
Schizophrenia and Reincarnation

Synchronous Languages—Lecture 08

Prof. Dr. Reinhard von Hanxleden

Christian-Albrechts Universität Kiel
Department of Computer Science

Real-Time Systems and Embedded Systems Group

14 May 2020
Last compiled: May 19, 2020, 10:59 hrs

Schizophrenia Problems

Synchronous Languages Lecture 08 Slide 1

Schizophrenia and Reincarnation

The 5-Minute Review Session

1. How can we determine the constructive behavioral semantics
of a program? (Hint: 2-step procedure)

2. When does this fail?

3. What is the difference to the logical behavioral semantics?

4. What is the physical explanation/equivalent for
constructiveness?

5. What circuit property is equivalent to logical correctness?

Synchronous Languages Lecture 08 Slide 2

Schizophrenia and Reincarnation

Overview

Schizophrenia and Reincarnation
The Problem
Solving the Reincarnation Problem
Tardieu and de Simone (2004)

Synchronous Languages Lecture 08 Slide 3

This lecture is based on material kindly provided by Klaus
Schneider,
http://rsg.informatik.uni-kl.de/people/schneider/

Schizophrenia and Reincarnation
The Problem
Solving the Reincarnation Problem
Tardieu and de Simone (2004)

Schizophrenia Problems
Recall

I Synchronous programs consist of macro steps

I Macro steps consist of micro steps

I Transition rules define micro steps

Questions:

I Can a statement be executed more than once in a macro step?

I If so, does this cause any problems?

Schizophrenic statements

I are statements that are started more than once in a macro
step (eg., an emit), or left and entered in the same macrostep
(eg., an abort)

I Although signal values do not change in the further starts, the
repeated execution might differ!

Synchronous Languages Lecture 08 Slide 4

Schizophrenia and Reincarnation
The Problem
Solving the Reincarnation Problem
Tardieu and de Simone (2004)

A Related Problem with Abortion

loop

abort

emit A;

pause;

emit B

when I

end loop

Assume the control is at the pause and I is
present

; emit B is aborted

; emit A is executed

Hence, we cannot simply say that

I Weak abortion executes all actions of
the macro step

I And strong abortion kills these actions

Instead, it depends on whether the actions belong to the surface of
the abort statement or to its depth

I Surface of a statement: parts that are reachable in one
macrostep.

I Depth of a statement: all parts reachable in later macrosteps.

Synchronous Languages Lecture 08 Slide 5

Schizophrenia and Reincarnation
The Problem
Solving the Reincarnation Problem
Tardieu and de Simone (2004)

Example for Schizophrenic Emission

loop

present I then

pause

end present;

emit A;

||

pause

end loop

I The previous example was not yet
schizophrenic

I However, consider Schizo1 on the left
I Assume I was present in the first

instance and is absent in the second

; emit A is executed
; loop restarts its body
; present I . . . is skipped
; emit A is executed twice

I Hence, schizophrenic statements exist

Synchronous Languages Lecture 08 Slide 6

Schizophrenia and Reincarnation
The Problem
Solving the Reincarnation Problem
Tardieu and de Simone (2004)

Schizophrenic Actions

I Is it a problem that statements may be executed more than
once in a macro step?

I Since the value of a valued signal is always computed for a
whole macrostep, it appears (at a first glance) not to be a
problem
I Executing emit S more than once makes S present
I Executing emit(S(i)) more than once has the same effect as

the execution of multiple emit(S(i))

I So, the synchrony of the valued signal updates and the causal
ordering of variable updates seems to make everything
consistent

I However, scopes of local variables may be re-entered

I This can change the environment in micro steps

; Reincarnation problem

Synchronous Languages Lecture 08 Slide 7

Schizophrenia and Reincarnation
The Problem
Solving the Reincarnation Problem
Tardieu and de Simone (2004)

The Reincarnation Problem

I The reincarnation problem is related to schizophrenia

I Reincarnation takes place, iff a local declaration is left and
re-entered within the same macro step

I This is not necessarily a problem

I However, it may lead to unexpected behaviours

I In particular, in combination with schizophrenic statements,
since these may behave different in the second execution

Synchronous Languages Lecture 08 Slide 8

Schizophrenia and Reincarnation
The Problem
Solving the Reincarnation Problem
Tardieu and de Simone (2004)

The Simplest Example for Reincarnation

loop

signal S in

present S then

emit S_on

else

emit S_off

end;

pause

emit S;

present S then

emit S_on

else

emit S_off

end;

end signal

end loop

I If control starts at the pause, then S

is emitted

I Second conditional emits S on

I Scope of local signal is left

I Loop restarts its body

I Scope of local signal is entered

I First conditional emits S off

I Control stops at pause

; Both S on and S off are present for
t > 0

Synchronous Languages Lecture 08 Slide 9

Schizophrenia and Reincarnation
The Problem
Solving the Reincarnation Problem
Tardieu and de Simone (2004)

Compilation to Software

I Reincarnating local declarations is well-known from sequential
imperative languages

I It is handled by maintaining a stack that holds the current
visible variables together with their values

I If a local declaration is entered, an entry for the variable is put
on the stack

I During execution, the values of the variables on the stack may
be changed; to this end, the stack is searched from top to
bottom to find a variable

I If a local declaration is left, the entry is deleted from the stack

; No problem in software

Synchronous Languages Lecture 08 Slide 10

Schizophrenia and Reincarnation
The Problem
Solving the Reincarnation Problem
Tardieu and de Simone (2004)

Schizophrenia

module P17:

output O;

loop

signal S in

present S

then emit O

end present;

pause;

emit S;

end signal

end loop

end module

≡

12.4. AN EASY SOLUTION 133

S-

S+
O'0

S S'

Figure 12.3: Incorrect basic circuit for (((s ? !o ; 0) ; 1 ; !s)ns)�

re-entered, the body is executed with a fresh incarnation of S, which is not
emitted. Therefore, the test takes its else branch, O is not emitted, and we
are back to the same state.

The (simpli�ed) basic circuit translation is pictured in Figure 12.3. The
circuit is constructive, but it behaves incorrectly in the second instant. The S0

wire is set by the pause register, and it is directly fed back into the presence
test. The test takes its then branch and provokes emission of O instead of
taking its else branch as in the semantics.

The key point is that the basic translation does not take into account the
scope of S. The statement is translated as if it were ((s ? !o ; 0) ; 1̂ ; !s)�ns,
which indeed emits o in the second instant since s does not reincarnate any
more. A �ner translation is clearly needed to correctly handle the instanta-
neous reincarnation of S induced by scoping.

12.4 An Easy Solution

An easy solution is to duplicate the body of each loop, transforming p�
into (p ; p)�, which is semantically equivalent. The parallel example becomes

I The circuit resulting from the
translation rules (as given so far) does
not behave as P17!

I The Problem: The circuit translation
rules do not consider signal scoping
rules

I Different signal incarnations are
treated as identical

Synchronous Languages Lecture 08 Slide 11

I The circuit behaves as if there were just one instance of S

I Hence, O is emitted from the second instance on

I The equivalent Esterel program would be as P17, but with the
signal declaration interchanged with the loop

Schizophrenia and Reincarnation
The Problem
Solving the Reincarnation Problem
Tardieu and de Simone (2004)

Compilation Problem

The proposed hardware synthesis can still be used with the
following adaptions:

I generate copies of locally declared signals (one for the surface
and one for the depth)

I decide for every occurrence of these signals which copy is
meant

Note: more than one copy may be required this way
; multiple reincarnation

Synchronous Languages Lecture 08 Slide 12

Schizophrenia and Reincarnation
The Problem
Solving the Reincarnation Problem
Tardieu and de Simone (2004)

Schizophrenia

module P17:

output O;

loop

signal S in

present S

then emit O

end present;

pause;

emit S;

end signal

end loop

end module

≡

136 CHAPTER 12. SCHIZOPHRENIA

S[0]

S[0]-

S[0]+

S'[1]

0
O'

S'[1]= 0
S[1]

Figure 12.5: Correct circuit for (((s ? !o , 0) ; 1 ; !s)\s)∗

using a reasonable amount of logic duplication.

A correct translation of P16 is pictured in Figure 12.4. It uses separate
synchronizers for the surface and the depth. The top surface synchronizer
is called SYN[0], and the bottom depth synchronizer is called SYN[1]. The
parallel statement is initially started using the surface synchronizer, which
detects pausing and sets K1[0]. In the next instants, the selected pause

register sets the termination input R0[1] of the depth synchronizer SYN[1],
which reports immediate termination of the parallel statement by setting the
output K0[1]. The parallel is immediately restarted and the inputs L0[0]

and R1[0] of the surface synchronizer SYN[0] are set. The surface synchro-
nizer reports pausing by setting K1[0].

At first glance, the new circuit looks much bigger than the old one.
However, when constants are propagated, almost nothing is left of the circuit,
and there is no practical penalty to the duplication. The LEM and REM inputs
are also handled in a simpler way:

• In the surface synchronizer, we set LEM = REM = 0 since we know that
each branch will act and return a termination code when the parallel
is started by setting GO.

• In the depth synchronizer, a branch will return a termination code if
and only if it is selected. The negation of the branch selection wire is
connected to the auxiliary input.

I In this circuit, signal is handled
correctly by separating surface and
depth

Synchronous Languages Lecture 08 Slide 13

Schizophrenia and Reincarnation
The Problem
Solving the Reincarnation Problem
Tardieu and de Simone (2004)

Multiple Reincarnation

loop (a)

trap T1 in

pause; (1)

exit T1

||

loop (b)

trap T2 in

pause; (2)

exit T2

||

loop (c)

emit O(1);

pause (3)

end loop

end trap

end loop

end trap

end loop

I O is an integer signal, combined by +

I After first macrostep, control rests on
all three pause statements in parallel

I In the second macrostep:

I pause (3) is left → restart
loop (c) → O(1) emitted

I pause (2) is left → execute
exit T2 → restart loop (b)
→ emit O(1)

I pause (1) is left → execute
exit T1 → restart loop (a)
→ emit O(1)

; O(1) is emitted three times

Synchronous Languages Lecture 08 Slide 14

This example can easily be extended to even more reincarnations.
Hence a statement can be restarted arbitrarily often in one
macrostep.

Schizophrenia and Reincarnation
The Problem
Solving the Reincarnation Problem
Tardieu and de Simone (2004)

Multiple Reincarnation

I Nested loops may even lead to multiple reincarnations

I Note: leaving and restarting a local declaration can only be
done by a surrounding loop

I Number of nested loops around the local declaration
corresponds with the number of possible reincarnations

I Remark: generated copies can, in principle, be substituted,
however, the compilation is then even more complicated

Synchronous Languages Lecture 08 Slide 15

Schizophrenia and Reincarnation
The Problem
Solving the Reincarnation Problem
Tardieu and de Simone (2004)

Schizophrenia
I Schizophrenia can be a problem even without local signal

reincarnations
I To illustrate, first consider the following circuit translation

(which is equivalent to sustain S):

module SUSTAIN:

output S;

loop

emit S;

pause

end loop;

end module

≡

130 CHAPTER 12. SCHIZOPHRENIA

s'

0

0

0

1

K1

SUSP

RES

SEL

K0

KILL

GO

pause

Figure 12.1: Circuit for sustain s = (!s ; 1)�

12.1 A Correctly Translated Loop

Consider the statement �sustain S�, i.e. (!s ; 1)�. The circuit translation is
pictured in Figure 12.1. The K0 output of the pause subcircuit feeds back
to the GO input, but no combinational cycle is created and the translation is
correct. Of course, the circuit almost vanishes by constant propagation.

In the second instant, the (r-pause) and (s-pause) behaviors are harm-
lessly superimposed in the pause subcircuit: both RES and GO inputs of the
subcircuit are set, and the subcircuit sets both its K0 and K1 completion
outputs.

12.2 Schizophrenic Parallel Synchronizers

Consider now the following apparently trivial variant of �sustain S�:

module P16:

loop

emit S;

[nothing || pause]

end loop

written (!s ; (0 j 1))� in terse syntax.

I K0 output of pause subcircuit feeds
back to the GO input

I However, signal levels are always fully
determined

I Hence, the circuit is still constructiveSynchronous Languages Lecture 08 Slide 16

Schizophrenia and Reincarnation
The Problem
Solving the Reincarnation Problem
Tardieu and de Simone (2004)

Schizophrenia

I Now consider the circuit translation for P16, which should be
equivalent to SUSTAIN:

module P16:

output S;

loop

emit S;

[nothing || pause]

end loop;

end module

≡

12.2. SCHIZOPHRENIC PARALLEL SYNCHRONIZERS 131

s'

K1K0

0

0

0

FORK

Figure 12.2: Incorrect basic circuit for (!s ; (0 j 1))�

Semantically speaking, the added nothing statement is completely in-
nocuous. However, the basic translation builds the non-constructive circuit
pictured in Figure 12.2. The FORK label shows where the parallel statement
starts. The loop feeds back the K0 termination output to FORK. The unstable
combinational loop is drawn in dotted lines. In the �rst instant, the circuit is
constructive: S is emitted, the boot register is unset, and the pause register
is set. In the second instant, the pause register sets the two lower inputs
of the K0 completion gate. Therefore, to compute the value of this gate, we
need to compute the dotted top input. For this, we have to compute the
value of the FORK wire, which itself requires computing the value of K0, hence
the non-constructiveness.

Consider now the state semantics. Omitting the auxiliary boot statement,
the state of interest is (!s ; (0 j 1̂))�. The constructive state transition is

(!s ; (0 j 1̂))� ,
s+; 1
���!
s+

(!s ; (0 j 1̂))�

This transition is proved using rule (r-do-loop) in the following way:

!s ; (0 j 1̂) ,
;; 0
��!
s+

!s ; (0 j 1) !s ; (0 j 1) ,
s+; 1
���!
s+

!s ; (0 j 1̂)

(!s ; (0 j 1̂))� ,
s+; 1
���!
s+

(!s ; (0 j 1̂))�

The �rst premise is proved using rules (r-seq3), (r-right), and (r-pause), while

I This circuit contains an unstable
combinational loop (see dotted lines)

I Hence, the circuit is not constructive!

I The problem: reincarnation of parallel

Synchronous Languages Lecture 08 Slide 17

Schizophrenia and Reincarnation
The Problem
Solving the Reincarnation Problem
Tardieu and de Simone (2004)

Schizophrenic Synchronizer

12.5. THE SURFACE AND DEPTH OF A STATEMENT 135

s'

K1[1]

K1[0]

0

0

0

0

0

0

0

0

0

K1

K0[0]

K0[1]

FORK

Figure 12.4: Correct circuit for (!s ; (0 | 1))∗

• The surface is the part that is driven by the GO input. The surface
acts when the statement is started.

• The depth is the part of the circuit that is driven by the RES input
and the pause registers at resumption time. The depth acts when the
statement is selected and resumed.

In the basic translation, the surface and depth need not be disjoint. In
“sustain S”, Figure 12.1, the !s statement is both in the surface and in
the depth. In this case, everything works fine since it is harmless to emit a
signal twice. In Figure 12.2, there is a single synchronizer for the surface and
the depth. Since the surface and depth must simultaneously perform incom-
patible synchronization, the synchronizer is schizophrenic. In Figure 12.3,
schizophrenia comes from the fact that there is a single signal buffer for the
depth and surface signals, which should have distinct statuses at the same
time.

The solution to avoid schizophrenia is to always keep the surface and
depth entirely disjoint. This can be done without duplicating the registers,

Correct circuit of (!s; (0 | 1))*

Synchronous Languages Lecture 08 Slide 18

Schizophrenia and Reincarnation
The Problem
Solving the Reincarnation Problem
Tardieu and de Simone (2004)

Solutions to the Reincarnation Problem
Problematic for hardware circuit synthesis

I Variables are translated to wires and registers

I Wires must have unique values for every cycle!

Questions

I Do schizophrenic local declarations require more than one
wire?

I How to separate the scopes in the circuit?

Solutions:

I Simple loop duplication

I Poigné and Holenderski (1995) ; circuit level

I Berry (1996/1999) ; circuit level

I Schneider and Wenz (2001) ; program level

I Tardieu and de Simone (2004) ; program level

Synchronous Languages Lecture 08 Slide 19

Schizophrenia and Reincarnation
The Problem
Solving the Reincarnation Problem
Tardieu and de Simone (2004)

Reincarnation: Simple Solution

I A simple approach to eliminate schizophrenia (and hence
reincarnation), is to duplicate loop bodies:

loop p end ⇒ loop p;p end

I Since p is not instantaneous, no part of p can be restarted
immediately

I We have to do this recursively

; Worst-case increase of program size: Exponential

Synchronous Languages Lecture 08 Slide 20

Schizophrenia and Reincarnation
The Problem
Solving the Reincarnation Problem
Tardieu and de Simone (2004)

Tardieu and de Simone (2004)

I Add unique labels to each pause statement

I New Esterel statement gotopause jumps to a labeled pause

I Define function surf(p) to compute surface of p as:
I surf(loop p end) = surf(p)
I surf(p;q) = surf(p); surf(q) if p can be instantaneous
I surf(p;q) = surf(p) otherwise
I surf(` : pause) = gotopause `

I Define function dup(p) that expands loop bodies:
I dup(loop p end) = loop surf(p);dup(p) end

I Omitted rules correspond to simple recursive calls

Synchronous Languages Lecture 08 Slide 21

Schizophrenia and Reincarnation
The Problem
Solving the Reincarnation Problem
Tardieu and de Simone (2004)

Example with gotopause

Expand loop body by applying dup():

loop

signal S in

present S then emit O end;

pause;

emit S;

end;

present I then emit O end;

end loop

loop

signal S in

present S then emit O end;

gotopause 1;

end;

signal S in

present S then emit O end;

1: pause;

emit S

end;

present I then emit O end;

end loop

I Optimization: remove dead code

Synchronous Languages Lecture 08 Slide 22

Schizophrenia and Reincarnation
The Problem
Solving the Reincarnation Problem
Tardieu and de Simone (2004)

Tardieu and de Simone (2004)

I Program size grows quadratic in worst case, but linear in
practice

I As by Schneider and Wenz, no new registers are introduced

I But there is still room for improvement . . .

I Observation 1: Whether a program p is instantly re-started
depends on both p and the context of p

trap T in

loop

p1
end loop

end trap

loop

trap T in

p2;

pause

end trap

end loop

I p1 is instantly restarted when it returns completion code 0

I p2 is instantly restarted when it returns completion code 2

Synchronous Languages Lecture 08 Slide 23

Note: We are not just considering completion codes at the instant
when the pi are started, but all completion codes that the pi may
return at any point during their execution

Schizophrenia and Reincarnation
The Problem
Solving the Reincarnation Problem
Tardieu and de Simone (2004)

Tardieu and de Simone (2004)

Based on Observation 1, the program transformation can be
enhanced with static program analysis

I Compute potential completion codes for each program
fragment p

I Compute unsafe completion codes for the context of p

I If intersection is not empty, then p is potentially schizophrenic

Observation 2: Only signal declarations and parallel statements can
lead to schizophrenic behavior

I The improved transformation does not blindly duplicate whole
loop bodies, but instead duplicates only potentially
schizophrenic signal declarations and parallel statements

Synchronous Languages Lecture 08 Slide 24

Schizophrenia and Reincarnation
The Problem
Solving the Reincarnation Problem
Tardieu and de Simone (2004)

To Go Further

I Gérard Berry, The Constructive Semantics of Pure Esterel,
Draft book, current version 3.0, Dec. 2002, Chapter 12,
http://www-sop.inria.fr/members/Gerard.Berry/

Papers/EsterelConstructiveBook.zip

I Klaus Schneider and M. Wenz, A New Method for Compiling
Schizophrenic Synchronous Programs, CASES 2001, http:
//es.cs.uni-kl.de/publications/datarsg/ScWe01.pdf

I Oliver Tardieu and Robert de Simone, Curing Schizophrenia
by Program Rewriting in Esterel, MEMOCODE 2004
http://www1.cs.columbia.edu/~tardieu/papers/

memocode04.pdf

Synchronous Languages Lecture 08 Slide 25

