ▶ \rightarrow seq: reflexive and transitive closure of \rightarrow seq
- ▶ Note: $n_1 \rightarrow_{seq} n_2$ does not imply fixed run-time ordering between n_1 and n_2 (consider loops)

Mapping SCL & SCG



Plus ";" (Sequence) and "goto" to specify sequential successors (solid edges)

SCL & SCG – The Control Example



1	module Control
2	<pre>input bool free, req;</pre>
3	output bool grant, pend;
4	{
5	<pre>bool checkReq;</pre>
6	-
7	fork {
8	// Thread Request
9	Request entry:
10	pend = false;
11	<pre>if (req)</pre>
12	pend = true;
13	checkReq = req;
14	<pre>if (pend && grant)</pre>
15	pend = false;
16	pause;
17	goto Request entry;
18	}
19	par {
20	// Thread Dispatch
21	Dispatch entry:
22	grant = false;
23	<pre>if (checkReq && free)</pre>
24	grant = true;
25	pause;
26	goto Dispatch entry;
27	}
28	join;
29	}
	I

Sequentiality vs. Concurrency Static vs. Dynamic Threads

Recall: We want to distinguish between *sequential* and *concurrent* control flow.

But what do "sequential" / "concurrent" mean?

This distinction is not as easy to formalize as it may seem

To get started, distinguish

- Static threads: Structure of a program (based on SCG)
- Dynamic thread instance: thread in execution

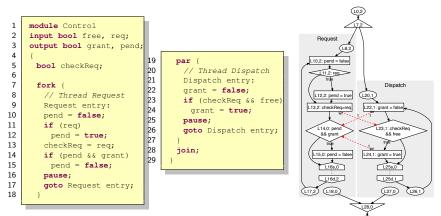
Static Threads [Sec. 2.4]

- Given: SCG G = (N, E)
- Let T denote the set of threads of G
- T includes a top-level Root thread
- \blacktriangleright With each thread $t \in T$, associate unique
 - lentry node $t_{en} \in N$
 - \blacktriangleright exit node $t_{ex} \in N$
- ► Each n ∈ N belongs to a thread th(n) defined as
 - limit mediately enclosing thread $t \in T$
 - such that there is a flow path to n that originates in t_{en}, does not traverse t_{ex} ,¹ and does not traverse any other entry node t'_{en} , unless that flow path subsequently traverses t'_{ex} also

For each thread t, define sts(t) as the set of statement nodes $n \in N$ such that th(n) = t

¹Added to definition in paper!

Threads in Control Example



- ▶ Threads *T* = {*Root*, *Request*, *Dispatch*}
- Root thread consists of the statement nodes sts(Root) = {L0, L7, L28, L29}
- The remaining statement nodes of N are partitioned into sts(Dispatch) and sts(Request)

Static Thread Concurrency and Subordination [Def. 2.2]

Let t, t_1 , t_2 be threads in T

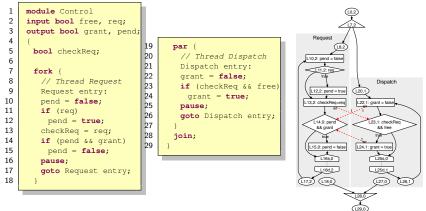
• $fork(t) =_{def}$ fork node immediately preceding t_{en}

- ▶ p^{*}(t) =_{def} {t, p(t), p(p(t)),..., Root}, the recursively defined set of ancestor threads of t
- ▶ t_1 is subordinate to t_2 , written $t_1 \prec t_2$, if $t_1 \neq t_2 \land t_1 \in p^*(t_2)$
- t₁ and t₂ are (statically) concurrent, denoted t₁ || t₂, iff t₁ and t₂ are descendants of distinct threads sharing a common fork node, *i. e.*:

 $\exists t_1' \in p^*(t_1), t_2' \in p^*(t_2): \ t_1' \neq t_2' \land \ \textit{fork}(t_1') = \textit{fork}(t_2')$

- Denote this common fork node as *lcafork*(t₁, t₂), the least common ancestor fork
- Lift (static) concurrency notion to nodes: $n_1 || n_2 \Leftrightarrow th(n_1) || th(n_2) \Leftrightarrow lcafork(n_1, n_2) = lcafork(th(n_1), th(n_2))$

Concurrency and Subordination in Control-Program



- Root \prec Request and Root \prec Dispatch
- Request || Dispatch, Root is not concurrent with any thread

Note: Concurrency on threads, in contrast to concurrency on node instances, is purely static and can be checked with a simple, syntactic analysis of the program structure.

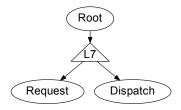
Thread Trees [TR, Sec. 3.7]

A Thread Tree illustrates the static thread relationships.

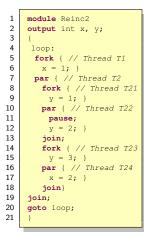
- Contains subset of SCG nodes:
 - 1. Entry nodes, labeled with names of their threads
 - 2. Fork nodes, attached to the entry nodes of their threads
- Similar to the AND/OR tree of Statecharts

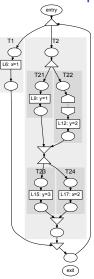
Thread tree for Control example:

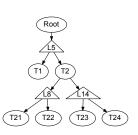
CAU



Thread Trees – The Reinc2 Example



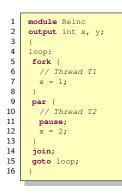


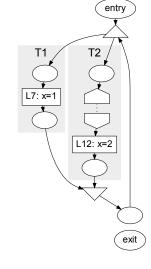


Alternative definition for static thread concurrency:

 Threads are concurrent iff their least common ancestor (lca) in thread tree is a fork node

Thread Reincarnation – The Reinc Example



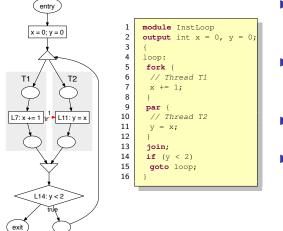


Are interested in run-time concurrency, *i. e.*, whether ordering is up to discretion of a scheduler.

Observations:

- T2 exhibits thread reincarnation
- Assignments to x are both executed in the same tick, yet are sequentialized
- Thus, static thread concurrency not sufficient to capture run-time concurrency!

Statement Reincarnation I

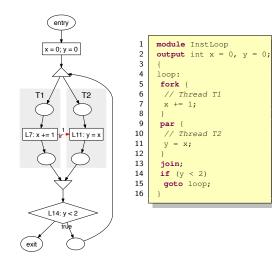


 Accesses to x in L7 and L11 executed twice within tick

- Denote this as statement reincarnation
- Accesses are (statically) concurrent
- ► Data dependencies ⇒ Must schedule L7 before L11
 - But only within the same loop iteration!

Not enough to impose an order on the program statements \Rightarrow Need to distinguish statement instances

Statement Reincarnation II



- Traditional synchronous languages: Reject
 - Instantaneous loops traditionally forbidden
- - One might still want to ensure that a program always terminates
 - But this issue is orthogonal to determinacy and having a well-defined semantics.

Macroticks [Def. 2.3 + 2.4]

• Given: SCG G = (N, E)

▶ (Macro) tick *R*, of length $len(R) \in \mathbb{N}_{\geq 1}$: mapping from micro tick indices $1 \leq j \leq len(R)$, to nodes $R(j) \in N$

A macro tick is also: Linearly ordered set of node instances

- ▶ Node instance: ni = (n, i), with statement node $n \in N$, micro tick count $i \in \mathbb{N}$
- Can identify macro tick R with set $\{(n, i) \mid 1 \le i \le len(R), n = R(i)\}$

Motivation Formalizing Sequential Constructiveness (SC) Wrap-Up

Run-Time Concurrency [Def. 2.5 + 2.6]

Given: macro tick R, index $1 \le i \le len(R)$, node $n \in N$ Def.: $last(n, i) = max\{j \mid j \le i, R(j) = n\}$,

retrieves last occurrence of *n* in *R* at or before index *i*. If it does not exist, $last_R(n, i) = 0$.

Given: macro tick R, $i_1, i_2 \in \mathbb{N}_{\leq len(R)}$, and $n_1, n_2 \in N$. Def.: Two node instances $ni_1 = (n_1, i_1)$ and $ni_2 = (n_2, i_2)$ are (run-time) concurrent in R, denoted $ni_1 \mid_R ni_2$, iff

- 1. they appear in the micro ticks of R, *i.e.*, $n_1 = R(i_1)$ and $n_2 = R(i_2)$,
- 2. they belong to statically concurrent threads, *i. e.*, $th(n_1) \parallel th(n_2)$, and
- 3. their threads have been instantiated by the same instance of the associated least common ancestor fork, *i. e.*, $last(n, i_1) = last(n, i_2)$ where $n = lcafork(n_1, n_2)$

Overview

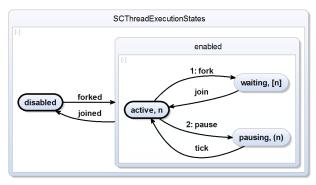
Motivation

Formalizing Sequential Constructiveness (SC) The SC Language (SCL) and the SC Graph (SCG) [Sec. 2] Free Scheduling of SCGs [Sec. 3] The SC Model of Computation [Sec. 4]

Wrap-Up

Continuations & Thread Execution States [Def. 3.1] A continuation *c* consists of

- Node *c.node* ∈ *N*, denoting the current state of each thread, *i. e.*, the node (statement) that should be executed next, similar to a program counter
- 2. Status $c.status \in \{active, waiting, pausing\}$



In a trace (see later slide), round/square/no parentheses around n = c.node denote *c.status*, for enabled continuations *c*

Continuation Pool & Configuration [Def. 3.2 + 3.3]

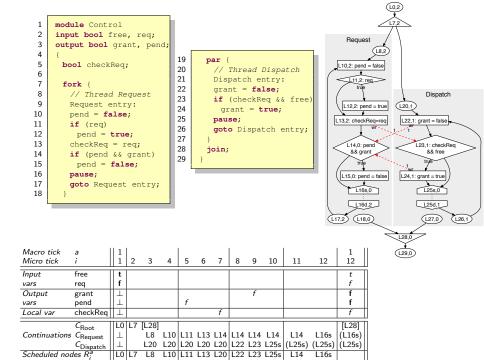
Continuation pool: finite set C of continuations

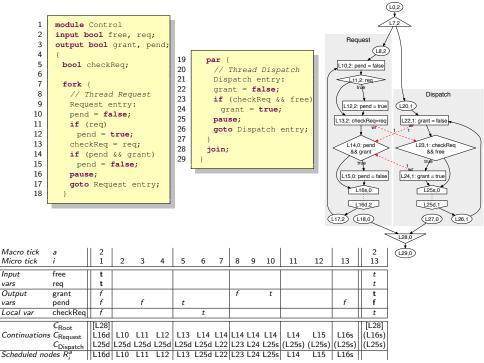
 C is valid if C meets some coherence properties (see [TECS]), e. g., threads in C adhere to thread tree structure

Configuration: pair (C, M)

- C is continuation pool
- M is memory assigning values to variables accessed by G

A configuration is called valid if C is valid





Free Scheduling [Sec. 3.2]

Now define free scheduling, to set the stage for later defining "initialize-update-read" protocol

 $(\rightarrow$ SC-admissible scheduling)

Only restrictions:

- 1. Execute only \prec -maximal threads
 - If there is at least one continuation in C_{cur}, then there also is a ≺-maximal one, because of the finiteness of the continuation pool
- 2. Do so in an interleaving fashion

Micro Steps I

Micro step: transition $(C_{cur}, M_{cur}) \xrightarrow{c} \mu s (C_{nxt}, M_{nxt})$ between two micro ticks

- ► (*C_{cur}*, *M_{cur}*): current configuration
- c: continuation selected for execution
- $(C_{n\times t}, M_{n\times t})$: next configuration

The free schedule is permitted to pick any one of the \prec -maximal continuations $c \in C_{cur}$ with c.status = active and execute it in the current memory M_{cur}

Micro Steps II

(Recall:) Micro step: transition $(C_{cur}, M_{cur}) \xrightarrow{c} \mu_s (C_{nxt}, M_{nxt})$

- Executing c yields a new memory $M_{nxt} = \mu M(c, M_{cur})$ and a (possibly empty) set of new continuations $\mu C(c, M_{cur})$ by which c is replaced, *i. e.*, $C_{nxt} = C_{cur} \setminus \{c\} \cup \mu C(c, M_{cur})$
- If µC(c, M_{cur}) = ∅: status flags set to active for all c' ∈ C_{nxt} that become ≺-maximal by eliminating c from C
- Actions µM and µC (made precise in paper) depend on the statement c.node.st to be executed
- ► (C_{nxt}, M_{nxt}) uniquely determined by c, thus may write (C_{nxt}, M_{nxt}) = c(C_{cur}, M_{cur})

Clock Steps I

Quiescent configuration (C, M):

- $\blacktriangleright \text{ No active } c \in C$
- All $c \in C$ pausing or waiting

If $C = \emptyset$:

Main program terminated

Otherwise:

Scheduler can perform a global clock step

Clock Steps II

Global clock step: $(C_{cur}, M_{cur}) \rightarrow_{tick} (C_{nxt}, M_{nxt})$

- Transition between last micro tick of the current macro tick to first micro tick of the subsequent macro tick
- All pausing continuations of C advance from their surf node to the associated depth node:

$$C_{nxt} = \{c[active :: tick(n)] \mid c[pausing :: n] \in C_{cur}\} \cup \\ \{c[waiting :: n] \mid c[waiting :: n] \in C_{cur}\}$$

Clock Steps III

Global clock step updates the memory:

- Let *I* = {x₁, x₂, ..., x_n} be the designated input variables of the SCG, including input/output variables
- Memory is updated by a new set of external input values $V_l = [x_1 = v_1, \dots, x_n = v_n]$ for the next macro tick
- All other memory locations persist unchanged into the next macro tick.

Formally,

$$M_{nxt}(x) = \begin{cases} v_i, & \text{if } x = x_i \in I, \\ M_{cur}(x), & \text{if } x \notin I. \end{cases}$$

Macro Ticks

Scheduler runs through sequence

$$(C_0^a, M_0^a) \stackrel{c_1^a}{\to}_{\mu s} (C_1^a, M_1^a) \stackrel{c_2^a}{\to}_{\mu s} \cdots \stackrel{c_{k(a)}^a}{\to}_{\mu s} (C_{k(a)}^a, M_{k(a)}^a) (1)$$

to reach final quiescent configuration $(C^a_{k(a)}, M^a_{k(a)})$

Sequence (1) is macro tick (synchronous instant) a:

$$(R^a, V_l^a) : (C_0^a, M_0^a) \Longrightarrow (C_{k(a)}^a, M_{k(a)}^a)$$

$$\tag{2}$$

▶
$$V_I^a$$
: projects the initial input, $V_I^a(x) = M_0^a(x)$ for $x \in I$

- $M_{k(a)}^{a}$: response of a
- R^a : sequence of statement nodes executed during a
 - $len(R^a) = k(a)$ is length of a
 - ► R^a is function mapping each micro tick index 1 ≤ j ≤ k(a) to node R^a(j) = c_j^a.node executed at index j

Runs and Traces

Run of G: sequence of macro ticks R^a and external inputs V_I^a , with

- ▶ initial continuation pool C₀⁰ = {c₀} activates the entry node of the G's Root thread, i.e., c₀.node = Root.en and c₀.status = active
- ▶ all macro tick configurations are connected by clock steps, i.e., $(C^a_{k(a)}, M^a_{k(a)}) \rightarrow_{tick} (C^{a+1}_0, M^{a+1}_0)$

Trace: externally visible output values at each macro tick R [TR, Sec. 3.9]

Determinacy

Recall:

$$(C_0^a, M_0^a) \xrightarrow{c_1^a} (C_1^a, M_1^a) \xrightarrow{c_2^a} \cdots \xrightarrow{c_{k(a)}^a} (C_{k(a)}^a, M_{k(a)}^a)$$
(1)

$$(R^a, V^a) \cdot (C_1^a, M_1^a) \longrightarrow (C_1^a, M_1^a, V)$$
(2)

$$(R^a, V_I^a) : (C_0^a, M_0^a) \Longrightarrow (C_{k(a)}^a, M_{k(a)}^a)$$
(2)

- Macro (tick) configuration: end points of a macro tick (2)
- Micro (tick) configuration: all other intermediate configurations (C^a_i, M^a_i), 0 < i < k(a) seen in (1)</p>

Synchrony hypothesis:

- only macro configurations are observable externally (in fact, only the memory component of those)
- Suffices to ensure that sequence of macro ticks => is determinate
- Micro tick behavior $\rightarrow_{\mu s}$ may well be non-determinate

Active and Pausing Continuations are Concurrent [TR, Prop. 2]

Given:

- (C, M), reachable (micro or macro tick) configuration
- ▶ $c_1, c_2 \in C$, active or pausing continuations with $c_1 \neq c_2$

Then:

- \triangleright c₁.node \neq c₂.node
- $th(c_1.node) || th(c_2.node)$
- No instantaneous sequential path from c₁.node to c₂.node or vice versa

(Proof: see [TR])

Concurrency vs. Sequentiality Revisited I

Recall: Want to exploit sequentiality as much as possible

Thus, consider only run-time concurrent data dependencies

Recall: Static concurrency \neq run-time concurrency

- Consider Reinc example
- Thus, can ignore some statically concurrent data dependencies

Motivation Formalizing Sequential Constructiveness (SC) Wrap-Up

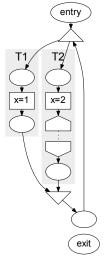
Concurrency vs. Sequentiality Revisited II Question: Does (static) sequentiality preclude runtime concurrency?

- Then we could ignore data dependencies between nodes that are sequentially ordered
- But the answer is: **no**

Counterexample: Reinc3 (SCG shown on right)

- Assignments to x run-time concurrent? Yes!
- Assignments to x sequentially ordered? Yes!

Thus, concurrency and (static) sequentiality are not **mutually exclusive, but orthogonal**! However, (instantaneous) *run-time* sequentiality (on node *instances*) does exclude run-time concurrency



Notes on Free Scheduling I

Key to determinacy:

rule out uncertainties due to unknown scheduling mechanism

- Like the synchronous MoC, the SC MoC ensures macro-tick determinacy by inducing certain scheduling constraints on variable accesses
- Unlike the synchronous MoC, the SC MoC tries to take maximal advantage of the execution order already expressed by the programmer through sequential commands
- A scheduler can only affect the order of variable accesses through concurrent threads

Notes on Free Scheduling II

Recall:

- ► If variable accesses (within tick) are already sequentialized by →_{seq}, they cannot appear simultaneously in the active continuation pool
- Hence, no way for thread scheduler to reorder them and thus lead to a non-determinate outcome

Similarly, threads are not concurrent with parent thread

- ▶ Because of path ordering ≺, a parent thread is always suspended when a child thread is in operation
- Thus, not up to scheduler to decide between parent and child thread
- No race conditions between variable accesses performed by parent and child threads; no source of non-determinacy

The Aim

Want to find a suitable restriction on the "free" scheduler which is

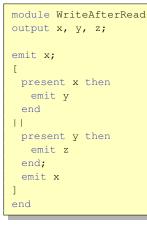
- 1. easy to compute
- 2. leaves sufficient room for concurrent implementations
- still (predictably) sequentializes any concurrent variable accesses that may conflict and produce unpredictable responses

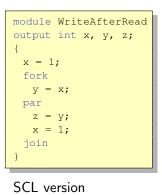
In the following, will define such a restriction: the SC-admissible schedules

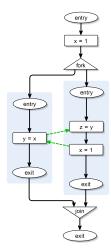
Guideline for SC-admissibility

- Initialize-Update-Read protocol, for concurrent accesses
- Want to conservatively extend Esterel's "Write-Read protocol" (must do emit *before* testing)
- But does Esterel always follow write-read protocol?

Write After Read Revisited







Esterel version

SCG

- Concurrent emit after present test
- But WriteAfterRead is BC hence should also be SC!
- Observation: second emit is ineffective, *i. e.*, does not change value

Ineffectiveness – 1st Try [TR, Sec. 5.2]

```
module InEffectivel
 1
2
    output int x = 2;
3
     int y;
4
5
     fork
6
      if (x == 2) {
7
        v = 1;
8
       x = 7
9
10
     else
11
        v = 0
12
     par
13
     x = 7
14
     ioin
15
```

If L13 is scheduled before L6:

- L13 is effective
- No out-of-order write

If L13 is scheduled after L8 (and L6):

- L13 is out-of-order write
- ► However, L13 is ineffective
- $y = 1 (\rightarrow non-determinacy!)$
- The problem: L8 hides the potential effectiveness of L13 wrt. L6!
- Both schedules would be permitted under a scheduling regime that permits ineffective writes
- \blacktriangleright \rightarrow Strengthen notion of "ineffective writes":
- Consider writes "ineffective" only if they do not change read!

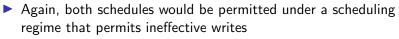
Ineffectiveness - 2nd Try

```
module InEffective2
 1
2
    output bool x = false;
3
     int y;
4
5
    fork
6
      if (!x) {
7
      v = 1;
8
       x = x x or true
9
     }
10
    else
11
       v = 0
12
    par
13
      x = x \text{ xor true};
14
     ioin
15
```

"x = x xor true"Relative writes Equivalent to "x = !x" Sequence L13; L6; L11: V = 0Sequence L6; L7; L8; L13: Q: Is L13 ineffective relative to L6? A: Yes! 113 is out-of-order

but writes x = true, which is what L6 read!

• $y = 1 (\rightarrow again non-determinacy!)$



 \blacktriangleright \rightarrow Replace "ineffectiveness" by "confluence"

Overview

Motivation

Formalizing Sequential Constructiveness (SC) The SC Language (SCL) and the SC Graph (SCG) [Sec. 2] Free Scheduling of SCGs [Sec. 3] The SC Model of Computation [Sec. 4]

Wrap-Up

Formalizing Sequential Constructiveness (SC) Wrap-Up

Combination Functions [Def. 4.1]

Combination function f:

- ► f(f(x, e₁), e₂) = f(f(x, e₂), e₁) for all x and all side-effect free expressions e₁, e₂
- Sufficient condition: f is commutative and associative
- ► Examples: *, +, -, max, and, or

Relative and Absolute Writes [Def. 4.2]

Relative writes, of type f ("increment" / "modify"): x = f(x, e)

- f must be a combination function
- Evaluation of e must be free of side effects
- Thus, schedules 'x = f(x, e₁); x = f(x, e₂)' and 'x = f(x, e₂); x = f(x, e₁)' yield same result for x
- Thus, writes are confluent

• E.g.,
$$x++$$
, $x = 5 * x$, $x = x-10$

Absolute writes ("write" / "initialize"): x = e

Writes that are not relative

• E.g.,
$$x = 0$$
, $x = 2*y+5$, $x = f(z)$

iur Relations [Def. 4.3]

Given two statically concurrent accesses $n_1 \parallel n_2$ on some variable x, we define the iur relations

- ▶ $n_1 \rightarrow_{ww} n_2$ iff n_1 and n_2 both initialize x or both perform updates of different type. We call this a ww conflict
- $n_1 \rightarrow_{iu} n_2$ iff n_1 initializes x and n_2 updates x
- $n_1 \rightarrow_{ur} n_2$ iff n_1 updates x and n_2 reads x
- ▶ $n_1 \rightarrow_{ir} n_2$ iff n_1 initializes x and n_2 reads x

Since $n_1 \rightarrow_{ww} n_2$ implies $n_2 \rightarrow_{ww} n_1$:

- ▶ abbreviate the conjunction of $n_1 \rightarrow_{ww} n_2$ and $n_2 \rightarrow_{ww} n_1$ with $n_1 \leftrightarrow_{ww} n_2$
- by symmetry \rightarrow_{ww} implies \leftrightarrow_{ww}

Confluence of Nodes [Def. 4.4] Given:

- ► Valid configuration (*C*, *M*) of SCG
- ▶ Nodes $n_1, n_2 \in N$

 n_1, n_2 are conflicting in (C, M) iff

1.
$$n_1, n_2$$
 active in C ,
i. e., $\exists c_1, c_2 \in C$ with
 $c_i.status = active \text{ and } n_i = c_i.node$

2.
$$c_1(c_2(C, M)) \neq c_2(c_1(C, M))$$

 n_1, n_2 are confluent with each other in (C, M), written: $n_1 \sim_{(C,M)} n_2$, iff

► \nexists Sequence of micro steps $(C, M) \twoheadrightarrow_{\mu s} (C', M')$ such that n_1 and n_2 are conflicting in (C', M')

(From definition:) $n_1 \sim_{(C,M)} n_2$ iff

► \nexists Sequence of micro steps $(C, M) \twoheadrightarrow_{\mu s} (C', M')$ such that n_1 and n_2 are conflicting in (C', M')

Observations I

- Confluence is taken *relative* to valid configurations (C, M) and *indirectly* as the absence of conflicts
- Instead of requiring that confluent nodes commute with each other for *arbitrary* memories, we only consider those configurations (C', M') that are *reachable* from (C, M)
- E. g., if it happens for a given program that in all memories M' reachable from a configuration (C, M) two expressions ex₁ and ex₂ evaluate to the same value, then the assignments x = ex₁ and x = ex₂ are confluent in (C, M)

(From definition:) $n_1 \sim_{(C,M)} n_2$ iff

► \nexists Sequence of micro steps $(C, M) \twoheadrightarrow_{\mu s} (C', M')$ such that n_1 and n_2 are conflicting in (C', M')

Observations II

- Similarly, if the two assignments are never jointly active in any reachable continuation pool C', they are confluent in (C, M), too
- Thus, statements may be confluent for some program relative to some reachable configuration, but not for other configurations or in another program
- However, notice that relative writes of the same type are confluent in the absolute sense, *i. e.*, for all valid configurations (*C*, *M*) of all programs

(From definition:) $n_1 \sim_{(C,M)} n_2$ iff

► \nexists Sequence of micro steps $(C, M) \twoheadrightarrow_{\mu s} (C', M')$ such that n_1 and n_2 are conflicting in (C', M')

Observations III

- ► Confluence n₁ ~_(C,M) n₂ requires conflict-freeness for all configurations (C', M') reachable from (C, M) by arbitrary micro-sequences under free scheduling
- Will use this notion of confluence to define the restricted set of SC-admissible macro ticks
- Since compiler will ensure SC-admissibility of the execution schedule,

one might be tempted to define confluence relative to these SC-admissible schedules;

however, this would result in a logical cycle

(From definition:) $n_1 \sim_{(C,M)} n_2$ iff

► \nexists Sequence of micro steps $(C, M) \twoheadrightarrow_{\mu s} (C', M')$ such that n_1 and n_2 are conflicting in (C', M')

Observations IV

- This relative view of confluence keeps the scheduling constraints on SC-admissible macro ticks sufficiently weak
- Note: two nodes confluent in some configuration are still confluent in every later configuration reached through an arbitrary sequence of micro steps
- However, more nodes may become confluent in later configurations, because some conflicting configurations are no longer reachable
- Exploit this in following definition of confluence of node instances by making confluence of node instances within a macro tick relative to the index position at which they occur

Confluence of Node Instances [Def. 4.5]

Given:

- Macro tick R
- (C_i, M_i) for $0 \le i \le len(R)$, the configurations of R
- Node instances $ni_1 = (n_1, i_1)$ and $ni_2 = (n_2, i_2)$ in R, *i.e.*, $1 \le i_1, i_2 \le len(R), n_1 = R(i_1), n_2 = R(i_2)$

Call node instances confluent in R, written $ni_1 \sim_R ni_2$, iff

• for
$$i = min(i_1, i_2) - 1$$

$$hacksim n_1 \sim_{(C_i, M_i)} n_2$$

InEffective2 Revisited

```
1
    module InEffective2
2
    output bool x = false;
 3
      int y;
4
5
     fork
6
      if (!x) {
7
       v = 1;
8
        x = x x or true
9
10
     else
11
        v = 0
12
     par
13
      x = x \text{ xor true:}
14
     ioin
15
```

Recall sequence L6; L7; L8; L13:

- Q: Is L13 ineffective relative to L6?
- A: Yes!
- L13 is out-of-order . . .
- but writes x = false, which is what L6 read!
- ▶ Q: Are L6 and L13 confluent?
- A: No!
- L6 and L13 conflict at point of execution of L6

 \rightarrow Def. of SC-admissibility – specifically, the underlying scheduling relations – uses confluence condition

Scheduling Relations [Def 4.6]

Given:

- Macro tick R with
- Node instances $ni_{1,2} = (n_{1,2}, i_{1,2})$, *i. e.*, $1 \le i_{1,2} \le len(R)$ and $n_{1,2} = R(i_{1,2})$
- $ni_{1,2}$ concurrent in R, *i.e.*, $ni_1 \mid_R ni_2$
- ▶ $ni_{1,2}$ not confluent in R, *i. e.*, $ni_1 \not\sim_R ni_2$

Then:

▶
$$ni_1 \rightarrow_{\alpha}^R ni_2$$
 iff $n_1 \rightarrow_{\alpha} n_2$ for some $\alpha \in \alpha_{iur}$
▶ $ni_1 \rightarrow^R ni_2$ iff $i_1 < i_2$; *i. e.*, ni_1 happens before ni_2 in *R*.

Sequential Admissibility [Def. 4.7]

A macro tick R is SC-admissible iff

- ▶ for all node instances $ni_{1,2} = (n_{1,2}, i_{1,2})$ in *R*, with $1 \le i_{1,2} \le len(R)$ and $n_{1,2} = R(i_{1,2})$,
- for all $\alpha \in \alpha_{iur}$

the scheduling condition SC_{α} holds: if $ni_1 \rightarrow_{\alpha}^R ni_2$ then $ni_1 \rightarrow^R ni_2$.

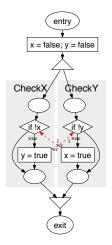
A run for an SCG is SC-admissible if all macro ticks R in this run are SC-admissible.

SC-admissibility vs. Determinacy

```
1
     module NonDet
 2
     output bool x = false, y = false;
 3
 4
     fork { // Thread CheckX
 5
      if (!x)
 6
       v = true;
 7
 8
     par { // Thread CheckY
 9
      if (!v)
10
       x = true
11
12
      join
13
```

Admissible runs? Yes, multiple

Determinate? No



Thus: SC-admissibility \neq Determinacy

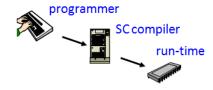
SC-admissibility vs. Determinacy

```
module Fail
 2
     output bool z = false;
 3
 4
      fork {
 5
      if (!z)
 6
       z = true;
 7
8
     par {
9
      if (z)
10
        z = true
11
12
      join
13
```

- Admissible runs? No
- Determinate? Yes

Thus: Determinacy \Rightarrow SC-admissibility

Sequential Constructiveness [Def. 4.8]



Definition: A program P is sequentially constructive (SC) iff for each initial configuration and input sequence:

- 1. There exists an SC-admissible run (P is reactive)
- 2. Every SC-admissible run generates the same determinate sequence of macro responses (*P* is determinate)

Overview

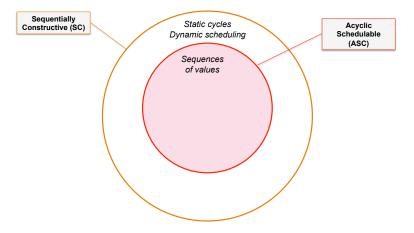
Motivation

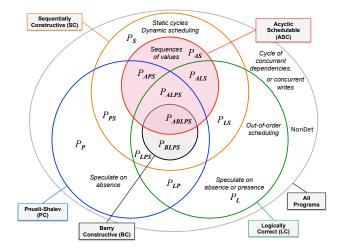
Formalizing Sequential Constructiveness (SC)

Wrap-Up

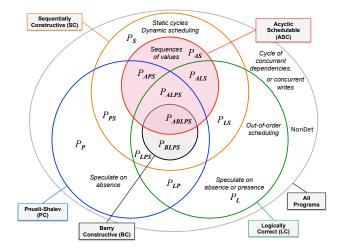
Synchronous Program Classes Summary

Synchronous Program Classes [TR, Sec. 9]

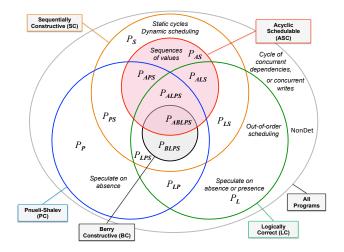




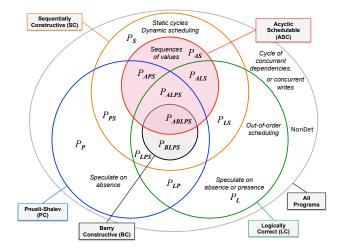
Example $P_{APS} = if(x) x = 1$



Example $P_{AS} = if (!x) x = 1$



Example $P_{ALS} = if (!x) x = 1$ else x = 1



Example $P_{ALPS} = if (!x \&\& y) \{x = 1; y = 1\}$

Summary

Underlying idea of sequential constructiveness rather simple

- Prescriptive instead of descriptive sequentiality
- Thus circumventing "spurious" causality problems
- Initialize-update-read protocol

However, precise definition of SC MoC not trivial

- Challenging to ensure conservativeness relative to Berry-constructiveness
- Plain initialize-update-read protocol does not accomodate, e. g., signal re-emissions
- Restricting attention to *concurrent*, *non-confluent* node instances is key

Conclusions

- Clocked, synchronous model of execution for imperative, shared-memory multi-threading
- Conservatively extends synchronous programming (Esterel) by standard sequential control flow (Java, C)
- Deterministic concurrency with synchronous foundations, but without synchronous restrictions
 - Suppressive and intuitive sequential paradigm
 - Second reductable concurrent threads

Future Work

Plenty of extensions/adaptations possible

- Alternative notions of sequential constructiveness:
 - A truly "constructive" approach that sharpens SC admissibility to determinate schedules
 - Extension of iur-protocol, e.g., to model ForeC
- Improved synthesis & analysis see also next lecture