
A Tour through Esterel
Further Esterel Statements

The Kernel Language

Synchronous Languages—Lecture 03

Prof. Dr. Reinhard von Hanxleden

Christian-Albrechts Universität Kiel
Department of Computer Science

Real-Time Systems and Embedded Systems Group

16 April 2020
Last compiled: April 14, 2020, 11:34 hrs

Esterel II—The Full
Language

Synchronous Languages Lecture 03 Slide 1

A Tour through Esterel
Further Esterel Statements

The Kernel Language

The ABRO Example
The SPEED Example, Signals and Variables
Weak and Strong Abortion
Modules

Overview

A Tour through Esterel
The ABRO Example
The SPEED Example, Signals and Variables
Weak and Strong Abortion
Modules

Further Esterel Statements

The Kernel Language

Synchronous Languages Lecture 03 Slide 2

A Tour through Esterel
Further Esterel Statements

The Kernel Language

The ABRO Example
The SPEED Example, Signals and Variables
Weak and Strong Abortion
Modules

The Hello World of Synchronous Programming: ABRO

The system has boolean valued inputs A, B, R, and an
output O. Output O shall be true as soon as both inputs A
and B have been true. This behavior should be restarted
if R is true.

I Question: what if A, B and R are true at the same time?

I Should we make O present? —we consider both possibilities

I Nondeterminism? Not possible in Esterel!

Synchronous Languages Lecture 03 Slide 3

A Tour through Esterel
Further Esterel Statements

The Kernel Language

The ABRO Example
The SPEED Example, Signals and Variables
Weak and Strong Abortion
Modules

Mealy Machine for ABRO

I

AB
R
/O

AB
R
/O

A
B
R
/
O

R
/O

B
R
/O

R
/O

AR
/O

R
/
O

I Circles are automaton states

I Label ABR/O means: if
A = true and B = R = false is
read, then output O = true is
generated

I Default behavior: remain in
state

I Finite state machines (FSMs)
are perfectly synchronous!

; use FSMs to explain the
semantics

Synchronous Languages Lecture 03 Slide 4

A Tour through Esterel
Further Esterel Statements

The Kernel Language

The ABRO Example
The SPEED Example, Signals and Variables
Weak and Strong Abortion
Modules

Write Things Once

I The disadvantage of this (flat) notation:
I Size grows exponentially
I A little change to the specification may incur a major change

to the automaton (often ends with full rewriting)

I The answer:
I Add hierarchy
I More generally: Write Things Once (WTO)

I Analogy from language theory:
I Use regular expressions to represent large (possibly infinite)

sets of strings

Synchronous Languages Lecture 03 Slide 5

A Tour through Esterel
Further Esterel Statements

The Kernel Language

The ABRO Example
The SPEED Example, Signals and Variables
Weak and Strong Abortion
Modules

Esterel Program ABRO

module ABRO:

input A,B,R;

output O;

loop

[await A || await B];

emit O

each R

end module

I Declarations of inputs and outputs

I Module body contains a statement

I Modules have names

I Esterel programs are a list of
modules

Synchronous Languages Lecture 03 Slide 6

A Tour through Esterel
Further Esterel Statements

The Kernel Language

The ABRO Example
The SPEED Example, Signals and Variables
Weak and Strong Abortion
Modules

Remarks on Signal Declarations

I Signals are special data types with a presence status
∈ {true, false}

I If S= true holds, S is said to be present, otherwise absent

I Signals describe events, thus they do not store the status
when control flow proceeds to the next macro step

I Status of input signals is generated by the environment

I Status of output signals is made present by executing emit S

I Output signals are present iff they are currently emitted

I emit S does not take time

Synchronous Languages Lecture 03 Slide 7

A Tour through Esterel
Further Esterel Statements

The Kernel Language

The ABRO Example
The SPEED Example, Signals and Variables
Weak and Strong Abortion
Modules

Remarks on Signal Declarations

I Signal status is uniquely determined per macro step

I This may lead to the fact that “information flows backwards”:

present R then emit S end;

emit R

I In the above program, the emission of R is also seen by the
conditional statement (present R checks the status of R)

I This may lead to causality problems, but implements the
perfect synchrony

Synchronous Languages Lecture 03 Slide 8

A Tour through Esterel
Further Esterel Statements

The Kernel Language

The ABRO Example
The SPEED Example, Signals and Variables
Weak and Strong Abortion
Modules

General Remarks on Statements

I Statements p are started at step t ∈ N and terminate in a
(not necessarily strictly) later step t + δ (0 ≤ δ)

I If δ = 0 holds, p is called instantaneous:
I Its execution does not take time
I p does only execute micro steps

I Whether p is instantaneous or not depends on current inputs

I If p is not instantaneous, the control flow enters p and will
stop somewhere inside p to wait for the next macro step

I Due to concurrency, the control flow may rest at several
locations

Synchronous Languages Lecture 03 Slide 9

A Tour through Esterel
Further Esterel Statements

The Kernel Language

The ABRO Example
The SPEED Example, Signals and Variables
Weak and Strong Abortion
Modules

Remarks on emit

I emit S is always instantaneous

I Executing emit S makes S immediately present for the
current macro step

I There are also delayed emissions (since Esterel version 7):
I emit next S makes S present in the next macro step
I Executing emit next S is also instantaneous

I Input signals may also be emitted

Synchronous Languages Lecture 03 Slide 10

A Tour through Esterel
Further Esterel Statements

The Kernel Language

The ABRO Example
The SPEED Example, Signals and Variables
Weak and Strong Abortion
Modules

Remarks on await

I When started, control remains at await S

I At the next macro step, S is tested:
I if S holds, await S terminates
I otherwise, the behavior is repeated at the next macro step

I await S always consumes time (i. e., is never instantaneous)

I The variant await immediate S tests S also at starting
time, and therefore may also be instantaneous

I S can either be a signal or a signal expression

Synchronous Languages Lecture 03 Slide 11

A Tour through Esterel
Further Esterel Statements

The Kernel Language

The ABRO Example
The SPEED Example, Signals and Variables
Weak and Strong Abortion
Modules

Remarks on Parallel Statements

p || q means parallel execution of p and q

I if p || q is started at time t, both p and q are started at
time t

I if p and q terminate at time t + δp and t + δq, respectively,
then p || q terminates at time t + max{δp, δq}

; as long as the control is inside p and q, both p and q execute
their macro steps synchronously

I p and q may interact during concurrent execution

Brackets [...] are used to control statement scoping to avoid
ambiguities due to the grammar

Synchronous Languages Lecture 03 Slide 12

A Tour through Esterel
Further Esterel Statements

The Kernel Language

The ABRO Example
The SPEED Example, Signals and Variables
Weak and Strong Abortion
Modules

Remarks on Sequences

I p;q is a sequence
I if p;q is started at time t, at least p is started at time t
I if p terminates at time t + δp, then q is started at time t + δp
I note that δp = 0 may hold, which implies that p and q are

both started at time t
I p;q terminates when q terminates

I Moving the control from p to q does not take time

; the sequence operator ; does not take time

Synchronous Languages Lecture 03 Slide 13

A Tour through Esterel
Further Esterel Statements

The Kernel Language

The ABRO Example
The SPEED Example, Signals and Variables
Weak and Strong Abortion
Modules

Remarks on Loops

I Esterel knows several loop constructs
I loop p each S behaves as follows:

I if loop p each S is started at time t, then p is started at
time t

I in subsequent instants, p is restarted whenever S= true holds
(S is present)

I if p terminates, then the program waits for the next step where
S= true holds

I note that p is aborted when it is currently active and S holds
; no dynamic thread generation
; this guarantees finitely many control states

Synchronous Languages Lecture 03 Slide 14

A Tour through Esterel
Further Esterel Statements

The Kernel Language

The ABRO Example
The SPEED Example, Signals and Variables
Weak and Strong Abortion
Modules

Generic ABRO Program

module ABCRO :

input A,B,C,R;

output O;

loop

[

await A ||

await B ||

await C

];

emit O

each R

end module

I ABRO can be easily extended for more
events

I To this end, only a new thread with an
await statement has to be added

I For n inputs, the program has size
O(n)

I But the finite state machine has
O(2n) states

; Esterel programs can be
exponentially more compact than
finite state machines

Synchronous Languages Lecture 03 Slide 15

A Tour through Esterel
Further Esterel Statements

The Kernel Language

The ABRO Example
The SPEED Example, Signals and Variables
Weak and Strong Abortion
Modules

Program SPEED

The system has inputs cm and sec . If sec holds, the number of
macro steps where cm holds should be counted. If sec holds again,
the number of so far seen cm signals should be reported, reset to
zero, and the behavior should be repeated.

I Question: what if cm and sec hold at the same time?

I We first exclude this case, and consider solutions for that later

Synchronous Languages Lecture 03 Slide 16

A Tour through Esterel
Further Esterel Statements

The Kernel Language

The ABRO Example
The SPEED Example, Signals and Variables
Weak and Strong Abortion
Modules

Program SPEED

module SPEED:

input cm, sec;

output Speed:integer;

relation cm # sec;

loop

var distance := 0 : integer in

abort

every cm do

distance := distance + 1

end every

when sec do

emit Speed(distance)

end abort

end var

end loop

end module

New constructs:

I Valued signals

I Input relations

I Local variables

I Process preemption
(abortion)

Synchronous Languages Lecture 03 Slide 17

A Tour through Esterel
Further Esterel Statements

The Kernel Language

The ABRO Example
The SPEED Example, Signals and Variables
Weak and Strong Abortion
Modules

Remarks on Valued Signals

I Input restriction ‘R#S’
tells the compiler that R and S cannot be both present

I S:α declares a valued signal of type α
I such a signal has a present/absent status
I and a value of type α that is denoted as ?S
I the value is stored, unless changed by an emission emit S(v)

that immediately changes the value to v
I as the status, the value is uniquely defined per macro step

I Note: Emissions immediately change the values, hence,
emit S(?S+1) makes no sense!

I For that, use delayed emissions: emit next(S(v))
I v is immediately evaluated
I But the value of S is changed in the next macro step

Synchronous Languages Lecture 03 Slide 18

A Tour through Esterel
Further Esterel Statements

The Kernel Language

The ABRO Example
The SPEED Example, Signals and Variables
Weak and Strong Abortion
Modules

Remarks on Local Variables

I var x := τ:α in p end var declares a local variable x of
type α which is initialized by τ and is visible in statement p.

I Differences between variables and signals:
I variables do not have a status, but only a value
I variables store values unless these are changed by assignments

x:=τ
I variables can be changed by micro steps, hence, they may have

several values in a macro step
I for this reason, there are restrictions on the use of variables in

parallel threads: if a local variable declaration contains parallel
threads and the variable is written to within a thread, none of
the concurrent threads may access (read or write) that variable

; assignments to a variable never have write conflicts

Synchronous Languages Lecture 03 Slide 19

A Tour through Esterel
Further Esterel Statements

The Kernel Language

The ABRO Example
The SPEED Example, Signals and Variables
Weak and Strong Abortion
Modules

Remarks on Local Declarations

I There are also local signals: signal S: α in p end signal

I These are treated like output signals inside S

I Like output signals, local signals may have a value or not

I Status and value of a local signal is uniquely determined per
macro step

I This may result in write conflicts (as with valued signals in
general), e.g.: emit S(2); emit S(3)

I In contrast to local variables, threads may interact via local
signals

Synchronous Languages Lecture 03 Slide 20

A Tour through Esterel
Further Esterel Statements

The Kernel Language

The ABRO Example
The SPEED Example, Signals and Variables
Weak and Strong Abortion
Modules

Remarks on Loops

I loop p end is the basic loop
I if loop p end is started at time t, then p is started at time t
I execution of p must always take time, i. e., there must not

be inputs such that p becomes instantaneous
I if S terminates at time t + δ > t, then p is started at time

t + δ > t
; loop p end is equivalent to p; loop p end
I however, such statements can be terminated by surrounding

process abortion

I every S do p end every
I is equivalent to await S; loop p each S
I hence, every time S holds, p is started (and possibly aborted)

Synchronous Languages Lecture 03 Slide 21

A Tour through Esterel
Further Esterel Statements

The Kernel Language

The ABRO Example
The SPEED Example, Signals and Variables
Weak and Strong Abortion
Modules

Remarks on abort

I abort p when S do q end abort
I if started at time t, p is started at time t without checking S
I if p terminates at time t, then the entire statement terminates
I otherwise, the execution of p takes time:

I in all macro steps that start inside p, S is checked
I if S does not hold, p is executed for this macro step
I if S holds, no action of p is executed, instead, q is started
I if the latter happens, q is executed without checking S

; Abortion is also called process preemption

I Note: the abort handler (do q) is optional

Synchronous Languages Lecture 03 Slide 22

A Tour through Esterel
Further Esterel Statements

The Kernel Language

The ABRO Example
The SPEED Example, Signals and Variables
Weak and Strong Abortion
Modules

Variants of Process Abortion

I abort comes in four variants:
I abort p when S do q end abort
I weak abort p when S do q end abort
I abort p when immediate S do q end abort
I weak abort p when immediate S do q end abort

I weak abortion differs in macro steps where abortion takes
place:
I weak abort executes all micro steps of p at abortion time (i. e.,

p may execute a “last wish” even when it is aborted)

I immediate abortions consider S also at starting time
I if S holds at starting time, strong abort immediately starts q
I weak abort additionally executes all micro steps of p that were

executed if abortion would not take place

Synchronous Languages Lecture 03 Slide 23

A Tour through Esterel
Further Esterel Statements

The Kernel Language

The ABRO Example
The SPEED Example, Signals and Variables
Weak and Strong Abortion
Modules

Other immediate Statements

I Many other statements have immediate variants
I await immediate S
I every immediate S do p end

I We will see later that this is because these statements contain
in some sense abortion statements

I Note: There is no immediate variant of loop p each S.
Why? Because otherwise this would lead to an instantaneous
loop.

I Note: every immediate S do p end expands to
await immediate S; loop p each S end

Synchronous Languages Lecture 03 Slide 24

A Tour through Esterel
Further Esterel Statements

The Kernel Language

The ABRO Example
The SPEED Example, Signals and Variables
Weak and Strong Abortion
Modules

Weak Abortion in Program SPEED

module SPEED:

input cm, sec;

output Speed:integer;

loop

var distance1 := 0 : integer in

weak abort

every cm do

distance1 := distance1 + 1

end every

when sec do

emit Speed(distance1)

end abort

end var

end loop

end module

Changes by weak abortion:

I if sec holds, the abortion
takes place

I if additionally cm holds,
distance is once more
incremented

I and thus, this cm is added
to the current interval

Synchronous Languages Lecture 03 Slide 25

A Tour through Esterel
Further Esterel Statements

The Kernel Language

The ABRO Example
The SPEED Example, Signals and Variables
Weak and Strong Abortion
Modules

Using ‘immediate’ in Program SPEED

module SPEED:

input cm, sec;

output Speed:integer;

loop

var distance2 := 0 : integer in

abort

every immediate cm do

distance2 := distance2 + 1

end every

when sec do

emit Speed(distance2)

end abort

end var

end loop

end module

Changes by ‘immediate’:

I if sec holds, the abortion
takes place

I if additionally cm holds,
distance is not
incremented (strong
abort)

I after emission of Speed,
every immediately
executes its body
statement

I thus, this cm is added to
the next interval

Synchronous Languages Lecture 03 Slide 26

A Tour through Esterel
Further Esterel Statements

The Kernel Language

The ABRO Example
The SPEED Example, Signals and Variables
Weak and Strong Abortion
Modules

Using Modules

module TwoStates :

input Pressed;

output StateOff, StateOn;

loop

abort

sustain StateOff;

when Pressed;

abort

sustain StateOn;

when Pressed;

end loop

end module

I Starting sustain S

immediately emits S

I Control flow rests inside
sustain S

I and repeats emit S for all
macro steps, unless abortion
by Pressed takes place

I Hence, each time Pressed is
present, the control flow
toggles between the two
sustain statements

Synchronous Languages Lecture 03 Slide 27

A Tour through Esterel
Further Esterel Statements

The Kernel Language

The ABRO Example
The SPEED Example, Signals and Variables
Weak and Strong Abortion
Modules

Using Modules

module TwoStates:

input Pressed;

output StateOff, StateOn;

loop

abort

sustain StateOff;

when Pressed;

abort

sustain StateOn;

when Pressed;

end loop

end module

module NoName:

input Button;

output inactive;

run TwoStates

[signal

Button/Pressed,

inactive/StateOff

]

||

. . .

end module

Synchronous Languages Lecture 03 Slide 28

A Tour through Esterel
Further Esterel Statements

The Kernel Language

The ABRO Example
The SPEED Example, Signals and Variables
Weak and Strong Abortion
Modules

Using Modules

I If module m has already been defined, then m can be
instantiated in other module bodies

I This is done by executing the statement ‘run m’

; compiler replaces run m with the body of m

I Additionally, declared objects in m can be renamed:

run m [t1 y1/x1, . . . , tn yn/xn], where

ti xi is a declaration of module m

I no recursive module calls allowed (possibly infinite
recursion)

I Primitive recursion (which always terminates) could be allowed

Synchronous Languages Lecture 03 Slide 29

A Tour through Esterel
Further Esterel Statements

The Kernel Language

Further Basic Statements
Process Suspension
Variants of Discussed Statements, Trap vs. Abort
Host Language

Overview

A Tour through Esterel

Further Esterel Statements
Further Basic Statements
Process Suspension
Variants of Discussed Statements, Trap vs. Abort
Host Language

The Kernel Language

Synchronous Languages Lecture 03 Slide 30

A Tour through Esterel
Further Esterel Statements

The Kernel Language

Further Basic Statements
Process Suspension
Variants of Discussed Statements, Trap vs. Abort
Host Language

Esterel Statements Discussed So Far

I emit S and emit S(v)
I sustain S and sustain S(v)
I sequence: p; q
I parallel: p || q
I loops

I loop p end
I loop p each S
I every [immediate] S do p end

I await [immediate] S
I [weak] abort p when [immediate] S do q end abort
I local declarations

I var x:α in p end var
I signal S:α in p end signal

Synchronous Languages Lecture 03 Slide 31

A Tour through Esterel
Further Esterel Statements

The Kernel Language

Further Basic Statements
Process Suspension
Variants of Discussed Statements, Trap vs. Abort
Host Language

Further Esterel Statements

I nothing

I pause

I halt

I present S then p else q end

I if E then p else q end

I repeat n times p end repeat

I suspend p when [immediate] S

I trap T in p end trap with exit T

I call P(x1, . . . , xn)(v1, . . . , vm)

I exec P(x1, . . . , xn)(v1, . . . , vm) return R

Synchronous Languages Lecture 03 Slide 32

A Tour through Esterel
Further Esterel Statements

The Kernel Language

Further Basic Statements
Process Suspension
Variants of Discussed Statements, Trap vs. Abort
Host Language

Further Basic Statements

I nothing does nothing and needs no time to do nothing

I pause waits for the next macro step

I halt waits for all the time, i. e., halt ≡ loop pause end

Synchronous Languages Lecture 03 Slide 33

A Tour through Esterel
Further Esterel Statements

The Kernel Language

Further Basic Statements
Process Suspension
Variants of Discussed Statements, Trap vs. Abort
Host Language

Conditionals

present S then p else q end present

I if started, evaluate expression S

I if S holds, immediately execute p, otherwise q

I both the then and the else branches are optional

More general form:

present

case S_1 do p_1

. . .

case S_n do p_n

else q

end present

:≡

present S_1 then p_1

else present S_2 then p_2

. . .

else present S_n then p_n

else S_q

end present

. . .

end present

Synchronous Languages Lecture 03 Slide 34

A Tour through Esterel
Further Esterel Statements

The Kernel Language

Further Basic Statements
Process Suspension
Variants of Discussed Statements, Trap vs. Abort
Host Language

Conditionals

I if E then p else q end if
I if started, evaluate expression E
I if E holds, immediately execute p, otherwise execute q

I present S is restricted for signal expressions

I if instead checks variable values.

I Note: In Esterel v7, if may also be used as a synonym for
present.

Synchronous Languages Lecture 03 Slide 35

A Tour through Esterel
Further Esterel Statements

The Kernel Language

Further Basic Statements
Process Suspension
Variants of Discussed Statements, Trap vs. Abort
Host Language

Process Suspension

suspend p when S

I If started at time t, p is started at time t without checking S

I If p terminates at time t, then the entire statement terminates
I Otherwise, the execution of p takes time. In all macro steps

that start inside p:
I S is checked first
I If S does not hold, p is executed for this macro step
I If S holds, the control flow rests at the current locations, and

no action of p is executed
I Hence, the control flow is frozen whenever S holds

For comparison: in Unix, a process is aborted with ̂C,
suspended with ̂Z, and released again with fg

Synchronous Languages Lecture 03 Slide 36

A Tour through Esterel
Further Esterel Statements

The Kernel Language

Further Basic Statements
Process Suspension
Variants of Discussed Statements, Trap vs. Abort
Host Language

Process Suspension

Similar to abort, there are 2× 2 variants:

I suspend p when S

I weak suspend p when S

I suspend p when immediate S

I weak suspend p when immediate S

Synchronous Languages Lecture 03 Slide 37

A Tour through Esterel
Further Esterel Statements

The Kernel Language

Further Basic Statements
Process Suspension
Variants of Discussed Statements, Trap vs. Abort
Host Language

Process Suspension
Immediate suspend can be transformed into non-immediate
suspend:

suspend

p

when immediate S
≡

suspend

present S then

pause

end;

p

when S

Note: the immediate variant implies an additional control point
(behaving like a pause statement) where control may rest between
ticks.

suspend

nothing

when immediate tick
≡

loop

pause

end loop

Synchronous Languages Lecture 03 Slide 38

A Tour through Esterel
Further Esterel Statements

The Kernel Language

Further Basic Statements
Process Suspension
Variants of Discussed Statements, Trap vs. Abort
Host Language

Weak Process Suspension

weak suspend p when S

I Behaves like (strong) suspend at initial tick.
I In all macro steps that start inside p, S is again checked first

I If S does not hold, p is executed for this macro step
I If S holds, the control flow rests at the current locations—but

the actions of p for the current tick are still executed
I Note: if S holds, the execution is still limited to p, i. e., no

actions following the suspend statement get executed

weak suspend p when immediate S

I Similar to non-immediate variant, except that S is also
checked in initial tick

I Again, an additional control point gets introduced at the
beginning of p where control may resume at the next tick

Synchronous Languages Lecture 03 Slide 39

A Tour through Esterel
Further Esterel Statements

The Kernel Language

Further Basic Statements
Process Suspension
Variants of Discussed Statements, Trap vs. Abort
Host Language

Weak Process Suspension

Weak suspend may hide a loop:

weak suspend

pause;

emit next(S(?S+1))

when true

:≡
loop

pause;

emit next(S(?S+1))

end loop

Synchronous Languages Lecture 03 Slide 40

A Tour through Esterel
Further Esterel Statements

The Kernel Language

Further Basic Statements
Process Suspension
Variants of Discussed Statements, Trap vs. Abort
Host Language

Resolution Functions

Signals can be emitted in one macro step with different values
; write conflicts

Solving write conflicts by resolution functions

I output O: combine α with f

I f is used to compute the final value by applying f to the
emitted values

I Example: output votes: combine integer with +

resolves emit votes(2); emit votes(3) so that votes
has value 2 + 3 = 5

I f : α× α→ α must be commutative and associative

I Commutativity and associativity of f makes the value
independent of the ordering of the values

Synchronous Languages Lecture 03 Slide 41

A Tour through Esterel
Further Esterel Statements

The Kernel Language

Further Basic Statements
Process Suspension
Variants of Discussed Statements, Trap vs. Abort
Host Language

Input Restrictions

I Compilers for synchronous languages have to analyze the
program

I Most problems are undecidable, so (conservative) heuristics
have to be used

I Known information about inputs should be given to compiler

; input restrictions
I inclusion: relation R -> S means that presence of R implies

presence of S
I exclusion: relation S 1 # S 2 # ...# S n means that at

most one of the signals S i can be present per macro step

I Examples
I relation minute -> second
I relation liftup # liftdown

Synchronous Languages Lecture 03 Slide 42

A Tour through Esterel
Further Esterel Statements

The Kernel Language

Further Basic Statements
Process Suspension
Variants of Discussed Statements, Trap vs. Abort
Host Language

Further Loops
repeat n times p end repeat

I n, an integer expression, is immediately evaluated
I then execute n times p
I p must not be instantaneous

Equivalent:

var i,j: integer in

i := 0; j := n;

signal stop in

weak abort

loop

if i<j then p; i := i+1

else emit stop

end if

end loop

when stop

end signal

end var

Wait . . . does this work?
No—this is a (potentially)
instantaneous loop.
How would you fix it?
Add a pause statement
after emit stop

Synchronous Languages Lecture 03 Slide 43

A Tour through Esterel
Further Esterel Statements

The Kernel Language

Further Basic Statements
Process Suspension
Variants of Discussed Statements, Trap vs. Abort
Host Language

Further Await Statements

await [immediate] S can be generalized as follows:

await [immediate]

case S_1 do p_1

. . .

case S_n do p_n

end await

:≡

await [immediate] S_1 or . . . or S_n;

present

case S_1 do p_1

. . .

case S_n do p_n

end present

Synchronous Languages Lecture 03 Slide 44

A Tour through Esterel
Further Esterel Statements

The Kernel Language

Further Basic Statements
Process Suspension
Variants of Discussed Statements, Trap vs. Abort
Host Language

Further Abort Statements

[weak] abort p when S do q can be generalized as follows:

[weak] abort p when

case S_1 do p_1

. . .

case S_n do p_n

end abort

:≡

[weak] abort p when S_1 or . . . or S_n

do

present

case S_1 do p_1

. . .

case S_n do p_n

end present

end abort

Synchronous Languages Lecture 03 Slide 45

A Tour through Esterel
Further Esterel Statements

The Kernel Language

Further Basic Statements
Process Suspension
Variants of Discussed Statements, Trap vs. Abort
Host Language

Priorities of Nested Aborts

I Nested aborts have different priorities

I Example:

abort

abort

p

when S_1 do

e

end abort

when S_2

end abort

I If control is inside p, and both S 1 and S 2 hold, then e is not
executed, since the outer abortion has priority

I Question: what happens if one or the other is weak? Try it!

Synchronous Languages Lecture 03 Slide 46

A Tour through Esterel
Further Esterel Statements

The Kernel Language

Further Basic Statements
Process Suspension
Variants of Discussed Statements, Trap vs. Abort
Host Language

Trap Statements

trap T in p end trap with exit T

I exit T is similar to emit T, but refers to the trap T

I when the statement is started, p starts immediately

I if exit T is executed inside p, p is immediately aborted

Differences to abort:

I exit T can only be executed within p (due to scope of T)

I abortion due to trap is neither really weak nor really strong

I instead: ‘asynchronous abortion’

I exit T works like a goto in that those micro steps are
executed up to the micro step where exit T is executed, but
no further ones

; exit T terminates the trap statement

Synchronous Languages Lecture 03 Slide 47

A Tour through Esterel
Further Esterel Statements

The Kernel Language

Further Basic Statements
Process Suspension
Variants of Discussed Statements, Trap vs. Abort
Host Language

Trap vs. Abort

P 1 P 2 P 3 P 4

trap T in

emit A;

exit T;

emit B;

end trap

signal T in

weak abort

emit A;

emit T;

emit B;

when T

end

signal T in

abort

emit A;

emit T;

emit B;

when immediate T

end

signal T in

weak abort

emit A;

emit T;

emit B;

when immediate T

end

Emitted Signals:

{A} {A,B} ⊥ {A,B}
P 3 is inconsistent:

it is aborted due to the emission of T, thus, T can not be emitted

Synchronous Languages Lecture 03 Slide 48

A Tour through Esterel
Further Esterel Statements

The Kernel Language

Further Basic Statements
Process Suspension
Variants of Discussed Statements, Trap vs. Abort
Host Language

Trap vs. Abort

I Is this a solution?

trap T in

p

end
=⇒

signal T in

weak abort

p[exit T / emit T; pause]

when immediate T

end

I p[exit T / emit T; pause] means: exit T is replaced by
emit T; pause

I The control flow will never rest on this pause statement,
since the abort will instantaneously take place

Synchronous Languages Lecture 03 Slide 49

A Tour through Esterel
Further Esterel Statements

The Kernel Language

Further Basic Statements
Process Suspension
Variants of Discussed Statements, Trap vs. Abort
Host Language

Trap vs. Abort

P1 P5

trap T in

emit A;

exit T;

emit B

end trap

signal T in

weak abort

emit A;

emit T;

pause;

emit B

when immediate T

end

Emitted Signals:

{A} {A}
that works!, however, . . .

Synchronous Languages Lecture 03 Slide 50

A Tour through Esterel
Further Esterel Statements

The Kernel Language

Further Basic Statements
Process Suspension
Variants of Discussed Statements, Trap vs. Abort
Host Language

Trap vs. Abort

P problem P problem’

trap T_1 in

trap T_2 in

exit T_1

||

exit T_2

end trap

emit A

end trap

signal T_1 in

weak abort

signal T_2 in

weak abort

emit T_1; pause

||

emit T_2; pause

when immediate T_2

end signal;

emit A

when immediate T_1

end signal

Emitted Signals:

{} {A}

I If started, P problem exits both
T 1 and T 2

I The trap with the highest
(outermost) priority (T 1) is
raised

I Hence, A is not emitted by
P problem, but is emitted by
P problem’

I Trap and abort have different
priority schemes

I How can this be repaired?

Synchronous Languages Lecture 03 Slide 51

A Tour through Esterel
Further Esterel Statements

The Kernel Language

Further Basic Statements
Process Suspension
Variants of Discussed Statements, Trap vs. Abort
Host Language

Esterel and the Host Language

I Esterel has only a few data types

I Data types and functions can be imported from host languages

I Esterel programs are translated to the host language

I Esterel mainly cares about compiling multi-threaded programs
to a single thread

I To this end, all thread interaction is handled at compile time

I After successful compilation, the programs are free of runtime
errors due to concurrency like write conflicts and deadlocks

I The result is a deterministic system
(rather unusual for multi-threaded systems)

Synchronous Languages Lecture 03 Slide 52

A Tour through Esterel
Further Esterel Statements

The Kernel Language

Further Basic Statements
Process Suspension
Variants of Discussed Statements, Trap vs. Abort
Host Language

Esterel and the Host Language (Software)

C

Esterel C

CC

Esterel

C

Esterel

microprocessor microprocessor

Synchronous Languages Lecture 03 Slide 53

A Tour through Esterel
Further Esterel Statements

The Kernel Language

Further Basic Statements
Process Suspension
Variants of Discussed Statements, Trap vs. Abort
Host Language

Host Language

I Esterel (v5) does not implement many data types
has only boolean, integer, float, and string

I There are no means to define new data types

I or simple (instantaneous) functions on user-defined data types
I However:

I Esterel programs are translated to program of a host language
I for software, often C is used
I obtained C program can be linked with other C programs

I Esterel can import data types, functions and procedures
from the host language

Synchronous Languages Lecture 03 Slide 54

A Tour through Esterel
Further Esterel Statements

The Kernel Language

Further Basic Statements
Process Suspension
Variants of Discussed Statements, Trap vs. Abort
Host Language

Imported Data Types and Functions

I type α imports a data type from host language

I This type must be implemented in the host language

I function f(α1, . . . , αn) : α imports a function

I Esterel is able to perform type checking,
but knows nothing else of f

I Arguments are passed-by-value

I Functions f must not have side effects

I Functions are used to generate expressions

I Therefore, function calls are instantaneous

Synchronous Languages Lecture 03 Slide 55

A Tour through Esterel
Further Esterel Statements

The Kernel Language

Further Basic Statements
Process Suspension
Variants of Discussed Statements, Trap vs. Abort
Host Language

Imported Procedures

I procedure P(α1, . . . , αn)(β1, . . . , βm) imports a procedure
from host language with types αi and βi

I Arguments of first argument list are given with
call-by-reference

I Arguments of second argument list are given with call-by-value

I Procedures have no return value, but can change the variables
that were given in the first argument list

I Procedure calls call P(x1, . . . , xn)(τ1, . . . , τm) are
instantaneous

Synchronous Languages Lecture 03 Slide 56

A Tour through Esterel
Further Esterel Statements

The Kernel Language

Further Basic Statements
Process Suspension
Variants of Discussed Statements, Trap vs. Abort
Host Language

Imported Tasks
I task P(α1, . . . , αn)(β1, . . . , βm) imports a task from host

language with types αi and βi
I Arguments are the same as with procedures
I exec P(x1, . . . , xn)(τ1, . . . , τm) return R executes task p,

which may not be instantaneous
I The exec statement terminates when the task terminates;

Tasks are not instantaneous
I P runs in parallel with Esterel threads
I P may correspond to a C-program, or also to a physical

process (“Robot drives distance X”)
I No interaction with Esterel threads, except for termination of

P
I Termination of p is signaled by R
I R is a return signal, declared at module interface analogous to

input/output signals
I R may be valued
I Note: Esterel v7 does not support tasks

Synchronous Languages Lecture 03 Slide 57

A Tour through Esterel
Further Esterel Statements

The Kernel Language

Further Basic Statements
Process Suspension
Variants of Discussed Statements, Trap vs. Abort
Host Language

Abortion of Tasks

abort

exec P(X)(23) return R

when S

I If R holds before S, then X is updated and the abort

terminates

I If S holds before R, then task P is aborted and X is not updated

I If R and S both hold, then the abort terminates and X is not
updated

I Using weak abort allows to update X

Synchronous Languages Lecture 03 Slide 58

A Tour through Esterel
Further Esterel Statements

The Kernel Language

Further Basic Statements
Process Suspension
Variants of Discussed Statements, Trap vs. Abort
Host Language

Multiple Task Execution

exec

case T_1 ... return R_1 do p_1

...

case T_n ... return R_n do p_n

end exec

I When started, all tasks T 1,. . . ,T n are concurrently started
I When at least one return signal occurs:

I Let R i be the first return signal in the case-list that is present
I Update only reference arguments corresponding to R i
I Abort all non-terminated tasks

Synchronous Languages Lecture 03 Slide 59

A Tour through Esterel
Further Esterel Statements

The Kernel Language

Overview

A Tour through Esterel

Further Esterel Statements

The Kernel Language

Synchronous Languages Lecture 03 Slide 60

A Tour through Esterel
Further Esterel Statements

The Kernel Language

Kernel Language

I Many Esterel statements p can be viewed as macros

I Important: write-things-once-principle (WTO)

; guarantees expanded statements of size O(‖p‖)
I For programming, redundant statements (called syntactic

sugar) are important to directly express what is meant

I However, compilation should be based on few constructs

; using small kernel language

Synchronous Languages Lecture 03 Slide 61

A Tour through Esterel
Further Esterel Statements

The Kernel Language

Kernel Language: Esterel

nothing (empty statement)
pause (separation of macro step)

emit S (signal emission)
present S then p else q end (conditional)

suspend p when S (process suspension)
p;q (sequence)

p || q (synchronous concurrency)
loop p end (infinite loop)

trap T in p end (exception handling)
exit T (exception raising)

signal S in p end (local declarations)

Synchronous Languages Lecture 03 Slide 62

A Tour through Esterel
Further Esterel Statements

The Kernel Language

Summary

I The ABRO example, the “hello world” of Esterel, illustrates
reactive control flow

I Traps are similar to weak aborts, but there are subtle
differences

I Esterel can be thought of as a “coordination language” that
allows deterministic concurrency and preemption, while much
of the computational details is left to a host language
(typically C)

I All Esterel statements can be derived from a few kernel
statements

Synchronous Languages Lecture 03 Slide 63

A Tour through Esterel
Further Esterel Statements

The Kernel Language

To Go Further

I Gérard Berry, The Esterel v5 Language Primer, Version v5 91,
2000
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

10.1.1.15.8212

Synchronous Languages Lecture 03 Slide 64

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.15.8212
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.15.8212

	A Tour through Esterel
	The ABRO Example
	The SPEED Example, Signals and Variables
	Weak and Strong Abortion
	Modules

	Further Esterel Statements
	Further Basic Statements
	Process Suspension
	Variants of Discussed Statements, Trap vs. Abort
	Host Language

	The Kernel Language

