
SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Synchronous Languages—Lecture 12

Prof. Dr. Reinhard von Hanxleden

Christian-Albrechts Universität Kiel
Department of Computer Science

Real-Time Systems and Embedded Systems Group

4 June 2020
Last compiled: June 2, 2020, 11:12 hrs

Code Generation for
Sequential Constructiveness

Synchronous Languages Lecture 12 Slide 1

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

The 5-Minute Review Session

1. What are Statecharts? Who invented them?

2. What is the difference between SyncCharts and Statecharts?

3. How can we transform Esterel to SyncCharts? How about the other
direction?

4. What are SCCharts? What is their motivation?

5. What are Core SCCharts?

Synchronous Languages Lecture 12 Slide 2

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

The 5-Minute Review Session

1. What are Statecharts?

Who invented them?

2. What is the difference between SyncCharts and Statecharts?

3. How can we transform Esterel to SyncCharts? How about the other
direction?

4. What are SCCharts? What is their motivation?

5. What are Core SCCharts?

Synchronous Languages Lecture 12 Slide 2

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

The 5-Minute Review Session

1. What are Statecharts? Who invented them?

2. What is the difference between SyncCharts and Statecharts?

3. How can we transform Esterel to SyncCharts? How about the other
direction?

4. What are SCCharts? What is their motivation?

5. What are Core SCCharts?

Synchronous Languages Lecture 12 Slide 2

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

The 5-Minute Review Session

1. What are Statecharts? Who invented them?

2. What is the difference between SyncCharts and Statecharts?

3. How can we transform Esterel to SyncCharts? How about the other
direction?

4. What are SCCharts? What is their motivation?

5. What are Core SCCharts?

Synchronous Languages Lecture 12 Slide 2

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

The 5-Minute Review Session

1. What are Statecharts? Who invented them?

2. What is the difference between SyncCharts and Statecharts?

3. How can we transform Esterel to SyncCharts?

How about the other
direction?

4. What are SCCharts? What is their motivation?

5. What are Core SCCharts?

Synchronous Languages Lecture 12 Slide 2

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

The 5-Minute Review Session

1. What are Statecharts? Who invented them?

2. What is the difference between SyncCharts and Statecharts?

3. How can we transform Esterel to SyncCharts? How about the other
direction?

4. What are SCCharts? What is their motivation?

5. What are Core SCCharts?

Synchronous Languages Lecture 12 Slide 2

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

The 5-Minute Review Session

1. What are Statecharts? Who invented them?

2. What is the difference between SyncCharts and Statecharts?

3. How can we transform Esterel to SyncCharts? How about the other
direction?

4. What are SCCharts? What is their motivation?

5. What are Core SCCharts?

Synchronous Languages Lecture 12 Slide 2

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

The 5-Minute Review Session

1. What are Statecharts? Who invented them?

2. What is the difference between SyncCharts and Statecharts?

3. How can we transform Esterel to SyncCharts? How about the other
direction?

4. What are SCCharts? What is their motivation?

5. What are Core SCCharts?

Synchronous Languages Lecture 12 Slide 2

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Overview

SCG Mapping & Dependency Analysis

Code Generation Approaches

Schizophrenia Revisited

Synchronous Languages Lecture 12 Slide 3

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Compilation Overview
The SC Graph
Dependency Analysis

Compilation — Overview

Synchronous Languages Lecture 12 Slide 4

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Compilation Overview
The SC Graph
Dependency Analysis

Compilation — High-Level Synthesis

I Green:
covered in
previous lecture

Synchronous Languages Lecture 12 Slide 5

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Compilation Overview
The SC Graph
Dependency Analysis

Compilation — High-Level Synthesis

I Green:
covered in
previous lecture

Synchronous Languages Lecture 12 Slide 5

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Compilation Overview
The SC Graph
Dependency Analysis

(Recall) SCCharts - Core & Extended Features

Synchronous Languages Lecture 12 Slide 6

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Compilation Overview
The SC Graph
Dependency Analysis

(Recall) SCCharts - Core & Extended Features

Synchronous Languages Lecture 12 Slide 6

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Compilation Overview
The SC Graph
Dependency Analysis

(Recall) SCCharts - Core & Extended Features

Synchronous Languages Lecture 12 Slide 6

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Compilation Overview
The SC Graph
Dependency Analysis

(Recall) SCCharts - Core & Extended Features

Synchronous Languages Lecture 12 Slide 6

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Compilation Overview
The SC Graph
Dependency Analysis

Compilation — High-Level Synthesis

I Red:
coming up now

Synchronous Languages Lecture 12 Slide 7

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Compilation Overview
The SC Graph
Dependency Analysis

Overview

SCG Mapping & Dependency Analysis
Compilation Overview
The SC Graph
Dependency Analysis

Code Generation Approaches

Schizophrenia Revisited

Synchronous Languages Lecture 12 Slide 8

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Compilation Overview
The SC Graph
Dependency Analysis

The SC Graph

SC Graph:
Labeled graph G = (S ,E)

I Nodes S correspond to statements of
sequential program

I Edges E reflect sequential execution
control flow

Synchronous Languages Lecture 12 Slide 9

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Compilation Overview
The SC Graph
Dependency Analysis

The SC Graph

SC Graph:
Labeled graph G = (S ,E)

I Nodes S correspond to statements of
sequential program

I Edges E reflect sequential execution
control flow

Synchronous Languages Lecture 12 Slide 9

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Compilation Overview
The SC Graph
Dependency Analysis

The SC Graph

SC Graph:
Labeled graph G = (S ,E)

I Nodes S correspond to statements of
sequential program

I Edges E reflect sequential execution
control flow

Synchronous Languages Lecture 12 Slide 9

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Compilation Overview
The SC Graph
Dependency Analysis

High-Level Step 3: Map to SC Graph

Synchronous Languages Lecture 12 Slide 10

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Compilation Overview
The SC Graph
Dependency Analysis

High-Level Step 3: Map to SC Graph

Synchronous Languages Lecture 12 Slide 10

Example: Mapping ABO to SCG

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Compilation Overview
The SC Graph
Dependency Analysis

The SC Graph — Dependencies

Two assignments within the SC Graph
are concurrent iff

I they share a least common
ancestor fork node.

Two assignments are confluent iff

I the order of their assignments does
not matter.

Synchronous Languages Lecture 12 Slide 12

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Compilation Overview
The SC Graph
Dependency Analysis

The SC Graph — Dependencies

Two assignments within the SC Graph
are concurrent iff

I they share a least common
ancestor fork node.

Two assignments are confluent iff

I the order of their assignments does
not matter.

Synchronous Languages Lecture 12 Slide 12

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Compilation Overview
The SC Graph
Dependency Analysis

The SC Graph — Dependencies

Two assignments within the SC Graph
are concurrent iff

I they share a least common
ancestor fork node.

Two assignments are confluent iff

I the order of their assignments does
not matter.

Synchronous Languages Lecture 12 Slide 12

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Compilation Overview
The SC Graph
Dependency Analysis

The SC Graph — Dependencies

Two assignments within the SC Graph
are concurrent iff

I they share a least common
ancestor fork node.

Two assignments are confluent iff

I the order of their assignments does
not matter.

Synchronous Languages Lecture 12 Slide 12

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Compilation Overview
The SC Graph
Dependency Analysis

Dependency Types

Dependencies are further categorized in

write—write abs. write—rel. write

write—read rel. write—read

The SC MoC employs a strict “initialize - update - read”
protocol.

(More on the SC MoC will follow in next lecture.)

Synchronous Languages Lecture 12 Slide 13

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Compilation Overview
The SC Graph
Dependency Analysis

Dependency Types

Dependencies are further categorized in

write—write

abs. write—rel. write

write—read rel. write—read

The SC MoC employs a strict “initialize - update - read”
protocol.

(More on the SC MoC will follow in next lecture.)

Synchronous Languages Lecture 12 Slide 13

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Compilation Overview
The SC Graph
Dependency Analysis

Dependency Types

Dependencies are further categorized in

write—write abs. write—rel. write

write—read rel. write—read

The SC MoC employs a strict “initialize - update - read”
protocol.

(More on the SC MoC will follow in next lecture.)

Synchronous Languages Lecture 12 Slide 13

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Compilation Overview
The SC Graph
Dependency Analysis

Dependency Types

Dependencies are further categorized in

write—write abs. write—rel. write

write—read

rel. write—read

The SC MoC employs a strict “initialize - update - read”
protocol.

(More on the SC MoC will follow in next lecture.)

Synchronous Languages Lecture 12 Slide 13

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Compilation Overview
The SC Graph
Dependency Analysis

Dependency Types

Dependencies are further categorized in

write—write abs. write—rel. write

write—read rel. write—read

The SC MoC employs a strict “initialize - update - read”
protocol.

(More on the SC MoC will follow in next lecture.)

Synchronous Languages Lecture 12 Slide 13

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Compilation Overview
The SC Graph
Dependency Analysis

Dependency Types

Dependencies are further categorized in

write—write abs. write—rel. write

write—read rel. write—read

The SC MoC employs a strict “initialize - update - read”
protocol.

(More on the SC MoC will follow in next lecture.)

Synchronous Languages Lecture 12 Slide 13

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Circuit-based Approach
Priority-based Approach
Approach Comparison

Overview

SCG Mapping & Dependency Analysis

Code Generation Approaches
Circuit-based Approach
Priority-based Approach
Approach Comparison

Schizophrenia Revisited

Synchronous Languages Lecture 12 Slide 14

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Circuit-based Approach
Priority-based Approach
Approach Comparison

Low-Level Synthesis I: The Circuit Approach
I Basic idea:

Generate netlist

I Precondition:
Acyclic SCG
(with dependency
edges, but without tick
edges)

I Well-established
approach for compiling
SyncCharts/Esterel

Differences to Esterel circuit semantics [Berry ’02]

1. Simpler translation rules, as aborts/traps/suspensions already transformed away
during high-level synthesis

2. SC MoC permits sequential assignments

Synchronous Languages Lecture 12 Slide 15

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Circuit-based Approach
Priority-based Approach
Approach Comparison

Low-Level Synthesis I: The Circuit Approach
I Basic idea:

Generate netlist

I Precondition:
Acyclic SCG
(with dependency
edges, but without tick
edges)

I Well-established
approach for compiling
SyncCharts/Esterel

Differences to Esterel circuit semantics [Berry ’02]

1. Simpler translation rules, as aborts/traps/suspensions already transformed away
during high-level synthesis

2. SC MoC permits sequential assignments

Synchronous Languages Lecture 12 Slide 15

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Circuit-based Approach
Priority-based Approach
Approach Comparison

Basic Blocks

Basic Block:
A collection of SCG nodes / SCL
statements

I that can be executed
monolithically

Rules:

I Split at nodes with more than
one incoming control flow edge

I Split at nodes with more than
one outgoing control flow edge

I Split at tick edges
I Split after fork nodes and before

join nodes
I Each node can only be included

in one basic block at any time

Synchronous Languages Lecture 12 Slide 16

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Circuit-based Approach
Priority-based Approach
Approach Comparison

Basic Blocks

Basic Block:
A collection of SCG nodes / SCL
statements

I that can be executed
monolithically

Rules:

I Split at nodes with more than
one incoming control flow edge

I Split at nodes with more than
one outgoing control flow edge

I Split at tick edges
I Split after fork nodes and before

join nodes
I Each node can only be included

in one basic block at any time

Synchronous Languages Lecture 12 Slide 16

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Circuit-based Approach
Priority-based Approach
Approach Comparison

Basic Blocks

Basic Block:
A collection of SCG nodes / SCL
statements

I that can be executed
monolithically

Rules:

I Split at nodes with more than
one incoming control flow edge

I Split at nodes with more than
one outgoing control flow edge

I Split at tick edges
I Split after fork nodes and before

join nodes
I Each node can only be included

in one basic block at any time

Synchronous Languages Lecture 12 Slide 16

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Circuit-based Approach
Priority-based Approach
Approach Comparison

Basic Blocks

Basic Block:
A collection of SCG nodes / SCL
statements

I that can be executed
monolithically

Rules:

I Split at nodes with more than
one incoming control flow edge

I Split at nodes with more than
one outgoing control flow edge

I Split at tick edges

I Split after fork nodes and before
join nodes

I Each node can only be included
in one basic block at any time

Synchronous Languages Lecture 12 Slide 16

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Circuit-based Approach
Priority-based Approach
Approach Comparison

Basic Blocks

Basic Block:
A collection of SCG nodes / SCL
statements

I that can be executed
monolithically

Rules:

I Split at nodes with more than
one incoming control flow edge

I Split at nodes with more than
one outgoing control flow edge

I Split at tick edges
I Split after fork nodes and before

join nodes

I Each node can only be included
in one basic block at any time

Synchronous Languages Lecture 12 Slide 16

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Circuit-based Approach
Priority-based Approach
Approach Comparison

Basic Blocks

Basic Block:
A collection of SCG nodes / SCL
statements

I that can be executed
monolithically

Rules:

I Split at nodes with more than
one incoming control flow edge

I Split at nodes with more than
one outgoing control flow edge

I Split at tick edges
I Split after fork nodes and before

join nodes
I Each node can only be included

in one basic block at any time

Synchronous Languages Lecture 12 Slide 16

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Circuit-based Approach
Priority-based Approach
Approach Comparison

Scheduling Blocks

I Basic blocks may be interrupted when a
data dependency interferes.

I Structure basic blocks further:
Scheduling Blocks

I Rules:

I Split a basic block at incoming
dependency edge

I But...

I want to minimize the number of
context switches

I ⇒ Room for optimization!

Synchronous Languages Lecture 12 Slide 17

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Circuit-based Approach
Priority-based Approach
Approach Comparison

Scheduling Blocks

I Basic blocks may be interrupted when a
data dependency interferes.

I Structure basic blocks further:
Scheduling Blocks

I Rules:

I Split a basic block at incoming
dependency edge

I But...

I want to minimize the number of
context switches

I ⇒ Room for optimization!

Synchronous Languages Lecture 12 Slide 17

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Circuit-based Approach
Priority-based Approach
Approach Comparison

Scheduling Blocks

I Basic blocks may be interrupted when a
data dependency interferes.

I Structure basic blocks further:
Scheduling Blocks

I Rules:

I Split a basic block at incoming
dependency edge

I But...

I want to minimize the number of
context switches

I ⇒ Room for optimization!

Synchronous Languages Lecture 12 Slide 17

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Circuit-based Approach
Priority-based Approach
Approach Comparison

Scheduling Blocks

I Basic blocks may be interrupted when a
data dependency interferes.

I Structure basic blocks further:
Scheduling Blocks

I Rules:

I Split a basic block at incoming
dependency edge

I But...

I want to minimize the number of
context switches

I ⇒ Room for optimization!

Synchronous Languages Lecture 12 Slide 17

c

g

gfalse

gtrue

x

e

g

x0
gsurf gdepth

fork
depth1
depth2

m

m1

d1

m2

d2

d1
d2

gjoin

Trigger
(Conditional)

Effect
(Assignment)

State
(Delay)

Region
(Thread)

Superstate
(Concurrency)

Normalized
Core

SCCharts

SCL if (c) s1 else s2 x = e pause t fork t1 par
t2 join

SCG

Data-Flow
Code

g = ⋁gin

gtrue = g ⋀ c
gfalse = g ⋀ ¬c

g = ⋁gin

x’ = g ? e : x

gsurf = ⋁gin

gdepth =
pre (gsurf)

d = gexit
m = ¬ (gfork ⋁
⋁depth ∈ t gdepth)

gfork = ⋁gin

gjoin = (d1 ⋁ m1)
⋀ (d2 ⋁ m2)
⋀ (d1 ⋁ d2)

Circuits

c

g

gfalse

gtrue

x

e

g

x0
gsurf gdepth

fork
depth1
depth2

m

m1

d1

m2

d2

d1
d2

gjoin

Trigger
(Conditional)

Effect
(Assignment)

State
(Delay)

Region
(Thread)

Superstate
(Concurrency)

Normalized
Core

SCCharts

SCL if (c) s1 else s2 x = e pause t fork t1 par
t2 join

SCG

Data-Flow
Code

g = ⋁gin

gtrue = g ⋀ c
gfalse = g ⋀ ¬c

g = ⋁gin

x’ = g ? e : x

gsurf = ⋁gin

gdepth =
pre (gsurf)

d = gexit
m = ¬ (gfork ⋁
⋁depth ∈ t gdepth)

gfork = ⋁gin

gjoin = (d1 ⋁ m1)
⋀ (d2 ⋁ m2)
⋀ (d1 ⋁ d2)

Circuits

c

g

gfalse

gtrue

x

e

g

x0
gsurf gdepth

gfork
gdepth1
gdepth2

m

m1

d1

m2

d2

d1
d2

gjoin

Trigger
(Conditional)

Effect
(Assignment)

State
(Delay)

Region
(Thread)

Superstate
(Concurrency)

Normalized
Core

SCCharts

SCL if (c) s1 else s2 x = e pause t fork t1 par
t2 join

SCG

Data-Flow
Code

g = ⋁gin

gtrue = g ⋀ c
gfalse = g ⋀ ¬c

g = ⋁gin

x’ = g ? e : x

gsurf = ⋁gin

gdepth =
pre (gsurf)

d = gexit
m = ¬ (gfork ⋁
⋁depth ∈ t gdepth)

gfork = ⋁gin

gjoin = (d1 ⋁ m1)
⋀ (d2 ⋁ m2)
⋀ (d1 ⋁ d2)

Circuits

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Circuit-based Approach
Priority-based Approach
Approach Comparison

ABO SCG, With Dependencies and Scheduling Blocks

⇒

Synchronous Languages Lecture 12 Slide 19

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Circuit-based Approach
Priority-based Approach
Approach Comparison

ABO SCG, With Dependencies and Scheduling Blocks

⇒

Synchronous Languages Lecture 12 Slide 19

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Circuit-based Approach
Priority-based Approach
Approach Comparison

1 module ABO
2 input output bool

A, B;
3 output bool O1,

O2;
4 {
5 O1 = false;
6 O2 = false;
7 fork
8 HandleA:
9 if (!A) {

10 pause;
11 goto HandleA

;
12 };
13 B = true;
14 O1 = true;
15 par
16 HandleB:
17 pause;
18 if (!B) {
19 goto HandleB

;
20 };
21 O1 = true;
22 join;
23 O1 = false;
24 O2 = true;
25 }

⇒

1 module ABO-seq
2 input output bool A, B;
3 output bool O1, O2;
4 bool GO, g0, g1, ...
5 {
6 g0 = GO;
7 if g0 {
8 O1 = false;
9 O2 = false;

10 };
11 g5 = g4_pre;
12 g7 = g8_pre;
13 g2 = g0 || g5;
14 g3 = g2 && A;
15 if g3 {
16 B = true;
17 O1 = true;
18 };
19 g4 = g2 && ! A;
20 g6 = g7 && B;
21 if g6 {
22 O1 = true;
23 };
24 g8 = g0 || (g7 && ! B);
25 e2 = ! g4;
26 e6 = ! g8;
27 g1 = (g3 || e2) &&
28 (g6 || e6) && (g3 || g6);
29 if g1 {
30 O1 = false;
31 O2 = true;
32 };
33 g4_pre = g4;
34 g8_pre = g8;
35 }

Synchronous Languages Lecture 12 Slide 20

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Circuit-based Approach
Priority-based Approach
Approach Comparison

1 module ABO
2 input output bool

A, B;
3 output bool O1,

O2;
4 {
5 O1 = false;
6 O2 = false;
7 fork
8 HandleA:
9 if (!A) {

10 pause;
11 goto HandleA

;
12 };
13 B = true;
14 O1 = true;
15 par
16 HandleB:
17 pause;
18 if (!B) {
19 goto HandleB

;
20 };
21 O1 = true;
22 join;
23 O1 = false;
24 O2 = true;
25 }

⇒

1 module ABO-seq
2 input output bool A, B;
3 output bool O1, O2;
4 bool GO, g0, g1, ...
5 {
6 g0 = GO;
7 if g0 {
8 O1 = false;
9 O2 = false;

10 };
11 g5 = g4_pre;
12 g7 = g8_pre;
13 g2 = g0 || g5;
14 g3 = g2 && A;
15 if g3 {
16 B = true;
17 O1 = true;
18 };
19 g4 = g2 && ! A;
20 g6 = g7 && B;
21 if g6 {
22 O1 = true;
23 };
24 g8 = g0 || (g7 && ! B);
25 e2 = ! g4;
26 e6 = ! g8;
27 g1 = (g3 || e2) &&
28 (g6 || e6) && (g3 || g6);
29 if g1 {
30 O1 = false;
31 O2 = true;
32 };
33 g4_pre = g4;
34 g8_pre = g8;
35 }

Synchronous Languages Lecture 12 Slide 20

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Circuit-based Approach
Priority-based Approach
Approach Comparison

1 module ABO
2 input output bool

A, B;
3 output bool O1,

O2;
4 {
5 O1 = false;
6 O2 = false;
7 fork
8 HandleA:
9 if (!A) {

10 pause;
11 goto HandleA

;
12 };
13 B = true;
14 O1 = true;
15 par
16 HandleB:
17 pause;
18 if (!B) {
19 goto HandleB

;
20 };
21 O1 = true;
22 join;
23 O1 = false;
24 O2 = true;
25 }

⇒

1 module ABO-seq
2 input output bool A, B;
3 output bool O1, O2;
4 bool GO, g0, g1, ...
5 {
6 g0 = GO;
7 if g0 {
8 O1 = false;
9 O2 = false;

10 };
11 g5 = g4_pre;
12 g7 = g8_pre;
13 g2 = g0 || g5;
14 g3 = g2 && A;
15 if g3 {
16 B = true;
17 O1 = true;
18 };
19 g4 = g2 && ! A;
20 g6 = g7 && B;
21 if g6 {
22 O1 = true;
23 };
24 g8 = g0 || (g7 && ! B);
25 e2 = ! g4;
26 e6 = ! g8;
27 g1 = (g3 || e2) &&
28 (g6 || e6) && (g3 || g6);
29 if g1 {
30 O1 = false;
31 O2 = true;
32 };
33 g4_pre = g4;
34 g8_pre = g8;
35 }

Synchronous Languages Lecture 12 Slide 20

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Circuit-based Approach
Priority-based Approach
Approach Comparison

Sequential SCG — ABO

Synchronous Languages Lecture 12 Slide 21

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Circuit-based Approach
Priority-based Approach
Approach Comparison

(Recall) Low-Level Synthesis I: The Circuit Approach

I Can use sequential SCL
directly for SW
synthesis

I Synthesizing HW needs
a little further work . . .

Synchronous Languages Lecture 12 Slide 22

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Circuit-based Approach
Priority-based Approach
Approach Comparison

ABO SCL, Logic Synthesis (HW)

1 module ABO-seq
2 input output bool A, B;
3 output bool O1, O2;
4 bool GO, g0, g1, ...
5 {
6 g0 = GO;
7 if g0 {
8 O1 = false;
9 O2 = false;

10 };
11 g5 = g4_pre;
12 g7 = g8_pre;
13 g2 = g0 || g5;
14 g3 = g2 && A;
15 if g3 {
16 B = true;
17 O1 = true;
18 };
19 g4 = g2 && ! A;
20 g6 = g7 && B;
21 if g6 {
22 O1 = true;
23 };
24 g8 = g0 || (g7 && ! B);
25 e2 = ! g4;
26 e6 = ! g8;
27 g1 = (g3 || e2) &&
28 (g6 || e6) && (g3 ||

g6);
29 if g1 {
30 O1 = false;
31 O2 = true;
32 };
33 g4_pre = g4;
34 g8_pre = g8;
35 }

⇒

Difference to software

I All persistence (state, data) in external reg’s
(“ pre”-var’s)

I Permit only one value per wire per tick ⇒
SSA

1 ARCHITECTURE behavior OF ABO IS
2 -- local signals definition, hidden
3 begin
4 -- main logic
5 g0 <= GO_local;
6 O1 <= false WHEN g0 ELSE O1_pre;
7 O2 <= false WHEN g0 ELSE O2_pre;
8 g5 <= g4_pre;
9 g7 <= g8_pre;

10 g2 <= g0 or g5;
11 g3 <= g2 and A_local;
12 B <= true WHEN g3 ELSE B_local;
13 O1_2 <= true WHEN g3 ELSE O1;
14 g4 <= g2 and not A_local;
15 g6 <= g7 and B;
16 O1_3 <= true WHEN g6 ELSE O1_2;
17 g8 <= g0 or (g7 and not B);
18 e2 <= not (g4);
19 e6 <= not (g8);
20 g1 <= (g3 or e2) and
21 (g6 or e6) and
22 (g3 or g6);
23 O1_4 <= false WHEN g1 ELSE O1_3;
24 O2_2 <= true WHEN g1 ELSE O2;
25
26 -- Assign outputs
27 A_out <= A_local;
28 B_out <= B;
29 O1 <= O1_4;
30 O2 <= O2_2;

Synchronous Languages Lecture 12 Slide 23

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Circuit-based Approach
Priority-based Approach
Approach Comparison

ABO SCL, Logic Synthesis (HW)

1 module ABO-seq
2 input output bool A, B;
3 output bool O1, O2;
4 bool GO, g0, g1, ...
5 {
6 g0 = GO;
7 if g0 {
8 O1 = false;
9 O2 = false;

10 };
11 g5 = g4_pre;
12 g7 = g8_pre;
13 g2 = g0 || g5;
14 g3 = g2 && A;
15 if g3 {
16 B = true;
17 O1 = true;
18 };
19 g4 = g2 && ! A;
20 g6 = g7 && B;
21 if g6 {
22 O1 = true;
23 };
24 g8 = g0 || (g7 && ! B);
25 e2 = ! g4;
26 e6 = ! g8;
27 g1 = (g3 || e2) &&
28 (g6 || e6) && (g3 ||

g6);
29 if g1 {
30 O1 = false;
31 O2 = true;
32 };
33 g4_pre = g4;
34 g8_pre = g8;
35 }

⇒

Difference to software

I All persistence (state, data) in external reg’s
(“ pre”-var’s)

I Permit only one value per wire per tick ⇒
SSA

1 ARCHITECTURE behavior OF ABO IS
2 -- local signals definition, hidden
3 begin
4 -- main logic
5 g0 <= GO_local;
6 O1 <= false WHEN g0 ELSE O1_pre;
7 O2 <= false WHEN g0 ELSE O2_pre;
8 g5 <= g4_pre;
9 g7 <= g8_pre;

10 g2 <= g0 or g5;
11 g3 <= g2 and A_local;
12 B <= true WHEN g3 ELSE B_local;
13 O1_2 <= true WHEN g3 ELSE O1;
14 g4 <= g2 and not A_local;
15 g6 <= g7 and B;
16 O1_3 <= true WHEN g6 ELSE O1_2;
17 g8 <= g0 or (g7 and not B);
18 e2 <= not (g4);
19 e6 <= not (g8);
20 g1 <= (g3 or e2) and
21 (g6 or e6) and
22 (g3 or g6);
23 O1_4 <= false WHEN g1 ELSE O1_3;
24 O2_2 <= true WHEN g1 ELSE O2;
25
26 -- Assign outputs
27 A_out <= A_local;
28 B_out <= B;
29 O1 <= O1_4;
30 O2 <= O2_2;

Synchronous Languages Lecture 12 Slide 23

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Circuit-based Approach
Priority-based Approach
Approach Comparison

ABO SCL, Logic Synthesis (HW)

1 module ABO-seq
2 input output bool A, B;
3 output bool O1, O2;
4 bool GO, g0, g1, ...
5 {
6 g0 = GO;
7 if g0 {
8 O1 = false;
9 O2 = false;

10 };
11 g5 = g4_pre;
12 g7 = g8_pre;
13 g2 = g0 || g5;
14 g3 = g2 && A;
15 if g3 {
16 B = true;
17 O1 = true;
18 };
19 g4 = g2 && ! A;
20 g6 = g7 && B;
21 if g6 {
22 O1 = true;
23 };
24 g8 = g0 || (g7 && ! B);
25 e2 = ! g4;
26 e6 = ! g8;
27 g1 = (g3 || e2) &&
28 (g6 || e6) && (g3 ||

g6);
29 if g1 {
30 O1 = false;
31 O2 = true;
32 };
33 g4_pre = g4;
34 g8_pre = g8;
35 }

⇒

Difference to software

I All persistence (state, data) in external reg’s
(“ pre”-var’s)

I Permit only one value per wire per tick ⇒
SSA

1 ARCHITECTURE behavior OF ABO IS
2 -- local signals definition, hidden
3 begin
4 -- main logic
5 g0 <= GO_local;
6 O1 <= false WHEN g0 ELSE O1_pre;
7 O2 <= false WHEN g0 ELSE O2_pre;
8 g5 <= g4_pre;
9 g7 <= g8_pre;

10 g2 <= g0 or g5;
11 g3 <= g2 and A_local;
12 B <= true WHEN g3 ELSE B_local;
13 O1_2 <= true WHEN g3 ELSE O1;
14 g4 <= g2 and not A_local;
15 g6 <= g7 and B;
16 O1_3 <= true WHEN g6 ELSE O1_2;
17 g8 <= g0 or (g7 and not B);
18 e2 <= not (g4);
19 e6 <= not (g8);
20 g1 <= (g3 or e2) and
21 (g6 or e6) and
22 (g3 or g6);
23 O1_4 <= false WHEN g1 ELSE O1_3;
24 O2_2 <= true WHEN g1 ELSE O2;
25
26 -- Assign outputs
27 A_out <= A_local;
28 B_out <= B;
29 O1 <= O1_4;
30 O2 <= O2_2;

Synchronous Languages Lecture 12 Slide 23

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Circuit-based Approach
Priority-based Approach
Approach Comparison

ABO SCL, Logic Synthesis (HW)

1 module ABO-seq
2 input output bool A, B;
3 output bool O1, O2;
4 bool GO, g0, g1, ...
5 {
6 g0 = GO;
7 if g0 {
8 O1 = false;
9 O2 = false;

10 };
11 g5 = g4_pre;
12 g7 = g8_pre;
13 g2 = g0 || g5;
14 g3 = g2 && A;
15 if g3 {
16 B = true;
17 O1 = true;
18 };
19 g4 = g2 && ! A;
20 g6 = g7 && B;
21 if g6 {
22 O1 = true;
23 };
24 g8 = g0 || (g7 && ! B);
25 e2 = ! g4;
26 e6 = ! g8;
27 g1 = (g3 || e2) &&
28 (g6 || e6) && (g3 ||

g6);
29 if g1 {
30 O1 = false;
31 O2 = true;
32 };
33 g4_pre = g4;
34 g8_pre = g8;
35 }

⇒

Difference to software

I All persistence (state, data) in external reg’s
(“ pre”-var’s)

I Permit only one value per wire per tick ⇒
SSA

1 ARCHITECTURE behavior OF ABO IS
2 -- local signals definition, hidden
3 begin
4 -- main logic
5 g0 <= GO_local;
6 O1 <= false WHEN g0 ELSE O1_pre;
7 O2 <= false WHEN g0 ELSE O2_pre;
8 g5 <= g4_pre;
9 g7 <= g8_pre;

10 g2 <= g0 or g5;
11 g3 <= g2 and A_local;
12 B <= true WHEN g3 ELSE B_local;
13 O1_2 <= true WHEN g3 ELSE O1;
14 g4 <= g2 and not A_local;
15 g6 <= g7 and B;
16 O1_3 <= true WHEN g6 ELSE O1_2;
17 g8 <= g0 or (g7 and not B);
18 e2 <= not (g4);
19 e6 <= not (g8);
20 g1 <= (g3 or e2) and
21 (g6 or e6) and
22 (g3 or g6);
23 O1_4 <= false WHEN g1 ELSE O1_3;
24 O2_2 <= true WHEN g1 ELSE O2;
25
26 -- Assign outputs
27 A_out <= A_local;
28 B_out <= B;
29 O1 <= O1_4;
30 O2 <= O2_2;

Synchronous Languages Lecture 12 Slide 23

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Circuit-based Approach
Priority-based Approach
Approach Comparison

Low-Level Synthesis II: The Priority Approach

I More software-like

I Don’t emulate control flow with
guards/basic blocks, but with
program counters/threads

I Priority-based thread dispatching

I SCLP : SCL + PrioIDs

I Implemented as C macros

Differences to Synchronous C [von Hanxleden ’09]

I No preemption ⇒ don’t need to keep track of thread hierarchies

I Fewer, more light-weight operators

I RISC instead of CISC

I More human-friendly syntax

Synchronous Languages Lecture 12 Slide 24

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Circuit-based Approach
Priority-based Approach
Approach Comparison

Low-Level Synthesis II: The Priority Approach

I More software-like

I Don’t emulate control flow with
guards/basic blocks, but with
program counters/threads

I Priority-based thread dispatching

I SCLP : SCL + PrioIDs

I Implemented as C macros

Differences to Synchronous C [von Hanxleden ’09]

I No preemption ⇒ don’t need to keep track of thread hierarchies

I Fewer, more light-weight operators

I RISC instead of CISC

I More human-friendly syntax

Synchronous Languages Lecture 12 Slide 24

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Circuit-based Approach
Priority-based Approach
Approach Comparison

Low-Level Synthesis II: The Priority Approach

I More software-like

I Don’t emulate control flow with
guards/basic blocks, but with
program counters/threads

I Priority-based thread dispatching

I SCLP : SCL + PrioIDs

I Implemented as C macros

Differences to Synchronous C [von Hanxleden ’09]

I No preemption ⇒ don’t need to keep track of thread hierarchies

I Fewer, more light-weight operators

I RISC instead of CISC

I More human-friendly syntax

Synchronous Languages Lecture 12 Slide 24

SCLP Macros I

1 // Declare Boolean type
2 typedef int bool;
3 #define false 0
4 #define true 1
5

6 // Generate "_L<line-number>" label
7 #define _concat_helper(a, b) a ## b
8 #define _concat(a, b) _concat_helper(a, b)
9 #define _label_ _concat(_L, __LINE__)

10

11 // Enable/disable threads with prioID p
12 #define _u2b(u) (1 << u)
13 #define _enable(p) _enabled |= _u2b(p); _active |= _u2b(p)
14 #define _isEnabled(p) ((_enabled & _u2b(p)) != 0)
15 #define _disable(p) _enabled &= ˜_u2b(p)

SCLP Macros II

17 // Set current thread continuation
18 #define _setPC(p, label) _pc[p] = &&label
19

20 // Pause, resume at <label> or at pause
21 #define _pause(label) _setPC(_cid, label); goto _L_PAUSE
22 #define pause _pause(_label_); _label_:
23

24 // Fork/join sibling thread with prioID p
25 #define fork1(label, p) _setPC(p, label); _enable(p);
26 #define join1(p) _label_: if (_isEnabled(p)) { _pause(_label_); }
27

28 // Terminate thread at "par"
29 #define par goto _L_TERM;
30

31 // Context switch (change prioID)
32 #define _prio(p) _deactivate(_cid); _disable(_cid); _cid = p; \
33 _enable(_cid); _setPC(_cid, _label_); goto _L_DISPATCH; _label_:

ABO SCLP I

85 int tick()
86 {
87 tickstart(2);
88 O1 = false;
89 O2 = false;
90

91 fork1(HandleB,
1) {

92 HandleA:
93 if (!A) {
94 pause;
95 goto HandleA

;
96 }
97 B = true;
98 O1 = true;
99

100 } par {

⇒

85 int tick()
86 {
87 if (_notInitial) { _active = _enabled;

goto _L_DISPATCH; } else { _pc[0]
= &&_L_TICKEND; _enabled = (1 <<
0); _active = _enabled; _cid = 2;
; _enabled |= (1 << _cid); _active
|= (1 << _cid); _notInitial = 1;
} ;

88 O1 = 0;
89 O2 = 0;
90

91 _pc[1] = &&HandleB; _enabled |= (1 <<
1); _active |= (1 << 1); {

92 HandleA:
93 if (!A) {
94 _pc[_cid] = &&_L94; goto _L_PAUSE;

_L94:;
95 goto HandleA;
96 }
97 B = 1;
98 O1 = 1;
99

100 } goto _L_TERM; {

ABO SCLP II

102 HandleB:
103 pause;
104 if (!B) {
105 goto HandleB

;
106 }
107 O1 = true;
108 } join1(2);
109

110 O1 = false;
111 O2 = true;
112 tickreturn;
113 }

⇒

102 HandleB:
103 _pc[_cid] = &&_L103; goto _L_PAUSE;

_L103:;
104 if (!B) {
105 goto HandleB;
106 }
107 O1 = 1;
108 } _L108: if (((_enabled & (1 << 2)) !=

0)) { _pc[_cid] = &&_L108; goto
_L_PAUSE; };

109

110 O1 = 0;
111 O2 = 1;
112 goto _L_TERM; _L_TICKEND: return (

_enabled != (1 << 0)); _L_TERM:
_enabled &= ˜(1 << _cid); _L_PAUSE
: _active &= ˜(1 << _cid);
_L_DISPATCH: __asm volatile("bsrl
%1,%0\n" : "=r" (_cid) : "r" (
_active)); goto *_pc[_cid];

113 }

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Circuit-based Approach
Priority-based Approach
Approach Comparison

Comparison of Low-Level Synthesis Approaches

Circuit Priority

Accepts instantaneous loops – +
Can synthesize hardware + –
Can synthesize software + +

Size scales well (linear in size of SCChart) + +
Speed scales well (execute only “active” parts) – +

Instruction-cache friendly (good locality) + –
Pipeline friendly (little/no branching) + –

WCRT predictable (simple control flow) + +/–
Low execution time jitter (simple/fixed flow) + –

Synchronous Languages Lecture 12 Slide 29

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Circuit-based Approach
Priority-based Approach
Approach Comparison

Comparison of Low-Level Synthesis Approaches

Circuit Priority
Accepts instantaneous loops – +

Can synthesize hardware + –
Can synthesize software + +

Size scales well (linear in size of SCChart) + +
Speed scales well (execute only “active” parts) – +

Instruction-cache friendly (good locality) + –
Pipeline friendly (little/no branching) + –

WCRT predictable (simple control flow) + +/–
Low execution time jitter (simple/fixed flow) + –

Synchronous Languages Lecture 12 Slide 29

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Circuit-based Approach
Priority-based Approach
Approach Comparison

Comparison of Low-Level Synthesis Approaches

Circuit Priority
Accepts instantaneous loops – +

Can synthesize hardware + –
Can synthesize software + +

Size scales well (linear in size of SCChart) + +

Speed scales well (execute only “active” parts) – +
Instruction-cache friendly (good locality) + –

Pipeline friendly (little/no branching) + –
WCRT predictable (simple control flow) + +/–

Low execution time jitter (simple/fixed flow) + –

Synchronous Languages Lecture 12 Slide 29

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Circuit-based Approach
Priority-based Approach
Approach Comparison

Comparison of Low-Level Synthesis Approaches

Circuit Priority
Accepts instantaneous loops – +

Can synthesize hardware + –
Can synthesize software + +

Size scales well (linear in size of SCChart) + +
Speed scales well (execute only “active” parts) – +

Instruction-cache friendly (good locality) + –
Pipeline friendly (little/no branching) + –

WCRT predictable (simple control flow) + +/–
Low execution time jitter (simple/fixed flow) + –

Synchronous Languages Lecture 12 Slide 29

Comparison — Jitter

Execution time comparison of statecharts with multiple
hierarchies depicts

I low jitter in circuit-based approach
I execution time in priority-based approach more

dependant to structure and input data of the statechart

Comparison — Jitter

Execution time comparison of statecharts with multiple
hierarchies depicts

I low jitter in circuit-based approach

I execution time in priority-based approach more
dependant to structure and input data of the statechart

Comparison — Jitter

Execution time comparison of statecharts with multiple
hierarchies depicts

I low jitter in circuit-based approach
I execution time in priority-based approach more

dependant to structure and input data of the statechart

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Classic Approaches
The SCL Solution
Summary

Overview

SCG Mapping & Dependency Analysis

Code Generation Approaches

Schizophrenia Revisited
Classic Approaches
The SCL Solution
Summary

Synchronous Languages Lecture 12 Slide 31

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Classic Approaches
The SCL Solution
Summary

. . . What About That Acyclicity?

1 module schizo
2 output O;
3
4 loop
5 signal S in
6 present S
7 then
8 emit O
9 end;

10 pause;
11 emit S;
12 end;
13 end loop
14 end module

Esterel
[Tardieu & de Si-
mone ’04]

⇒

1 module schizo-conc
2 output bool O;
3 {
4 while (true) {
5 bool S, _Term;
6
7 fork
8 _Term = false;
9 O = S;

10 pause;
11 S = S || true;
12 _Term = true;
13 par
14 while (true) {
15 S = false;
16 if (_Term)
17 break;
18 pause;
19 }
20 join;
21 }
22 }

SCL (1st try)

Q: The problem?
A: Instantaneous loop!
a.k.a. Signal reincarnation
a.k.a. Schizophrenia

Synchronous Languages Lecture 12 Slide 32

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Classic Approaches
The SCL Solution
Summary

. . . What About That Acyclicity?

1 module schizo
2 output O;
3
4 loop
5 signal S in
6 present S
7 then
8 emit O
9 end;

10 pause;
11 emit S;
12 end;
13 end loop
14 end module

Esterel
[Tardieu & de Si-
mone ’04]

⇒

1 module schizo-conc
2 output bool O;
3 {
4 while (true) {
5 bool S, _Term;
6
7 fork
8 _Term = false;
9 O = S;

10 pause;
11 S = S || true;
12 _Term = true;
13 par
14 while (true) {
15 S = false;
16 if (_Term)
17 break;
18 pause;
19 }
20 join;
21 }
22 }

SCL (1st try)

Q: The problem?
A: Instantaneous loop!
a.k.a. Signal reincarnation
a.k.a. Schizophrenia

Synchronous Languages Lecture 12 Slide 32

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Classic Approaches
The SCL Solution
Summary

. . . What About That Acyclicity?

1 module schizo
2 output O;
3
4 loop
5 signal S in
6 present S
7 then
8 emit O
9 end;

10 pause;
11 emit S;
12 end;
13 end loop
14 end module

Esterel
[Tardieu & de Si-
mone ’04]

⇒

1 module schizo-conc
2 output bool O;
3 {
4 while (true) {
5 bool S, _Term;
6
7 fork
8 _Term = false;
9 O = S;

10 pause;
11 S = S || true;
12 _Term = true;
13 par
14 while (true) {
15 S = false;
16 if (_Term)
17 break;
18 pause;
19 }
20 join;
21 }
22 }

SCL (1st try)

Q: The problem?
A: Instantaneous loop!
a.k.a. Signal reincarnation
a.k.a. Schizophrenia

Synchronous Languages Lecture 12 Slide 32

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Classic Approaches
The SCL Solution
Summary

. . . What About That Acyclicity?

1 module schizo
2 output O;
3
4 loop
5 signal S in
6 present S
7 then
8 emit O
9 end;

10 pause;
11 emit S;
12 end;
13 end loop
14 end module

Esterel
[Tardieu & de Si-
mone ’04]

⇒

1 module schizo-conc
2 output bool O;
3 {
4 while (true) {
5 bool S, _Term;
6
7 fork
8 _Term = false;
9 O = S;

10 pause;
11 S = S || true;
12 _Term = true;
13 par
14 while (true) {
15 S = false;
16 if (_Term)
17 break;
18 pause;
19 }
20 join;
21 }
22 }

SCL (1st try)

Q: The problem?

A: Instantaneous loop!
a.k.a. Signal reincarnation
a.k.a. Schizophrenia

Synchronous Languages Lecture 12 Slide 32

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Classic Approaches
The SCL Solution
Summary

. . . What About That Acyclicity?

1 module schizo
2 output O;
3
4 loop
5 signal S in
6 present S
7 then
8 emit O
9 end;

10 pause;
11 emit S;
12 end;
13 end loop
14 end module

Esterel
[Tardieu & de Si-
mone ’04]

⇒

1 module schizo-conc
2 output bool O;
3 {
4 while (true) {
5 bool S, _Term;
6
7 fork
8 _Term = false;
9 O = S;

10 pause;
11 S = S || true;
12 _Term = true;
13 par
14 while (true) {
15 S = false;
16 if (_Term)
17 break;
18 pause;
19 }
20 join;
21 }
22 }

SCL (1st try)

Q: The problem?
A: Instantaneous loop!

a.k.a. Signal reincarnation
a.k.a. Schizophrenia

Synchronous Languages Lecture 12 Slide 32

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Classic Approaches
The SCL Solution
Summary

. . . What About That Acyclicity?

1 module schizo
2 output O;
3
4 loop
5 signal S in
6 present S
7 then
8 emit O
9 end;

10 pause;
11 emit S;
12 end;
13 end loop
14 end module

Esterel
[Tardieu & de Si-
mone ’04]

⇒

1 module schizo-conc
2 output bool O;
3 {
4 while (true) {
5 bool S, _Term;
6
7 fork
8 _Term = false;
9 O = S;

10 pause;
11 S = S || true;
12 _Term = true;
13 par
14 while (true) {
15 S = false;
16 if (_Term)
17 break;
18 pause;
19 }
20 join;
21 }
22 }

SCL (1st try)

Q: The problem?
A: Instantaneous loop!
a.k.a. Signal reincarnation
a.k.a. Schizophrenia

Synchronous Languages Lecture 12 Slide 32

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Classic Approaches
The SCL Solution
Summary

A Solution

1 module schizo
2 output O;
3
4 loop
5 signal S in
6 present S
7 then
8 emit O
9 end;

10 pause;
11 emit S;
12 end;
13 end loop
14 end module

Esterel

⇒

1 module schizo-cured
2 output O;
3
4 loop
5 signal S in
6 present S then
7 emit O
8 end;
9 pause;

10 emit S;
11 end;
12 signal S’ in
13 present S’ then
14 emit O
15 end;
16 pause;
17 emit S’;
18 end;
19 end loop

I Duplicated loop body to
separate signal instances

I Q: Complexity?

I A: Exponential /

Synchronous Languages Lecture 12 Slide 33

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Classic Approaches
The SCL Solution
Summary

A Solution

1 module schizo
2 output O;
3
4 loop
5 signal S in
6 present S
7 then
8 emit O
9 end;

10 pause;
11 emit S;
12 end;
13 end loop
14 end module

Esterel

⇒

1 module schizo-cured
2 output O;
3
4 loop
5 signal S in
6 present S then
7 emit O
8 end;
9 pause;

10 emit S;
11 end;
12 signal S’ in
13 present S’ then
14 emit O
15 end;
16 pause;
17 emit S’;
18 end;
19 end loop

I Duplicated loop body to
separate signal instances

I Q: Complexity?

I A: Exponential /

Synchronous Languages Lecture 12 Slide 33

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Classic Approaches
The SCL Solution
Summary

A Solution

1 module schizo
2 output O;
3
4 loop
5 signal S in
6 present S
7 then
8 emit O
9 end;

10 pause;
11 emit S;
12 end;
13 end loop
14 end module

Esterel

⇒

1 module schizo-cured
2 output O;
3
4 loop
5 signal S in
6 present S then
7 emit O
8 end;
9 pause;

10 emit S;
11 end;
12 signal S’ in
13 present S’ then
14 emit O
15 end;
16 pause;
17 emit S’;
18 end;
19 end loop

I Duplicated loop body to
separate signal instances

I Q: Complexity?

I A: Exponential /

Synchronous Languages Lecture 12 Slide 33

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Classic Approaches
The SCL Solution
Summary

A Better Solution

1 module schizo
2 output O;
3
4 loop
5 signal S in
6 present S
7 then
8 emit O
9 end;

10 pause;
11 emit S;
12 end;
13 end loop
14 end module

Esterel

⇒

1 module
2 schizo-cured2-strl
3 output O;
4
5 loop
6 % Surface
7 signal S in
8 present S then
9 emit O

10 end;
11 end;
12
13 % Depth
14 signal S’ in
15 pause;
16 emit S’;
17 end;
18 end loop

[Tardieu & de Simone
’04]
(simplified)

I Duplicated loop body

I “Surface copy” transfers control
immediately to “depth copy”

I Q: Complexity?

I A: Quadratic

Synchronous Languages Lecture 12 Slide 34

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Classic Approaches
The SCL Solution
Summary

A Better Solution

1 module schizo
2 output O;
3
4 loop
5 signal S in
6 present S
7 then
8 emit O
9 end;

10 pause;
11 emit S;
12 end;
13 end loop
14 end module

Esterel

⇒

1 module
2 schizo-cured2-strl
3 output O;
4
5 loop
6 % Surface
7 signal S in
8 present S then
9 emit O

10 end;
11 end;
12
13 % Depth
14 signal S’ in
15 pause;
16 emit S’;
17 end;
18 end loop

[Tardieu & de Simone
’04]
(simplified)

I Duplicated loop body

I “Surface copy” transfers control
immediately to “depth copy”

I Q: Complexity?

I A: Quadratic

Synchronous Languages Lecture 12 Slide 34

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Classic Approaches
The SCL Solution
Summary

A Better Solution

1 module schizo
2 output O;
3
4 loop
5 signal S in
6 present S
7 then
8 emit O
9 end;

10 pause;
11 emit S;
12 end;
13 end loop
14 end module

Esterel

⇒

1 module
2 schizo-cured2-strl
3 output O;
4
5 loop
6 % Surface
7 signal S in
8 present S then
9 emit O

10 end;
11 end;
12
13 % Depth
14 signal S’ in
15 pause;
16 emit S’;
17 end;
18 end loop

[Tardieu & de Simone
’04]
(simplified)

I Duplicated loop body

I “Surface copy” transfers control
immediately to “depth copy”

I Q: Complexity?

I A: Quadratic

Synchronous Languages Lecture 12 Slide 34

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Classic Approaches
The SCL Solution
Summary

A Better Solution

1 module schizo
2 output O;
3
4 loop
5 signal S in
6 present S
7 then
8 emit O
9 end;

10 pause;
11 emit S;
12 end;
13 end loop
14 end module

Esterel

⇒

1 module
2 schizo-cured2-strl
3 output O;
4
5 loop
6 % Surface
7 signal S in
8 present S then
9 emit O

10 end;
11 end;
12
13 % Depth
14 signal S’ in
15 pause;
16 emit S’;
17 end;
18 end loop

[Tardieu & de Simone
’04]
(simplified)

I Duplicated loop body

I “Surface copy” transfers control
immediately to “depth copy”

I Q: Complexity?

I A: Quadratic

Synchronous Languages Lecture 12 Slide 34

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Classic Approaches
The SCL Solution
Summary

The SCL Solution

1 module schizo
2 output O;
3
4 loop
5 signal S in
6 present S
7 then
8 emit O
9 end;

10 pause;
11 emit S;
12 end;
13 end loop
14 end module

Esterel

⇒

1 module schizo-cured
2 output bool O;
3 {
4 while (true) {
5 bool S, _Term;
6
7 // Surf init
8 S = false;
9 _Term = false;

10 fork
11 O = S;
12 pause;
13 S = S || true;
14 _Term = true;
15 par
16 do {
17 pause;
18 // Depth init
19 S = false;
20 } while (!_Term);
21 join;
22 }
23 }

SCL

I “Surface initialization” at
beginning of scope

I Delayed, concurrent “depth
initialization”

I Q: Complexity?

I A: Linear ,

I Caveat: We only talk about
signal reincarnation, i. e.,
instantaneously exiting and
entering a signal scope

I Reincarnated statements still
require duplication (quadratic
worst case?)

Synchronous Languages Lecture 12 Slide 35

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Classic Approaches
The SCL Solution
Summary

The SCL Solution

1 module schizo
2 output O;
3
4 loop
5 signal S in
6 present S
7 then
8 emit O
9 end;

10 pause;
11 emit S;
12 end;
13 end loop
14 end module

Esterel

⇒

1 module schizo-cured
2 output bool O;
3 {
4 while (true) {
5 bool S, _Term;
6
7 // Surf init
8 S = false;
9 _Term = false;

10 fork
11 O = S;
12 pause;
13 S = S || true;
14 _Term = true;
15 par
16 do {
17 pause;
18 // Depth init
19 S = false;
20 } while (!_Term);
21 join;
22 }
23 }

SCL

I “Surface initialization” at
beginning of scope

I Delayed, concurrent “depth
initialization”

I Q: Complexity?

I A: Linear ,

I Caveat: We only talk about
signal reincarnation, i. e.,
instantaneously exiting and
entering a signal scope

I Reincarnated statements still
require duplication (quadratic
worst case?)

Synchronous Languages Lecture 12 Slide 35

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Classic Approaches
The SCL Solution
Summary

The SCL Solution

1 module schizo
2 output O;
3
4 loop
5 signal S in
6 present S
7 then
8 emit O
9 end;

10 pause;
11 emit S;
12 end;
13 end loop
14 end module

Esterel

⇒

1 module schizo-cured
2 output bool O;
3 {
4 while (true) {
5 bool S, _Term;
6
7 // Surf init
8 S = false;
9 _Term = false;

10 fork
11 O = S;
12 pause;
13 S = S || true;
14 _Term = true;
15 par
16 do {
17 pause;
18 // Depth init
19 S = false;
20 } while (!_Term);
21 join;
22 }
23 }

SCL

I “Surface initialization” at
beginning of scope

I Delayed, concurrent “depth
initialization”

I Q: Complexity?

I A: Linear ,

I Caveat: We only talk about
signal reincarnation, i. e.,
instantaneously exiting and
entering a signal scope

I Reincarnated statements still
require duplication (quadratic
worst case?)

Synchronous Languages Lecture 12 Slide 35

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Classic Approaches
The SCL Solution
Summary

The SCL Solution

1 module schizo
2 output O;
3
4 loop
5 signal S in
6 present S
7 then
8 emit O
9 end;

10 pause;
11 emit S;
12 end;
13 end loop
14 end module

Esterel

⇒

1 module schizo-cured
2 output bool O;
3 {
4 while (true) {
5 bool S, _Term;
6
7 // Surf init
8 S = false;
9 _Term = false;

10 fork
11 O = S;
12 pause;
13 S = S || true;
14 _Term = true;
15 par
16 do {
17 pause;
18 // Depth init
19 S = false;
20 } while (!_Term);
21 join;
22 }
23 }

SCL

I “Surface initialization” at
beginning of scope

I Delayed, concurrent “depth
initialization”

I Q: Complexity?

I A: Linear ,

I Caveat: We only talk about
signal reincarnation, i. e.,
instantaneously exiting and
entering a signal scope

I Reincarnated statements still
require duplication (quadratic
worst case?)

Synchronous Languages Lecture 12 Slide 35

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Classic Approaches
The SCL Solution
Summary

The SCL Solution

1 module schizo
2 output O;
3
4 loop
5 signal S in
6 present S
7 then
8 emit O
9 end;

10 pause;
11 emit S;
12 end;
13 end loop
14 end module

Esterel

⇒

1 module schizo-cured
2 output bool O;
3 {
4 while (true) {
5 bool S, _Term;
6
7 // Surf init
8 S = false;
9 _Term = false;

10 fork
11 O = S;
12 pause;
13 S = S || true;
14 _Term = true;
15 par
16 do {
17 pause;
18 // Depth init
19 S = false;
20 } while (!_Term);
21 join;
22 }
23 }

SCL

I “Surface initialization” at
beginning of scope

I Delayed, concurrent “depth
initialization”

I Q: Complexity?

I A: Linear ,

I Caveat: We only talk about
signal reincarnation, i. e.,
instantaneously exiting and
entering a signal scope

I Reincarnated statements still
require duplication (quadratic
worst case?)

Synchronous Languages Lecture 12 Slide 35

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Classic Approaches
The SCL Solution
Summary

SCG for schizo-cured

1 module schizo-cured
2 output bool O;
3 {
4 while (true) {
5 bool S, _Term;
6
7 // Surf init
8 S = false;
9 _Term = false;

10 fork
11 O = S;
12 pause;
13 S = S || true;
14 _Term = true;
15 par
16 do {
17 pause;
18 // Depth init
19 S = false;
20 } while (!_Term);
21 join;
22 }
23 }

SCL

I Cycle now broken by delay

I Only the “depth initialization” of S creates a
concurrent “initialize before update”
scheduling dependence

Synchronous Languages Lecture 12 Slide 36

SCG Mapping & Dependency Analysis
Code Generation Approaches

Schizophrenia Revisited

Classic Approaches
The SCL Solution
Summary

SCG for schizo-cured

1 module schizo-cured
2 output bool O;
3 {
4 while (true) {
5 bool S, _Term;
6
7 // Surf init
8 S = false;
9 _Term = false;

10 fork
11 O = S;
12 pause;
13 S = S || true;
14 _Term = true;
15 par
16 do {
17 pause;
18 // Depth init
19 S = false;
20 } while (!_Term);
21 join;
22 }
23 }

SCL

I Cycle now broken by delay

I Only the “depth initialization” of S creates a
concurrent “initialize before update”
scheduling dependence

Synchronous Languages Lecture 12 Slide 36

Schizophrenic Parallel
I Recall the equations for joining (two) threads:

gjoin = (d1 ∨m1) ∧ (d2 ∨m2) ∧ (d1 ∨ d2), where for each thread ti it
is “done” di = gexit and “empty” mi = ¬(gfork ∨

∨
depth∈ti gdepth)

I The join guard gjoin corresponds to the K0 output of the Esterel
circuit synthesis

I Since gjoin depends on gfork, the reincarnation of parallel leads to
non-constructive circuits, just as with Esterel circuit synthesis

I We may apply same solution: divide join into surface join gs−join
and depth join gd−join

I The logic for suface join and depth is the same, except that in
depth join, we replace gfork by false

I One can construct examples where both gs−join and gd−join are
needed.

I If parallel is not instantaneous, only need gd−join.

I In SCG, if thread terminates instantaneously in non-instantaneous
parallel, we end in unjoined exit, visualized with small solid disk

Schizophrenic Parallel
I Recall the equations for joining (two) threads:

gjoin = (d1 ∨m1) ∧ (d2 ∨m2) ∧ (d1 ∨ d2), where for each thread ti it
is “done” di = gexit and “empty” mi = ¬(gfork ∨

∨
depth∈ti gdepth)

I The join guard gjoin corresponds to the K0 output of the Esterel
circuit synthesis

I Since gjoin depends on gfork, the reincarnation of parallel leads to
non-constructive circuits, just as with Esterel circuit synthesis

I We may apply same solution: divide join into surface join gs−join
and depth join gd−join

I The logic for suface join and depth is the same, except that in
depth join, we replace gfork by false

I One can construct examples where both gs−join and gd−join are
needed.

I If parallel is not instantaneous, only need gd−join.

I In SCG, if thread terminates instantaneously in non-instantaneous
parallel, we end in unjoined exit, visualized with small solid disk

Schizophrenic Parallel
I Recall the equations for joining (two) threads:

gjoin = (d1 ∨m1) ∧ (d2 ∨m2) ∧ (d1 ∨ d2), where for each thread ti it
is “done” di = gexit and “empty” mi = ¬(gfork ∨

∨
depth∈ti gdepth)

I The join guard gjoin corresponds to the K0 output of the Esterel
circuit synthesis

I Since gjoin depends on gfork, the reincarnation of parallel leads to
non-constructive circuits, just as with Esterel circuit synthesis

I We may apply same solution: divide join into surface join gs−join
and depth join gd−join

I The logic for suface join and depth is the same, except that in
depth join, we replace gfork by false

I One can construct examples where both gs−join and gd−join are
needed.

I If parallel is not instantaneous, only need gd−join.

I In SCG, if thread terminates instantaneously in non-instantaneous
parallel, we end in unjoined exit, visualized with small solid disk

Schizophrenic Parallel
I Recall the equations for joining (two) threads:

gjoin = (d1 ∨m1) ∧ (d2 ∨m2) ∧ (d1 ∨ d2), where for each thread ti it
is “done” di = gexit and “empty” mi = ¬(gfork ∨

∨
depth∈ti gdepth)

I The join guard gjoin corresponds to the K0 output of the Esterel
circuit synthesis

I Since gjoin depends on gfork, the reincarnation of parallel leads to
non-constructive circuits, just as with Esterel circuit synthesis

I We may apply same solution: divide join into surface join gs−join
and depth join gd−join

I The logic for suface join and depth is the same, except that in
depth join, we replace gfork by false

I One can construct examples where both gs−join and gd−join are
needed.

I If parallel is not instantaneous, only need gd−join.

I In SCG, if thread terminates instantaneously in non-instantaneous
parallel, we end in unjoined exit, visualized with small solid disk

Schizophrenic Parallel
I Recall the equations for joining (two) threads:

gjoin = (d1 ∨m1) ∧ (d2 ∨m2) ∧ (d1 ∨ d2), where for each thread ti it
is “done” di = gexit and “empty” mi = ¬(gfork ∨

∨
depth∈ti gdepth)

I The join guard gjoin corresponds to the K0 output of the Esterel
circuit synthesis

I Since gjoin depends on gfork, the reincarnation of parallel leads to
non-constructive circuits, just as with Esterel circuit synthesis

I We may apply same solution: divide join into surface join gs−join
and depth join gd−join

I The logic for suface join and depth is the same, except that in
depth join, we replace gfork by false

I One can construct examples where both gs−join and gd−join are
needed.

I If parallel is not instantaneous, only need gd−join.

I In SCG, if thread terminates instantaneously in non-instantaneous
parallel, we end in unjoined exit, visualized with small solid disk

Statement Reincarnation

I Consider I absent in initial tick, present in next tick

I Must then increment O twice

Statement Reincarnation

I Consider I absent in initial tick, present in next tick

I Must then increment O twice

Statement Reincarnation

I To remove cycle, must duplicate the part of the surface of the
thread that might instantaneously terminate, i.e., nodes on
instantaneous path from entry to exit

I The second increment of O leads to unjoined exit

Summary

1. Sequential Constructiveness natural for synchrony

2. Same semantic foundation from Extended SCCharts down to
machine instructions/physical gates

I Modeler/programmer has direct access to target platform
I No conceptual breaks, e. g., when mapping signals to variables

3. Efficient synthesis paths for hw and sw, building on established
techniques (circuit semantics, guarded actions, SSA, . . .)

4. Treating advanced constructs as syntactic sugar simplifies
down-stream synthesis
(CISC vs. RISC)

5. Plenty of future work: compilation of Esterel-like languages,
trade-off RISC vs. CISC, WCRT analysis, timing-predictable design
flows (→ PRETSY), multi-clock, visualization, . . .

Summary

1. Sequential Constructiveness natural for synchrony

2. Same semantic foundation from Extended SCCharts down to
machine instructions/physical gates

I Modeler/programmer has direct access to target platform
I No conceptual breaks, e. g., when mapping signals to variables

3. Efficient synthesis paths for hw and sw, building on established
techniques (circuit semantics, guarded actions, SSA, . . .)

4. Treating advanced constructs as syntactic sugar simplifies
down-stream synthesis
(CISC vs. RISC)

5. Plenty of future work: compilation of Esterel-like languages,
trade-off RISC vs. CISC, WCRT analysis, timing-predictable design
flows (→ PRETSY), multi-clock, visualization, . . .

Summary

1. Sequential Constructiveness natural for synchrony

2. Same semantic foundation from Extended SCCharts down to
machine instructions/physical gates

I Modeler/programmer has direct access to target platform
I No conceptual breaks, e. g., when mapping signals to variables

3. Efficient synthesis paths for hw and sw, building on established
techniques (circuit semantics, guarded actions, SSA, . . .)

4. Treating advanced constructs as syntactic sugar simplifies
down-stream synthesis
(CISC vs. RISC)

5. Plenty of future work: compilation of Esterel-like languages,
trade-off RISC vs. CISC, WCRT analysis, timing-predictable design
flows (→ PRETSY), multi-clock, visualization, . . .

Summary

1. Sequential Constructiveness natural for synchrony

2. Same semantic foundation from Extended SCCharts down to
machine instructions/physical gates

I Modeler/programmer has direct access to target platform
I No conceptual breaks, e. g., when mapping signals to variables

3. Efficient synthesis paths for hw and sw, building on established
techniques (circuit semantics, guarded actions, SSA, . . .)

4. Treating advanced constructs as syntactic sugar simplifies
down-stream synthesis
(CISC vs. RISC)

5. Plenty of future work: compilation of Esterel-like languages,
trade-off RISC vs. CISC, WCRT analysis, timing-predictable design
flows (→ PRETSY), multi-clock, visualization, . . .

Summary

1. Sequential Constructiveness natural for synchrony

2. Same semantic foundation from Extended SCCharts down to
machine instructions/physical gates

I Modeler/programmer has direct access to target platform
I No conceptual breaks, e. g., when mapping signals to variables

3. Efficient synthesis paths for hw and sw, building on established
techniques (circuit semantics, guarded actions, SSA, . . .)

4. Treating advanced constructs as syntactic sugar simplifies
down-stream synthesis
(CISC vs. RISC)

5. Plenty of future work: compilation of Esterel-like languages,
trade-off RISC vs. CISC, WCRT analysis, timing-predictable design
flows (→ PRETSY), multi-clock, visualization, . . .

Summary

1. Sequential Constructiveness natural for synchrony

2. Same semantic foundation from Extended SCCharts down to
machine instructions/physical gates

I Modeler/programmer has direct access to target platform
I No conceptual breaks, e. g., when mapping signals to variables

3. Efficient synthesis paths for hw and sw, building on established
techniques (circuit semantics, guarded actions, SSA, . . .)

4. Treating advanced constructs as syntactic sugar simplifies
down-stream synthesis
(CISC vs. RISC)

5. Plenty of future work: compilation of Esterel-like languages,
trade-off RISC vs. CISC, WCRT analysis, timing-predictable design
flows (→ PRETSY), multi-clock, visualization, . . .

To Go Further

I J. Aguado, M. Mendler, R. von Hanxleden, I. Fuhrmann. Grounding
Synchronous Deterministic Concurrency in Sequential Programming.
In Proceedings of the 23rd European Symposium on Programming
(ESOP’14), Grenoble, France, April 2014.
https://rtsys.informatik.uni-kiel.de/˜biblio/
downloads/papers/esop14.pdf

I R. von Hanxleden, M. Mendler, J. Aguado, B. Duderstadt, I.
Fuhrmann, C. Motika, S. Mercer, O. O’Brien, and P. Roop.
Sequentially Constructive Concurrency – A Conservative Extension
of the Synchronous Model of Computation. ACM Transactions on
Embedded Computing Systems, Special Issue on Applications of
Concurrency to System Design, July 2014, 13(4s).
https://rtsys.informatik.uni-kiel.de/˜biblio/
downloads/papers/tecs14.pdf

https://rtsys.informatik.uni-kiel.de/~biblio/downloads/papers/esop14.pdf
https://rtsys.informatik.uni-kiel.de/~biblio/downloads/papers/esop14.pdf
https://rtsys.informatik.uni-kiel.de/~biblio/downloads/papers/tecs14.pdf
https://rtsys.informatik.uni-kiel.de/~biblio/downloads/papers/tecs14.pdf

	Main Talk
	
	SCG Mapping & Dependency Analysis
	Compilation Overview
	The SC Graph
	Dependency Analysis

	Code Generation Approaches
	Circuit-based Approach
	Priority-based Approach
	Approach Comparison

	Schizophrenia Revisited
	Classic Approaches
	The SCL Solution
	Summary

	fd@rm@0:

