
The Constructive Semantics

Synchronous Languages—Lecture 06

Prof. Dr. Reinhard von Hanxleden

Christian-Albrechts Universität Kiel
Department of Computer Science

Real-Time Systems and Embedded Systems Group

30 April 2020
Last compiled: April 30, 2020, 11:50 hrs

Esterel IV—The
Constructive Semantics

Synchronous Languages Lecture 06 Slide 1

The Constructive Semantics

The 5-Minute Review Session

1. What is the state of an Esterel program? Which
implementation alternatives are there to memorize state?

2. What are implementation alternatives to interface with the
environment, e. g., a device that can be on or off?

3. What is the relationship between events and states?

4. What are possible examples for causality problems? What is
the reason for these problems?

5. When is an Esterel program logically reactive? . . . correct?

Synchronous Languages Lecture 06 Slide 2

The Constructive Semantics

Overview

The Constructive Semantics
External Justification vs. Self-Justification
The Constructive Behavioral Semantics
The Constructive Operational Semantics

Synchronous Languages Lecture 06 Slide 3

The Constructive Semantics
External Justification vs. Self-Justification
The Constructive Behavioral Semantics
The Constructive Operational Semantics

External Justification vs. Self-Justification

I Programming in Esterel:
I Analyze input events to generate appropriate output signals
I Use concurrent statements and intermediate local signals to

create modular, well-structured programs

I Natural way of thinking:
I Information propagation by cause and effect

present I then

emit O

end

Synchronous Languages Lecture 06 Slide 4

The Constructive Semantics
External Justification vs. Self-Justification
The Constructive Behavioral Semantics
The Constructive Operational Semantics

External Justification vs. Self-Justification

module P1:

input I;

output O;

signal S1, S2 in

present I then emit S1 end

||

present S1 else emit S2 end

||

present S2 then emit O end

end signal

end module

I Is this logically correct?
I Yes!

I Is this well-behaved wrt information propagation?
I Yes!

Synchronous Languages Lecture 06 Slide 5

The Constructive Semantics
External Justification vs. Self-Justification
The Constructive Behavioral Semantics
The Constructive Operational Semantics

External Justification vs. Self-Justification

module P9:

[

present O1 then emit O1 end

||

present O1 then

present O2 else emit O2 end

end

]

I Is this logically correct?
I Yes!

I Is this well-behaved wrt information propagation?
I No!

I Accepting P9 as correct is
I Logically possible
I But against (imperative) intention of the language

Synchronous Languages Lecture 06 Slide 6

The Constructive Semantics
External Justification vs. Self-Justification
The Constructive Behavioral Semantics
The Constructive Operational Semantics

External Justification vs. Self-Justification

I “present S then p end”:
I First test the status of S , then execute p if S is present
I Status of S should not depend on what p might do

I Synchrony hypothesis:
I Ordering implicit in the then word is not that of time, but

that of sequential causality

I Want actual computation:
I “Since S is present, we take the then branch”

I Don’t want speculative computation:
I “If we assume S present, then we take the then branch”

Synchronous Languages Lecture 06 Slide 7

The Constructive Semantics
External Justification vs. Self-Justification
The Constructive Behavioral Semantics
The Constructive Operational Semantics

External Justification vs. Self-Justification

I Aside from the explicit concurrency “||”, all Esterel
statements are sequential

I Want to preserve this in the semantics

module P10:

present O then

nothing;

end;

emit O

I This is logically correct
I But still want to reject it:

I In the logical semantics, the information that O is present flows
backwards across the sequencing operator

I Contradicts basic intuition about sequential execution

Synchronous Languages Lecture 06 Slide 8

The Constructive Semantics
External Justification vs. Self-Justification
The Constructive Behavioral Semantics
The Constructive Operational Semantics

The Constructive Semantics

I Constructive semantics:
I Does not check assumptions about signal statuses
I Instead, propagates facts about control flow and signal statuses

I Three equivalent presentations:

1. Constructive behavioral semantics
2. Constructive operational semantics
3. Circuit semantics

Synchronous Languages Lecture 06 Slide 9

The Constructive Semantics
External Justification vs. Self-Justification
The Constructive Behavioral Semantics
The Constructive Operational Semantics

The Constructive Semantics

1. Constructive behavioral semantics:
I Derived from the logical behavioral semantics
I Adds constructive restrictions to logical coherence rule
I Is the simplest way of defining the language

2. Constructive operational semantics:
I Based on an interpretation scheme expressed by term rewriting

rules defining microstep sequences
I Is the simplest way of defining an efficient interpreter

3. Circuit semantics:
I Translation of programs into constructive circuits
I Is the core of the Esterel v5 compiler

Synchronous Languages Lecture 06 Slide 10

The Constructive Semantics
External Justification vs. Self-Justification
The Constructive Behavioral Semantics
The Constructive Operational Semantics

The Constructive Behavioral Semantics

I . . . retains the spirit of the logical coherence semantics

I . . . adds reasoning about what a program must or cannot do
I Define disjoint predicates to express

I “A statement must terminate, must pause, must exit a trap T ,
or must emit a signal S”

I “A statement cannot terminate, cannot pause, cannot exit a
trap T , or cannot emit a signal S”

I The Must (Cannot) predicate determines
I Which signals are present (absent)
I Which statements are (cannot be) executed

Synchronous Languages Lecture 06 Slide 11

The Constructive Semantics
External Justification vs. Self-Justification
The Constructive Behavioral Semantics
The Constructive Operational Semantics

The Constructive Behavioral Semantics

Recall: Logical Coherence Law

A signal S is present in an instant iff an “emit S” statement
is executed in this instant.

Replace with disjoint Constructive Coherence Laws:

A signal S is present iff an “emit S” statement must be
executed.
A signal S is absent iff an “emit S” statement cannot be
executed

Synchronous Languages Lecture 06 Slide 12

The Constructive Semantics
External Justification vs. Self-Justification
The Constructive Behavioral Semantics
The Constructive Operational Semantics

The Constructive Behavioral Semantics

I Define Must and Cannot predicates by structural induction on
statements

I A signal can have three statuses:
I “+”: known to be present
I “−”: known to be absent
I “⊥”: yet unknown

I Is technically easier to define the Cannot predicate as the
negation of a Can predicate
I No constructiveness problem here as we only deal with finite

sets

Synchronous Languages Lecture 06 Slide 13

The Constructive Semantics
External Justification vs. Self-Justification
The Constructive Behavioral Semantics
The Constructive Operational Semantics

The Constructive Behavioral Semantics

p;q (Sequence)

I Must (resp. can) execute q if p must (resp. can) terminate

present S then p else q end (Test)
I If S is known to be present:

I Test behaves as p

I If S is known to be absent:
I Test behaves as q

I If S is yet unknown:
I Test can do whatever p or q can do
I There is nothing the test must do. In particular, it does not

even have to do what both p and q have to do—this is the
essence of disallowing speculative execution.

Synchronous Languages Lecture 06 Slide 14

The Constructive Semantics
External Justification vs. Self-Justification
The Constructive Behavioral Semantics
The Constructive Operational Semantics

The Constructive Behavioral Semantics

I Main novelty is in analysis of output and local signals

I Consider local signal here; output signal is similar

signal S in p end (Local signal)
Can predicate:

I Recursively analyze p with status ⊥ for S

Synchronous Languages Lecture 06 Slide 15

The Constructive Semantics
External Justification vs. Self-Justification
The Constructive Behavioral Semantics
The Constructive Operational Semantics

The Constructive Behavioral Semantics
signal S in p end (Local signal)
Must predicate:

I Assume we already know that we must execute signal S in

p end in some signal context E

I Must compute final status of S to determine signal context of
p

I First analyze p in E augmented by setting the unknown status
⊥ for S

I If S must be emitted:
I Propagate this information by reanalyzing p in E with S

present
I This may generate more information about the other signals

I Similarly, if we find that S cannot be emitted:
I Reanalyze p in E with S absent

Synchronous Languages Lecture 06 Slide 16

The Constructive Semantics
External Justification vs. Self-Justification
The Constructive Behavioral Semantics
The Constructive Operational Semantics

Accepting Programs
In the constructive behavioral semantics, a program is accepted as
constructive iff fact propagation using the Must and Can (or
Cannot) predicates suffices in establishing presence or absence of
all output signals (and we can also compute a derivative—see later)

module P1:

input I;

output O;

signal S1, S2 in

present I then emit S1 end

||

present S1 else emit S2 end

||

present S2 then emit O end

end signal

end module

Synchronous Languages Lecture 06 Slide 17

The Constructive Semantics
External Justification vs. Self-Justification
The Constructive Behavioral Semantics
The Constructive Operational Semantics

Accepting Programs

module P2:

signal S in

emit S;

present O then

present S then

pause

end;

emit O

end

end signal

I Can analyze this with just propagating facts
I No need for speculative computation based on assumptions
I Our analysis still “looks ahead” to see what must/cannot be

done, but always builds on facts established so far, not on
speculations

I However, analysis involves recomputations
I Avoiding this is goal of operational and circuit semantics!

Synchronous Languages Lecture 06 Slide 18

The Constructive Semantics
External Justification vs. Self-Justification
The Constructive Behavioral Semantics
The Constructive Operational Semantics

Rejecting Programs

I If the must and cannot predicates bring no information about
the status of some signal:
I Programs is rejected

module P3:

output O;

present O else emit O end

end module

module P4:

output O;

present O then emit O end

end module

Synchronous Languages Lecture 06 Slide 19

The Constructive Semantics
External Justification vs. Self-Justification
The Constructive Behavioral Semantics
The Constructive Operational Semantics

Rejecting Programs

I Constructiveness =⇒ logical correctness

I But not vice versa!

module P9:

[

present O1 then emit O1 end

||

present O1 then

present O2 else emit O2 end

end

]

I Both O1 and O2 can be emitted

I No signal must be emitted

I No progress—reject P9!

Synchronous Languages Lecture 06 Slide 20

The Constructive Semantics
External Justification vs. Self-Justification
The Constructive Behavioral Semantics
The Constructive Operational Semantics

Rejecting Programs

Consider variant of P2:

module P11:

signal S

present O then

emit S;

present S then

pause

end;

emit O

end

end signal

I Are not allowed to speculatively execute branches

I Again no progress—reject P11!

Synchronous Languages Lecture 06 Slide 21

The Constructive Semantics
External Justification vs. Self-Justification
The Constructive Behavioral Semantics
The Constructive Operational Semantics

Rejecting Programs

module P12:

present O then

emit O;

else

emit O

end

I Must reject P12 as well!

I Does an equivalent HW-circuit always stabilize?
(Will come back to this later . . .)

Synchronous Languages Lecture 06 Slide 22

The Constructive Semantics
External Justification vs. Self-Justification
The Constructive Behavioral Semantics
The Constructive Operational Semantics

The Must, Cannot, and Can Functions

I Must function determines what must be done in a reaction
P

O−→
I

P ′

I Has the form Must(p,E) = 〈S ,K 〉
I E : partial event, associating status in B⊥ = {+,−,⊥} with

each signal
I S : set of signals that p must emit
I K : set of completion codes that p must return

I Is either empty or a singleton

I Use subscripts to access elements of result pair:
I Must(p,E) = 〈Musts(p,E),Mustk(p,E)〉

Synchronous Languages Lecture 06 Slide 23

The Constructive Semantics
External Justification vs. Self-Justification
The Constructive Behavioral Semantics
The Constructive Operational Semantics

The Must, Cannot, and Can Functions

I Cannotm function prunes out false paths

I Cannotm(p,E) = 〈Cannotms (p,E),Cannotmk (p,E)〉 = 〈S ,K 〉
I Extra argument m ∈ {+,⊥} indicates whether it is known

that p must be executed in event E

I Canm(p,E) is component-wise complement

Synchronous Languages Lecture 06 Slide 24

The Constructive Semantics
External Justification vs. Self-Justification
The Constructive Behavioral Semantics
The Constructive Operational Semantics

Definitions of Must and Can

I Completion and signal emission:

Must(k,E) = Canm(k ,E) = 〈∅, {k}〉

Must(!s,E) = Canm(!s,E) = 〈{s}, {0}〉

I Suspension:

Must(s ⊃ p,E) = Must(p,E)

Canm(s ⊃ p,E) = Canm(p,E)

Synchronous Languages Lecture 06 Slide 25

The Constructive Semantics
External Justification vs. Self-Justification
The Constructive Behavioral Semantics
The Constructive Operational Semantics

Definitions of Must and Can

I Signal test:

Must((s?p, q),E) =

Must(p,E) if s+ ∈ E

Must(q,E) if s− ∈ E

〈∅, ∅〉 if s⊥ ∈ E

Canm((s?p, q),E) =

Canm(p,E) if s+ ∈ E

Canm(q,E) if s− ∈ E

Can⊥(p,E) ∪ Can⊥(q,E) if s⊥ ∈ E

Synchronous Languages Lecture 06 Slide 26

The Constructive Semantics
External Justification vs. Self-Justification
The Constructive Behavioral Semantics
The Constructive Operational Semantics

Definitions of Must and Can
I Sequencing:

Must(p; q,E) =

Must(p,E)

if 0 /∈ Mustk(p,E)

〈MustS(p,E) ∪MustS(q,E),Mustk(q,E)〉
if 0 ∈ Mustk(p,E)

Canm(p; q,E) =

Canm(p,E)

if 0 /∈ Canmk (p,E)

〈CanmS (p,E) ∪ Canm
′

S (q,E),Canmk (p,E) \ 0 ∪ Canm
′

k (q,E)〉
if 0 ∈ Canmk (p,E)

with m′ =

{
+ if m = + ∧ 0 ∈ Mustk(p,E)

⊥ otherwise

Synchronous Languages Lecture 06 Slide 27

The Constructive Semantics
External Justification vs. Self-Justification
The Constructive Behavioral Semantics
The Constructive Operational Semantics

Definitions of Must and Can

I Local signal declaration:

Must(p \ s,E) =

Must(p,E ∗ s+) \ s if s ∈ MustS(p,E ∗ s⊥)

Must(p,E ∗ s−) \ s if s /∈ Can+S (p,E ∗ s⊥)

Must(p,E ∗ s⊥) \ s otherwise

Canm(p\s,E) =

Can+(p,E ∗ s+) \ s
if m = + and s ∈ MustS(p,E ∗ s⊥)

Canm(p,E ∗ s−) \ s
if s /∈ Can+S (p,E ∗ s⊥)

Canm(p,E ∗ s⊥) \ s
otherwise

Synchronous Languages Lecture 06 Slide 28

The Constructive Semantics
External Justification vs. Self-Justification
The Constructive Behavioral Semantics
The Constructive Operational Semantics

Definitions of Must and Can

I Note the Can/Must asymmetry: in the Can-predicate of the
local signal declaration, check for m = + before calling Must
to avoid speculative computation

I Otherwise, would accept program

present O then

signal S in

emit S

||

present S else emit O end

end

end

Synchronous Languages Lecture 06 Slide 29

The Constructive Semantics
External Justification vs. Self-Justification
The Constructive Behavioral Semantics
The Constructive Operational Semantics

Definitions of Must and Can
I Loop:

Must(p∗,E) = Must(p,E)

Canm(p∗,E) = Canm(p,E)

I Parallel:

Must(p|q,E) = 〈MustS(p,E) ∪MustS(q,E),

Max(Mustk(p,E),Mustk(q,E))〉

Canm(p|q,E) = 〈CanmS (p,E) ∪ CanmS (q,E),

Max(Canmk (p,E),Canmk (q,E))〉

The Max-operator on sets of completion codes is defined as

Max(K , L) =

{
∅ if K = ∅ or L = ∅
{max(k , l) | k ∈ K , l ∈ L} if K , L 6= ∅

Synchronous Languages Lecture 06 Slide 30

The Constructive Semantics
External Justification vs. Self-Justification
The Constructive Behavioral Semantics
The Constructive Operational Semantics

Definitions of Must and Can

I Trap:

Must({p},E) = 〈MustS(p,E), ↓Mustk(p,E)〉

Canm({p},E) = 〈CanmS (p,E), ↓Canmk (p,E)〉

I Shift:

Must(↑p,E) = 〈MustS(p,E), ↑Mustk(p,E)〉

Canm(↑p,E) = 〈CanmS (p,E), ↑Canmk (p,E)〉

Synchronous Languages Lecture 06 Slide 31

The Constructive Semantics
External Justification vs. Self-Justification
The Constructive Behavioral Semantics
The Constructive Operational Semantics

Definition of the Constructive Behavioral Semantics

The constructive behavioral semantics of a given program is
defined by a two-step procedure, yielding the current reaction and
the derivative:

1. Compute output event O using Must and Cannot predicates
I This fails if status of some output signal cannot be determined

to be + or −
2. Compute behavioral transition yielding program derivative

I This fails if body of some loop is found to terminate
instantaneously

I This also fails if we cannot establish the presence/absence of a
local signal

Synchronous Languages Lecture 06 Slide 32

The Constructive Semantics
External Justification vs. Self-Justification
The Constructive Behavioral Semantics
The Constructive Operational Semantics

Definition of the Constructive Semantics

Step 1: Compute output event O
Approach:

I Start with undefined O (all output signal statuses = ⊥)

I Iteratively enrich O using Must and Can information

I Terminate when this stabilizes (guaranteed by monotonicity)

Formalize this as computation of a least fixed point (see draft
book)

Synchronous Languages Lecture 06 Slide 33

The Constructive Semantics
External Justification vs. Self-Justification
The Constructive Behavioral Semantics
The Constructive Operational Semantics

Algorithm to Compute Outputs

function computeOut(P, I)

E = I ∪ {s⊥ | s ∈ Out(P)}
do

E ′ = E

can = Can+S (P,E)

must = MustS (P,E)

E = I ∪ {s+ | s ∈ must}
∪ {s− | s ∈ Out(P) \ can}
∪ {s⊥ | s ∈ can \must}

while (E ′ 6= E)

if ∃s : s⊥ ∈ E then error ("not constructive")

return E

Synchronous Languages Lecture 06 Slide 34

The Constructive Semantics
External Justification vs. Self-Justification
The Constructive Behavioral Semantics
The Constructive Operational Semantics

Example for Can analysis

Consider the program p =!S ; S?!O, 1 and environment {S⊥,O⊥}.

Can+(!S , {S⊥,O⊥}) = 〈{S}, {0}〉
Mustk(!S , {S⊥,O⊥}) = {0}

Can⊥(!O, {S⊥,O⊥}) = 〈{O}, {0}〉
Can⊥(1, {S⊥,O⊥}) = 〈∅, {1}〉

Can+(S?!O, 1, {S⊥,O⊥}) = 〈{O}, {0, 1}〉
Can+(!S ;S?!O, 1, {S⊥,O⊥}) = 〈{S ,O}, {0, 1}〉

Gives no new information on signal status

Synchronous Languages Lecture 06 Slide 35

The Constructive Semantics
External Justification vs. Self-Justification
The Constructive Behavioral Semantics
The Constructive Operational Semantics

Example for Must analysis
Consider the program p =!S ; S?!O, 1 and environment {S⊥,O⊥}

1. Must(!S , {S⊥,O⊥}) = 〈{S}, {0}〉
Must(S?!O, 1, {S⊥,O⊥}) = 〈∅, ∅〉

Must(!S ;S?!O, 1, {S⊥,O⊥}) = 〈{S}, ∅〉

2. Update environment to {S+,O⊥}
3. Must(!S , {S+,O⊥}) = 〈{S}, {0}〉

Must(!O, {S+,O⊥}) = 〈{O}, {0}〉
Must(S?!O, 1, {S+,O⊥}) = 〈{O}, {0}〉

Must(!S ;S?!O, 1, {S+,O⊥}) = 〈{S ,O}, {0}〉

4. Update environment to {S+,O+}
5. All signals have a defined status → done

Synchronous Languages Lecture 06 Slide 36

The Constructive Semantics
External Justification vs. Self-Justification
The Constructive Behavioral Semantics
The Constructive Operational Semantics

Definition of the Constructive Semantics
Step 2: Compute transition
Rules are exactly as for logical behavioral semantics—except for
changed rules for local signals

p
E ′∗s+,k−−−−−→
E∗s+

p′ S(E ′) = S(E) \ s

p \ s E ′,k−−→
E

p′ \ s
(sig +)

is replaced with

s ∈ Musts(p,E ∗ s⊥) p
E ′∗s+,k−−−−−→
E∗s+

p′ S(E ′) = S(E) \ s

p \ s E ′,k−−→
E

p′ \ s
(csig +)

Synchronous Languages Lecture 06 Slide 37

The Constructive Semantics
External Justification vs. Self-Justification
The Constructive Behavioral Semantics
The Constructive Operational Semantics

Definition of the Constructive Semantics

p
E ′∗s−,k−−−−−→
E∗s−

p′ S(E ′) = S(E) \ s

p \ s E ′,k−−→
E

p′ \ s
(sig −)

is replaced with

s ∈ Cannot+s (p,E ∗ s⊥) p
E ′∗s−,k−−−−−→
E∗s−

p′ S(E ′) = S(E) \ s

p \ s E ′,k−−→
E

p′ \ s
(csig −)

Synchronous Languages Lecture 06 Slide 38

The Constructive Semantics
External Justification vs. Self-Justification
The Constructive Behavioral Semantics
The Constructive Operational Semantics

The Constructive Operational Semantics

I . . . is defined by a rewriting-based interpretation scheme

, Instead of reasoning about what we must do, just do it
/ Formal definition and technical treatment of the constructive

operational semantics is much heavier than that of the
constructive behavioral semantics

I Will still take constructive behavioral semantics as the primary
semantics

Synchronous Languages Lecture 06 Slide 39

The Constructive Semantics
External Justification vs. Self-Justification
The Constructive Behavioral Semantics
The Constructive Operational Semantics

The Constructive Operational Semantics

I Decorate signal declarations with status +, −, ⊥
I Initially, all signals except inputs unknown
I Constructive operational semantics is a micro-step semantics

I Current state indicated by •

Synchronous Languages Lecture 06 Slide 40

The Constructive Semantics
External Justification vs. Self-Justification
The Constructive Behavioral Semantics
The Constructive Operational Semantics

The Constructive Operational Semantics

Consider P1 with I present:

module P1:

input I+;

output O⊥;
•signal S1⊥, S2⊥ in

present I then emit S1 end

||

present S1 else emit S2 end

||

present S2 then emit O end

end signal

end module

Synchronous Languages Lecture 06 Slide 41

The Constructive Semantics
External Justification vs. Self-Justification
The Constructive Behavioral Semantics
The Constructive Operational Semantics

The Constructive Operational Semantics

Fork of the parallel statement:

module P1:

input I+;

output O⊥;
signal S1⊥, S2⊥ in

•present I then emit S1 end

||

•present S1 else emit S2 end

||

•present S2 then emit O end

end signal

end module

Synchronous Languages Lecture 06 Slide 42

The Constructive Semantics
External Justification vs. Self-Justification
The Constructive Behavioral Semantics
The Constructive Operational Semantics

The Constructive Operational Semantics

Only first thread can continue:

module P1:

input I+;

output O⊥;
signal S1⊥, S2⊥ in

present I then •emit S1 end

||

•present S1 else emit S2 end

||

•present S2 then emit O end

end signal

end module

Synchronous Languages Lecture 06 Slide 43

The Constructive Semantics
External Justification vs. Self-Justification
The Constructive Behavioral Semantics
The Constructive Operational Semantics

The Constructive Operational Semantics

Now emit S1:

module P1:

input I+;

output O⊥;
signal S1+, S2⊥ in

present I then emit S1 end•
||

•present S1 else emit S2 end

||

•present S2 then emit O end

end signal

end module

Synchronous Languages Lecture 06 Slide 44

The Constructive Semantics
External Justification vs. Self-Justification
The Constructive Behavioral Semantics
The Constructive Operational Semantics

The Constructive Operational Semantics

Now the 2nd branch can continue:

module P1:

input I+;

output O⊥;
signal S1+, S2⊥ in

present I then emit S1 end•
||

present S1 else emit S2 end•
||

•present S2 then emit O end

end signal

end module

Synchronous Languages Lecture 06 Slide 45

The Constructive Semantics
External Justification vs. Self-Justification
The Constructive Behavioral Semantics
The Constructive Operational Semantics

The Constructive Operational Semantics

Cannot emit S2 any more:

module P1:

input I+;

output O⊥;
signal S1+, S2− in

present I then emit S1 end•
||

present S1 else emit S2 end•
||

•present S2 then emit O end

end signal

end module

Synchronous Languages Lecture 06 Slide 46

The Constructive Semantics
External Justification vs. Self-Justification
The Constructive Behavioral Semantics
The Constructive Operational Semantics

The Constructive Operational Semantics

Now 3rd branch can continue:

module P1:

input I+;

output O⊥;
signal S1+, S2− in

present I then emit S1 end•
||

present S1 else emit S2 end•
||

present S2 then emit O end•
end signal

end module

Synchronous Languages Lecture 06 Slide 47

The Constructive Semantics
External Justification vs. Self-Justification
The Constructive Behavioral Semantics
The Constructive Operational Semantics

The Constructive Operational Semantics

Cannot emit O any more:

module P1:

input I+;

output O−;
signal S1+, S2− in

present I then emit S1 end•
||

present S1 else emit S2 end•
||

present S2 then emit O end•
end signal

end module

Synchronous Languages Lecture 06 Slide 48

The Constructive Semantics
External Justification vs. Self-Justification
The Constructive Behavioral Semantics
The Constructive Operational Semantics

The Constructive Operational Semantics

Synchronize the terminated threads:

module P1:

input I+;

output O−;
signal S1+, S2− in

present I then emit S1 end

||

present S1 else emit S2 end

||

present S2 then emit O end

end signal•
end module

Synchronous Languages Lecture 06 Slide 49

The Constructive Semantics
External Justification vs. Self-Justification
The Constructive Behavioral Semantics
The Constructive Operational Semantics

The Constructive Operational Semantics

Now consider P2:

module P2:

output O⊥;
•signal S⊥ in

emit S;

present O then

present S then

pause

end;

emit O

end

end signal

end module

Synchronous Languages Lecture 06 Slide 50

The Constructive Semantics
External Justification vs. Self-Justification
The Constructive Behavioral Semantics
The Constructive Operational Semantics

The Constructive Operational Semantics

After 3 microsteps:

module P2:

output O⊥;
signal S+ in

emit S;

•present O then

present S then

pause

end;

emit O

end

end signal

end module

Synchronous Languages Lecture 06 Slide 51

The Constructive Semantics
External Justification vs. Self-Justification
The Constructive Behavioral Semantics
The Constructive Operational Semantics

The Constructive Operational Semantics
Perform cannot analysis (as in constructive behavioral
semantics)—and set O absent:

module P2:

output O−;
signal S+ in

emit S;

•present O then

present S then

pause

end;

emit O

end

end signal

end module

Synchronous Languages Lecture 06 Slide 52

The Constructive Semantics
External Justification vs. Self-Justification
The Constructive Behavioral Semantics
The Constructive Operational Semantics

The Constructive Operational Semantics

Take implicit else branch of test:

module P2:

output O−;
signal S+ in

emit S;

present O then

present S then

pause

end;

emit O

end

end signal•
end module

Synchronous Languages Lecture 06 Slide 53

The Constructive Semantics
External Justification vs. Self-Justification
The Constructive Behavioral Semantics
The Constructive Operational Semantics

The Constructive Operational Semantics

I Statuses evolve monotonically
I Hence avoid most of the recomputations that take place in the

constructive behavioral semantics

I Rejecting programs is similar to constructive behavioral
semantics

module P3:

output O;

present O else emit O end

end module

I No possible initial microstep =⇒ cannot set O+

I Potential path to emit O =⇒ cannot set O−

Synchronous Languages Lecture 06 Slide 54

The Constructive Semantics
External Justification vs. Self-Justification
The Constructive Behavioral Semantics
The Constructive Operational Semantics

Summary of Constructive Interpretation

Signals:

I Signals are shared objects with status {+,−,⊥}
I Signal status initialization:

I Input signals are initialized according to the input event
I Other signals initialized to ⊥

I Signal status changes:
I Status of a signal S changes from ⊥ to + as soon as an “emit

S” statement is executed
I Status of a signal S changes from ⊥ to − as soon as all the

“emit S” statements have been found unreachable by the
cannot false path analysis

Synchronous Languages Lecture 06 Slide 55

The Constructive Semantics
External Justification vs. Self-Justification
The Constructive Behavioral Semantics
The Constructive Operational Semantics

Summary of Constructive Interpretation

Control:

I Sequential threads of control forked by parallel statements
I When a thread reaches a “present S” statement:

I As long as the status of S is ⊥:
I Control remains there, frozen,

I As soon as S has a non-⊥ status:
I Control can resume

I If several threads are enabled, any one of them can be chosen

Synchronous Languages Lecture 06 Slide 56

The Constructive Semantics
External Justification vs. Self-Justification
The Constructive Behavioral Semantics
The Constructive Operational Semantics

Summary of Constructive Interpretation

Control:

I Threads are stopped by termination or by executing pause or
exit statements

I Parallel statements synchronize stopped threads, as explained
in the intuitive semantics

I Finally, the false path analysis explores all possible
instantaneous paths towards emit statements
I Takes into account all facts established so far
I No speculative reasoning

Synchronous Languages Lecture 06 Slide 57

The Constructive Semantics
External Justification vs. Self-Justification
The Constructive Behavioral Semantics
The Constructive Operational Semantics

Summary of Constructive Interpretation

Program Acceptance:

I Given an input, a program is accepted if the analysis succeeds
in setting each signal status to a defined value + or −

I Logical correctness is guaranteed for accepted programs

Synchronous Languages Lecture 06 Slide 58

The Constructive Semantics
External Justification vs. Self-Justification
The Constructive Behavioral Semantics
The Constructive Operational Semantics

To Go Further

I Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas
Halbwachs, Paul Le Guernic, Robert De Simone, The
synchronous languages 12 years later, Proceedings of the
IEEE, Jan. 2003 vol. 91, issue 1, pages 64–83,
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

10.1.1.96.1117

Synchronous Languages Lecture 06 Slide 59

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.96.1117
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.96.1117

	The Constructive Semantics
	External Justification vs. Self-Justification
	The Constructive Behavioral Semantics
	The Constructive Operational Semantics

